
Flexibility in Dependable

Real-time Communication

Ian Broster

This thesis is submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy.

University of York

Department of Computer Science

August 2003

Abstract

THE ROLE OF THE COMMUNICATIONS BUS is fundamental in distributed real-time

control systems. Such systems are increasingly used for critical functions in avion-

ics, automotive and factory control situations, placing increased dependability and

real-time constraints on the bus. Environmental influences such as electromagnetic

interference are hard to avoid so a “flexible” bus may be able to provide active fault

tolerance. However its effects on reliability and timeliness are difficult to predict.

This thesis contends that guaranteeing to meet all deadlines in communication is not

only impractical, but often impossible, due to the unpredictability of environmental

interference, no matter which type of electrical bus is used. However, many applica-

tions are capable of safe operation if a small number of communication deadlines are

missed. In such systems, an analysable and reliable system can be achieved through

the use of flexible fault tolerance.

Using CAN (a widely used bus protocol) as a basis, this thesis first shows how

weakly-hard analysis (which considers timing behaviour over a number of invoca-

tions) can be applied to flexible bus scheduling. This allows consideration of more

than just the worst case scenario, leading to analysable and predictable behaviour un-

der severe environmental conditions. A second form of analysis based on a probabilis-

tic fault model is used to provide accurate probabilities of failure, providing the facility

to explore system behaviour analytically for fault scenarios which exceed normal be-

haviour. Finally, a simple extension to the CAN protocol, TCAN (Timely-CAN), is

proposed which enforces timely recovery from faults by only using CAN message re-

transmission where it is useful to do so without imposing further delays on the bus.

Hence the flexibility of CAN is exploited to provide fault tolerance, and both timeli-

ness and predictability are achieved.

Contents

Abstract 3

Table of Abbreviations 11

Table of Symbols 13

Acknowledgements 15

Declaration 17

1 Flexible and Dependable Communication 19
1.1 Distribution . 20
1.2 Environment . 22
1.3 Flexibility . 23
1.4 Real-time and Control Systems . 24
1.5 Contribution . 25

2 Real-time Communication 27
2.1 Real-time Systems . 27
2.2 Real-time Communication . 32
2.3 Dependability . 34
2.4 Flexibility in Real-time Communication 37
2.5 Controller Area Network . 45
2.6 CAN Worst Case Response Time Analysis 58
2.7 Bus Faults on CAN . 66
2.8 Scheduling on CAN . 71
2.9 Summary . 73

3 Weakly-hard Analysis of CAN 75
3.1 Motivation . 75
3.2 Intuition . 77
3.3 Weakly-hard Theory . 78
3.4 Guaranteed Weakly-hard Analysis of CAN 80
3.5 Incorporating Faults: Calculating Ei,k(t) 83
3.6 Conversion to Weakly Hard Constraints 85

5

Contents

3.7 Critical Instants and Harmonic Periods 85
3.8 Relaxing Clock Synchronisation . 88
3.9 Evaluating Weakly Hard . 89
3.10 Simulation of CAN . 101
3.11 Resilience of the Analysis . 105
3.12 Pessimism in Weakly-hard Analysis 108
3.13 Summary . 109

4 Probabilistic Analysis of CAN 111
4.1 Worst Case Analysis and Fault Models 111
4.2 Probabilistic Analysis Approaches 114
4.3 A New Probabilistic Analysis of CAN 123
4.4 Interpretation of the Distribution . 129
4.5 Probabilities, Complexity and ρ . 130
4.6 Implementation of the Probabilistic Algorithm 133
4.7 Improving the Analysis . 134
4.8 Multiple Invocation Analysis . 139
4.9 Evaluating the Analysis . 140
4.10 Summary . 150

5 Predictable Failure 153
5.1 Approach and Justification . 153
5.2 Intuition . 155
5.3 The Timely-CAN Protocol . 156
5.4 Properties . 162
5.5 Strategies for Deadline Calculation 164
5.6 Common Knowledge of Delivery Threshold Times 170
5.7 Clock Synchronisation . 172
5.8 Implementation . 175
5.9 Evaluation . 177
5.10 Summary . 181

6 Conclusion 185
6.1 Missing Deadlines . 186
6.2 Exploiting Variation . 187
6.3 Exploiting Dynamic Fault-tolerance 187
6.4 Exploiting Missed Deadlines . 188
6.5 Evaluation . 189
6.6 Exploitation of Results . 192
6.7 Future Work . 193
6.8 Concluding Remarks . 194

List of References 195

6

List of Tables

3.1 SAE Benchmark. 91
3.2 Non-harmonic Message Set. 94
3.3 Worst Case Response Times with Faults. 97
3.4 Percentage of Times that the Constraint

〈 n
m

〉

is Satisfied. 98
3.5 Analysis of deadlines missed in a row. 99
3.6 Percentage of Guaranteed Weakly Hard Constraints

(n
m

)

by Analysis. 99
3.7 Analysis of Deadlines Missed in a Row. 99
3.8 Comparison of Weakly-hard Analysis and Simulation at High Levels

of Faults. 104
3.9 Comparison of Weakly-hard Constraints and Poisson Simulations. . . 107

4.1 Burns and Punnekkat Guarantees vs. Simulation Results. 118
4.2 Navet WCDFP Analysis. 123
4.3 Enumeration of Scenarios. 136
4.4 Peugeot Example Message Set. 141
4.5 Probabilistic Analysis results. 142
4.6 Probabilistic Analysis of One Frame. 147
4.7 Comparison of new Analysis, Previous Approach and Simulation. . . 148

5.1 TCAN and CAN Fault Injection Results. 178

7

8

List of Figures

2.1 Two Cycles of a TDMA schedule example. 38
2.2 CAN Protocol Layers. 48
2.3 CAN Data Frame Format. 52

3.1 Typical Distribution of Response Times. 78
3.2 Typical Distribution of Response Times with One Fault. 79
3.3 Virtual Task to Calculate the Idle Time. 83
3.4 Harmonic Periods. 86
3.5 Non-harmonic Periods. 86
3.6 Variation in Worst Case Response Times for One Fault in Hyperperiod 95
3.7 Cumulative Distribution of Response Times with One Fault. 96

4.1 Approximations to Burns’ Approach: Comparison. 117
4.2 Modified Navet Analysis and Simulation Results. 124
4.3 Example Probability Tree for Simple Fault Model. 127
4.4 Interpretation of Results. 130
4.5 Analysis Algorithm. 133
4.6 Response Times for Improved Algorithm. 135
4.7 Probability Distribution of Response Times for All Frames. 143
4.8 Response Time Probability, Analysis vs. Simulation. 144
4.9 Probabilistic Analysis of all frames. 146
4.10 Analysis and Simulation for One Frame. 147
4.11 Comparison of Navet and New Probabilistic Analyses. 149

5.1 TCAN: Simple Example Showing How Losing Messages Can Im-
prove Timeliness of Others. 158

5.2 Code for TCAN Transmitter. 160
5.3 Code for TCAN Receiver. 161
5.4 Possible Values for Deadlines. 167
5.5 Effect of Clock Skew. 173
5.6 Protected-TCAN. 174
5.7 Distribution of Lost Frames. 180
5.8 Distribution of Lost Frames for 3 Threshold Schemes. 181

9

10

Table of Abbreviations

Abbreviations used in this thesis, their meaning and index of the main pages where

the abbreviations are used.

Abbreviation Meaning Page

CAN Controller Area Network 24, 34

CAN2.0A Standard Format CAN 51

CAN2.0B Extended Format CAN 51

COTS Commercial Off the Shelf 175

CPU Central Processing Unit 75

CRC Cyclic Redundancy Check 50, 56

CSMA Carrier Sense Multiple Access 40

CSMA-CA CSMA—Collision Avoidance 41

CSMA-CD CSMA—Collision Detection 43

CSMA-DCR CSMA—Deterministic Collision Resolution 44

DMPO Deadline Monotonic Priority Ordering 71

EDF Earliest Deadline First 71, 194

EMI Electromagnetic Interference 23, 30

FTMP Fault Tolerant Multiprocessor 22

FTT Flexible Time Triggered 33, 42

FTTCAN Flexible Time Triggered CAN 42, 72, 175

ISO International Standards Organisation 47

LST-CAN Latest Send Time CAN, now called TCAN 153

MAC Media Access Control 37

OSI Open System Interconnection 47

continued over...

11

Table of Abbreviations

...continued

Abbreviation Meaning Page

PID Proportional, Integral, Derivative 60, 76

RMPO Rate Monotonic Priority Order 71, 87, 141

SAE Society of Automotive Engineers 90

TCAN Timely Controller Area Network 26

TDMA Time Division Multiple Access 33, 37, 190

TTCAN Time Triggered CAN 45, 73, 153

TTP Time Triggered Protocol 24, 34, 37

WCDFP Worst Case Deadline Failure Probability 70, 119

WCRT Worst Case Response Time 59, 62

12

Table of Symbols

Symbols used in this thesis, their meaning and index of the main pages where the

symbols are used.

Symbol Meaning Page

Ai Number of invocations of stream i in the hyperpe-

riod

81

Bi Worst case blocking 65, 82, 126

Ci Longest frame length 61, 64

Di Deadline for a frame in stream i 61, 65, 94, 131,

165, 181

E Maximum length of an error frame 67, 84, 125

Ei(t) Worst case overhead due to faults in interval t 66, 67, 84, 125,

189

H Length of the hyperperiod 81, 92

Hi Length of the hyperperiod at level i 81, 93

Ii(t) Worst case interference in interval t 65, 82, 89, 126

Ji Worst case jitter 61, 66, 102, 115,

126

OF Offset for pseudo-periodic fault stream 84

Oi Offset for frames in stream i 61, 170

Ri Worst case response time of stream i 62, 64, 93, 115,

128, 155, 167,

180, 194

continued over...

13

Table of Symbols

...continued

Symbol Meaning Page

Ri,k Worst case response time of the kth invocation in

stream i

81, 85

Ri|K Worst case response time for a frame in stream i if

K faults delay the frame

120, 135, 137

S Time of CAN inter-frame space 64, 82

Si,k Time of trigger event of kth invocation in stream i 81, 84, 164

TF Minimum interarrival time between faults 67, 84, 92, 103

Ti Period or minimum inter-arrival time 61, 66, 81, 85,

126, 167, 170

U Total maximum utilisation 62, 81, 99

Ui Maximum utilisation of stream i 62

Xi TCAN delivery threshold for stream i 163, 166, 178,

194

Xi,k TCAN delivery threshold for the kth invocation in

stream i

157, 164, 170,

174

δi,k Idle time before the kth invocation in stream i 82

ρ A very small, insignificant, probability used as a

threshold

125, 127–133

ε Bounded Clock Difference 67, 81, 125, 135

hp(i) Set of streams with higher priority to stream i 62, 65, 86

λ Parameter of Poisson Distribution, mean number of

faults per unit interval

103, 105

lp(i) Set of streams with lower priority to stream i 65

τ Time of one bit on CAN bus 63, 65, 89

ai Number of invocations of stream i in the hyperpe-

riod at level i

81, 87, 93

14

Acknowledgements

There are a number of people and organisations who have contributed directly and

indirectly to this thesis. I wish to express my sincere gratitude to them all. In par-

ticular, my supervisor, Professor Alan Burns has provided invaluable guidance and

advice throughout my years at university. Some of the research in this thesis has been

performed jointly between myself and other people: Dr. Guillem Bernat of the Univer-

sity of York was involved with the chapter on weakly-hard analysis and collaborative

work with Mr. Guillermo Rodrı̀guez-Navas from the Universitat de les Illes Balears

formed the basis of the chapter on probabilistic analysis. I would also like to thank

my colleagues in the Real-time Systems Group at the University of York for their sup-

port and informal discussions which form a vital part of the research environment. In

particular, Mr. Michael Bennett, Dr. Iain Bate and Mr. George de Lima. I also wish to

thank Dr. Julian Proenza of the Universitat de les Illes Balears for his encouragement

and interest in this research work.

This work has been funded by Rolls-Royce plc and EPSRC through a CASE award.

I would like to thank the people at Rolls-Royce who funded this work and especially

Dr. Tim Kelly for arranging the partnership and also for his role as the internal assessor

for this doctorate programme.

Finally, many thanks to Karen, my wife, for all her help, encouragement and sup-

port.

15

16

Declaration

Parts of this thesis have been published previously and in collaboration with other

people. The work in Chapter 3 was done in collaboration with Dr. Guillem Bernat of

the University of York and was published in 2002 at the Euromicro Real-time Systems

Conference [31]. The work in Chapter 4 was done in collaboration with Mr. Guillermo

Rodrı́guez-Navas of the Universitat de les Illes Balears and was published at in 2002 at

the IEEE Real-time Systems Symposium [35]. The work in Chapter 5 was published

previously at the 2001 Euromicro Real-time Systems Conference [33] and future work

is to appear in the 2003 Emerging Technologies and Factory Automation Conference

[57]. Related work has been also published at the 2001 Real-time Systems Symposium

[32] and to appear at the 2003 Real-time Systems Symposium [34]. Except where

otherwise stated, all material is the author’s own.

17

18

1 Flexible and Dependable

Communication

MODERN COMPUTER CONTROL SYSTEMS are more distributed today than ever be-

fore and the trend looks likely to continue. Crucial to a distributed system is the com-

munications (sub)system—the network or bus system that links together the nodes in

the system—its role is central in supporting the functional, real-time and dependability

requirements of the system.

The functional requirements are difficult to characterise since they vary massively

between different systems. However, one trend which may be observed is that modern

systems have more and more demanding functional and non-functional requirements,

involving increased bandwidth, dynamic loads, fault tolerance and reconfiguration

[30, 19].

Many control systems perform functions with real-time requirements: the times at

which they interact with their environment are important in some way. For example,

an anti-lock braking system needs to respond to the wheels locking and the pressure

on the brake pedal quickly enough to keep the vehicle under control.

The environment in which many distributed, embedded systems reside may be

harsh, with extremes of electrical interference, vibration, temperature and pressure.

An aircraft engine, for example, suffers severe vibration and very low temperatures

and pressures in addition to electrical noise from many sources including [69] light-

ning, radar, radio, other aircraft and the engine itself.

In a distributed control system, the communications system is crucial, yet this is a

component that is particularly at risk from environmental influences due to its long

lengths of electrical cabling [121].

19

1 Flexible and Dependable Communication

The rest of this chapter explores the key elements of distribution, the environment,

flexibility and real-time control to provide motivation for the contributions in this the-

sis towards flexible, dependable communication.

1.1 Distribution

As stated earlier, a current trend in control systems is towards distribution, and in the

context of control systems this leads to localised control. It is interesting to note the

apparent change in direction, as the decreasing cost of computer hardware allows the

advantages of computer control to be distributed around the system.

Traditionally (before any computer control), mechanical systems were entirely dis-

tributed: complex mechanical control was accomplished (with a great deal of inno-

vation) using devices such as cams, levers and speed regulators. Amazing feats have

been achieved using clockwork technology, the famous ‘Mechanical Turk’ mechanical

chess player from the 18th Century illustrates the ingenious possibilities of mechani-

cal control [151]. Through necessity, mechanical control must be performed where it

is needed, distributed throughout the system.

Later, with the advent of electronics and computing, the advantages of software-

based control became apparent. The complex (and often error-prone) mechanical de-

vices were replaced by far simpler electronic sensors and actuators such as solenoids

and servos, wired to a central computer system. This enabled complex yet reliable

control to be implemented in software with relative ease. Many good examples of

this architecture may be seen today, for example in factory automation, aircraft en-

gines, household appliances and many commercial vehicles from around the 1980’s.

Of course, this architecture has many disadvantages too: not least the fact that there is

one single, very complex point of failure. Modern computer systems are so complex,

performing so many different functions in one place, that the resulting behaviour can

become far from predictable.

The miniaturisation, availability and decreasing cost of computer based systems

have been some of the most important drivers for the current trend back to distributed

control. This time though, the localised control is computer-based rather then entirely

20

1.1 Distribution

mechanical. This allows the advantages of computer-based control to be combined

with localised control, providing a sound solution with the positive characteristics of

both styles of architecture. There are other motives for distribution too [29], explained

in the following.

Reduce wiring and wiring complexity: in a typical single processor scenario there

may be many sensors spread around the system, each connected to the process-

ing unit with its own point-to-point connection. Hence there is a lot of wiring,

routed all over the system. This is complex to set up, heavy and expensive be-

cause it uses a lot of cable, and prone to faults which are then difficult to find

and repair. If more than one processing unit is used so that the processing can be

done near to the sensors and the processors connected together using a bus, then

the length and weight of cable and the complexity of wiring are significantly

reduced [89].

Reduce complexity in the nodes: as the number of nodes increases, the amount of

functionality that each node must support can decrease. This results in both

simpler hardware and simpler software. The positive effects of fewer ‘devices’

(per node), hardware interfaces and software components are numerous. Not

least is the possibility to improve predictability, since smaller nodes allow more

accurate and predictable control of resources.

Improve diagnostics: using multiple processors could provide the ability to pinpoint

the source of faults [156]. By splitting one large and complex system into many

smaller ones, an external monitoring system can monitor communications be-

tween them to diagnose a fault to a specific node which is cheap and simple

to replace. This can be an improvement over diagnostic procedures on a single

‘black box’, where the box is very complex.

Provide more processing capacity: more processor bandwidth distributed across the

system allows the possibility of more sophisticated control, distributed problem

solving, advanced logging and diagnostic functions etc.

Allow composability and expansion: it is often easier to expand functionality by

connecting a new node to a network than it is to modify existing nodes. Part of

21

1 Flexible and Dependable Communication

the reason for this is that the interface is naturally well-defined, the possibilities

for unseen dependencies such as shared memory violations, timing dependen-

cies or competition for the CPU are reduced. However, composability is far

from being a trivial problem [153].

Provide fault-tolerance: a distributed system has clear potential for implementing

modular redundancy at the node level by replicating nodes. This has been done

many times before in a variety of guises, see for example the replication in the

FTMP architecture as far back as 1978 [65].

There are many examples of increasing distribution today, for example in a modern

car, there may be approximately 100-150 small embedded computers connected to-

gether around the vehicle, performing functions such as engine management, assisted

braking, climate control and entertainment. Forecasts suggest that this number is set

to grow to over 1000 [101].

Brake-by-wire systems (with no hydraulic backup) are likely to be standard in future

cars, “electromechanical brakes are far easier to build, are more serviceable, more

reliable and the response time between the driver’s foot and the brakes is faster” [60].

The existing research prototypes for in-vehicle automation possibilities make eye-

opening reading [89]. However, with these advantages may come the responsibilities

of safety-critical systems, where there is a need to provide reliable behaviour, even in

the presence of a variety of faults [110]. Here lies the reason that these “Drive-by-

Wire” systems are not yet in production vehicles; at least some part of this hesitation

comes from uncertainty about the reliability of bus-based systems [89].

Other examples of increasing distribution include factory communication systems

[162] and modular avionics [1, 77] where there is intense interest in dependable com-

munication.

1.2 Environment

Dependable, distributed, embedded real-time systems have been designed and used

successfully for many years. Such systems are seen in cars, factories, aircraft and

22

1.3 Flexibility

many other applications. A variety of different technologies have been used to imple-

ment these systems and there is little reason to doubt their dependability.

However, the environment in which these systems reside can be unpredictable and

may have unpredictable effects on the system. The environment is often harsh with ex-

tremes of temperature, pressure and vibration. It may be electrically noisy, with high

levels of electromagnetic radiation. EMI (electromagnetic interference) is generally

considered to have been the “cause” of several UH-60 ‘Black Hawk’ Army helicopter

crashes [169] and it is suggested that EMI has been behind a number of other unex-

plained avionics disasters [49]. Many more examples of EMI related accidents can be

found in a wide variety of domains, such as mining, off-shore oil platforms, sewerage

processing, silicon chip manufacture, wheel-chair design and so on [69].

The communications sub-system in particular is vulnerable to electrical noise since

it typically includes long lengths of cabling which are susceptible to perturbations

due to EMI. It is very difficult to predict the interference that a system will be sub-

jected to during its lifetime. Despite EMI modelling techniques, perhaps the only safe

statement about predicting EMI is that it is unpredictable [69]. In an unpredictable en-

vironment, predictability and reliability are difficult to argue about. Can the reliability

in an unpredictable environment be predicted?

1.3 Flexibility

Flexibility and dependability have often been regarded as opposing parameters in an

engineering tradeoff [3, 155]; there is often not an obvious choice to be made. It has

been argued that the best way to provide dependability is to make things more static

[82], that is to remove any dynamic behaviour so that the exact sequence of events

that will occur at run-time is determined in advance. Certainly, this approach has been

very successful, time-triggered architectures [83] have exploited this idea to produce

some very dependable real-time systems [154].

However, the major disadvantages of static systems are that they lack the flexibility

to react to unusual or sporadic events and they cannot easily adapt to changes [82].

Further, the increasingly dynamic functional requirements are hard to support on a

23

1 Flexible and Dependable Communication

largely static system; flexibility might be vital to support particular applications.

The meaning of flexibility will be explored in more detail in the next chapter, but

in the context of this work, the word flexibility can be considered to mean the abil-

ity to make decisions at run-time about which node may transmit at a given time.

Controller area network (CAN) [28, 72] is a flexible, ‘event-based’ bus system where

messages are scheduled on the bus dynamically at run-time using priority-based arbi-

tration. CAN is prevalent in embedded systems, particularly in the automotive indus-

try. CAN currently holds a massive market share—in the year 2000 over 108 CAN

nodes were sold [89]. It is for this reason, together with the technical merits of the

protocol (described in Chapter 2), that CAN was chosen as a basis for this research.

Much of the work in this thesis uses CAN as an example of a flexible bus and includes

CAN-specific details.

Within the time frame of the research presented in this thesis, the automotive indus-

try (which has been the major driving force behind the CAN market) has been con-

sidering new bus systems to replace CAN in future years. As the applications become

more and more safety-critical, time-triggered architectures seem to be winning the de-

bate [111] on the grounds of timing predictability. The two major contenders are [110]

the well established time-triggered protocol (TTP) [82] and the newer FlexRay [19]

which is based largely on a time-triggered paradigm but incorporating some event-

based/dynamic communication.

1.4 Real-time and Control Systems

There are many forms of distributed systems; this thesis focuses on control systems,

characterised by the idea that the system is controlling or interacting with some real-

world objects. Examples of control systems include: large scale factory automation

where many machines—distributed widely—are under some combined coordination;

small scale automation such as computer control of a lathe, a milling machine or

robotic ‘arm’; vehicle management; aircraft control and so on.

Automotive examples such as coordinated engine management, assisted braking

and gearbox control are very familiar [147, 114]. The automotive industry has been

24

1.5 Contribution

a major consumer of distributed technology, extensively using bus technology to link

smart sensors to computers all around the vehicle.

Since control systems are concerned with controlling real-world objects, such sys-

tems usually have inherent timing constraints dictated in part by the physical charac-

teristics of the objects they control. Therefore, a vital property of the communications

subsystem is to be able to support these timing constraints in communication. It is

not obvious however, what form this ‘support’ should take. It is widely considered,

especially in real-time systems research, that bounded latency is a vitally important

property for real-time communication [159, 131]. Deadlines are also often used to

describe timing constraints and infer correct behaviour.

However, engineers will confirm that these are only a few of the many concerns

including bandwidth, fault tolerance, reliability, cost, size, interfacing and the provi-

sion of other services like clock synchronisation and membership. For example, most

digital feedback control loops benefit from being executed periodically with minimal

variation [105, 10]. Most of these concerns have mutually exclusive implications and

can only be resolved through tradeoffs.

1.5 Contribution

This thesis argues that in the context of embedded computer communication, the flex-

ibility of an event-triggered bus can be exploited to provide reliability. Further, in

an unpredictable environment, dynamic behaviour is an effective means of providing

fault tolerance.

The first point of contention is that guarantees based on meeting all deadlines are

not only impractical, but in some situations are impossible, no matter which form

of communication is used. However, it is not necessary to meet all communication

deadlines in a dependable system.

Further, this thesis shows that in flexible communication, allowing a small number

of deadlines to be missed in a predictable way can result in a communication system

which is reliable, tolerant to faults and capable of supporting dependable real-time

systems.

25

1 Flexible and Dependable Communication

The major contributions of this thesis are:

Weakly Hard Analysis of CAN. The application of weakly-hard analysis to CAN is

used to predict which deadlines may be missed and how often. With some fault

models, weakly-hard analysis allows one to state that for example: “in any 20

consecutive messages there will never be more than 3 deadlines missed, and

there will never be two consecutive missed deadlines”. This topic is covered in

Chapter 3.

Exploitation of Non-Harmonic Periodicity. In a traditional cyclicly scheduled sys-

tem, it has been necessary to ensure that periodic messages have a period which

is a multiple of the ‘bus cycle time’. In a flexible system such as CAN not only

is this not required, but there are significant advantages to fault-tolerance if the

periods are largely non-harmonic. This subject is also described in Chapter 3.

Probabilistic Distribution of Response Times. The introduction of a more realistic

fault model based on a probabilistic approach—where faults occur randomly—

leads to an analysis which gives a probabilistic distribution of response times.

This in turn gives a probability of timing failure. This model and analysis is

explained in Chapter 4.

Predictable Failure. Given that analyses exist to predict which deadlines may be

missed and how likely they are to be missed, Chapter 5 introduces an extension

to CAN, called TCAN (Timely-CAN), which allows the communication system

to be aware of time as a first class entity, and to use information about deadlines

to selectively transmit frames. The result is a predictable bus which under high

levels of unpredictable, environment-induced faults will behave more reliably

than than CAN alone is able to.

In addition to these main chapters, a review of relevant literature is given in Chap-

ter 2, and an evaluation of the work presented, with conclusions and a description of

further work is given in Chapter 6.

26

2 Real-time Communication

FLEXIBILITY IN REAL-TIME COMMUNICATION is the central theme to this thesis. In

this chapter, relevant background material is presented, including a discussion about

what flexibility means in real-time communication and how faults and unpredictable

behaviour can be dealt with. A well known bus protocol, Controller Area Network

(CAN), will be discussed in more detail. The chapter begins with brief introductions

to real-time computing, communication and dependability.

2.1 Real-time Systems

The first chapter introduced a real-time system as one where “the times at which it

interacts with its environment are important in some way”. There are numerous def-

initions of the term “real-time”, but this broad explanation is perhaps the most useful

interpretation of real-time systems. This section describes relevant theory from real-

time systems research. Various tools and techniques that will be used later in this

thesis are described. In particular, the concept of a deadline will be introduced as a

way of describing real-time communication.

2.1.1 On Definitions and Classification

It is perhaps inherent in the psyche of computer scientists and mathematicians to at-

tempt to classify and label according to some exact calculus of characteristics. Many

times in the past, people have tried to further define what “real-time” means, and there

are a wide variety1 of over-argued2 answers to the question.

1See http://www.faqs.org/faqs/realtime-computing/faq/ for some.
2See news:comp.realtime.

27

2 Real-time Communication

Yet, to attempt to construct a well-defined boundary around the set of systems that

we call “real-time” is both as fruitless and as pointless as trying to decide if grey is

black or white. Instead, it is sufficient to consider that time is important in some way

to the system in its interaction with its environment.

Furthermore, for the large number of classifications within real-time systems, it is

neither possible, nor necessarily useful to attempt to produce precise definitions of

sub-classes of real-time systems. These boundaries are as unclear as the boundary

between systems that we call real-time and those that we do not.

However, there is significant merit in describing formalisms that enable practical

real-time systems to be constructed. These formalisms should be viewed as ‘tools’

that the real-time systems designer has at his/her disposal. Tools such as deadlines,

hard deadlines, soft deadlines, response time analysis and so on are the means by

which real-time systems can be built.

So, instead of striving for precise definitions and classifications of systems, the

following sections explain a number of the more useful techniques that may be used

to describe a real-time system and how a system interacts with its environment with

respect to time. It is the “in some way” that is formalised here.

2.1.2 Correctness

For many systems, it can be said that the correctness of a real-time system depends

not only on the logical result of computation, but also on the time at which the results

are produced [39]. This applies to many real-time systems, not least control systems

where the raison d’être is to control some physical object such as the fuel input to a

car engine. If the computer control fails to activate the mechanics of the valves at the

right times, then the engine will not work correctly.

For many real-time systems, it is difficult to determine what ‘correctness’ means.

Significant real-time systems research involves improving performance, where the

boundary between poor performance and incorrect behaviour is not clear. For exam-

ple, in video decoding in consumer electronics, a temporary drop in performance may

lead to a poorer picture quality, but whether or not this is incorrect behaviour is a very

28

2.1 Real-time Systems

subjective question.

2.1.3 Deadlines as a Tool

Much of the early research in the area of real-time systems [103, 134, 95] focused on

what are now called hard deadlines and recognised to be one of the easiest forms of

real-time behaviour to reason about (although not necessarily the easiest to construct).

A deadline is a boundary point that marks the latest time that an event should occur.

Deadlines are a useful tool because they map time from a continuum into only two re-

gions (before or on the deadline and after the deadline); this makes reasoning about be-

haviour much easier and allows a variety of formal specification and model-checking

techniques to be applied such as RTL (Real-time Logic) [76], CML (Concurrent ML)

[133, 135] or Timed Automata [6, 37].

In particular, a hard deadline implies that the behaviour of the system is incorrect

if the deadline is missed and correct otherwise. For example, consider a robot arm

collecting items from a moving conveyer belt. There is a hard deadline on the time

that the robot arm must grab an object: it must grab it before it is out of reach. If the

robot arm fails to grab the item in time then the system is functioning incorrectly.

It should be stated that although it is normal to separate the consequences of failure

from how ‘hard’ a deadline is, in practice there is a clear correlation between conse-

quences of failure and the use of hard deadlines. Indeed, some have suggested that a

deadline is not considered hard unless its consequences of failure are severe [12].

Hard deadlines are easy to reason about because they allow the creation of a pre-

cise boundary point between correct and incorrect behaviour. Therefore, provided

sufficient information is known about the system, then timeliness (as defined by hard

deadlines) may be proven or disproven with the same significance as the results of an

algebraic calculation or algorithm may be proven. Further, timeliness may be tested

easily during the lifetime of the system: a deadline was either met, or it wasn’t; this

allows testing procedures to be formalised and the justification of confidence in a sys-

tem’s correctness.

Hard deadlines are therefore a useful tool that may be used to describe a real-time

29

2 Real-time Communication

system. Section 2.6 will show how hard deadlines can be used in communication, and

later in Chapter 3 a variation of hard deadlines called weakly-hard deadlines will be

introduced.

2.1.4 How Hard is a Hard Real-time System?

A system where there are activities with a hard deadline is often referred to as a hard

real-time system. Hard real-time systems can be easy to understand and to reason

about because of the advantages of using ‘hard deadlines’ to provide a precise mathe-

matical foundation.

Yet, one of the problems with hard deadlines is that they may lead to an over-

constrained system, difficult and expensive to implement because the demands placed

by hard deadlines are difficult to meet. To design a system which does not have to meet

every deadline allows simpler, smaller systems, which make better use of resources

[22].

In the real-world, failures happen. Even the most well-designed, over-engineer-

ed system can suffer a failure; the effects of EMI, high-energy particles from space,

hardware degradation etc. are difficult to eliminate completely. The best that can be

achieved is some high level of confidence, perhaps expressed as a probability of fail-

ure. Timing failures are included in this discussion—the confidence in an ‘absolute’

deadline guarantee is not clear. So, questions arise such as ‘is this really a hard dead-

line?’ and ‘how hard is hard?’.

Some partial answers to these questions in the context of real-time communication

will be seen later. Systems may have many activities for which it is useful to specify a

deadline, however there are fewer occasions where it is necessary for the deadline to

be hard (and to do so would place unnecessary constraints on the design) [43, 21].

Chapter 4 will show that it is not possible to build a reliable communications sys-

tem which is able to guarantee hard deadlines, because the effect of faults cannot be

predicted. Instead probabilities will be used to predict deadline failures.

30

2.1 Real-time Systems

2.1.5 Softer Deadlines

To overcome the difficulties of implementing hard systems, the concept of a soft dead-

line is understood; it carries an implication that the deadline does not always have to

be met.

However, once we move away from hard deadlines with their clear semantics, and

move to the fuzzier concept of a deadline that doesn’t have to be met, numerous dif-

ficulties arise when it comes to reasoning about behaviour. So, some formalisation is

required in order to allow reasoning about system-level behaviour when deadlines are

soft.

Various schemes exist for formalising ‘soft’ deadlines including firm deadlines, util-

ity functions [99], weakly-hard deadlines [22], miss ratios, probabilistic guarantees

[38], mean (or maximum) tardiness, summed tardiness, criticality-driven deadline fail-

ures [26] and so on. Certainly, different schemes have uses in different applications.

For some applications, a late result is better than no result, for example if there is

some (small) delay in getting an instruction to apply a brake in a car, then it is better

to brake late than not at all. On the other hand, a message that arrives after braking is

no longer required could lead to catastrophic consequences.

For other applications, there is no utility in a late result: consider the robot arm ex-

ample before, if the item is out of reach then there is no point in reaching anyway. The

term firm deadline is often applied to a deadline for which a late result has no benefit.

One important application of firm deadlines (which will be used later in this thesis) is

in fault-tolerant systems with hard deadlines. Consider a system with hard deadlines—

where the expectation is that all deadlines are met under normal circumstances—but to

guarantee to meet all deadlines under unpredictable fault conditions is either difficult

or not possible. Instead, the system is able to tolerate a (small) number of mmissed

deadlines; therefore we consider these deadlines to be firm deadlines with additional

constraints on the maximum number of tolerable timing failures.

31

2 Real-time Communication

2.1.6 Other Ways of Describing Real-time Systems

Deadlines are a very useful tool, however they are not the only useful way to describe

timing. For some systems, it is important that events cannot happen too early. For

some systems, keeping variation in timing to a minimum is important: minimal jitter

on periodic sensor readings, for example, may be important for a control law to work

efficiently.

Throughput is an alternative way of describing real-time behaviour without dead-

lines. As an example where throughput is more appropriate than a deadline, consider

a real-time database. In order to maintain the desired service, it must handle (say)

100 requests per second. This is not the same as having a deadline per request of
1

100 s since its requests are not all the same: some require more processing than others.

Yet through knowledge of the “distribution” of requests, it can guarantee timeliness as

defined by throughput.

2.2 Real-time Communication

The introductory chapter explained that the ability for a communication subsystem to

support real-time behaviour (whatever that means in a given context) is desirable. The

previous section introduced deadlines as one of the most useful tools for describing

real-time systems. In computer communication, it is natural to assign deadlines to

messages, as for events in any other real-time system, or indeed for messages in the

non-computer world, “This letter must be delivered before 10am tomorrow”.

Although real-time computing has its roots in CPU scheduling [134] and there is

a huge mass of research devoted to single processor and multiprocessor scheduling

techniques, some of the ideas and concepts are directly transferable to communica-

tions. There is a powerful analogy between messages on a network or bus and jobs

executing on a CPU. It is useful to regard a bus and a CPU as shared resources which

must be shared between competing messages or jobs.

However, there is a major difference, with many practical implications, between

real-time computing on a CPU and real-time communication.

32

2.2 Real-time Communication

The difference is ‘knowledge’. On a single CPU, the operating system which makes

the scheduling decisions has complete knowledge of the current state of the system:

which processes are ready to use the CPU, which processes are blocked on some

resource, and so on. This allows the operating system to make good scheduling deci-

sions and enforce a huge variety [136, 53] of scheduling policies.

However for a distributed system, in general no single node holds all of the same

information. Instead this knowledge is distributed around the system, small parts of

it on each node (each node knows which messages it wants to transmit next, but no

other node knows this).

Distributed knowledge [58] is not sufficient to enforce even simple scheduling poli-

cies such as fixed priority based scheduling because no node knows whether it has the

highest priority message. Some method is required to disseminate sufficient common

knowledge around the system for a scheduling decision to be made. Numerous inge-

nious ways of doing this exist, although it is beyond the scope of this document to

describe them in detail. Notable schemes for real-time communication include time

division multiple access (TDMA), flexible time-triggered (FTT), bitwise arbitration

(e.g. CAN) and non-deterministic (e.g. ethernet), each of which are described later in

this chapter.

Clock synchronisation is a response to the special case of a lack of common knowl-

edge about time. Each node only has access to its own internal clock, which may

drift with respect to the other clocks in the system. Therefore, each node will have a

(slightly) different interpretation of the time. In some systems, this may not matter at

all; many event-triggered systems do not need a consistent global view of time. How-

ever, some systems do need time-based synchronisation in order for the application to

function, therefore some means to deal with clock skew is required. Many clock syn-

chronisation algorithms exist [7, 120] some of which are implemented as high level

protocols, some can be implemented at a lower level as part of the network protocol

itself [56, 84]. The specifics of clock synchronisation will not be discussed further

here, but the topic will be covered briefly in later chapters.

There are a large number of choices facing a designer when choosing a communi-

cations bus. Some well-known fieldbuses used in real-time control systems include:

33

2 Real-time Communication

BITBUS [71], Interbus-S [68], LONWORKS [47], PROFIBUS [130], and WorldFIP

[15]. A large list including over 300 different fieldbuses and higher level fieldbus pro-

tocols has been compiled [67]. Nearly all of them may be used, in some form, in a

real-time control system.

For some communication systems, the ability to support real-time communication

has been key from inception: TTP (Time-Triggered Protocol) [163], described shortly,

provides direct support for timely delivery of messages, clock synchronisation and

several other services. For other protocols, analysis of real-time properties has been

considered only later, once the protocol had been used successfully. CAN (Controller

Area Network) [28] is an example of this.

Even buses which are not generally regarded as able to support real-time systems,

such as ethernet [70] (since collision resolution is non-deterministic) can be used for

real-time communication in many systems. For ethernet, the bandwidth is so high

compared to other buses, that for an equivalent traffic level, bus utilisation on ethernet

is low enough that it outperforms many other “real-time” buses in terms of observed

worst case response time and average latency.

2.3 Dependability

Leaving communication aside for a moment, it is useful to explore a little background

information from the (very large) areas of dependability and safety, and to clarity some

terminology.

Dependability, reliability, safety and similar words are often used to mean several

related things. To avoid ambiguity, the widely accepted terminology of Laprie [88]

will be used throughout the thesis wherever possible.

Dependability is the trustworthiness of a computer system such that re-

liance can justifiably be placed on the service it delivers [42]. The service

delivered by a system is its behaviour as it is perceived by its user(s) [88].

‘Dependability’ is therefore subjective, depending on the applications and the users.

34

2.3 Dependability

In order to allow dependability to be considered formally, Laprie lists four attributes

of dependability:

• with respect to readiness for usage, dependable means available;

• with respect to continuity of service, dependable means reliable;

• with respect to avoidance of catastrophic consequences, dependable means safe;

• with respect to prevention of unauthorised access and/or handling of informa-

tion, dependable means secure.

In this thesis, concerning control systems, context dictates that the first three at-

tributes are the most important. Despite security becoming more relevant nowadays,

the possibility of malicious tampering with communications holds little concern since

physical security may be generally be relied upon in vehicles, aircraft and factories.

Instead, availability, reliability and safety are vital attributes of any avionics/automo-

tive product, and therefore these attributes are required of sub-systems, especially the

communication sub-system.

Given that dependability is based on correct delivery of services, a failure is said

to have occurred when service is not delivered according to some specification or

expectation of that service. The design of specifications is a difficult task though—

specifications are unlikely to be absolutely correct themselves [48, 92].

Reliability requirements can be described in a number of ways. Typically, a proba-

bility of failure in a given time interval may be used. The Federal Aviation Authority

rules require that a catastrophic failure condition (meaning loss or serious damage

to the aircraft) must be “extremely improbable”, defined as 10−9 per hour or “is not

expected to occur within the total life span of the whole fleet of the model” [168].

The figure 10−9 is so small that, despite its well-understood mathematical defini-

tion, it may be difficult to comprehend its value and to apply it [92]. It is clear from the

history of avionics accidents that catastrophic failures have ‘occurred during the life

span of the whole fleet of the model’. It is argued by some that the probability 10−9

per hour is so low that this level of reliability cannot be guaranteed or even measured

[92]. On the other hand, the use of probabilities is useful; probabilities form the basis

35

2 Real-time Communication

of safety management through risk assessment. Defence standard 00-56 [108] defines

risk as the combination of of the frequency, or probability, and the consequence of an

accident. One difficulty with probabilities is their prediction—Leveson [93] reminds

us that where probabilities are used, their value must be justified.

2.3.1 Fault→Error→Failure

It is useful to distinguish between a fault, an error and a failure [88]:

• a failure is said to have occurred when service is not delivered according to the

specification or expectation of that service;

• an error is that part of the system state which is liable to lead to subsequent

failure;

• a fault is the cause of an error.

A relevant example is illustrated, which highlights a fundamental issue that is ad-

dressed in this thesis: disturbances of the signals in a bus system. At the lowest level,

a fault (such as some electrical interference, or a loose connection) causes some bits

on a communications bus to be received incorrectly, therefore a data packet arrives

corrupted (the error). This in turn causes the packet to be retransmitted, and when the

packet finally arrives at the application, it is late (the failure).

These terms can be used recursively—fault, error and failure are applied in the same

way that functionality is recursively decomposed. For example, from the perspective

of the application that was due to receive the data packet, the fault is that the packet is

late, the error is that it does not have the data in the packet and therefore the applica-

tion’s internal state is incorrect. The failure is that the application cannot perform its

calculations correctly and so incorrectly adjusts an actuator on the wing of the aircraft.

At yet a higher level, from the perspective of the aeroplane just as it is taking off: the

fault is that the actuator on the wing moves, the error is that the plane rolls sharply,

and the failure is that the plane was in danger of catastrophe: a wing touching the

ground.

36

2.4 Flexibility in Real-time Communication

It should be noted that at each of the levels above, one should expect to see some

method of dealing with the faults and errors to prevent errors becoming failures. The

bus in the example did try to get the message through by retransmission of the corrupt

packet. However the packet still arrived late, causing subsequent failures elsewhere

in the system. In the example, a single late message causing a catastrophic failure is

unrealistic. It would be expected that the application should be able to deal with a late

message through a variety of fault tolerant techniques.

2.4 Flexibility in Real-time Communication

Returning to communication, this section introduces the term flexibility and how it re-

lates to real-time communication. The term has been used in this thesis so far without

definition, indeed its use is difficult to define. Examples of flexibility in communica-

tions will be provided which will lead to an understanding of what flexibility means

for real-time communication.

In any network/bus system, some mechanism is needed to determine which node

may transmit at any given time. This mechanism is called a protocol. Specifically,

when used for this role of node arbitration it is called a medium access control (MAC)

protocol. A comprehensive survey of MAC protocols in real-time communication is

provided by Malcolm [102]. A few groups of protocols and some specific protocols

are examined in the following.

2.4.1 Time-Triggered Communication

To examine flexibility in communication, a group of bus systems may be considered

based on TDMA (Time Division Multiple Access) protocols, where bus access is de-

termined entirely by predefined time-slots. The most notable example of a TDMA bus

system is TTP [163, 82], which exists in two forms known as TTP/C and a simpler

form, TTP/A.

TDMA is a scheduling strategy whereby the right to transmit is controlled by the

progression of time. Generally, TDMA schemes divide time into repeating cycles

37

2 Real-time Communication

(sometimes also into major cycles and smaller minor cycles), each node is allowed to

write to the bus only at certain times within a cycle. In order to ensure that collisions

cannot occur, each node is given a different time slot in which to transmit. The slots

and cycles are determined off-line, often using tool support. The cycles are usually

the same length and repeat indefinitely, making the bus periodic in nature. Figure 2.1

shows an example of TDMA in which two cycles are shown. Notice that message A

appears more than once in each cycle.

A B DAA C

Cycle

A B DAA C

Cycle

Time

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Figure 2.1: Two Cycles of a TDMA schedule example.

Time-driven TDMA communication is used in many forms, not just in fieldbus

applications. In particular, TDMA is used extensively for radio communications, for

example GSM mobile telephones use TDMA technology to multiplex a number of

different transmitting telephones onto one radio frequency [132]. Other radio based

communication protocols use similar techniques.

Fundamentally, with TDMA, all scheduling is determined in advance and therefore

the scheduling information is available (known) to all nodes a priori: the schedule is

common knowledge [58]. This means that the problem with distributed knowledge

about scheduling that was highlighted in Section 2.2 is avoided in TDMA communi-

cations.

This predictability has some important and useful implications. Since all scheduling

is determined in advance, real-time behaviour is very easy to reason about. It is easy

to find worst case response times and show which deadlines will be met through off-

line analysis tools [164]. For many systems, the key benefit of TDMA is the ability to

provide guarantees (assuming no faults) of hard real-time deadlines in communication.

38

2.4 Flexibility in Real-time Communication

Additionally, the common knowledge of the schedule may be used to efficiently pro-

vide other services including addressing/identification and membership. TTP exploits

TDMA to provide low overhead implementations of a global time service, member-

ship services and distributed modular redundancy [82]. For addressing/identification,

the transmitter (of a frame) is always known and so the data on the bus is always

identifiable, therefore there is no need for any addressing information to be included

in the frame (which has bandwidth savings over other schemes). For a membership

service, if a node fails to transmit during its slot then all nodes will instantaneously

know that the node has failed, hence providing a cheap and implicit implementation

of a membership service. TDMA is also easy to implement, simple to understand and,

importantly in a dependable real-time context, its behaviour is predictable.

The major disadvantage of TDMA is the difficulty in scheduling the unknown:

where the exact communication requirements are not known in advance [82]. The dif-

ficulties are a consequence of requiring all scheduling information to be determined

off-line. This is fine in systems where all communication requirements are known

and static, but TDMA may not provide an efficient implementation for non-static sys-

tems. Examples include: open systems (where applications may dynamically join and

leave the system), applications where the communication requirements are not pre-

cisely known, applications whose requirements may change in time, or applications

with non-periodic network traffic.

One area in particular where TDMA schemes may struggle is when there is corrup-

tion on the bus. Consider a fault which causes some bits on the bus to be corrupted,

hence the frame in which they were transmitted is lost. If there is to be any chance

of receiving that data correctly then there must necessarily be some form of redun-

dancy: for example by using an error correcting code [59] or by routinely retransmit-

ting frames. The approach to frame redundancy taken by TTP is to send all frames

twice [163]. This halves the available network bandwidth to approximately double the

probability that at least one copy of the data will arrive intact. Of course, if the second

frame is also corrupted then the frame is certainly lost.

What is lacking from TDMA is the flexibility to be able to make bus scheduling

decisions at run-time, this would allow selective retransmission of corrupt data to

provide a more efficient error recovery mechanism. Of course if scheduling decisions

39

2 Real-time Communication

are made dynamically then the common knowledge of the schedule is immediately

lost; some other means must be used to share sufficient (distributed) knowledge around

the system for scheduling decisions to be made. A variety of buses exist which do

allow for more flexibility, some of which are considered next.

2.4.2 Introducing Flexibility—ARINC-629

ARINC-629 [8] is a bus designed specifically for modular avionics systems [1], and

as such must provide support for hard real-time deadlines as well as predictable, certi-

fiable behaviour and fault tolerance. ARINC-629 is now used extensively in avionics,

notably the Boeing 777 uses 629 for many safety critical functions including control

[20].

Inherent in the design of ARINC-629 was that it should allow a system using the bus

to be upgraded or modified easily—this requires a certain degree of flexibility. Further,

it must be capable of supporting the wide variety of different forms of message that

exist (and were forecast to exist when the bus was designed) in both military and civil

aircraft. This data includes regular periodic flight control data (including allowing the

period to change whilst in flight depending on the current operational mode of the

aircraft) and sporadic flight management system information [152].

The access resolution mechanism of ARINC-629 is loosely based on time slots and

therefore it has much in common with TDMA protocols. However, it also contains

explicit support for sporadic information.

The problem of distributing sufficient knowledge to make scheduling decisions was

solved in TDMA by disseminating it off-line. Where this is not possible (because

it is not known for sporadic information), then some on-line mechanism is required

to arbitrate between nodes that wish to transmit at the same time. ARINC-629 is

a member of a class of MAC protocols known as CSMA (Carrier Sense Multiple

Access), which are characterised by arbitration decisions being made on the basis

of the bus status (and local information). Typically in a CSMA protocol, all nodes

wishing to transmit wait until the bus is silent, e.g. at the end of a packet/frame (carrier

sense), then compete in some arbitration scheme.

40

2.4 Flexibility in Real-time Communication

Arbitration in ARINC-629 is handled by collision avoidance (CSMA-CA). A set

of timers in each node ensures that when the bus is silent, each node waits a different

amount of time before attempting transmission.

ARINC-629 has two protocol modes, the basic protocol and the combined protocol,

of which the combined protocol is the most suited to mixing periodic and non-periodic

traffic. The overall bus scheduling scheme is first to transmit the periodic messages

in TDMA style (although using a slightly unusual scheme to implement this,3) then

to allow sporadic messages to compete for the spare bandwidth at the end of the mi-

nor cycle. A timing analysis for ARINC 629 [13] shows that the protocol is capable

of supporting periodic traffic with deadlines, and sporadic traffic with deadlines, pro-

vided that the worst case sporadic traffic in the system is known.

So, ARINC-629 is similar to TDMA with room for non-periodic data at the end of

each cycle after the periodic messages are safely transmitted. Similar approaches to

scheduling periodic and non-periodic information are taken by ProfiBUS [130] where

the implementation is based on token passing, and WorldFiP [15] which is based on

a master node performing centralised control. There is some flexibility here because

the decision about which message to transmit is taken at run-time by the competing

nodes.

However, ARINC-629 stops short of providing any significant fault-tolerance sup-

port against faults introduced onto the network by interference. It simply leaves all

such concerns to the application, except for the provision of a single parity bit. The

major fault tolerance feature of ARINC-629 is the expectation that there will be multi-

ple redundant buses. Further, it is expected that applications must be able to tolerate a

small number of network faults (such as corrupted messages) which result in message

omissions. ARINC-629’s ‘firm deadline’ model of delivery is that messages arrive

on-time (with a high probability) or they do not arrive at all. This model of using only

firm deadlines, as mentioned in Section 2.1.5, is useful and opens several opportunities

which will be discussed in later chapters.

This raises the question: at what level should reliability and fault tolerance be han-

dled [62]? In general, infrastructures which provide reliable communication services

3The mechanism is based on lengths of idle time following each frame, see the specification [8] for
full details.

41

2 Real-time Communication

tend to be inherently complex and consume significant resources (such as bandwidth).

However, providing fault tolerance at the low-level can be implemented efficiently

and it is clear from an engineering perspective that it may lead to highly reliable sys-

tems. On the other hand, the approach used by ARINC-629 (pushing fault tolerance

higher up in the system) can also lead to high reliability systems. Implementing fault-

tolerance mainly at the application level can also lead to efficiency advantages since

the fault tolerance ‘level’ can be tuned to each application by exploiting the natural

robustness of the applications, but this comes at the cost of application complexity and

a great deal more effort than using a ‘ready made’ reliable infrastructure.

2.4.3 Flexibility through Centralised Control—FTT

Almeida [3] proposes a centralised scheduling scheme where a central master node,

the planning scheduler, creates a TDMA schedule and informs all the other nodes

about it through a broadcast message. FTT stands for flexible time-triggered. The

flexibility comes through the ability for nodes to request changes to the schedule at

run-time. The master node can then try to determine a TDMA schedule which can

accommodate the new request.

An advantage of centralised control is that the scheduler can be aware of the re-

quirements of all nodes in the system (common knowledge) and can then attempt to

derive an optimal schedule to meet those requirements. On the other hand, there is

potential for a large overhead in distributing requests for bandwidth to the master and

then for the master periodically to distribute schedules.

The centralised planning scheduler can be regarded as a higher level concept than a

network protocol; the FTT scheme has been applied to a number of networks including

Ethernet [122], CAN [4, 5, 2] and WorldFIP [2].

2.4.4 Flexibility—802.3 (Ethernet)

In complete contrast to a TDMA bus (where all scheduling decisions are determined

off-line) and ARINC-629 (where some scheduling decisions are taken off-line), a class

of protocols may be considered which are often called event-triggered protocols, char-

42

2.4 Flexibility in Real-time Communication

acterised by all scheduling decisions being taken at run-time. The advantage of de-

laying scheduling decisions until run-time is that the bus is very easily able to handle

sporadic data, or even unpredictable events such as faults.

The most well known event-triggered network is Ethernet [70]. Here, (in normal

half-duplex mode) there is a non-deterministic access resolution protocol: if two nodes

wish to transmit a packet to the bus at the same time, then this is detected (CSMA-CD,

collision detection) and they both stop transmitting and wait for a random time. There-

fore it is a random choice which of them (or any other node) transmits first. For general

purpose computing, this works remarkably well, especially at low–medium bandwidth

levels, although if demand is high then Ethernet struggles to cope (the maximum use-

ful utilisation limit of ethernet depends on many things and is not straightforward to

evaluate [27]). Switched Ethernet (which employs point-to-point full-duplex connec-

tions between nodes and a central ‘switch’) copes better with overload, but requires

a complex, potentially expensive, central switch to manage the network and involves

considerable wiring between the switch and the nodes.

Ethernet provides very little fault-tolerance for packets of data. Like ARINC-629,

Ethernet leaves error correction to higher level protocols like TCP/IP through retrans-

mission of lost packets. This arrangement works quite well in practice, although over-

load scenarios can lead to long delays.

The non-deterministic collision resolution is the main reason why Ethernet is not

generally used for real-time communication. Even if the traffic is known in advance,

if there are collisions then it is not possible to state the worst case latency of any

packet. Therefore, deadline compliance is difficult to predict. Despite this, a number

of techniques may be used to provide some level of real-time predictability: token-

passing protocols may be used to avoid collisions, a TDMA policy may be enforced,

FTT-Ethernet does this for example. Alternatively probabilistic analysis techniques

may be used with success, especially when combined with traffic shaping [85, 41].

43

2 Real-time Communication

2.4.5 Flexibility for Fault Tolerance—CAN

There are many different types of flexible/event-triggered networks. Of particular

interest is the CAN bus protocol [28], described in more detail in Section 2.5. CAN,

like Ethernet, uses a collision detection protocol (CSMA-CD) but unlike Ethernet it

is a deterministic collision resolution (CSMA-DCR) scheme4 meaning that when two

nodes wish to transmit at the same time, it is always possible to predict the one that

actually transmits first.

Furthermore, the protocol provides non-destructive collision resolution: when a

collision occurs between two or more frames, the frame with the highest priority con-

tinues transmitting and any other nodes stop transmitting their lower priority frames

(the means by which this is achieved is explained in Section 2.5.4). Therefore, CAN

provides a non-preemptive, priority-based bus scheduling protocol. Importantly, worst

case response times can be calculated [159] to provide deadline guarantees.

Unlike TDMA schemes, ARINC-629 and Ethernet, CAN provides significant fault-

tolerant features. In particular, CAN tries to ensure reliable frame delivery by auto-

matically retransmitting any frames that were corrupted on the network. The error

correction is done as part of the network protocol itself, rather than relying on higher-

level protocols (such as TCP/IP) to provide a reliable service.

CAN therefore uses its flexibility in a useful way, through the use of fault tolerance,

to implement a reliable service. It is able to do this because it makes all scheduling

decisions dynamically at run-time.

As highlighted previously, CAN has some interesting and useful properties for dis-

tributed real-time systems, particularly the network-level fault tolerance. In addition to

these, its massive market share and its high-standing position in industry and academia

mean that CAN research has a very wide audience. The next section presents CAN in

more detail; it will show that CAN has analysable timing properties and can provide

flexible, fault tolerant communication.

However, despite these properties, the role of CAN in future dependable systems is

undecided; there is a lack of understanding about timing analysis on CAN and there is

4The CAN MAC protocol has also been classified as CSMA-UID (unilateral interface detection) [87]
and CSMA-PCR (priority collision resolution) [3].

44

2.5 Controller Area Network

a recent move to implement a time-triggered CAN (TTCAN) [52] in order to improve

timing reliability in dependable systems. Yet, as this thesis will demonstrate in later

chapters, the flexibility of CAN alone may be used to provide reliable real-time com-

munication, without resorting to a time-triggered paradigm. New analysis techniques

can provide better insight than previous forms of worst case analysis. And in Chapter 5

a small extension to CAN is proposed which provides similar timing predictability to

TTCAN, but which may outperform TTCAN in term of fault tolerance.

2.5 Controller Area Network

Controller Area Network is a very well-known bus system that is widely used in indus-

try for communication in small-scale distributed systems. As Chapter 1 mentioned,

a major CAN user is the automotive industry, and in the year 2000, there were 108

CAN nodes sold worldwide [89]. Particular attention is paid to CAN partly because

of its popularity, but also because of its technical merit as a flexible real-time com-

munications bus. In this section the Controller Area Network protocol (CAN) will be

described in some detail. CAN will be used throughout this thesis, leading eventually

to a proposed extension to CAN in Chapter 5.

2.5.1 CAN, a Brief History

CAN is a serial communications bus which has many desirable properties for use in

real-time dependable systems. Its specification was first published in 1991 by Bosch

[28] and standardised by ISO in 1993 [72]. It was originally intended for use in

vehicles as a single digital bus to replace the wiring harnesses that were growing in

complexity as new electrical and electronic appliances appeared in cars.

The advantages of a single bus over a wiring harness are numerous: easier to in-

stall, lighter, cheaper, simpler to maintain, easier fault diagnosis, extensibility (more

devices can be simply plugged in to the bus) and so on. The cost-conscious automotive

industry quickly made CAN the de facto standard for automotive electronics.

In this environment, the data that is transmitted around the vehicle is mainly small

45

2 Real-time Communication

messages, perhaps one or two bytes for wheel speeds and actuator control data, binary

values for switch positions. These are typically sent periodically, with fairly soft real-

time specifications. Such applications have driven the motivation for CAN’s relatively

short data frame length (up to eight data bytes per frame). Data rates on CAN are

also quite low, usually ranging between 125kbit/s and 1Mbit/s. A low bandwidth of

125kbit/s may often be preferred because at lower rates, not only a bus is less prone

to electrical interference [149], but because of the additional support of the physical

layer, as described later in Section 2.5.3.

CAN’s successful history in the automotive industry as a flexible embedded bus has

driven its use in other applications such as factory-control networking, elevator con-

trol systems, machine tools, photocopiers and many more. The protocol has become

readily available, nowadays there are many commercial hardware implementations

of CAN providing numerous low-cost options, including single chip microcontrollers

with in-built CAN interfaces, for example the Motorola M68376 [109]. The advan-

tages of using a bus such as CAN in these applications may include: reduced design

time (readily available components and tools) and lower connection costs (lighter,

smaller cables and connectors).5

At its conception, CAN started out with little emphasis on real-time properties; the

response time analyses were developed later and independently [159]. Instead, the

aim of CAN was to provide a simple, efficient, robust communication system.

The emerging applications of CAN (both in-vehicle and elsewhere) began to impose

real-time requirements of the bus which CAN was generally able to support. For

example, in a vehicle fuel control application, message transmission requires short,

hard/firm guarantees on message transfer latency.

By the mid-1990s, products based on CAN were proving to be reliable, with low

failure rates and easy fault diagnosis. The next logical step was to consider the use

of CAN in safety-critical applications such as anti-lock braking systems [115], drive-

by-wire and even avionics applications. However, despite the mounting historical

product-based evidence of reliability, and the acceptance by the avionics industry that

CAN is largely suitable [9], using CAN as a vital link in a safety-critical system is a

5See http://www.mjschofield.com/

46

2.5 Controller Area Network

big step forward. This is partly because of a general uncertainty about using event-

triggered systems to provide critical services, partly because of an unwillingness to

certify something new [9], and partly because of a number of known shortcomings

with the protocol [140], including the possibility of undetected errors, the error passive

mode and inconsistent message delivery, see Sections 2.5.5, 2.5.6 and 2.5.7.

At the present day, CAN is being trialed in aircraft engines for non-critical services

such as logging and maintenance. NASA has also shown interest in CAN for space

applications [40]. Meanwhile, CAN continues to be used as a cheap, reliable bus

in vehicle, factory and many other automation systems. The automotive industry,

fuelled by the success of CAN, is now looking for the next generation bus system.

The new protocol will have to fulfil the current role of CAN and in addition provide

higher bandwidth as well as the ability to support some dependability requirements

and flexible application demands.

CAN has a large market, a good history and a great deal of technical merit. It is

for these reasons that in this thesis, CAN will be used as a specific example of an

event-triggered protocol.

2.5.2 Layers of the CAN Protocol

The CAN protocol itself is not described here in any great depth; the reader should

refer to one of the CAN specification documents for a clear [28] or more detailed

[72] description. Nevertheless, in this document, an introduction to CAN is presented

which should give the reader sufficient knowledge of its workings to understand the

later material. Several specific aspects of CAN are discussed in more detail.

CAN may be viewed in terms of the OSI (Open Systems Interconnection) reference

model [73, 161], providing three layers of the stack: the physical layer, the data-

link layer and optionally an additional application layer, see Figure 2.2. The original

Bosch standard [28] only specified the data-link layer, although a physical layer is

specified by the ISO specification ISO-11898 [72]. Various higher-level protocols

such as CAL/CANOpen [45], CAN Kingdom [51], CORBA and some protocols to

ensure atomic broadcast (see Section 2.5.7) are also used to some extent. Rarely

47

2 Real-time Communication

are further layers of the OSI model used, the properties of the data-link layer being

sufficient for many distributed control applications, using only a thin application layer.

In this thesis, the various application layers will only be briefly considered as the

physical and data-link layers are of more concern.

Data−link Layer

Physical Layer

Bus Medium

CAN

eg. CAL/CANopen

Application

Application Layer

(such as control software)

(provides convenient abstraction)

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Figure 2.2: CAN Protocol Layers.

2.5.3 The Physical Layer

The physical layer of a CAN bus was originally not specified by Bosch in order that

implementations were not tied to a particular medium (e.g. electrical cable, fibre optic

etc.). Nevertheless, there is a small number of (largely similar) specifications for the

physical layer including:

• ISO-11898 [72] defines a two-wire balanced differential signalling scheme and

NRZ (non-return-to-zero) coding at up to 1Mbit/s, intended for general pur-

pose, higher bandwidth applications;

• ISO-11519 [74] defines a lower speed two-wire balanced differential signalling

scheme at up to 125kbit/s, intended for dependable and low bandwidth appli-

cations;

• several modifications of RS485 exist, suitable for CAN, which use higher volt-

ages to offer more immunity to electrical noise;

48

2.5 Controller Area Network

• SAE-J2411 [148] defines a single wire physical layer intended for vehicle ap-

plications;

• an implementation using optical-fibres (for noise immunity) has been suggested

[139].

ISO-11898 is the most widely recognised standard; most CAN transceivers (such

as the Philips PCA82C250) implement this. The ISO standard will be assumed for all

following discussions. Further details on the characteristics of the physical layer may

be found in work by Rufino [140, 167].

The main property that the physical layer must provide is a 2-state medium; the two

states are termed ‘dominant’ and ‘recessive’. If two nodes simultaneously transmit bits

of opposite value, then all nodes should read ‘dominant’. It is usual for the dominant

state to be associated with the binary value ‘0’ and recessive with the binary value ‘1’.

This is usually implemented by using a wired-and scheme: all nodes must transmit a

‘1’ in order for the bus state to be ‘1’. This feature is heavily used in higher layers for

medium access control and for error signalling.

The dominant/recessive coding also drives the limits on bandwidth in CAN. Any

node must be able to overwrite a recessive bit with a dominant bit, and the original

transmitter of that bit must be able to detect the change. Therefore, the duration of

each bit must be long enough for the the signal to travel one complete length of the

bus (the propagation delay). Hence, the maximum data-rate depends on the length of

the bus, 1Mbit/s is possible up to 40m, and proportionally a 500m bus demands a

maximum data rate of 125kbit/s.

The physical layer has a number of fault-tolerant features, which are very impor-

tant in providing a reliable service. In particular, CAN provides resilience against a

variety of physical faults such as one-wire being interrupted (broken) the two signal

wires being connected together in a short-circuit, or one of the signal wires shorted to

ground or power lines. These features are implemented by switching from differen-

tial signalling to single line signalling. Note that not all CAN controllers support this

at higher bus speeds, for example the frequently used fault-tolerant Philips TJA1054

family [125] only supports data rates to 125kbit/s.

49

2 Real-time Communication

Interference and the Physical Layer

The physical layer of a CAN bus (ISO-11898) is highly resistant to electromagnetic

interference (EMI)—this was one of its design requirements. The differential mode

signalling, in particular, is used to achieve this. Differential signalling is where two

wires are used to carry the signal, usually with opposite voltages being applied to

the two conductors. The actual signal is the (voltage) difference between them. Dif-

ferential signalling is largely immune to external electromagnetic interference (EMI)

since interference will tend to affect each side of a differential signal almost equally.

Most noise occurring equally on the two conductors will therefore be ignored when

the difference between the conductors is measured [66].

Despite these measures, however, there is a chance that EMI will affect the signal

on the bus such that one or more nodes may simultaneously read a bit from the bus

as a different value to that which was transmitted. This set of nodes may include the

transmitter, in which case the error is detected immediately (since nodes will simulta-

neously read the bus when they are writing to verify that the value is written correctly).

If the transmitter does not detect the error then it will probably be detected later at a

higher layer of the CAN protocol, either by the cyclic redundancy check (CRC) or by

one of the other measures in the data-link layer. Once a fault is detected, the frame is

lost.

How many faults due to interference are there likely to be? How good is the physical

layer at preventing EMI causing lost frames? Unfortunately, these questions are very

difficult to answer in the general case. Each specific network with different cables,

lengths of cable, numbers of nodes, types of drivers, screening, cable routing and so

on will have a different response to EMI. Furthermore, it is difficult to predict EMI

[86] as its causes are diverse (sparks, lightning, digital signals, radar, mobile phones

[63], high voltage switching etc.) and uncertain (what is the worst/average effect of a

lightning strike?).

Currently, the only real way to measure the effect of EMI is to monitor the actual

system in situ, and even then there is no guarantee that the measurements are indicative

of the future behaviour, or that the worst case has been measured.

There is evidence that, in general, it cannot be assumed that there are no faults due

50

2.5 Controller Area Network

to EMI. During electromagnetic compatibility testing of a car using CAN, error frames

were monitored when high levels of radio frequency radiation were present [107]. The

findings for that particular experiment were that:

• only certain small frequency ranges provided noticeable effects (corrupted bits),

while interference over most of the spectrum had no effect whatsoever;

• and that screened cable and unscreened cable had similar performance.

There is no reason to assume that these findings apply universally to all CAN sys-

tems. Indeed, this is contrary to the expectation that in general screened cables provide

far better shielding effect than unscreened twisted pair cable. However, wherever there

is a long length of cable and a potentially noisy environment, there will always be the

possibility of interference.

A conclusion to this brief discussion is that all electrical communication systems are

susceptible to interference and although one can measure interference and estimate its

effects in the future, the science is not exact and no guarantees can be made about the

likely interference during the lifetime of the system.

2.5.4 The Data-Link Layer

Above the physical layer, the main properties of CAN are provided by the data-link

layer. Traffic on the bus consists of packets (frames). There are four types of message

on CAN: data frames, error frames, remote transmission request frames and overload

frames. This thesis is only concerned with data frames and error frames as the other

two frames are rarely used in practice.

The CAN 2.0 specification [28] describes two versions of the protocol: CAN2.0A

and CAN2.0B. The differences between them are concerned mainly with a longer

arbitration field (see below). Although CAN2.0B has uses, CAN2.0A is sufficient

for most distributed control systems; in this thesis CAN2.0A will be assumed except

where otherwise stated. The reason for the evolution of version 2.0B, as given by

Bosch [28], is to allow structured naming schemes to become standardised in certain

51

2 Real-time Communication

End of Frame
CRCData Ack

0−8 bytes1 12 6 16 2 7

Arbitration
Control

(including data length)of
Start

Frame

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞
Figure 2.3: CAN Data Frame Format (simplified)—field sizes in bits except where

stated.

applications. This appears to be driven by a desire for some level of compatibility with

an alternative protocol used in American automotive applications.6

Data on the bus is sent in data frames which consist of up to 8 bytes of data plus

a header and a footer. The frame is structured as a number of fields, as shown in

Figure 2.3 and explained in the following.

Start 1 bit A single dominant bit which provides a synchronisation

point for all nodes on the bus

Arbitration 12 bits This field contains the 11 bit priority identifier of the frame,

used for both bus arbitration and for identifying messages.

This is discussed in more detail later in this section. The

additional bit is to indicate a Remote Transmission Request

which is rarely used in practice and is not used for any

further work in this thesis. CAN2.0B uses a 29 bit identifier

field.

Control 6 bits This field contains a four bit code to indicate how many

bytes of data are to follow, and two unused/reserved bits.

Data 0–8 bytes Up to eight bytes of application data can be sent. A

zero-length frame is valid and useful in some applications,

such as indicating the occurrence of events.

6This information is derived from http://www.algonet.se/∼staffann/developer/CAN.htm accessed Au-
gust 2003.

52

http://www.algonet.se/~staffann/developer/CAN.htm

2.5 Controller Area Network

CRC 16 bits This contains a fifteen bit cyclic redundancy check for the

frame, plus one bit delimiter.

ACK 2 bits Transmitters send the first ACK bit as recessive, receivers

overwrite this with a dominant bit to indicate that at least

one node has received the frame.

End 7 bits 7 recessive bits are transmitted to allow other nodes to signal

an error in this frame. See the later discussion about Bit

Stuffing.

Additionally, following the end of a frame, there must be a period of three bits of

idle activity (recessive bits) on the bus, the inter-frame space during which all nodes

may synchronise.

Arbitration, Identification and Addressing

The arbitration field serves three purposes: arbitration, identification and addressing.

The 11 bit field serves as a ‘priority’ for scheduling decisions. When more than one

node on the bus wishes to transmit data, they monitor the bus waiting for it to become

idle. At the earliest opportunity, all nodes with data to send will simultaneously trans-

mit a start of frame bit. This is a dominant bit, so the value received by all nodes on

the bus is dominant. Then each node wishing to participate will transmit the arbitra-

tion field of the frame, which is an 11 bit binary value transmitted most significant bit

first. If at any time during arbitration, a node transmits a recessive bit, but detects a

dominant bit on the bus, then it knows that there is a higher priority frame competing

for arbitration. The lower priority node then stops transmitting, allowing any further

higher priority nodes to continue.

By the end of the arbitration field, there should only be one remaining node trans-

mitting (the node with the highest priority7) all others should have pulled out, so the

7Actually, the lowest arbitration value. In CAN, the lower the value in the arbitration field, the higher
its priority. In common with much real-time literature, this thesis will adopt the convention that
when quoting priorities a higher value implies a higher priority.

53

2 Real-time Communication

remaining node may continue to transmit its data. This is the means by which CAN

provides deterministic collision resolution.

Once a data frame has started transmission, it will continue until it is completely

sent or an error is detected. Nodes with lower priority frames will wait until the next

idle tick on the bus and then try again to send their frames, competing with other nodes

in the same way.

In CAN, there is no direct concept of address, familiar in protocols such as IP, nor

a concept of message identification as used in TCP. Addressing and identification are

handled indirectly using the arbitration field, so the second purpose of the arbitration

field is identification. A stream of frames from a node (e.g. periodic sensor data)

will commonly have the same priority/arbitration field. All receivers that make use of

this data will know the arbitration value, and therefore when a field with a matching

arbitration value is received, the semantic value of the data is understood.

The third purpose of the arbitration field is addressing. There are two ways that

this is done: implicitly or explicitly. Typically, a node is only interested in certain

data, which it recognises by the arbitration field. As CAN is a broadcast bus (all

nodes receive all frames), by filtering out all frames except the ones with a matching

arbitration field, CAN has an implicit addressing scheme. To facilitate this, a typical

implementation of CAN [124] would allow an application to set a hardware mask

which is compared against the arbitration field.

A more explicit form of addressing is also possible and is commonly used. The

scheme breaks the arbitration field into two parts: the most significant bits used for

priority as normal, but the lowest significant bits can be used as an address field. The

highest priority bits determine the order in which frames are transmitted, but receiving

nodes may set a mask to listen only for frames where the lowest significant bits match

its own identifier (address). If such a scheme is used, the 29-bit identifier of CAN2.0B

may be useful.

54

2.5 Controller Area Network

Bit Stuffing and Error Signalling

CAN defines a bit stuffing rule: during normal transmission of most8 of a data frame,

there should not be 6 consecutive bits of the same value (dominant or recessive) on

the bus. Therefore, whenever a transmitter wishes to transmit 5 bits of the same value

(including stuff bits), a stuff bit of the opposite value is automatically inserted into

the stream. Naturally, receivers automatically remove any stuff bits from the stream

before handing data upwards to the application. The effect of this on the size of frames

is described in Section 2.6.4

The bit stuffing is used in CAN for two things. Firstly, it is used for bit synchro-

nisation: as CAN is asynchronous (there is no separate clock signal) all nodes must

remain synchronised by detecting rising and falling edges. Stuff bits ensure that there

are always sufficient edges to maintain bit synchronisation.

Secondly, bit stuffing is used for error signalling. As it is an error for there to

be 6 consecutive bits on the bus, then a node may deliberately send an error frame

which starts with 6 dominant bits in order to signal that it has detected a fault. This

will violate the bit stuffing rule on all nodes, so all nodes will send an error frame

(whether they detected the original fault or not) and by the end of the error frame, all

nodes in the system have abandoned the current frame. After the error frame all nodes

resynchronise and may enter arbitration.

2.5.5 Undetected Errors

For communications, it is a theoretical impossibility to provide a completely reliable

service [58] (unless certain assumptions are made in the fault model), and in any

system there is a finite probability that an error will be undetected. In general a good

communications system will be designed so that this probability is reduced to a level

such that one has sufficient confidence that an undetected error will rarely occur.

In CAN, there are a number of error detection measures that when acting together

reduce the probability to a very low level. It is useful to assess the residual error

8Only the start of frame, arbitration field, control field, data field and CRC sequence are stuffed.

55

2 Real-time Communication

probability of CAN—the probability that an application is presented with a data frame

from the CAN bus which does not correspond exactly to a transmitted data frame.

Bosch, in the CAN specification, claim that the residual error probability of CAN

is 4.7 ·10−11 · pE [28], where pE is the probability of a single bit on the bus changing

value during the same interval. This is based on the CRC having a Hamming distance

of 5 bits (is always able to detect up to 5 single bit changes). While it is true that the

CAN CRC can guarantee to detect up to 5 single bit errors in the data, the CRC is

actually applied to the un-stuffed bit stream, not the raw bit-stream that appears on the

bus. This actually limits the error detection capability to having a Hamming distance

of only 2 bits (in the worst case) [166].

An in-depth study by Charzinski [44] using more accurate modelling finds that

due to this and other reasons, the residual error probability is much higher than first

thought. It depends on pE in a non-linear way. He states that the worst case residual

error probability is 3.5 ·10−9 and this occurs when pE ≈ 0.02.

Nevertheless, the residual error probability value is still very low. Therefore, the

assumption as used throughout this thesis is justified, that all errors caused by bus

corruption are detected.

2.5.6 Error Confinement Problems

Significant research on the role of CAN in high integrity systems has shown a vari-

ety of weaknesses of the protocol, but has also provided solutions to overcome these

weaknesses.

Of particular concern is the fault confinement mechanism whereby nodes can turn

themselves off (and on again) following high numbers of errors. The purpose of this

fault containment mechanism is to prevent a faulty node from flooding the network

with erroneous error frames or unnecessary retransmissions of data frames.

After modelling and analysis of this mechanism, Gaujal suggests that the bus-off

state is reached too easily under bursts of interference [54, 55] and proposes a scheme

to prevent this. On the other hand, a node failure has a high impact on the timing

behaviour of the bus [141] so delaying bus-off is not without drawbacks.

56

2.5 Controller Area Network

An intermediate state, error-passive, where a node cannot signal faults has also been

criticised because it can lead to inconsistent message delivery. A number of authors

have suggested that the error-passive mode should be avoided [64, 50, 145]

2.5.7 Atomic Broadcast and Inconsistencies

The problem of atomic broadcast inconsistencies has been well documented [129, 144,

145, 126, 79]. Despite the claims of the CAN specification that CAN provides atomic

broadcast (i.e. messages are delivered exactly once to all nodes, and in the same order

that they were transmitted),9 there are a number of scenarios in which CAN does not

provide atomic broadcast.

Entering the error-passive state is one source of inconsistencies which is relatively

easy to correct [145]. Other scenarios however, where the last-but-one bit of a data

frame is received corrupted by a subset of nodes, leads to the possibility of double

reception (where some nodes receive a frame twice and others once) or inconsistent

message omissions (where some nodes receive the frame and others do not).

Studies have placed the probability of inconsistencies to be in the region of 10−6

failures/hour [145]. Solutions to the problem are varied. For many applications, it

may not particularly matter if atomic broadcast is not always preserved. It is com-

mon practice to transmit only absolute value data, rather than increments or “toggle”

messages so that a lost message does lead to a permanent erroneous state [170].

Alternatively, a number of higher level protocols have been designed to ensure con-

sistent delivery for the various scenarios [145, 129, 98, 79] and with appropriate timing

analysis [126]. Not all the protocols provide the same coverage of faults, and it should

be noted that no protocol can ever provide a theoretically-perfect atomic broadcast

property—instead a protocol aims to ensure that the scenarios which would lead to

inconsistencies are so unlikely that the probability of failure is insignificant.

To summarise the description of CAN so far, evidence has been presented which

indicates that CAN is a suitable protocol for systems with high reliability demands.

A number of weaknesses are well-known. It is assumed for the rest of this thesis

9A more precise definition is given by Proenza [129] and others.

57

2 Real-time Communication

that either atomic broadcast inconsistencies are of no concern to the application, or

that (where necessary) appropriate solutions are applied to prevent these weaknesses

leading to failure. It is interesting to note that many other candidate protocols such

as TTP, FlexRay, ARINC-629 and TTCAN cannot guarantee to provide consistent

message delivery without higher level protocols, suggesting that atomic broadcast is

not a common requirement.

2.5.8 Clock Synchronisation on CAN

Earlier, the clock synchronisation problem in a distributed system was introduced.

There are a number of algorithms and protocols to synchronise clocks that are specific

to CAN. They can be categorised into two broad groups: software level and hardware

level. The chief difference is the resulting accuracy of the clocks. The symbol ε is

used to denote the maximum deviation between any two clocks in the system.

Clock synchronisation at the software level can be run on any CAN controller, gen-

erally by running some distributed algorithm on all nodes. Software algorithms can

ensure a maximum drift in the region of ε = 100 µs. Rodrigues [137] provides a soft-

ware based, fault tolerant clock synchronisation protocol specifically for CAN. The

bandwidth overhead limits the precision of the synchronisation. By performing the

synchronisation every 45s, a precision of ε = 100 µs can typically be obtained.

If special hardware support is available, such as may be found on some future CAN

controller hardware to support TTCAN [61], or by design [165, 56] then a much finer

clock synchronisation is possible. A hardware clock synchronisation mechanism may

be used to ensure that the clocks do not drift by more than 1 bus bit-time (ε = 1 µs).

2.6 CAN Worst Case Response Time Analysis

In Section 2.1.3, deadlines were described, and the concept that through the use of

hard deadlines and some off-line analysis, the timeliness of a system could be proven

with the same confidence as a functional property could be proven. This section shows

how this may be achieved for communications on CAN.

58

2.6 CAN Worst Case Response Time Analysis

To begin, considering the nature of a hard deadline: if all hard deadlines are met

then the system is correct, otherwise it is not. A proof of timeliness shows that all hard

deadlines are met. Logically therefore, the worst case scenario may be investigated, to

show that deadlines are met in the worst case; if so then the deadlines must be met in

all other cases. This is applied to CAN using worst case response time analysis. The

approach is to find the scenario which can induce the worst case possible latency in

the network and determine that latency.

Worst case analysis, and in particular worst case response time analysis (WCRT)

are common techniques in real-time systems.

Analogy with CPU Scheduling

As Section 2.5.4 explained, CAN is a priority based protocol where collisions are

avoided by using priorities for bus arbitration. CAN is therefore similar to a non-

preemptive fixed priority CPU scheduling algorithm, and worst case response time

analysis from the CPU scheduling domain [95] may be transferred almost directly to

CAN.

2.6.1 Requirements for Worst Case Analysis

It is important before embarking on worst case analysis to determine the requirements

for its validity. It will become clear later in this thesis that meeting these requirements

is not as easy as implied in the following discussion.

The question that the analysis seeks to answer is: “if a node wishes to transmit a

frame, what is the longest time that may elapse between the originating request and

the frame being correctly received by another node”. This bound is termed worst case

transmission latency or worst case response time (WCRT).

Whether or not such a bound exists, (the existence of an answer) depends on several

things, not least the amount and characteristics of other network traffic. Considering

the CAN protocol, a requirement for bounded latency can be produced.

Lemma 1. A bound on the transmission latency for a frame i exists if bounds exist on:

59

2 Real-time Communication

the overhead of network activity associated with frame i and all network activity that

takes preference on the bus over frame i.

The ‘network activity’ can be decomposed into a number of possibilities:

1. higher priority frames (which are always transmitted in preference);

2. any lower priority frame already begun transmission (which must complete or

be lost due to faults);

3. error frames (which may interrupt any frame during transmission);

4. any other inaccessibility [167] due to faults, e.g. EMI, (which can interrupt any

frame and cause an error frame).

There are also a number of other causes of delays which will not be considered di-

rectly, for example network partitioning or node crashes. Nevertheless, these cannot

be totally ignored; temporary network partitioning for example can be caused by the

CAN fault-containment mechanism which turns a node off after a large number of net-

work faults. Rufino has considered many of these scenarios in more detail [140, 142].

From the list of network activities, it is clear that a bound exists on response time

only if higher priority traffic is bounded and if the effect of faults is bounded [145,

157, 140].

2.6.2 Standard Periodic Stream Model of Traffic

The most frequently used model of network traffic in real-time systems is the peri-

odic stream model where data traffic on the network consists of a number of streams,

each stream being a sequence of frames where the frames are generated (queued for

transmission) periodically with a known period. Typically, each stream would be

transmitted using the same priority.

This model reflects common use of communication in distributed control systems.

Control laws, notably PID control, are usually implemented as a periodic loop, there-

fore requiring sensor data, control data and actuator data to be transmitted periodically.

60

2.6 CAN Worst Case Response Time Analysis

This model has the property that the overhead due to a periodic stream in a given

interval is bounded. Hence, this model can be used to help provide a worst case

response time.

The periodic stream model is used a number of times throughout this thesis; it is

defined here for reference.

A stream i consists of a (possibly infinite) sequence of message frames. Each mes-

sage frame has a maximum duration Ci when transmitted on the bus. Each message

frame is created in response to a trigger event, which occurs periodically with a pe-

riod Ti. Following a trigger event, the frame is queued for transmission on the bus

according to the bus protocol.

Each stream may have a deadline, Di, associated with it. In this thesis, as for most

real-time literature, Di is measured relative to the periodic trigger event.

Additionally, jitter may be introduced, where each trigger event may occur later

than normal, by an amount of time no more than Ji. In practice, jitter may have

many causes, in particular, scheduling algorithms on a CPU will usually not be able

to provide an exact periodic interval for execution.

Also, offsets, Oi, may be applied to each stream, so that the release pattern of frames

is controlled. In event-triggered systems, it is often appropriate to assume that offsets

are unknown, or all offsets are 0.

A further use of the periodic stream model is that it is an upper limit to the spo-

radic stream model. The sporadic stream model is the same as the periodic stream

model except that trigger events occur with a minimum inter-arrival time Ti, rather

than exactly every period Ti. The worst case overhead of the sporadic model is when

messages arrive every minimum inter-arrival time Ti, in which case it is equivalent to

the periodic model.

Utilisation

Utilisation is a measure of how much of the bus capacity is used. Values range from

0 (nothing used) to 1 (fully utilised). For the periodic stream model, the utilisation of

61

2 Real-time Communication

each stream is easily calculated as

Ui =
Ci

Ti

hence the total utilisation for the bus is derived [95]

U =
∑

∀i

Ci

Ti
(2.1)

Naturally, for the sporadic stream model, U also represents the ‘worst case’ or max-

imum utilisation possible.

2.6.3 The WCRT Analysis in Fault-free Conditions

In the absence of faults, worst case response time (WCRT) analysis of CAN for the

periodic or sporadic models is straightforward [159]. It is performed in the same way

as for non-preemptable processes on a CPU. The following equations for the worst

case transmission time of each frame, Ri, can be derived [159].

Since faults are neglected, once a frame begins transmission, it completes. Hence,

Ri = wi +Ci + Ji (2.2)

where wi is the queueing delay and corresponds to the maximum length of time that

the frame may have to queue before beginning transmission. The worst case scen-

ario which produces the maximum wi can be derived from previous work on CPU

scheduling [95] and corresponds to a critical instant when a lower priority frame has

started transmission hence blocking a scheduling point and all higher priority streams

generate a trigger event, causing maximal interference.

wi is given by

wi = B+
∑

∀ j∈hp(i)

⌈

wi + J j + τ
Tj

⌉

C j (2.3)

where B is the maximum possible time that a frame may have to wait for lower frames

to complete, equal to the longest duration of lower priority frames; hp(i) is the set of

62

2.6 CAN Worst Case Response Time Analysis

streams with a higher priority than i. The ceiling term derives the maximum number of

trigger events that may occur in the interval w. The τ is necessary in non-preemptive

analysis to eliminate the possibility of an optimistic result due to edge effects [18].

τ is the time of one bus clock tick. Hence the load due to higher priority frames

(interference) is at most
⌈

wi+J j+τ
Tj

⌉

C j.

The smallest solution to equation (2.3) is the worst case queueing delay. However,

the equation cannot be re-arranged to give a solution to wi. Nevertheless the smallest

wi can be calculated numerically by forming a recurrence relation, as in equation (2.4).

wn+1
i = B+

∑

∀ j∈hp(i)

⌈

wn
i + J j + τ

Tj

⌉

C j (2.4)

The solution is reached when wn+1
i = wn

i . As wn
i is monotonically non-decreasing

over n, iteration must start with a value of w0
i less than the solution, for example

w0
i = 0.

For further details on this type of analysis, there are numerous good references

dealing with its application in process scheduling [12, 11, 39].

2.6.4 Improving the WCRT Formulation

The equations in the preceding section are well known and have been used widely

in academic literature [114, 167, 118] and industrial practice.10 However there are a

small number of changes which can usefully be made to the equations which simplify

analysis later.

The differences between Tindell’s original analysis [159] and the one used in the

rest of this thesis are:

1. Separation of inter-frame space—a small correction is made concerning the

inter-frame space that is transmitted between frames on the bus. Tindell con-

siders that this is part of the frame, whereas CAN hardware is able to detect that

a frame has completed immediately after the last bit of the frame. Therefore

10For example http://www.vector-cantech.com/.

63

http://www.vector-cantech.com/

2 Real-time Communication

Tindell’s analysis is (very slightly) pessimistic as he includes the inter-frame

space in the response times.

For further justification for this change, consider the lowest priority frame and

the blocking it may receive. According to Tindell’s original equations, this

frame can receive no blocking, yet it may actually receive blocking time of

3τ because of the inter-frame space before it. Hence Tindell’s blocking B is

optimistic for the lowest priority frame (only). In practice however, this is not

important because the optimism is exactly cancelled by the pessimism of in-

cluding the inter-frame space at the end of the frame under analysis.

In future analysis in this thesis, the length of the inter-frame space, S, defined as

S = 3τ , is separate from the rest of the frame which is still given the symbol Ci.

2. Separation of Blocking and Interference parts—the blocking and interference

parts of the worst case response time will be written as functions defined in

separate equations.

3. Different form—a different form of the equation will be used which simplifies

the mathematics for work later in the thesis. The essential difference is that

instead of considering the queueing delay, the total response time is considered.

The equations can be shown to be exactly the same by the substitution ti =

wi +Ci.

The worst case response time equations which are used in the rest of this document

are therefore defined as

Ri = Ji + ti (2.5)

and

ti = Bi +Ci + Ii(ti) (2.6)

where:

Ci is the worst case transmission time [131] (the time it takes, in the worst case

64

2.6 CAN Worst Case Response Time Analysis

to send frame i) assuming no errors, maximum bit stuffing11 and not including the

inter-frame space that follows the frame,

Ci =

(

44+8b+

⌊

34+8b−1
4

⌋)

τ (2.7)

where τ is one bit-time and b is the number of data bytes in the frame (0 to 8). Due

to bit-stuffing, the actual length of a frame depends on the data and arbitration value.

For an 8-byte data frame, for example, the frame size can vary between 108 and 126

bits. Ci is understood to be the maximum possible length of a frame since this is a

worst case analysis. A long-overdue study on the actual amount of bit stuffing that is

typically observed provides a useful method to reduce its effects [118].

The worst case blocking, Bi is the maximum time a message may need to wait due

to a lower priority message on the bus:

Bi = max
∀k∈lp(i)

(Ck)+S (2.8)

where lp(i) is the set of messages with lower priority than i. Note that if i is the lowest

priority frame then Bi = S.

Finally, Ii(t) is the worst case interference that message i may receive in t time units:

Ii(t) =
∑

j∈hp(i)

⌈

t−Ci + J j + τ
Tj

⌉

(C j +S) (2.9)

where hp(i) is the set of messages with higher priority than i and J j is the worst

case release jitter of frame j. Note that the numerator in the fraction involves t−Ci

as interference can only take place before frame i begins transmission (care must be

taken never to require Ii(a) if a < C +J +τ). The τ is used to eliminate ‘edge effects’

in non-preemptive analysis where a high priority frame becomes ready as a medium

priority one completes [18].

Equation (2.6) may be solved iteratively by forming a recurrence relation with t0
i =

Ci which terminates when tn+1
i = tn

i or fails when tn+1
i > Di− Ji where Di is the

11A misinterpretation of the bit-stuffing rule led to an incorrect version of this calculation in some early
literature [158] on CAN, where the denominator of the fraction was taken to be 5, not 4.

65

2 Real-time Communication

deadline and Di ≤ Ti.

If there is a solution Ri ∀i and Ri ≤ Di then the analysis above will guarantee that

all messages will always meet their deadlines, provided that there are no faults.

2.7 Bus Faults on CAN

Section 2.6.1 listed the chief network activities whose effects must be bounded in

order for worst case response time analysis to be possible. The periodic stream model

was used to bound the effects of other frames on the bus, leaving only inaccessibility

due to faults, retransmissions and error frames.

Chapter 1 suggested that the effects of EMI were difficult to measure and not pos-

sible to bound. Nevertheless, the use of a bounded fault model assumption is useful

as it allows worst case analysis to be performed. A number of bounded fault models

with significant merit may be considered. Some attempt to approximate real fault be-

haviour, perhaps derived from observation of real systems, others are simpler, aiming

to create something of practical value by enabling simple worst case response time

analysis to be conducted.

The means by which a bounded fault model is incorporated into worst case response

time analysis is by adding an extra term to equation (2.6):

ti = Bi +Ci + Ii(ti)+Ei(ti) (2.10)

Ei(t) is the worst case overhead due to network faults and extra frames that can

occur in any given time interval, t. Ei(t) must be bounded and non-decreasing over t.

The equation can then be solved in the same manner as before.

2.7.1 Sporadic Fault Model

Tindell [159] suggested that faults could be regarded as sporadic single-bit faults. That

is, there is a minimum separation between faults. Therefore faults can be treated in

almost the same way as frames in the sporadic stream model. Additionally, to allow

66

2.7 Bus Faults on CAN

for the possibility of faults occurring closer than the minimum separation, a single

burst of faults is accepted (and the burst has a maximum length).

Each fault will cause an error frame to be transmitted and the retransmission of

either a higher priority frame or if the fault falls in frame i then that frame will have

to be retransmitted before it is received. In the worst case (i.e. where the fault falls

on the last bit of a frame) then a fault leads to an overhead of the error frame and

the retransmission (in addition to the the whole of the lost frame, which is already

considered in the WCRT formulation).

This derives the following equation12 for Ei(t), the maximum overhead due to

faults:

Ei(t) =

(

nburst +

⌈

t
TF

⌉)(

max
j∈hep(i)

C j +E

)

(2.11)

where TF is the minimum inter-arrival-time between faults and nburst is the maximum

number of faults that can occur in succession during a burst, E is the maximum length

of an error frame (taken to be 29τ), hep(i) is the set of streams of higher or equal

priority than i. The leftmost product-term of equation (2.11) is the maximum number

of faults that can occur in an interval t, and the rightmost product-term is the maximum

overhead of each fault.

The model is simple and effective but somewhat crude, there is no evidence that it

reflects the nature of real faults. In use, it quickly leads to a very high overhead in the

analysis which is not necessarily justified in practice. Nevertheless, in the absence of

the ability to accurately measure or predict faults, this model is useful in that it gives

a guide as to how much spare bandwidth is required to meet deadlines—a “fudge

factor”.

2.7.2 Sporadic Faults from Multiple Sources

Punnekkat [131] extends the sporadic fault model by providing a more general fault

model which can deal with interference caused by several specific sporadic sources.

The framework considers the most predominant forms of interference in a given appli-

12This equation is changed slightly in form from the original document [159] in order to present a
consistent notation throughout this thesis.

67

2 Real-time Communication

cation (such as radar) and assumes that specific patterns of interference can be derived

by monitoring a bus in proximity to the source. The patterns are characterised by an

initial burst of faults and then a sporadic distribution of faults with a known minimum

inter-arrival time. It is a form of bounded model and the overall effect can be described

as a function Ei(t) in the usual way.

The advantage of this approach is the ability to model specific interference patterns.

However the disadvantages, like usual bounded fault model worst case analysis, are

that it is difficult to have absolute confidence in the accuracy of the model and that it

can easily result in a poor utilisation.

The formulation for Ei(t) is summarised below. It consists of the summation of a

number of different streams of faults:

Ei(t) = E1
i (t)+E2

i (t)+ . . .+Ek
i (t) (2.12)

each one consisting of bursts and sporadic behaviour:

E l
i (t) = Bul(t) · (Ob

i +max(0, I l
b− τ))+Rel(t) · (Or

i +max(0, I l
r− τ)) (2.13)

where Bul(t) is the number of bursts in t and Rel(t) is the number of sporadic events in

t. Separate overheads (Ob
i , Or

i) can be defined for burst activity and sporadic activity.

Il
b and Il

r represent the length of time that single faults affect the bus.

It is easily shown that the sporadic fault model is a special case of the multiple

sources model with only one source and limited overheads. This model therefore is

more general, allowing detailed expression of the overhead due to faults. However,

the difficulties of providing such measurements with accuracy may prove to be pro-

hibitive.

2.7.3 Bounded Omission Model

An alternative way to consider the fault model for CAN is to not model the faults

directly, but instead to model at a higher level. The fault model for CAN established

by Verı́ssimo and Rufino [140, 145, 143, 167] defines an omission degree assumption

68

2.7 Bus Faults on CAN

that no more than n error and/or reactive overload frame transmissions are required to

recover from errors in the transmission of an error frame, i.e. following a corrupt data

frame, the model assumes that at most n retransmissions of that frame are required.

An analysis of CAN properties based on this assumption leads to a model which

includes the following two properties [140] of interest in this context:

MCAN5—Bounded Omission Degree: in a known time interval, omission failures

may occur in at most k transmissions.

MCAN6—Bounded Inaccessibility: in a known time interval, the network may be

inaccessible at most i times, with a total duration of at most Tina.

These properties (assumptions) form the basis of a range of work on CAN in high

integrity systems [140].

2.7.4 On Bounded Fault Models for Analysis

The three frameworks described by Tindell [159], Punnekkat [131] and Rufino [140]

illustrate ways to perform timing analysis of CAN under fault conditions. They all use

models based on either a minimum inter-arrival time between faults or on a bounded

omission degree. Therefore they assume that the overhead of faults that can occur is

bounded and hence they fulfill the requirements for worst case response time analysis

from Section 2.6.1

Previously,13 it was suggested that because of the difficulties with predicting faults,

such interference cannot be reliably characterised by a bounded model. This leads to

two problems:

1. in order to have confidence that the analysis covers the worst case fault condi-

tions, the worst case overhead due to faults must be ‘set’ very high (to guarantee

all deadlines); this results in so much spare bandwidth being reserved that there

is very little available for normal messages;

13§2.5.3 and Chapter 1

69

2 Real-time Communication

2. at run time, there is no guarantee that the faults will actually conform to the

assumptions used for analysis.

Solutions to these problems are suggested in Chapters 3 and 4.

2.7.5 Non-bounded Fault Model

In an attempt to avoid the limitations of the bounded fault model, an alternative anal-

ysis, proposed by Navet [114] is based on a fault model with random fault arrivals.

Faults are assumed to occur following a Poisson distribution, so in any given interval,

there is a non-zero probability of any number of faults occurring—hence there is no

bound.

The analysis provides an estimate of the worst-case deadline failure probability

(WCDFP). This value is the probability that there are sufficient bus faults during the

response time of a message to delay the message beyond its deadline. The concept

may be then used to give an indication of the reliability of the system.

In more detail, the usual worst case response time analysis equations including

worst case overheads due to errors [159] are used to calculate the smallest number of

faults that can cause each frame to be delayed beyond its deadline. Then, based on a

statistical fault model, they calculate the WCDFP as the probability that the number

of faults would exceed the minimum number required to miss a deadline.

The approach is ‘worst-case’ because the underlying assumptions are that each

frame always receives the maximum amount of interference possible and that bit er-

rors occur at the end of each frame and hence cause the longest possible error recovery

time. Yet, the use of a probabilistic fault model includes the possibility that there may

be an unbounded number of faults in an interval.

The WCDFP should therefore be understood as “the probability of being in a sit-

uation where a deadline may be missed”. The conditional probability of missing a

deadline (given that the bus has received such faults) is dependent on the task set and

other factors. Here lies a source of pessimism in this approach which is explored in

Chapter 4.

70

2.8 Scheduling on CAN

2.8 Scheduling on CAN

In its original (and most widely used) configuration, CAN provides non-preemptive

fixed-priority scheduling. This section explores the implications of this and also a

number of alternative scheduling policies that CAN is able to support.

2.8.1 Fixed-Priority Scheduling

CAN schedules messages using a fixed priority scheme: all frames have a fixed,

known identifier which serves to both identify the frame to the receiver and to provide

a priority for bus arbitration. Priority assignment can be arbitrary, but rate monotonic

(RMPO) [95] or deadline monotonic (DMPO) [91] are useful and usually optimal.

Although as Bate [18] shows, in a restricted synchronous system with only periodic

tasks, DMPO is not necessarily optimal. However, for a CAN system, the restricted

model does not usually apply and therefore it is normal to assume that DMPO is an

optimum priority assignment for CAN.

It is generally acknowledged that fixed priority scheduling tends to have a lower

utilisation than some dynamic priority scheduling schemes. The upper bound on util-

isation for RM scheduling with guaranteed deadlines can be as low as 69% utilisation

[95]. However, in practice, this figure is usually higher, for example, simulations by

Lehoczky estimate that the average maximum utilisation for rate monotonic fixed-

priority scheduling is around 88% for uniformly distributed processes [90].

There have been several alternative proposals for different scheduling policies on

CAN in an attempt to either increase the bus utilisation, or improve the timing be-

haviour of CAN.

2.8.2 EDF on CAN

Earliest Deadline First (EDF) scheduling [95] is a well-known scheduling scheme

for process scheduling, where at each scheduling point, the process with the closest

deadline is selected for execution next. It has the advantage of potentially allowing a

higher bus utilisation.

71

2 Real-time Communication

EDF on CAN has been attempted a number of times. One approach is to use the

arbitration field to encode the deadline of each frame, so that the frame with the earliest

deadline is always the next to be transmitted.

Livani and Kaiser [96, 78] suggest using the highest 8 bits of the longer CAN 2.0B

29-bit arbitration field to encode the deadline. The rest of the field is required for

unique message identification and addressing. They further divide the priority field

into three classes: hard, soft, and non real-time, which gives 127 possible values/slots

for deadlines. This derives a time horizon of 8382 bit-times, which is 54 messages

long. This scheme is then used to provide a four-tier scheduling scheme [97] where

traffic with varying degrees of guaranteed deadlines and with non-guaranteed dead-

lines is scheduled in a loose TDMA style.

In order to avoid problems of a short time horizon and to avoid using CAN2.0B

which has significantly more overhead due to the extended arbitration field, an alter-

native approach [172] chooses to schedule some messages by normal fixed priority

scheduling and some by EDF scheduling. This creates a hierarchical bus scheduler

capable of efficiently supporting a variety of traffic [171].

An extensive study into the problems and solutions of EDF scheduling on CAN

is presented by Natale [112]. Although there is motivation for EDF scheduling on

CAN, it is unclear that any benefits outweigh the difficulties. Changing the underlying

scheduling policy is neither clean to implement nor free from overheads.

Centralised Control for Alternative Scheduling Schemes

Section 2.4.3 mentioned FTTCAN [4, 5, 2] which is a centralised control protocol

implemented on CAN. The protocol is loosely TDMA based, but instead of the bus

schedule being static, a master node periodically issues a broadcast message which

contains information about which messages are to be scheduled and the ‘slots’ in

which they are transmitted.

FTTCAN has also been used as the framework for implementing a number of cen-

tralised scheduling schemes on CAN, such as EDF and a constant bandwidth server

[119].

72

2.9 Summary

2.8.3 TTCAN

A recent proposal is to make CAN into a time-triggered protocol. Deterministic timing

behaviour has been seen as required [52] to support high integrity x-by-wire systems.

TTCAN [75] is a higher level protocol that may be implemented on top of CAN to

provide CAN-based TDMA communications. The goals of TTCAN are [52] to reduce

response time variance (‘jitter’) and to impose a deterministic communication pattern

on the bus. Prototype implementations of TTCAN exist [61].

The protocol is TDMA based, but with additional windows where certain messages

may use normal CAN arbitration. Thus, TTCAN is able provide limited support for

non-periodic information. Other merits of TTCAN are hard to determine as the pro-

tocol is not yet in wide use. Unlike TTP, TTCAN is implemented strictly on top of

an event-triggered protocol, therefore the overheads of CAN (addressing etc.) are not

avoided as they are in TTP, see Sections 2.5.4 and 2.4.1. The protocol is a work-in-

progress item and likely to be superseded by FlexRay [19] before wide acceptance.

One of the most promising parts of TTCAN is the implementation of an accurate,

high resolution clock on CAN through means of a periodic tick message [61] using

hardware support.

2.9 Summary

This chapter has presented background material, including real-time theory, different

forms of communication and a section regarding CAN and approaches to dealing with

faults.

The concept of a hard deadline was introduced and how its use in conjunction with

worst case response time analysis can make reasoning about the timing behaviour of a

system manageable. Yet, this chapter has also described how using hard deadlines and

worst case analysis to consider behaviour in the presence of faults has drawbacks, not

least the fact that it can lead to an over-constrained and difficult to implement system.

Practical ways of overcoming this are the topics of the next two chapters.

73

74

3 Weakly-hard Analysis of CAN

HARD DEADLINES PROVIDE A RIGOROUS FOUNDATION for the design of real-time

systems. However, as Chapter 2 noted, constructing systems to guarantee hard dead-

lines has many difficulties. In particular, in a noisy environment where faults on the

bus are either very frequent or difficult to determine, guaranteeing hard deadlines on

communication can become impossible. Many real-time applications, however, do not

need all communication deadlines to be guaranteed—because the applications have

some robustness (either naturally, or by engineering) to timing faults. In this Chapter,

a softer, more flexible, form of deadline, called a weakly-hard deadline [22] is intro-

duced into the world of real-time communication as a practical way of engineering

such systems.

The area of weakly-hard real-time systems [21] is a growing area of work, studied

originally by Bernat. It concerns the specification and analysis of real-time systems

where a specified number of deadlines may be missed. In its original context, weakly-

hard analysis was used to analyse processes on a CPU. The contribution in this chapter

of this thesis is to apply weakly-hard analysis to the area of communication, specifi-

cally to CAN, in order to provide useful guarantees of performance in the presence of

high or unknown levels of faults.

3.1 Motivation

The motivation for a weakly-hard system is that in many practical engineering con-

texts, ‘occasional’ missed deadlines can be tolerated, recall from Section 2.4.2 the

firm deadline model used by avionics applications using ARINC-629. However, it is

still important to be able to guarantee that sufficient messages are delivered on time

75

3 Weakly-hard Analysis of CAN

in order for the system to maintain performance or stability. By considering exactly

which deadlines are actually required to be met, rather than simply classifying every-

thing as a ‘hard’ deadline, a bus may be able to provide guarantees yet run at a higher

utilisation and tolerate more faults.

By examining a relevant application that uses a real-time bus: a distributed PID1

controller, further evidence can be found that in practice it is not necessary to meet

all deadlines (i.e. to describe a deadline as ‘hard’ is over-constraining). Control laws

are generally able to work effectively if a small number of data values are lost; signif-

icant research has been done on how to maintain stability when messages are omitted

(vacant sampling) [116], or with sampling jitter [104]. For occasionally delayed out-

put data, this may be incorporated into the parameters of the control law. Further

justification for missing some deadlines in a predictable way is given by Bernat [21].

Therefore, in order to avoid placing extra requirements on the communication sys-

tem to guarantee that all messages are timely (when in fact if some are late then the

software can easily cope) notions are considered that are softer than hard deadlines. In

particular, weakly-hard deadlines allow provide a framework to specify exactly how

many deadlines may be missed in the worst case. For example: “in any 20 consecutive

deadlines the process must always meet at least 18 of them and it must never miss any

2 consecutively”. Weakly-hard response time analysis may then be used to show that

all the weakly-hard constraints are met.

The rest of this Chapter explains the intuition behind weakly-hard analysis and

how it may be exploited on CAN. Section 3.3 reviews some weakly-hard theory from

previous work. This is used in Section 3.4 where the details of the analysis of CAN

are explained. Weakly-hard constraints on CAN are evaluated in Section 3.9 by means

of a case study. This leads to an observation about designing the system to make best

use of a flexible bus by using non-harmonic periods. Finally, the limitations of the

bounded fault model are addressed and weakly-hard constraints are evaluated against

a different fault model.

1PID—Proportional, Integral, Derivative; a standard way of implementing feedback control.

76

3.2 Intuition

3.2 Intuition

Before considering weakly-hard deadlines in detail, it is useful to leap ahead for a

little insight into the workings of a fixed priority event-triggered system. The intuition

behind weakly-hard analysis is to exploit the fact that in an event-triggered system,

tasks (or message frames) tend to suffer different levels of interference on each invo-

cation. In a periodic stream model, the interference for each invocation depends on

the relative periods of higher priority tasks (frames). It can be seen by measurement,

simulation and analysis that there is huge variation in the response times for each in-

vocation, especially where the periods of higher priority streams are non-harmonic.

In general, the average case response time is much lower than the worst case response

time.

As an example of this variation, Figure 3.1 shows the distribution of worst case

response times for some consecutive invocations of a frame on a CAN bus from the

analysis later in this chapter. The frame is priority 2 (low) of the message set described

later in Table 3.2, assuming no faults. The worst case response time is 23.016ms but

as can be clearly seen, the response time at other invocations within the hyperperiod

is much shorter.

The important point to note about the graph is that there is only a relatively small

number of peaks: most of the mass of the graph is well within the worst case.

Next consider exactly the same graph, but with a possibility of one fault occurring

within the hyperperiod (Figure 3.2). All the bars have increased slightly, indeed two of

them have exceeded the deadline. However, the other 248 invocations are well within

the deadline and are guaranteed to be on time.

Weakly-hard analysis can be used to exploit this variation in response times in a

flexible bus to provide deadline guarantees even though the worst case may not be

guaranteed.

77

3 Weakly-hard Analysis of CAN

Worst Case
Deadline

R
es

po
ns

e
tim

e
(m

s)

0
0 50 100 150 200 250

Invocation

5

10

15

20

25

30

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Figure 3.1: Typical Distribution of Response Times.

3.3 Weakly-hard Theory

As the previous section indicated, there are many practical engineering contexts where

it is not necessary to meet all deadlines: very few ‘hard’ real-time systems (subsys-

tems) are actually ‘hard’ in the sense of needing to meet all deadlines. However,

neither are they systems with no real-time requirements; missing too many deadlines

does matter. Nearly all control laws fit this scenario where occasional deadline misses

of input/output data are easily tolerated, but minimum levels of timely behaviour are

necessary in order for the system to function correctly or efficiently.

Such systems are termed ‘weakly-hard’ real-time systems [21], and they can be

characterised by considering the numbers of deadlines that are missed and met. In

order to argue about missing deadlines, a formal notation is required to specify the

number of missed messages.

78

3.3 Weakly-hard Theory

0

5

20

30

0 50 100 150 200 250

Invocation

25

15

10

Deadline

R
es

po
ns

e
tim

e
(m

s)

PSfrag replacements

R0

R1
R2

Rn−1

Rn

· · ·
∞

Figure 3.2: Typical Distribution of Response Times with One Fault.

3.3.1 Weakly-hard Notation

Four basic notational constructs, ‘constraints’, are defined by Bernat [23] which shall

be used in this document:

(n
m

)

for any m consecutive deadlines in a stream, at least n are met (messages arrive

and arrive on time). No constraint is put on whether these n messages arrive

consecutively or non-consecutively.
(n

m

)

for any m consecutive deadlines in a stream, at most n deadlines can be missed.

This is the dual of the previous constraint.
(n

m

)

is equivalent to
(m−n

m

)

.
〈 n

m

〉

for any m consecutive deadlines in a stream, at least n consecutive deadlines are

met. This is clearly more demanding than just meeting n in a window.

〈n〉 it is not the case that n consecutive message deadlines are missed in a row. In

other words, 〈3〉 means that 3 deadlines in a row are not missed.

Weakly-hard notation can be used in a number of ways. There are three uses that

are particularly of merit:

79

3 Weakly-hard Analysis of CAN

Specification. Weakly-hard notation can be used to specify requirements, e.g. “The

application requires
(17

20

)

(that 17 in 20 messages arrive on time).”

Guarantee. A weakly-hard guarantee specifies an upper bound on the number of

missed deadlines during a future window of time as determined by analysis, e.g.

“The bus guarantees
(18

20

)

(that 18 in 20 deadlines will be met).”

Observation. An observed weakly-hard behaviour is derived from a long simulation

or from monitoring of the system, e.g. “The bus actually achieved
(19

20

)

(always

met 19 in any 20 consecutive deadlines).”

All of these are termed weakly-hard constraints. Further, it is useful to measure how

often a given constraint is achieved or not achieved, for example “The bus achieved
(20

20

)

99.46% of the time”.

This concludes the brief review of weakly-hard deadlines. The following sections

present the application of weakly-hard analysis to CAN, which is the main contribu-

tion of this Chapter.

3.4 Guaranteed Weakly-hard Analysis of CAN

In this section a weakly-hard analysis of CAN including faults is presented. The over-

all approach of weakly-hard analysis is to calculate the worst case response time, Ri,k,

for each possible invocation, k = 0,1,2, . . ., of each frame i (within a hyperperiod).

The CPU scheduling approach [23] is modified from the preemptive process model to

the non-preemptive CAN scheduling model with preemptive faults. The worst case

response times are then mapped to weakly-hard constraints which form guarantees of

future behaviour.

3.4.1 Terminology

It is first necessary to introduce some scheduling terminology [21] that will be used in

the subsequent analysis.

80

3.4 Guaranteed Weakly-hard Analysis of CAN

The periodic stream model (see Section 2.6.2) is used—all messages (within each

stream) are released periodically, with known periods. Perfect clock synchronisation

is also assumed, although this is relaxed later in Section 3.8.

Therefore, it can be stated that the pattern of release times (trigger events) of all

messages is repeated every hyperperiod which is H = LCM{∀i : Ti} time units long

[21].

A message at priority i will only suffer interference from higher priority messages.

Therefore the pattern of interference and therefore the pattern of worst case response

times repeats every hyperperiod at level i, given by Hi = LCM{∀i∈ hep(i) : Ti}, where

hep(i) is the set of messages of higher or equal priority to i.

The exception to this is that there may be an overrun at the end of the first hyperpe-

riod into the second hyperperiod (and likewise into the third etc). Therefore response

times in the second hyperperiod may be longer than those in the first hyperperiod.

However, as Bernat shows [22] there is no need to consider further hyperperiods as

the response times in successive hyperperiods cannot exceed those of the second, pro-

vided that the utilisation U ≤ 1.

The number of invocations of a message in a hyperperiod is given by Ai = H/Ti,

and the number of invocations of a message in the hyperperiod at level i is ai = Hi/Ti.

3.4.2 Calculating Response Time Ri,k

The worst case response time of the kth invocation within the hyperperiod of stream i is

Ri,k. It may calculated using an extension of the worst-case response time formulation

technique for multiple invocations [22] which is updated to include interference from

CAN error frames and consider the non-preemptive nature of CAN data frames.

For the following calculations, it will be assumed that at time t = 0, the first frames

in all message streams are released. Therefore, the release time of each frame is

defined as

Si,k = kTi k = 0,1, . . .ai−1 (3.1)

With reference to Figure 3.3, the worst case response time, wi,k, relative to the

81

3 Weakly-hard Analysis of CAN

critical instant is the sum of the times taken by all events on the bus up to wi,k:

wi,k = k(Ci +S)+Ci +(k +1)Bi + Ii(wi,k)+Ei,k(wi,k)+δi,k (3.2)

That is: previous and current invocations of message i, blocking and interference

(calculated in the usual ways, see §2.6.4 on page 65) and the worst case error overhead.

δi,k is the amount of idle time at level i between t = 0 and Si,k, the ‘spare’ bus capacity

(see below).

The value wi,k is calculated iteratively in the familiar manner using a recurrence

relation, as described in Section 2.5, starting with a small value, such as Ci. From

wi,k, the actual worst case response time relative to the planned release at Si,k can be

calculated:

Ri,k = wi,k + Ji−Si,k (3.3)

3.4.3 Calculating Idle Time δi,k

Equation (3.2) made use of δi,k which is the maximum length of time that the bus

is available for use by lower priority frames in the interval (0,Si,k] (excluding time

that has already been accounted for in equation (3.2), so the blocking factor Bi is not

included in the calculation). δi,k is termed the idle time at level i.

δi,k can be computed by considering the bus behaviour after introducing a single

virtual preemptable message at a priority level just below i that consumes all unused

bandwidth between t = 0 and the release of the frame at Si,k. Let τ̄ be the virtual mes-

sage. The idle time, δi,k, is the largest C̄τ that makes the virtual message schedulable

(see Figure 3.3):

δi,k = max{C̄τ |R̄τ ≤ Si,k} (3.4)

where R̄τ = u is the solution to the following equation:

u = k(Ci +S)+ kBi +C̄τ +
∑

j∈hp(i)

⌈

u+ J j

Tj

⌉

(C j +S)+Ei,k(u) (3.5)

82

3.5 Incorporating Faults: Calculating Ei,k(t)

B i

Idle time

{Interference

Task i

t=0
Time

R i,1 Ri,2

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Figure 3.3: Virtual Task to Calculate the Idle Time.

Equation (3.5) is very similar to equation (3.2), the major exception being the in-

terference term which is required to be preemptive, rather than the non-preemptive

form of equation (2.9). Other than this, the equation must match the main response

time equation (3.2) exactly so that between t = 0 and t = Si,k, the worst case schedule

that the idle time calculation is based on is exactly the same as the schedule that the

response time equation is based on.2

Note that δi,k in equation (3.2) does not depend on wi,k, therefore it does not need

to be reevaluated at every iteration.

3.5 Incorporating Faults: Calculating Ei,k(t)

The multiple invocation response time analysis in the previous section included an

error term Ei,k(t) in the same way as the CAN worst case response time analysis did

from Section 2.6.4. This is the bounded overhead due to faults in any interval of

length t.

Any bounded fault model could equally be used for the analysis, depending on the

application. Here the sporadic fault model [159] explained in Section 2.7 will be used,

2To aid understanding of this formulation, note that δi,k is not the same as u. The relationship between
δi,k and u was defined in equation (3.4).

83

3 Weakly-hard Analysis of CAN

that considers single-bit errors that have a minimum inter-arrival time, TF (the burst

error term nburst from equation (2.11) is omitted here). Therefore an expression for

the worst case overhead due to faults during an interval t is:

Ei(t) =

⌈

t
TF

⌉

max
k∈hep(i)

(Ck +E +S) (3.6)

where E, is the longest possible error frame resulting from a single fault.

However, incorporating the error function is not as straightforward as might be

expected due to the nature of the worst case(s). When considering only one invocation,

the worst case fault scenario is easy to determine: a fault occurs at the critical instant,

then every TF afterwards.3

However, although the periodic stream model was assumed for messages, faults are

assumed sporadic. Therefore the arguments about release patterns do not apply to

faults. Instead, each invocation of a frame has an individual worst case scenario for

faults which must be determined. The worst case scenario is where a fault occurs at

Si,k then faults re-occur at their fastest rate after Si,k. In other words, there is a critical

instant for faults at every invocation.

Therefore, at each invocation k, a new worst case scenario is analysed. In order to

ensure that idle calculations are correct, for each invocation the sporadic fault model

is mapped to a periodic fault model but with an offset OF such that a fault occurs at

Si,k for the invocation under analysis, and faults occur periodically before and after

Si,k:

OF = Si,k−

⌊

Si,k

TF

⌋

TF (3.7)

The overhead due to this is then calculated by using a variation of offset based

analysis:

Ei,k(t) =

⌈

t−OF

TF

⌉

(max
k∈hep(i)

Ck +E +S) (3.8)

This concludes the weakly-hard response time analysis. The following sections

show how the analysis may be applied to good effect on an event-triggered bus.

3Note that this is not actually the worst case scenario that may occur on CAN, but within the fault
model (that each fault causes the maximum possible overhead no matter where in a frame it occurs)
then this scenario is equivalent to the worst possible real case on CAN.

84

3.6 Conversion to Weakly Hard Constraints

3.6 Conversion to Weakly Hard Constraints

Once the worst case response times, Ri,k, for each invocation have been calculated,

it is a simple matter to convert these to weakly-hard constraints, by scanning the re-

sponse times and comparing Ri,k≤Di. Checking the satisfiability of system behaviour

of length p against a weakly-hard constraint can be done with simple algorithms of

cost O(p). For further details on properties of weakly-hard constraints and algorithms

(including the use of µ-patterns as a useful intermediate format) see previous publica-

tions on weakly-hard systems [23, 25, 21].

3.7 Critical Instants and Harmonic Periods

Early in this chapter, Figure 3.1 on page 78 was used to show that different invocations

of a frame may have different worst case response times and hence motivate the idea

that weakly-hard analysis can be used to provide a more useful guarantee than just

hard deadline WCRT analysis. This section discusses the implications that the critical

instant and periods have on the variation of the worst case response times and the

length of the hyperperiod.

Considering the invocations of frame i: if the period of stream i is a multiple of

the period of a higher priority stream j, (Ti = nTj,n ∈ {1,2, . . .}) then (in the worst

case) every time i is released then j is also released and so j will always provide

maximum interference for i. Applying this to all higher priority messages, where Ti is

a multiple of all higher priority periods, then all higher priority messages will always

interfere with i. Therefore Ri,k = Ri,0,k ∈ {1,2,3, . . .}, so message i gains nothing

from weakly-hard analysis.

This means that every invocation of i is the worst case—the effect seen in Figure 3.1

does not occur, instead the scenario in Figure 3.4 is seen. The diagram shows a simpli-

fied (blocking is ignored) schedule with two harmonic periodic streams. It is possible

for every invocation to receive the same interference as the worst case.

On the other hand, if Ti is not a multiple of Tj then the potential for j to cause

maximum interference to i is reduced (the amount of interference is calculated using

85

3 Weakly-hard Analysis of CAN

Time

R=2 R=2 R=2

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Tj

Ti

Figure 3.4: Harmonic Periods: Tj = 4,Ti = 8.

the equations in the previous section). Consider Figure 3.5 where even though the

higher priority stream has a shorter period (Tj = 3) and therefore the bus loading is

higher, for every two in three invocations, the worst case scenario (Ri = 2) cannot be

observed.

R=2 R=1 R=1

Time

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Tj

Ti

Figure 3.5: Non-harmonic Periods: Tj = 3,Ti = 8.

It is clear that non-harmonic periods cause variation of the set of frames which

may cause interference to the different invocations in a lower priority stream. Hence

non-harmonic periods are necessary for variation in the worst case response times.

Definition 1. A periodic stream i is non-harmonic if its period is not a multiple of any

higher priority period.

∀ j ∈ hp(i),@n ∈ N|Ti = nTj (3.9)

86

3.7 Critical Instants and Harmonic Periods

Definition 2. A non-harmonic message set is a message set where no period is a

multiple of the period of any higher priority message. That is:

∀i,∀ j ∈ hp(i),@n ∈ N|Ti = nTj (3.10)

For a non-harmonic stream i, since no higher priority period is a multiple of Ti, a

higher priority frame can only be released at the same time as a frame from stream i

once per hyperperiod at level-i. This does not imply that the worst case interference

occurs only once every hyperperiod at level-i since there are usually several scenar-

ios which are equivalent to a critical instant. However the effect of a non-harmonic

message-set is to extend the hyperperiod (and all i-hyperperiods) thereby reducing the

frequency of situations where a number of frames are released simultaneously. Non-

harmonic message sets are likely to gain more from weakly-hard analysis than sets

with harmonic periods.

However, a system where the periods are strictly non-harmonic can be constraining

to design and difficult to analyse because the extended hyperperiod quickly becomes

extremely long, requiring billions of calculations to determine the response times. It

has been observed that in practice, a strictly non-harmonic message set is not needed; a

message set that exhibits some non-harmony is sufficient to benefit from weakly-hard

analysis.

Techniques for determining non-harmonic periods and deciding how long a hyper-

period needs to be are outside the scope of this thesis and is considered to be an open

research area. In general, the presence of sufficient non-harmony may be detected by

comparing the results of weakly hard analysis to a desired weakly-hard specification.

Typically (when the streams are ordered rate monotonically, RMPO) if there are more

than about 200 invocations in a hyperperiod at level i (ai > 200) then useful gains can

be made. Such an example appears later in Section 3.9.3.

Introducing non-harmony in a system by changing periods may seem at odds with

traditional design where harmonic periods tend to be used. However, one reason

that harmonic periods are often used is to allow easier integration into a static time-

triggered schedule. Yet with a flexible, event-triggered bus and similarly flexible prior-

ity based scheduling on the nodes, such a requirement is superfluous. Instead, periods

87

3 Weakly-hard Analysis of CAN

can be chosen without restriction in order to choose the optimum value for the ap-

plication. Such values are unlikely to be harmonic, unless of course ‘round number’

periods such as 100ms are used arbitrarily in the absence of any other requirements.

Unfortunately, this is frequently observed to occur in practice [17].

A general method for determining periods is to specify periods not as single values,

but as either a set of possible values [106], or a range of acceptable values [17] by

exploiting the ability of applications to work within bounds [16]. This would give

some flexibility for a search algorithm to manipulate precise periods to determine a

suitable length hyperperiod.

The whole issue of choices when designing timing requirements is an open research

area [17, 106].

3.8 Relaxing Clock Synchronisation

Previous weakly-hard theory [21] was for processes on a single node, were it is rea-

sonable to assume that all processes may share a single clock. The consequence of

this is that the pattern of release times is repeated exactly each hyperperiod. However,

with CAN, where frames are sent from different nodes, there is no such single clock.

Each node must have its own clock and these clocks will certainly drift relative to each

other.

Initially for the analysis in Section 3.4, perfect clock synchronisation was assumed.

In this section, the restriction is relaxed by assuming that a clock synchronisation al-

gorithm is used to ensure that all clocks in the system read approximately the same

time. As discussed in Section 2.5.8, there are numerous clock synchronisation pro-

tocols which can ensure that clocks are approximately synchronised, within a known

bound, including some particular examples that are well suited to CAN [165, 56, 137].

These algorithms all are able to ensure that the difference between any pair of clocks

is no more than some value ε .

Lemma 2. The effects of Bounded Clock Difference can be incorporated into the

response time analysis by considering the maximum drift, ε , to be an additional form

88

3.9 Evaluating Weakly Hard

of jitter in interference calculations:

Ii(t) =
∑

j∈hp(i)

⌈

t−Ci + J j + ε + τ
Tj

⌉

(C j +S) (3.11)

Proof. Since clocks remain approximately synchronised (rather than drifting indef-

initely), the overall structure of the hyperperiod remains intact. Nevertheless, there

may be some variation of the release times due to the clock drift. The worst case ef-

fect of which is to allow any higher priority frame to cause early interference to any

other frame by at most ε (as viewed from the perspective of the lower priority frame),

which is exactly equivalent to the effect of jitter.

However, in practice this effect will be so small that other pessimism introduced by

the analysis (such as from bit stuffing, blocking etc.) will be many times worse than

the drift effect. Unless ε is large, adding it to the equation will not usually change the

results of the analysis.

3.9 Evaluating Weakly Hard

The motivation for using weakly-hard constraints was to take advantage of the flex-

ibility of event-triggered communication for fault-tolerance. The aim of this section

is to evaluate the benefits of using weakly-hard constraints on CAN. In order to do

this, example CAN based systems will be considered at a variety of fault levels. The

evaluation considers the ability of weakly-hard analysis to describe and predict system

behaviour with high levels of faults and the ability to describe behaviour in sufficient

detail that a system designer may gain fuller understanding of the behaviour.

Two suitable message sets are chosen, one is taken directly from a well-known

benchmark, the second is a partially non-harmonic modification of this to show how

to best take advantage of weakly-hard analysis. Then, in order to consider the ability of

a weakly-hard system to tolerate faults, the following are done in logical progression:

89

3 Weakly-hard Analysis of CAN

• Normal worst case response time analysis is performed at various fault levels.

At high levels of faults, the analysis indicates that no guarantees can be given.

• Multiple invocation worst case response time analysis was performed at the

same levels of faults and the results mapped to weakly-hard constraints. This

provides guarantees for a minimum number of frames at much higher fault lev-

els.

• Simulation of CAN bus is compared to the weakly-hard worst case response

time analysis guarantees to provide an indication of the pessimism in the weakly-

hard analysis.

3.9.1 SAE Benchmark Message Set

The Society of Automotive Engineers (SAE) produced a set of messages [147] that

might be transmitted within a vehicle. This message set has frequently been used as a

benchmark to evaluate CAN and has been the source of some discussion [158, 81].

The original benchmark contains 53 messages transmitted from 7 nodes. It is un-

schedulable at the lowest data-rate (125kbit/s) on CAN: the worst case4 (hypothetical)

bus utilisation is 125.29% so the bus could lag further and further behind. Certainly

no deadline guarantees can be made. At higher data-rates, the benchmark is easily

schedulable, but the lowest rate is preferred because of the fault-tolerance advantages

in the physical layer at this speed, see Section 2.5.3.

The SEA benchmark contained many 1-byte data messages; this results in a very

low efficiency (because the ratio of useful data to header information was low). Tin-

dell produced an equivalent benchmark [158] by ‘piggy-backing’ periodic messages

together that originated from the same node, and then combining sporadic messages

together by using periodic ‘server messages’. This resulted in a set of 17 periodic

messages that are schedulable at the slowest data-rate with a worst case utilisation of

approximately 85%.

4Assuming maximum bit stuffing. That is, the actual data transmitted causes the maximum amount
of additional ‘stuff bits’ to be inserted into the stream, see Section 2.5.4 and equation (2.7) in
Section 2.6.4.

90

3.9 Evaluating Weakly Hard

The Tindell benchmark is in Table 3.1, with the exception that each message has

been given a jitter component of 200 µs. This is a small, but realistic value, used by

Tindell [158] when considering worst case response time analysis with jitter. This

value shall be applied for the message set used in this thesis. For comparison, the

table includes the worst case response times with no faults. This data-set is only just

schedulable; the high utilisation means that there is very little bandwidth available for

recovery from faults. Note that several messages (12, 9, 8) have a worst case response

time of just below their deadline: even one fault can cause these messages to miss

their deadlines.

Therefore, although this benchmark may not match a real system (more spare band-

width to tolerate faults might be expected), the benchmark provides an ideal basis for

creating challenging tests for fault tolerance. This benchmark is used and weakly-hard

analysis is applied to it.

Table 3.1: Tindell’s SAE Benchmark, as used in this thesis.

i Bytes Ci Ti Ji Di Ri

(ms) (ms) (ms) (ms) (ms)
17 62 0.496 1000 0.2 5 1.616
16 72 0.576 5 0.2 5 2.216
15 62 0.496 5 0.2 5 2.736
14 72 0.576 5 0.2 5 3.336
13 62 0.496 5 0.2 5 3.856
12 72 0.576 5 0.2 5 4.456
11 112 0.896 10 0.2 10 5.216
10 62 0.496 10 0.2 10 8.576

9 72 0.576 10 0.2 10 9.176
8 72 0.576 10 0.2 10 9.776
7 62 0.496 100 0.2 20 10.296
6 92 0.736 100 0.2 100 19.296
5 62 0.496 100 0.2 100 19.816
4 62 0.496 100 0.2 100 20.336
3 82 0.656 1000 0.2 1000 29.176
2 62 0.496 1000 0.2 1000 29.696
1 62 0.496 1000 0.2 1000 29.72

91

3 Weakly-hard Analysis of CAN

3.9.2 Weakly Hard Analysis of SAE Benchmark

As an example to evaluate the weakly-hard analysis; stream 8 will be considered.

There are A8 = 100 invocations of frame 8 in the hyperperiod H = 1000ms.

Consider the effect of exactly one fault within the hyperperiod, TF = 1000ms. The

overall worst case response time of this message, equation (2.5), with one fault is

greater than the deadline (R8 = 18.648ms); this message would be considered un-

schedulable (since a hard deadline cannot be guaranteed).

However, considering all invocations in the hyperperiod by applying equation (3.3)

it can be seen that this response time can occur only once within the hyperperiod, at

the critical instant. The results of the weakly-hard response time analysis are:

R8,k =



























18.648ms k = 0

10.008ms k = 1

9.088ms k = 2

9.056ms k ∈ 3..99

This may be mapped to weakly-hard notation to give the following guarantees:

(98
100

)

,
(2

100

)

,
〈 49

100

〉

, 〈3〉

This means that if there is at most one fault within the hyperperiod then the message

is guaranteed to arrive before the deadline (10ms) at least 98 times out of 100. Only if

the fault happens to occur near to the critical instant is it possible to have this message

delayed beyond the deadline. It is not possible to miss three deadlines in a row. Notice

that the worst case response time for 98% of the invocations is less than half the worst

case response time.

Of the worst case response times for this message, 97 of them are the same. This

is because all the higher priority messages except the highest priority have periods

that are harmonic with the period of this message; therefore at all but the one invoca-

tion of the message in the hyperperiod at level-8, there is exactly the same potential

for interference. The first invocation is different because it is the only message able

92

3.9 Evaluating Weakly Hard

to suffer interference from the highest priority message. The second and third invo-

cations are different because the first and second invocations finish after the next is

queued (R8,0 > S8,1), therefore the next invocation also suffers ‘interference’ from the

previous invocation of the same message.

Similar results are evident for the other messages in the set. Weakly hard constraints

have been evaluated, and for this message set, the improvement over hard worst case

analysis is small, but nonetheless useful.

3.9.3 Partially-nonharmonic SAE Benchmark

As indicated in Section 3.9.1, weakly-hard analysis does provide merit compared to

normal response time analysis. However, the SAE benchmark and Tindell’s com-

pressed message set have messages with harmonic periods, perhaps in order to facil-

itate cyclic scheduling. In an event-triggered system, there is no need to require the

periods to be so constrained, indeed, as discussed in Section 3.7 when using weakly-

hard constraints, it is better if they are not harmonic. This is illustrated in the following

analysis of a partially non-harmonic variation of the previous benchmark.

A new message set appears in Table 3.2, based on the SAE benchmark, but with the

periods adjusted to remove some harmony. The new message set is not completely

non-harmonic (as this would lead to an extremely long hyperperiod which would be

expensive to compute), but the messages do exhibit a lot of non-harmony. The hyper-

period is 252s and it provides a maximum5 bus utilisation of about 73% at 125kbit/s.

The utilisation is fairly high (and therefore provides a good basis for fault injection).

As before, Ri in the table refers to the (hard) worst case response time, calculated from

equations (2.5) and (2.6) without any faults. Additionally, the table shows Hi, the hy-

perperiod at level i and ai, the number of invocations in the hyperperiod at level-i

(§3.4.1).

In the same way as for the harmonic set, it is useful to consider the pattern of worst

case response times for one fault within the hyperperiod, see Figure 3.6. There are

7875 invocations of frame 8 in the hyperperiod; for clarity, the graph shows only

5Again, assuming worst case bit-stuffing.

93

3 Weakly-hard Analysis of CAN

Table 3.2: Non-harmonic Message Set.

Pri Bytes Ci Ti Ji Di Ri Hi ai

(ms) (ms) (ms) (ms) (ms) (ms)
17 62 0.496 1000 0.2 5 1.616 1000 1
16 72 0.576 4.5 0.2 4.5 2.216 9000 2000
15 62 0.496 5 0.2 5 2.736 9000 1800
14 72 0.576 6 0.2 5 3.336 9000 1500
13 62 0.496 8 0.2 5 3.856 9000 1125
12 72 0.576 9 0.2 5 4.456 9000 1000
11 112 0.896 10 0.2 10 5.216 9000 900
10 62 0.496 12 0.2 10 7.456 9000 750

9 72 0.576 14 0.2 10 8.056 63000 4500
8 72 0.576 16 0.2 10 9.176 126000 7875
7 62 0.496 18 0.2 20 12.336 126000 7000
6 92 0.736 120 0.2 100 14.136 126000 1050
5 62 0.496 140 0.2 100 16.376 126000 900
4 62 0.496 160 0.2 100 18.016 252000 1575
3 82 0.656 1000 0.2 1000 18.536 252000 252
2 62 0.496 1200 0.2 1000 22.816 252000 210
1 62 0.496 1400 0.2 1000 22.84 252000 180

the first 200, but the rest of the invocations exhibit a similar trend throughout the

hyperperiod. As can be seen, there is huge variation in the worst case response times;

it is this variation that may be exploited to provide improved fault tolerance.

The difference between the worst-case and other scenarios can be seen clearly in

Figure 3.7 where the response times are plotted cumulatively; the line on the graph

represents how many messages within the hyperperiod (at level-i) are guaranteed to

arrive within a given time. For example, 50% of the messages within the hyperperiod

are guaranteed to arrive within 3.656ms, only 45 of the 7875 invocations can possibly

arrive after 8ms of release and only 21 frames in 7875 (0.27%) can possibly arrive

after the deadline of 10ms.

This simple example shows that weakly-hard analysis is able to consider the be-

haviour at high levels, with precise indication of the pattern of deadlines that can be

missed. Allowing a small number of deadlines to be missed in a flexible bus results in

a system where a large, predictable number of deadlines are met.

94

3.9 Evaluating Weakly Hard

0

2000

4000

6000

8000

10000

12000

14000

16000

0 50 100 150 200

R
es

po
ns

e
tim

e

Invocation

Frame 8, first 200 invocations

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Figure 3.6: Variation in Worst Case Response Times for One Fault in Hyperperiod
(only part of hyperperiod shown).

3.9.4 Hard Deadlines with High Levels of Faults

At higher levels of faults, analysis considering multiple invocations and weakly-hard

deadlines has advantages over WCRT analysis and hard deadlines. To show this,

fault models of f ∈ {0, 60, 80, 160, 200, 320} single bit errors per second are used,

assuming a minimum inter-arrival time TF = 1
f . Worst case response time analysis and

then weakly-hard analysis are performed.

Normal (single invocation) worst case response time analysis was performed on

the message set, using equations (2.5) and (2.10). The worst case response times are

shown in Table 3.3. Note that at higher fault levels, many of the frames are not schedu-

lable (they would arrive after their deadlines or may not arrive at all—unbounded). For

even one fault in the hyperperiod, some frames (12, 9, 8) can miss their deadline in

the worst case.

Using the formulation given in Section 2.5 it can also be shown that when the system

95

3 Weakly-hard Analysis of CAN

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2 4 6 8 10 12 14 16

C
um

ul
at

iv
e

fr
eq

ue
nc

y
of

 in
vo

ca
tio

ns

Response Time (ms)

Message 8

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Figure 3.7: Cumulative Distribution of Response Times with One Fault (frame 8).

reaches error rates larger than ∼ 62 faults/second (TF = 16.128ms) then the limit of

the analysis is reached because the WCRT exceeds the period (frame 7).

3.9.5 Weakly-hard Analysis at High Levels of Faults

Although the system is not strongly-hard schedulable at greater than 62 faults/sec,

it is weakly-hard schedulable. For the same fault models weakly-hard analysis was

performed. As weakly-hard analysis can produce a lot of information, some of lit-

tle interest, the analysis results are not presented in full, instead illustrative message

streams are chosen.

Frame 12 at 60 Faults/Sec

First consider frame 12 (which misses its deadline in the worst case with even 1 fault).

Hence WCRT cannot provide any guarantees. Weakly hard analysis shows that in

96

3.9 Evaluating Weakly Hard

Table 3.3: Worst Case Response Times (ms) with Faults.

f (faults per second)
Pri 0 60 80 160 200 320
17 1616 2368 2368 2368 2368 2368
16 2216 3048 3048 3048 3048 3048
15 2736 3568 3568 3568 3568 4400
14 3336 4168 4168 4168 4168 5000
13 3856 4688 4688 4688 4688 +
12 4456 *6408 *6408 *6408 *7840 +
11 5216 8088 8088 9760 9760 +
10 7456 9128 9128 + + +

9 8056 *12368 *12368 + + +
8 9176 *15288 + + + +
7 12336 16328 + + + +
6 14136 23040 23040 36488 69464 +
5 16376 24160 24160 47632 69984 +
4 18016 26840 29792 48152 79928 +
3 18536 27360 30312 54104 89872 +
2 22816 29680 34592 60336 107600 +
1 22840 29704 34616 60360 107624 +

Key

* Missed Deadline
+ R > T

the 1000 invocations per hyperperiod, with TF = 1
60 s it is only possible to miss three

deadlines. The following weakly-hard guarantees can be derived:

•
(

997
1000

)

in any 1000 invocations, 997 deadlines are met;

• 〈2〉 two deadlines in a row are never missed.

As well as weakly-hard guarantees, it is also informative to see how frequently the

weakly-hard constraints that cannot be guaranteed all of the time, may be met. For

example, with reference to Table 3.4 which considers
〈 n

m

〉

type constraints. In any

window of 6 deadlines, the analysis guarantees that 3 in a row are met; however to

meet 4 deadlines in a row the analysis guarantees that this will occur at least 99.4% of

the time.

97

3 Weakly-hard Analysis of CAN

Table 3.4: Percentage of Times that the Constraint
〈 n

m

〉

is Satisfied (Frame 12, f =
60 faults per second).

n
m 1 2 3 4 5 6
1 99.7
2 100.0 99.4
3 100.0 99.7 99.1
4 100.0 100.0 99.4 98.8
5 100.0 100.0 99.7 99.1 98.5
6 100.0 100.0 100.0 99.4 98.8 98.2

Frame 12 at 160 Faults/Sec

At an even higher level of faults, TF = 1
160 s, frame 12 shows similar results. The

worst case response times of the invocations (Ri,k) are different, but the pattern of

missed deadlines is identical at 60 and at 160 faults per second. Compared to normal

WCRT, weakly-hard analysis allows considerable insight into the behaviour of the

system at high levels of faults, showing that even in such a disturbed environment,

message delivery is analysable and (perhaps surprisingly) is far more reliable than

worst case response time analysis might indicate.

Frame 7 at 160 Faults/Sec

At TF = 1
160 s, the lower priority frame, 7, cannot even be given a response time using

standard WCRT analysis because the worst case response time is greater than the

period.

However, multiple invocation analysis and evaluation of weakly-hard constraints

shows that even this message is guaranteed schedulable in 99.24% of cases. The

guarantees that are derived include:

(

110
112

)

in any window of 112 there will always be at least 110 deadlines met;

〈

12
25

〉

in all windows of 25, at least 12 are guaranteed to be met in a row;

〈3〉 three deadlines in a row are never missed.

98

3.9 Evaluating Weakly Hard

Additionally, considering the number of times that constraints are not guaranteed,

99.99% of the time, two deadlines in a row are always met. Table 3.5 shows the

number of times that the 〈n〉 type constraints are guaranteed to be met.

Table 3.5: Analysis of deadlines missed in a row, Frame 7 at 160 faults/second.

Constraint: 〈1〉 〈2〉 〈3〉 〈4〉
Percentage Achieved: 99.24 99.99 100 100

Frame 7 at 200 faults/second

Table 3.6 shows the percentage of times the constraint
(n

m

)

is satisfied in the worst

case for frame 7 under a fault rate of 200 errors per second. Even under these extreme

error conditions, the analysis shows that only 19.06% of the deadlines can be missed

(since 80.94% of
(1

1

)

deadlines are met).

Analysis of the number of missed deadlines in a row, Table 3.7, shows that it is

possible to miss up to 7 deadlines in a row (0.014% of the time) but that it is impossible

to miss 8 in a row (〈8〉 is achieved 100% of the time).

Table 3.6: Percentage of Guaranteed Weakly Hard Constraints
(n

m

)

by Analysis,
Frame 7 at 200 faults/sec.

m n=1 2 3 4 5 6 7 8 9 10
1 80.94
2 99.12 62.75
3 99.92 95.18 47.71
4 99.94 99.88 90.10 33.84
5 99.95 99.92 98.30 80.84 25.68
6 99.97 99.94 99.87 95.88 70.31 19.67
7 99.98 99.95 99.92 99.78 92.30 60.24 14.40
8 100.00 99.97 99.94 99.88 99.65 87.64 49.48 10.95
9 100.00 100.00 99.95 99.90 99.85 98.37 80.90 41.30 8.2000

10 100.00 100.00 100.00 99.91 99.88 99.77 96.30 74.27 33.84 5.4429

Table 3.7: Analysis of Deadlines Missed in a Row, Frame 7 at 200 faults/second.

Constraint: 〈1〉 〈2〉 〈3〉 〈4〉 〈5〉 〈6〉 〈7〉 〈8〉
% Achieved: 80.94 99.12 99.92 99.94 99.96 99.97 99.99 100

At 320 faults per second, utilisation exceeds the bus capacity (U > 1) and for frames

11 and below, times cannot be bounded.

99

3 Weakly-hard Analysis of CAN

3.9.6 Summary of Analysis at High Levels of Faults

Normal worst case analysis applied to the non-harmonic benchmark shows that even

for low levels of faults (only one single fault) it is possible to miss a deadline. There-

fore considering all deadlines to be hard, the system is not robust.

However, by considering deadlines to be weakly-hard and applying suitable anal-

ysis, this section has shown that a number of weakly-hard guarantees can indeed be

made about the number of deadlines missed and the patterns of deadlines missed in a

row. In particular at up to 160 faults per second, a fairly high reliability is guaranteed

for all frames (the examples showed frames 7, 12 which are the most likely to miss

deadlines). At 200 faults per second, frame 7 began to show serious degradation of

performance, where it is possible to miss up to 7 deadlines in a row (although with a

small probability). This type of information may be used by system designers to con-

sider the reliability of their system. Two particular advantages of using this analysis

over normal worst case response time analysis are:

• system behaviour is predictable at high levels of faults: rather than a simple

yes/no indication of predictability, the minimum guaranteed performance can be

understood in terms of the number and pattern of deadline misses and weakly-

hard constraints;

• the levels of faults that can be usefully considered is far higher than conven-

tional worst case response time can accommodate: in the example, above 62

faults/second, normal worst case response time analysis fails, yet the weakly-

hard analysis provided useful results at 200 faults/second.

Depending on the safety requirements of the application, missing even a single

deadline may not be acceptable. However, for many systems, the ability to provide

guarantees of some deadlines at high levels of faults, and the investigation of ‘what

if?’ scenarios, leads to a better understanding of the behaviour of the system.

100

3.10 Simulation of CAN

3.10 Simulation of CAN

Analysis (including multiple invocation/weakly-hard analysis) is a useful tool for the

verification of the timing behaviour of systems. However, as with any form of analysis,

if it does not accurately reflect the behaviour of a real system, then it is of less use.

In order to determine the differences between weakly-hard analysis of CAN and a

real CAN system, a software-based CAN bus simulator has been constructed which

simulates messages and errors on a CAN bus. It accurately simulates the effect of

faults on the bus, including truncating messages, error frames and retransmissions for

a variety of fault models.

3.10.1 On Fault Models and Motivation for Simulation

The sporadic fault model (based on a minimum inter-arrival time between faults) used

in the previous weakly-hard analysis is the same fault model that has become standard

industrial practice. Using this model is very useful for types of worst case analysis

such as Tindell’s original analysis [159] and weakly-hard analysis because it allows a

maximum bound to be placed on the effect of faults. However, there are a number of

problems with this model as previously discussed in Section 2.7.4.

A further problem with the bounded fault model is that it raises a difficulty in sim-

ulation: how can you simulate a sporadic fault model with a minimum-interarrival

time and hope to achieve the worst case? A simulation which simply imposes faults

separated by the minimum inter-arrival time would not be appropriate because this

would generate a periodic fault—which is both “unrealistic” and unlikely to generate

the worst case unless the periodic stream is given a carefully adjusted offset!

The answer is to consider carefully why the simulation is to be performed. Three

aims are identified:

1. To provide confidence in the correctness of the analysis.

2. To gauge the pessimism in the analysis.

3. To test the resilience of the analysis (based on the bounded fault model) in a

101

3 Weakly-hard Analysis of CAN

more realistic scenario where faults may not adhere to the fault model used in

the analysis.

The first two aims are considered together in the Section 3.10.3. The third aim of

the simulation is explored in Section 3.11.

3.10.2 Simulation Model and Parameters

The following simulations are performed using a purpose-built software CAN simu-

lator. It models CAN at the bit-level, allowing a variety of faults to be injected in a

flexible way.

For the simulations: release jitter for each release is randomly added using a uni-

form distribution over the range (0,Ji), there is perfect clock synchronisation, and

maximum bit stuffing is always forced to occur. Any other characteristics of the sched-

ule (such as the presence of blocking) are not coerced in any way.

3.10.3 Verification and Pessimism

Simulation may be used to gauge the pessimism in the analysis and to build confidence

in the correctness of the analysis. Naturally, a simulation based approach cannot ever

prove that an analysis is correct, the best that it can provide is to build confidence in

the use of the analysis.

In order to verify that the analysis is correct, it is useful to recall that the weakly-

hard analysis is a form of worst case response time analysis. Therefore the aim of

simulation is to verify that the response times greater than the worst case are not

observed. With this aim in mind, a fault model suitable for this form of simulation is

chosen.

As the preceding section discussed, a periodic fault model is not appropriate, and

to simulate all possible offsets of a periodic fault model is infeasible. Yet a sporadic

fault model where faults occur at less than the minimum interarrival time is not the

worst case. On the other hand, a random arrival model has a probability of exceeding

the worst case.

102

3.10 Simulation of CAN

For the simulations, a random fault-arrival model based on a Poisson distribution

is chosen, but with the restriction that if two faults are closer than TF then the second

fault is delayed until TF and all subsequent faults are delayed by the same amount.

This way, the minimum inter-arrival time assumption is never broken, yet a periodic

fault is avoided. This is not worst-case, but through extended simulation, bad scenarios

should be generated.

The simulation fault model therefore has two parameters, TF (minimum interarrival

time) and λ (the parameter of the Poisson distribution: expected number of faults

in a unit interval). The relationship between TF and λ does not particularly matter

provided that a high proportion of faults do occur with separation near to TF . In the

following, the parameters are chosen such that TF = 1/λ , so that on average, half of

the faults will be generated with the minimum interarrival time TF .

Results

Simulations were performed at λ = {60,160,200} faults per second, the resulting ob-

served6 weakly-hard constraints are compared with the weakly-hard analysis results in

Table 3.8. Recall the notation
(n

25

)

refers to n deadlines that are met is any consecutive

window of 25.

The weakly-hard constraints guaranteed by the analysis were not broken during

simulation, providing confidence in the correctness of the analysis.

Regarding the pessimism in the analysis, from Table 3.8, although the analysis may

predict that deadlines can be missed, simulation experiments show that even with fault

rates close to the limit for weakly-hard schedulability, very few deadlines are actually

missed.

Even at much higher error rates than the analysis (compare the constraints for TF =
1

60 s and TF = 1
160 s in Table 3.8) the simulation still shows that weakest observed

weakly-hard constraints are stronger than the strongest constraint that is guaranteed

indicating that the CAN weakly-hard analysis is pessimistic.

However, the difference between the simulation results and the analysis results is

6See §3.3.1.

103

3 Weakly-hard Analysis of CAN

Table 3.8: Comparison of Weakly-hard Analysis and Simulation at High Levels of
Faults.

60 f/s 160 f/s 200 f/s
i Ana. Simulation Ana. Simulation Ana. Simulation

(n
25

)

M/H
(n

25

) (n
25

)

M/H
(n

25

) (n
25

)

M/H
(n

25

)

17 25 0.0 25 25 0.00 25 25 0.00 25
16 25 0.0 25 25 0.00 25 25 0.00 25
14 25 0.0 25 25 0.00 25 25 0.00 25
13 25 0.0 25 25 0.00 25 25 0.00 25
12 24 0.1 24 24 0.05 24 24 0.10 24
11 25 0.0 25 25 0.00 25 25 0.00 25
10 25 0.0 25 22 0.00 25 22 0.00 25

9 24 0.0 25 21 0.00 25 17 0.35 24
8 23 0.4 24 15 3.00 24 6 9.75 23
7 25 0.0 25 23 0.00 25 23 0.15 24
6 25 0.0 25 25 0.00 25 25 0.00 25
5 25 0.0 25 25 0.00 25 25 0.00 25
4 25 0.0 25 25 0.00 25 25 0.00 25
3 25 0.0 25 25 0.00 25 25 0.00 25
2 25 0.0 25 25 0.00 25 25 0.00 25
1 25 0.0 25 25 0.00 25 25 0.00 25

Key

Ana.
(n

25

)

Strongest constraint guaranteed by
analysis.

M/H Average number of deadlines missed per hy-
perperiod in simulation.

Simulation
(n

25

)

Weakest constraint observed dur-
ing simulation.

104

3.11 Resilience of the Analysis

small enough to be useful. In comparison to WCRT analysis, weakly-hard analysis al-

lows significantly more deadlines to be guaranteed and predictions of behaviour at far

higher levels of faults. The causes of pessimism are discussed further in Section 3.12.

3.11 Resilience of the Analysis

Earlier, the bounded fault model was criticised for being unrealistic (it does not match

real observations of faults), yet it is beneficial to use a bounded fault model because

without it a worst case response time analysis is impossible. However, a worst case

response time analysis based on incorrect or poor assumptions is not a strong argument

for use of CAN in a dependable system.

This section will evaluate the resilience of the weakly-hard analysis (given that it

uses a bounded fault-model) when a more appropriate fault model is applied. Since the

fault model at run-time will be different to the fault model for analysis, any analysis

results cannot be interpreted as absolute guarantees of behaviour. The aim of these

experiments is to consider the appropriateness of the bounded fault model under more

realistic conditions.

Simulations are performed using a more realistic fault model, the results being anal-

ysed for weakly-hard constraints which will then be compared against the guarantees

made by the weakly-hard response time analysis using the bounded fault model.

The new fault model will be the simple Poisson random fault model commonly used

to describe faults induced by electromagnetic interference [36, 114], where single bit

faults occur according to a Poisson distribution of arrival times.

In the tests λ = 1
TF

, that is, the average number of faults in one second of simulation

will be the same as the maximum number of faults per second used for worst case

analysis. In this way, scenarios are generated that are worse than the worst case that

was analysed, yet overall the average number of faults injected is no worse than that

used by the analysis.

105

3 Weakly-hard Analysis of CAN

3.11.1 Simulation

The same message set used in Section 3.7 (non-harmonic version of the SAE bench-

mark) was simulated for an interval of 5040 seconds (20 hyperperiods). Faults were

injected onto the bus according to a random Poisson distribution.

At the fault rate of λ = 1
TF

= 200faults per second, the simulation results were

analysed for observed weakly-hard constraints in a window of 25 deadlines. The

analysis and observed constraints appear in Table 3.9. Where the simulations break a

constraint from the weakly-hard analysis, an entry is shown in the table as a percentage

of the number of times that the constraint was not satisfied per the number of times

the constraint was evaluated.7

The simulations showed:

• in most cases, the analysis weakly-hard guarantees were pessimistic, note stream

8 where the analysis guaranteed only
(6

25

)

, yet in the worst scenario observed,

23 in 25 deadlines
(23

25

)

were met;

• nearly all guarantees made by the weakly-hard analysis with the bounded fault

model held when the Poisson fault model was applied. The constraints were

broken only occasionally, note stream 11, where the analysis guaranteed
(25

25

)

(i.e. all deadlines are met—a hard deadline guarantee), yet one deadline was

not met in this stream during the simulation; this corresponds to a failure of the

guarantee with a probability of 5 · 10−5 (although the length of the simulations

is not sufficient to derive this figure with any accuracy).

As shown in the table, the CAN simulation usually performs better than the weakly-

hard analysis predicted. The number of times that the constraints are broken is ex-

tremely small (one constraint broken in the whole simulation). This indicates that the

simple bounded fault model is not wholly inappropriate and that its use in an analysis

such as weakly-hard analysis is useful and justified. If the bounded fault model is

7Note that where there is one single deadline missed in the whole simulation run, this corresponds to
25

(25
25

)

constraint failures. This is because the constraint will be tested in all possible positions—
the size of the constraint window is 25 frames and therefore it can be placed in 25 different ways
over the one missed deadline, one missed deadline is counted a total of 25 times.

106

3.11 Resilience of the Analysis

Table 3.9: Comparison of Weakly-hard Constraints (TF = 1
200 s) and Poisson Simula-

tions at λ = 200faults/s.

Analysis Simulation
WCRT Strongest Weakest Guarantee

Guarantee Observed Broken
i Ri (ms)

(n
25

) (n
25

)

%
17 2.368 25 25
16 3.048 25 25
15 3.568 25 25
14 4.168 25 25
13 4.688 25 25
12 *7.840 25 24
11 9.760 25 24 0.005
10 + 22 25

9 + 17 24
8 + 6 23
7 + 14 24
6 69.452 25 25
5 69.972 25 25
4 79.900 25 25
3 89.928 25 25
2 107.624 25 25
1 107.648 25 25

Key

+ Ri > Ti

* Ri > Di (Missed Deadline in Hard Worst Case
Analysis)

Guarantee Broken % shows the percentage of
times that a constraint was false. It is shown
only when the simulation gave worse results
than the analysis.

107

3 Weakly-hard Analysis of CAN

considered a useful approximation (rather than a perfect model) then the weakly-hard

analysis results are an extremely useful (and accurate) description of the behaviour of

the system at high levels of faults.

3.12 Pessimism in Weakly-hard Analysis

As the previous sections showed, the weakly-hard constraints produced by analysis

were generally stronger than the constraints observed during the simulations. This

was also true when a more realistic fault model is applied, although occasional cir-

cumstances are expected where the analysed constraints were weaker than observed

during simulation.

The reasons for this effect are both pessimism in the analysis and the worst case

conditions in the analysis rarely occurring during simulations. There is an impor-

tant difference between pessimism in the analysis (describing scenarios which cannot

occur) and unlikely scenarios which could occur but were not observed during simu-

lation.

True Pessimism

The main source of pessimism concerns the worst case scenarios for faults. As ex-

plained in Section 3.5 each invocation has a different worst case scenario, described

as an offset. This worst case scenario is used to determine the worst case response

time that each invocation may have. However, it may not be possible for the worst

case scenarios for two different invocations to occur within the same hyperperiod be-

cause the offset implied by one worst case scenario is different to the offset implied by

the other. Therefore the two invocations may not both be able to miss their deadlines

in the same hyperperiod even though the analysis has determined that both invocations

may miss their deadlines.

108

3.13 Summary

Unlikely Scenarios

There are many unlikely scenarios: situations that are unlikely to occur, but neverthe-

less could occur. These scenarios are the main contribution to the difference between

analysis and simulation results.

As the analysis is a worst case analysis, it uses the fault overhead of the worst

possible fault for all faults. In this case, it assumes that the fault occurs on the last bit

of a frame, so that the maximum amount of bandwidth is used before retransmitting

the frame. In the simulations, this is not the case as faults may occur anywhere within

the frame; the simulator accurately terminates the frame at that point.

It could also be said that this is a true form of pessimism because (except in con-

trived circumstances) there will be faults which cannot occur on the last bit of a frame

because the sporadic fault arrival time TF will fail to coincide with the end of frames.

However, the fact that there is a discussion on this merely indicates that the bounded

fault model has limitations in analysis.

Another unlikely scenario is the assumption that a frame receives maximum block-

ing at each invocation. In this sense, the analysis is equivalent to a message set in

which there is one additional message in the bus at higher priority, whereas in a real

bus, and the simulation, maximum blocking rarely occurs.

Additional causes of unlikely scenarios (such as bit stuffing distributions [118]) also

contribute to the difference between analysis and a real-world bus (although the sim-

ulations assumed maximum bit stuffing). The topic of considering unlikely scenarios

is returned to in the next chapter.

3.13 Summary

This chapter has explored the concept of missing occasional deadlines in real-time

communication, in an analysable way, through the use of weakly-hard constraints and

analysis. In practical systems, where some deadlines may be missed [116, 21] many

“hard” real-time systems are actually able to be expressed as weakly-hard systems. On

this basis, the specific contribution of this chapter is the application of weakly-hard

109

3 Weakly-hard Analysis of CAN

schedulability analysis to CAN.

Weakly-hard analysis exploits the flexibility of event-triggered communication by

considering multiple invocations of a message frame, rather than just considering the

worst case. Weakly-hard analysis can show that even though a deadline may be missed

in the worst case, in many other cases (other invocations), it is not possible to exceed

the deadline.

Therefore, weakly-hard analysis is able to predict behaviour at much higher utili-

sation, including higher levels of faults than usual worst case response time analysis

can consider. The analysis provides information about exactly which deadlines may

be missed, rather than merely the pass/fail schedulability test that is normally used.

In this way, the analysis provides a useful tool for considering ‘what if?’ scenarios,

allowing behaviour to be predicted for possible exceptional circumstances, as well as

allowing better use of bandwidth under normal circumstances.

The advantages of using non-harmonic periods were explained. The increased fault-

tolerance that non-harmonic periods provide was shown through a case study. By

introducing non-harmony, the hyperperiod is extended, thus the frequency of occur-

rences of scenarios which may lead to a deadline miss is reduced.

Case studies were used to compare normal worst case response time analysis with

weakly-hard analysis, and also with simulation. The weakly-hard analysis was shown

be usefully pessimistic with respect to the simulations, yet provide tremendous advan-

tages over worst case analysis (in the sense of predicting behaviour at high levels of

faults).

The bounded fault model used for any worst case response time analysis (including

weakly-hard analysis) has briefly been discussed and its benefits expressed. Although

there is doubt about its ability to represent real-life faults, simulations have shown that

when a more realistic fault model is applied to CAN, weakly-hard guarantees can be

broken, but this is observed to occur only rarely (see Table 3.9). This is addressed

further in Chapter 4. Generally, the weakly-hard analysis is sufficiently pessimistic to

show resilience to a more realistic Poisson model, and the use of the bounded model

is justified in this form of response time analysis.

110

4 Probabilistic Analysis of CAN

MISSING DEADLINES IN AN ANALYSABLE WAY is an acceptable and useful method

of considering the effects of network faults. The previous chapter showed that if a

small number of deadlines can be missed then far higher levels of faults can be toler-

ated in a predictable manner. This implies that rather than requiring a high temporal

redundancy to guarantee all deadlines, large savings may be made if some deadlines

are missed.

This chapter continues this theme further, showing not only that missing deadlines

can be beneficial, but that it may not be possible to avoid missing deadlines in com-

munication in practical situations. Therefore, a move from absolute guarantees to a

probabilistic notion is natural.

In this chapter, some problems of worst case analysis and the bounded fault model

are explained and (despite its use in weakly-hard analysis) it is found to have limi-

tations. A probabilistic fault model is introduced instead which is considered to be a

more realistic scheme. This requires a new analysis approach that instead of providing

guarantees, produces probabilistic predictions of response time behaviour. The main

contribution of this chapter is a new form of analysis, which is effective at dealing

with unlikely scenarios and yet avoids the pessimism associated with both traditional

worst case response time analysis and with similar probabilistic work.

4.1 Worst Case Analysis and Fault Models

This chapter begins with a short discussion on the problems of worst case analysis

to provide motivation for alternative fault models and a probabilistic response time

111

4 Probabilistic Analysis of CAN

analysis. There are two main failings of the usual worst case response time analysis:

the use of a bounded failures assumption and often a resulting poor utilisation.

4.1.1 Bounded Failures

From Lemma 1 on page 59, in order to be able to do any form of worst case analysis,

it is necessary to be able to determine the worst case scenario(s). Specifically, for

CAN, to consider the worst case response time of a particular frame it is necessary to

determine the worst case interference, blocking and overhead due to faults.

Applied to the familiar worst case response time equation from page 66, repeated

here:

ti = Bi +Ci + Ii(ti)+Ei(ti) (2.10)

it is necessary to determine the absolute maximum value of Ei(t).

This means that no matter what form of fault model is used, it must be a bounded

fault model—that is, there must be some bound on the maximum overhead due to

faults. The common way to impose such a bounded fault model, as the previous

chapter did, is to assume a sporadic fault arrival model [159].

However, a mathematical convenience is no justification for basing an analysis on

such a model. It is necessary to consider whether or not a minimum inter-arrival time

does exist in reality if we are to have any confidence in the analysis.

In general, there is little evidence that this is how faults occur (in any domain,

not just electrical interference). It would be a fallacious argument to state that just

because a computer crashed yesterday, it cannot crash today; likewise with electrical

interference on CAN, the previous message being corrupt, does not ensure that the

next one is not corrupt. It is clear that nature does not guarantee that faults cannot

occur closer together than some bound, even if it may rarely be observed.

The same argument is true of any other bounded fault model,1 for example assuming

a bound on the maximum number of faults within an interval.

1Except the bounded fault model that states that data on the bus is always corrupt: there is no worse
scenario so the bound is truly a bound. However, this bus has little practical use of course.

112

4.1 Worst Case Analysis and Fault Models

Since there can be no guarantee of minimum fault inter-arrival times (or any other

bounded measure), there is no bound on the overhead due to faults. Therefore there

can never be an absolute guarantee of worst case response times. In other words,

although for most of the time, worst case response times may be accurate, they cannot

be absolute guarantees (as demonstrated by the simulations in Chapter 3). This is

an important concept because to rely on ‘guarantees’ made by worst case analysis of

CAN is not automatically safe.

Therefore, despite the variety of possible uses of a bounded fault model (weakly-

hard analysis for example) a worst case response time analysis is not possible if one

is to have absolute confidence in the results. This is a fundamental problem of using

assumptions about bounded faults.

4.1.2 Poor Utilisation

Suppose that a bounded fault model is used, despite the problems described in the

previous section; a minimum inter-arrival time is set to a suitably small value that there

is some confidence in the assumption. Then (as the previous chapter also discussed),

worst case response time analysis can lead to poor utilisation because the value of

Ei(t) becomes so large that the message set rapidly becomes unschedulable according

to worst case response time analysis—even though observations in practice show that

deadlines are rarely missed, if at all.

This is a fundamental problem with a single valued response time analysis, (which

was partially solved in the previous chapter by considering multiple invocations). A

complementary approach is considered in this chapter.

4.1.3 Fault Diversity and Modelling

The sources of EMI are diverse and difficult to model. It is clear that electrical inter-

ference is difficult to characterise; each application will experience different levels and

types of interference and it is very hard to predict future interference with accuracy.

Nevertheless, if there is to be any form of analysable, working and reliable system

then there must be some sort of fault model and it must be accepted that it is not per-

113

4 Probabilistic Analysis of CAN

fect. Section 2.7 discussed a variety of different models for electrical interference on

communication channels, each model with its own merits. The sporadic model [159],

the model for specific sources [131], and the bounded omission degree assumption

[167] are examples of bounded fault models.

However, one fault model frequently used to describe EMI in other domains is to

model faults as a random pulse train following a Poisson distribution [36, 80]. This

model is well suited to modelling faults in electronic circuits and networks.

Navet [114] adopted a probabilistic fault model for CAN (see Section 2.7.5) using

a Poisson distribution. The fault model is modelled as a stochastic process which

considers both the frequency of the faults and their gravity. In that model, faults in

the channel occur following a Poisson law and can be either single-bit faults (which

have a duration of one bit) or burst errors (which have a duration of more than one bit)

according to a random distribution.

Note that if the occurrence of faults in the channel follows a Poisson distribution, the

maximum number of transmission errors suffered by the system in a given interval is

not bounded, so the probability of having sufficient interference to prevent a message

from meeting its deadline is always non-zero; therefore every system is inherently

unschedulable (as should be expected).

A probabilistic model encapsulates the idea that there may normally be a low level

of faults—well separated with large inter-arrival times—yet occasionally, the system

may experience higher loads with faults occurring closer together. Such fault models

have been suggested (as this section and Section 4.2 explains), however an effective

response time analysis technique has been lacking. In this chapter such a technique is

proposed, but first it is useful to look at some previous approaches with their advan-

tages and their deficiencies.

4.2 Probabilistic Analysis Approaches

In this section, two previous approaches to probabilistic analysis are explored. One is

aimed directly at CAN, and one is for a general fixed priority system. For the one not

designed for CAN, this section shows how it can be adapted for CAN. To compare

114

4.2 Probabilistic Analysis Approaches

them, the techniques are applied to the SAE benchmark from Chapter 3, Table 3.1.

It is a minor contribution of this thesis that where appropriate, these approaches are

modified, extended or corrected in this section and contrasted in a quantitative way.

4.2.1 Probabilistic Guarantees of Failure

Burns et al. [38] introduced a scheme for providing probabilistic guarantees in a fault

tolerant system based on fixed priority scheduling with a random fault arrival time.

The ‘probabilistic guarantee’ here does not mean e.g. ‘99.95% of deadlines will be

met’, rather it means e.g. ‘all deadlines will be met with a probability of 99.95%

during some period of operation.’

The scheme is in two parts consisting of:

1. Sensitivity analysis to determine the minimum fault inter-arrival time, TF , that

will guarantee schedulability.

2. Then, making the assumption that if faults occur further apart than TF then the

system is schedulable, else it is not, the probability is calculated that a random

(in this case Poisson) fault model would generate two faults closer together than

TF during the lifetime, L, of the system.

Hence, the probability that the system fails during the lifetime of the system can be

found.

CAN Sensitivity Analysis

The sensitivity analysis can be performed using the CAN WCRT equations introduced

in Chapter 2: equations (2.5), (2.10) and (2.11), repeated below with nburst = 0 as

in Chapter 3 equation (3.6), are used to determine the maximum value for TF that

makes the system schedulable, for example by performing a binary search between 0

and Di
max

j∈hep(i)
C j+Emax+S .

Ri = Ji + ti (2.5)

ti = Bi +Ci + Ii(ti)+Ei(ti) (2.10)

115

4 Probabilistic Analysis of CAN

Ei(t) =

⌈

t
TF

⌉

max
k∈hep(i)

(Ck +E +S) (3.6)

Probability Calculation

Probability calculation is not dependent on the underlying scheduling model, only on

the fault model. Therefore, the calculation could (in theory at least) be applied directly

to CAN.

The approach by Burns [38] gives an exact solution to the problem of determining

p(W < TF) (probability that two faults occur closer than TF in the lifetime L, W is the

shortest interval between two faults). However, the equation is not easy to evaluate

because it includes a large summation and very large factorials and powers.

Therefore, the paper also gives two other results which represent upper and lower

bounds within which the exact probability must fall. Although these bounds can be

useful (particularly the upper bound, as this represents a ‘safe’ value), a single proba-

bility of failure is clearly preferable.

As it is not feasible to calculate the exact value, with a slight change in approach

an approximation can be obtained. So, in this section three different methods are

suggested to provide an approximate value for the probability of failure.

Average The mid-point between the upper and lower bounds.

Monte Carlo Simulation As the inter-arrival times of a Poisson distribution form an

exponential distribution, a large number (say 100,000) of random numbers may

be generated in an exponential distribution which can be compared with the

value of TF .

Exponential Approximation Taking the equation for the exponential distribution,

integration between 0 and TF gives the probability that the next fault is closer

than TF as 1− e−λTF . Therefore each fault can be considered as an event of a

binomial distribution so that the probability of failure in a lifetime is (e−λTF)n.

Making the assumption (this causes the approximation) that there are n = λL

faults in the lifetime of the system, then p(W < TF)≈ (e−λTF)λL

116

4.2 Probabilistic Analysis Approaches

Comparison of Approximations

The three techniques suggested for generating a single value for the probability of fail-

ure (average, Monte Carlo simulation and exponential approximation) are applied to

the SAE benchmark (Table 3.1, page 91) and plotted in Figure 4.1. As the benchmark

has a very high utilisation the probability of missing a deadline (as calculated by this

approach) is actually quite high, so in order to have interesting results, a lifetime (L)

of only one minute is considered, and an extremely low fault rate of λ = 1 fault per

second used.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18

Pr
ob

ab
ili

ty
 o

f
Fa

ilu
re

 in
 1

 m
in

ut
e

Message ID

Lower bound
Upper bound

(Lower + Upper)/2
Monte Carlo Simulation

Fast Exponential Approximation

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Figure 4.1: Approximations to Burns’ Approach: Comparison.

As the graph shows, there is very little to choose between any of the approximations.

We may consider the Monte Carlo simulation to be the most accurate of the three,

but (with the exception of computing the exact value) it is the most computationally

expensive. The mean and exponential approximations are very close.

When considering that the aim of the analysis is to provide an idea of the probability

of failure, it is clear that an approximate value is all that is required. Therefore, it may

117

4 Probabilistic Analysis of CAN

be concluded that any of the approximations introduced in this chapter are sufficient.

Application to Benchmark

To give some measure of the usefulness and pessimism of the approach, the results

when the analysis is applied to the SAE benchmark appear in Table 4.1, with simula-

tion results for comparison. The values for probability of failure are from the expo-

nential approximation method.

Table 4.1: Burns and Punnekkat Guarantees vs. Simulation Results (λ = 1fault/s,
lifetime L = 1minute).

Analysis Simulation
i TF p(Failure) p(Failure)

17 1106 0.0642 0
16 1504 0.0863 0
15 2100 0.118 0
14 2400 0.134 0
13 4488 0.236 0
12 5000 0.259 0
11 9008 0.418 0
10 9528 0.435 0

9 10000 0.451 0
8 10000 0.451 0
7 19568 0.691 0
6 8183 0.388 0
5 8879 0.413 0
4 8990 0.417 0
3 8040 0.383 0
2 8101 0.385 0
1 8101 0.385 0

As the results in Table 4.1 show, the guarantee is very pessimistic when compared

with a realistic simulation of the same fault conditions. During the simulation run

of 200 minutes, λ = 1fault/s , not a single deadline miss was observed, whereas the

analysis predicted that e.g. message 7 would miss at least one deadline per minute in

69% of cases.

The cause of the pessimism is due to the assumption that two faults occurring close

together cause a failure. Whereas in CAN, although two faults closer than TF may

118

4.2 Probabilistic Analysis Approaches

cause a failure, this is unlikely. The cause of failure in CAN is more faults rather than

close faults. Close faults is a necessary but not sufficient condition for more faults.

Because of the extreme pessimism, this approach of considering TF may be rejected

as the basis for a probabilistic analysis on CAN.

4.2.2 Worst Case Deadline Failure Probability

Navet [114], using a scheme similar to Burns [38] produced a probabilistic response

time analysis for CAN. By considering the number of faults that must occur to cause

a failure (rather than how close they must occur), the pessimistic assumption in the

previous section is tightened.

As before, there are two stages:

1. Sensitivity analysis to determine the minimum number of faults Ki that must

occur while a frame is queued in order for the frame to miss its deadline.

2. Then, making an assumption that if there are fewer than Ki faults during this

interval then the system is schedulable, else it is not, they calculate the proba-

bility that a Poisson fault model would generate more than Ki faults during the

response time of a frame considering Ki faults.

Therefore, the probability of any given frame missing its deadline is known, termed

Worst Case Deadline Failure Probability (WCDFP).

This is a slightly different result to the analysis in Section 4.2.1: Burns gives the

probability of failure in a lifetime, whereas Navet gives the probability of failure per

invocation. If failures are assumed to be independent (which is already an implicit

assumption because of the use of the Poisson distribution) then the probability of fail-

ure per invocation can be converted to probability of failure per lifetime L as follows:

consider each invocation as an event in a binomial distribution; let p be the probability

of missing deadline per invocation, and n =
⌈

L
Ti

⌉

be the number of invocations in a

lifetime. Therefore the probability of 0 failures in a lifetime is (1− p)n.

The fault model considered by Navet [114] is more complex than that of the simple

single bit fault model used previously in this thesis because it considers not only the

119

4 Probabilistic Analysis of CAN

frequency of faults, but the duration of the faults. Both the frequency and gravity are

considered to follow Poisson distributions, which allows the overhead of the faults to

be considered as a generalised Poisson distribution.

In more detail, Navet’s analysis first uses the scheduling analysis of Tindell to cal-

culate the maximum number of faults that can be tolerated for each message before

the deadline is reached. This is done by considering that each fault generates a known

maximum overhead which extends the response time. Once the maximum number of

faults (Ki) and the worst case response time that this would generate,2 Ri|Ki
, are ob-

tained, they are used in the second stage of the analysis with the fault model to find

the probability that a message may miss its deadline.

Navet defines the WCDFP of a message i as the probability that more than Ki faults

occur during Ri|Ki
. Ki can be interpreted as the number of tolerated faults in the chan-

nel; it is independent of the parameters of the fault model, it only depends on the

characteristics (length, priority, period, etc.) of the messages. Once Ki is known, the

fault model parameters are required to calculate the probability of having more than Ki

faults in the analysed interval. Since the fault model assumed by Navet is a generalised

Poisson process, the WCDFP can be analytically calculated from Ki.

There are two main drawbacks of the analysis. Firstly, the complex fault model used

means that calculating the probability of failure is difficult due to both the complexity

of the mathematics and the computation time required. Secondly, the analysis includes

a number of sources of pessimism, some of which dramatically increase the pessimism

in the estimation of the WCDFP.

• The first source of pessimism is implicit in the definition of WCDFP which

does not properly reflect the conditions in which a message can miss its dead-

line. For CAN, in order to miss a deadline, faults in the channel are required to

occur while the message is queued or in transmission; a fault occurring after the

message has been received cannot delay the message. This condition is more

restrictive than the condition used in the analysis, which is that Ki errors occur

at any time during the maximum response time of the message, independently

of whether the message actually takes as long as Ri|Ki
, i.e. whether the message

2Navet uses the notation Rmmax for what this thesis terms Ri|Ki
.

120

4.2 Probabilistic Analysis Approaches

has already been received. This will impose even more pessimism if multiple

invocations are considered because the response time for most invocations is

much less than the worst case response time stemming from a critical instant

(see Section 3.2).

• The second source of pessimism is an incorrect assumption about the nature of

burst errors where a fault causes a sequence of bits to be corrupted. In Navet’s

analysis, a burst error of duration u bits is treated as a sequence of u single bit

faults, each causing a maximal error overhead (an error frame and the loss of

the longest data frame). This assumption allows consideration of the fault model

as a generalised Poisson process and facilitates solving the WCDFP equation.

However, this assumption is inconsistent with the CAN protocol specification

[28, 72] since in reality a burst error can interfere with only one message because

no message is sent again until the effect of the burst is finished. This pessimism

may cause response times several orders of magnitude too large.

In addition, the following less severe considerations are not taken into account, which

add pessimism to the analysis:

• The analysis considers only the worst case invocation, i.e. the first invocation

following a critical instant.

• Maximal overhead of faults. The analysis assumes that each fault causes the

maximal overhead, whereas this is unlikely. This is the same effect discussed

previously in Chapter 3.

• Other maximal assumptions such as assuming maximal bit-stuffing and block-

ing have some pessimistic effect.

4.2.3 Modifications and Application to Benchmark

The pessimism caused by the fault model is excessive, leading to meaningless results.

However, it is appropriate to consider the fault model separately to the overall ap-

proach, so in this section the assumption regarding multiple faults is corrected and the

second stage of the analysis is adjusted accordingly. This allows the analysis to be

121

4 Probabilistic Analysis of CAN

usefully applied directly to the SAE CAN benchmark and compared with simulation

results.

Correcting WCDFP Analysis

The main difficulty with the fault model is the assumption that each bit of a burst error

causes the same maximal fault overhead. Therefore, the complex fault model will be

discarded, to be replaced with a more manageable fault model. It will be assumed that

faults occur with a Poisson distribution, each fault affects a single bit and is detected

immediately, causing the maximum possible overhead that a single bit fault can cause.

This new fault model does not require any changes to the first stage (sensitivity

analysis) of the analysis.

The second stage of the analysis (calculating the probability that more than Ki faults

occur in Ri|Ki
is modified. It is simply the application of the Poisson probability density

function.

p(WCDF)i = 1−
Ki

∑

k=0

e−λRi|Ki (λRi|Ki
)k

k!
(4.1)

In general, this can be easily calculated because Ki will tend to be fairly small so

neither the summation nor the factorial in equation (4.1) create computational diffi-

culties.

Application to Benchmark

The new analysis is applied to the SAE benchmark using this simplified fault model.

A value of λ = 30 faults per second is used; this is much higher than in Section 4.2.1

because this analysis is far less pessimistic. Also, unlike in the previous section, the

probability of missing a deadline per invocation is shown, rather than the probability

of failure per lifetime; Section 4.2.2 showed how to convert between them if desired.

Simulation and analysis results are in Table 4.2 and plotted in Figure 4.2; note the

logarithmic scale. As can be seen, the analysis and simulation results match closely

in some cases, however for some messages (e.g. 7–12), the analysis predicts the prob-

122

4.3 A New Probabilistic Analysis of CAN

Table 4.2: Navet WCDFP Analysis.

Analysis Simulation
i Ki Ri|Ki

p(Failure) p(Failure)
17 4 4624 3.814 ·10−07 0.000
16 3 4712 1.486 ·10−05 2.333 ·10−06

15 2 4400 3.473 ·10−04 8.333 ·10−06

14 2 5000 5.029 ·10−04 1.033 ·10−05

13 1 4688 9.010 ·10−03 1.333 ·10−05

12 0 4456 1.251 ·10−01 1.023 ·10−04

11 1 9208 3.180 ·10−02 2.467 ·10−05

10 1 9728 3.514 ·10−02 5.000 ·10−05

9 0 9176 2.406 ·10−01 3.113 ·10−04

8 0 9776 2.542 ·10−01 2.453 ·10−03

7 1 19768 1.196 ·10−01 4.400 ·10−04

6 12 99680 1.563 ·10−05 3.333 ·10−05

5 11 99048 6.531 ·10−05 4.000 ·10−05

4 11 99568 6.857 ·10−05 4.000 ·10−05

3 124 999944 0.000 0.000
2 123 999312 0.000 0.000
1 123 999336 0.000 0.000

ability of deadline failure at over an order of magnitude higher than observed during

the simulations. It is unclear which particular sources of pessimism are predominant.

4.3 A New Probabilistic Analysis of CAN

In the previous section, two different approaches to probabilistic guarantees were ap-

plied to CAN. The output of both techniques was a probability of failure. However,

both approaches were pessimistic when compared to simulations, several sources of

pessimism were highlighted.

Furthermore, despite the advantages of these approaches, there is still a need for

a more general scheme which can describe the complete behaviour of the system in

probabilistic terms, rather than just dealing with deadline failures.

In this and subsequent sections, an analysis is developed which provides a proba-

bility distribution of worst case response times under a random arrival fault model.

123

4 Probabilistic Analysis of CAN

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16 18

Pr
ob

ab
ili

ty
 o

f
Fa

ilu
re

 p
er

 m
es

sa
ge

Message ID

Navet Analysis
Simulation

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Figure 4.2: Modified Navet Analysis and Simulation Results.

This in turn may be used to determine an accurate probability of deadline failure. The

derivation first produces a general analysis technique which may be applied in many

situations but which has a high computational cost. In later sections, this analysis is

improved for the specific CAN fault model, leading to an efficient tool.

4.3.1 Pessimistic Approach

In the context of this work (dependable real-time control), an analysis should never

be optimistic—there must be no opportunity for the analysis to give a lower response

time or lower probability of failure than the system it is modelling. Therefore, in each

stage of the analysis, there must be no optimistic assumptions. The aim is to have a

pessimistic solution, but with as little pessimism as possible. Both approaches earlier

in this chapter also took this approach.

Therefore, the analysis presented in this section is derived by starting with the strict

worst case analysis and removing sources of pessimism where possible. There are

124

4.3 A New Probabilistic Analysis of CAN

several areas in the analysis where a worst case is still assumed. It would be inap-

propriate to assume for example a mean or other expected value for any parameter,

otherwise it would risk being optimistic.

4.3.2 Fault Model

A simple fault model is considered, that faults arrive randomly, with a Poisson dis-

tribution F∼Po(λ). Therefore, the probability of exactly m faults occurring in any

time interval t is:

pt(F = m) =
e−λ t(λ t)m

m!
(4.2)

To avoid optimism, it is assumed that each fault causes the maximum length error

frame (E) and occurs on the last bit of the longest frame, such that the overhead due

to one fault is equal to:

Mi = E + max
∀ j∈hep(i)

C j

where hep(i) is the set of messages with higher or equal priority to i.

Therefore the error overhead function, Ei(t), is a random distribution:

Ei(t) =



































0 with probability pt(F = 0)

Mi with probability pt(F = 1)

2Mi with probability pt(F = 2)

3Mi with probability pt(F = 3)

· · · · · ·

(4.3)

or more generally:

Ei(t) = mMi with probability pt(F = m) (4.4)

It should be noted that this error function is always pessimistic—Ei(t) is always at

least as great as would occur in a real bus experiencing a Poisson distribution of faults.

There is an infinite number of values for Ei(t) since m ∈ 0..∞. However, small val-

ues of m are neglected where pt(F = m) < ρ and ρ is some suitably small probability

125

4 Probabilistic Analysis of CAN

that is so small that designers consider the risk acceptable, for example ρ = 10−12.

Therefore all ‘significant’ values of m may be enumerated, each case is considered

individually with its associated probability.

4.3.3 Response Time—General Analysis

The analysis will consider only the critical instant where all higher priority messages

are simultaneously queued (imposing maximum interference) and the longest lower

priority message has just started (imposing maximum blocking). This is the known

worst case scenario, so the analysis may begin with the usual worst case response time

equations for CAN [159], see Section 2.5.

Ri = Ji + ti (2.5)

ti = Bi +Ci + Ii(ti)+Ei(ti) (2.10)

Equation (2.10) may calculated iteratively in the usual manner using a recurrence

relation:

tn+1
i = Bi +Ci + Ii(t

n
i)+Ei(t

n
i) (4.5)

with t0
i = Ci. Iteration terminates when tn+1

i = tn
i provided tn

i ≤ Ti− Ji.

When equation (4.5) is solved iteratively, it generates a monotonically increasing

set of values of ti and therefore a set of non-overlapping intervals exists:

{(0, t0
i], (t0

i , t1
i], (t1

i , t2
i], · · · (tk

i , t
k
i]}

Within each interval, the error overhead function, Ei(t), is evaluated for each signifi-

cant value of Ei(tn
i − tn−1

i) and is repeated recursively for all values of tn
i .

In order to do this, a probability tree is used. An example is shown in Figure 4.3

which is used in the following walk-through.

Using equation (4.5) and the initial value t0
i =Ci the set is considered which consists

of all possible numbers of faults in the interval (0, t0
i] for which there is a significant

126

4.3 A New Probabilistic Analysis of CAN

1st iteration 2nd iteration 3rd iteration

...

Start

PSfrag replacements

R0

R1
R2

Rn−1

Rn

· · ·
∞

0

0

0

0

0 0

0

0

0

0

0

1

1

1

1

1

1

1

2

2

3

t0

t1 t2
t3

0 faults

Figure 4.3: Example Probability Tree for Simple Fault Model.

probability.

At0
i
= { f |pt0

i
(F = f)≥ ρ} (4.6)

Each member of At0
i

is used to derive a set of possible values for t1
i with an associated

probability p(t1
i) = p

(t0
i −0)(F = f). In the illustration there are four significant possi-

bilities: in the interval there could be 0, 1, 2 or 3 faults, (the probability of more than

3 faults is less than ρ) so four branches of the tree are derived, with 4 different values

of t1
i and associated probabilities.

Following the first branch (0 faults), next consider the interval (t0, t1] and apply the

Poisson equation (4.2) to the interval (t0, t1]. (This may be done because the proba-

bility of any number of faults in an interval is independent from the history of faults

before the start of the interval.) Therefore we apply equation (4.2) to determine that

there are three significant possibilities: there are 0, 1 or 2 faults in the interval (t0, t1].

127

4 Probabilistic Analysis of CAN

So the three branches provide three possibilities for t2
i and associated probabilities of

p(t2
i) = p(t1

i) ·p(t1
i −t0

i)(F = f).

The tree continues to be explored recursively. For subsequent iterations of equa-

tion (4.5), the error overhead function must be applied with care. At each branch in

the tree, the path to the root of the tree has been fixed, therefore when Ei(t) is evalu-

ated, it must only consider the time between tn
i and tn−1

i . Yet it must not neglect the

previous error overhead. The formulation may be written:

tn+1
i = Bi +Ci + Ii(t

n
i)+

n−1
∑

j=0

Ei(t
j+1
i − t j

i) (4.7)

However, equation (4.7) is easier to understand and implement if written as:

tn+1
i = Bi +Ci + Ii(t

n
i)+En

i (4.8)

and En
i is the total error overhead for the previous iterations in the path to the root of

the tree, plus the overhead added this iteration:

En
i = En−1

i +Ei(t
n
i − tn−1

i) (4.9)

Evaluation continues until all significant branches are explored. The base cases for

recursion are:

• tn+1
i = tn

i . This occurs when considering the probability of finding 0 faults and

there is no further interference to include. In this case, tn
i represents a possible

value for Ri with a known probability. The pair 〈tn
i ,p(tn

i)〉 is recorded.

• p(tn
i) < ρ . A path is so unlikely to occur that it is insignificant, in which case

this path may be ignored.

• tn+1
i > Ti−Ji. Any analysis based on equation (4.5) cannot handle the possibility

that the response time is greater than the period of a message. Therefore, when

this occurs, the probability that the message is unschedulable must be recorded.

128

4.4 Interpretation of the Distribution

4.4 Interpretation of the Distribution

The immediate result of the analysis is a set of pairs Ri = 〈ti,p(ti)〉. More usefully, a

cumulative probability distribution can be plotted.

The nature of the analysis means that the expected results include some very small

probabilities down to ρ , as well as larger values; all values are of interest. A lin-

ear scale would not show the smaller probabilities clearly enough, so a logarithmic

scale is appropriate (indeed, on a linear scale, a graph shows very little of inter-

est). However, in order to plot a cumulative distribution, the graph must display

(1− cumulative probability) to ensure that the small changes in probability are close

to 0 rather than close to 1. The values on this axis can be interpreted as an upper

bound on the probability of the response time exceeding the corresponding value on

the horizontal axis.

Unfortunately, these transformations can be difficult to visualise, leaving a some-

what counter-intuitive plot. Care must be taken when interpreting the graph as it

represents discrete data, not a continuous function. The correct way to join the points

is as shown in Figure 4.4 so that the resulting line represents an upper bound on the

results. By means of an illustrative example in Figure 4.4, a typical output of the

analysis is shown.

With reference to the graph, one can infer for example that:

• p(t ≥ 10)≤ 0.1

The analysis records that p(t ≥ 10) = 0.1, but the analysis is pessimistic, there-

fore the probability of a real frame having a response time longer than 10 is less

than or equal to 0.1.

• p(t ≥ 19)≤ 0.1

• p(t < 10) > 0.9

• The probability of a given message being delayed beyond the deadline is less

than or equal to 0.01. This is equivalent to Navet’s worst case deadline failure

probability (WCDFP).

129

4 Probabilistic Analysis of CAN

0 10 20 30

1.0

t

1
−

 C
um

ul
at

iv
e

P
ro

ba
bi

li
ty

Analysis

0.1

0.01

0.001

Deadline

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Figure 4.4: Interpretation of Results.

• If data obtained from extended monitoring of a real system or by simulation is

plotted on the same axes, then if the analysis is pessimistic, the real data should

always appear further to the left of the graph than the analysis line.

4.5 Probabilities, Complexity and ρ

The parameter ρ is an important parameter in the algorithm, relating accuracy, com-

plexity and completeness. The effects of ρ are explored in this section.

4.5.1 Coverage

The algorithm necessarily cuts improbable branches of the tree using ρ . However,

if there is a large number of branches that have probabilities of just below ρ then

their summed probability can be significant, leading to probability tree whose total

probability falls short of 1.

Therefore to assess the completeness of the search, the coverage can be defined as

130

4.5 Probabilities, Complexity and ρ

the sum of the probabilities in all explored branches:

Qi = p(N)+
∑

∀〈t,p〉∈Ri

p (4.10)

where p(N) is the probability of being unschedulable, recorded by the analysis when

tn+1
i > Ti− Ji.

To be safe, any branches that are not covered should be treated as unschedulable.

Therefore, a strict WCDFP can be found directly from the probability of being less

than the deadline.

p(Ri > Di) = 1−





∑

∀〈t,p〉∈Ri|t≤Di

p



 (4.11)

To increase coverage, it is clear that ρ should be very small, however this naturally

leads to an increase in complexity.

4.5.2 Complexity

The tree has the potential to grow exponentially, which would lead to infeasible com-

putation times. However the algorithm keeps execution under control by capping

many branches using ρ . Further, in general, the search tree becomes very skewed (as

in Figure 4.3), which vastly reduces the overall size of the tree.

Larger values of ρ will result in shorter execution times: far fewer branches are

explored because both the depth of the tree is reduced and there are fewer branches at

each level. The parameter ρ is very important in controlling the growth of the tree.

As an example of the complexity, Section 4.9 presents results based on two case

studies; an implementation of the analysis on a modern PC explored all the trees of

the message sets in a few seconds. The number of branches explored by the analysis

ranged from around 500 for the highest priority messages to just over 2,700,000 for the

lowest priority message. The maximum recursion depth was 26. Infeasible computa-

tion times have not been observed for any message set tested so far with reasonable

values of ρ .

131

4 Probabilistic Analysis of CAN

Despite the potential for exponential growth, the analysis is much faster to compute

than simulation or monitoring of the bus. This is because simulation would have to be

performed for extended periods in order to be likely to observe infrequent scenarios,

whereas the analysis systematically detects unlikely scenarios during the computation

of the tree.

4.5.3 Setting ρ

As the previous discussion showed, coverage comes only at the cost of execution time,

with ρ being the controlling parameter of this conflict. A value of ρ too small will

result in infeasible execution times for the algorithm, larger values will lose coverage

of the search space and therefore lose accuracy for low probabilities.

Setting ρ can be done on a message by message basis as each stream is considered

individually.

Values of ρ between 10−10 and 10−20 are useful, depending on the message set and

system requirements. This is a very large range. However, it is useful to note that

there is little to gain by small changes in ρ , it may be practical to restrict ρ to values

of the form 10−n, where n ∈ {10..20}. Therefore trial and error is a valid means of

setting ρ .

However, this may be done more formally by considering the failure requirements

as follows. The resultant probability distribution refers to one single invocation of the

message. It is common for a dependable system to have reliability requirements in the

form “fewer than 10−9 failures per hour”. If it is assumed that timing failures are inde-

pendent, then it is easy to calculate the failure probability requirement per invocation.

For example, for a periodic message with T = 100ms, there are 36,000 invocations per

hour requiring a probability of failure per invocation of 10−9/36,000 = 2.7 · 10−15.

To ensure precision, a value of ρ must be chosen such that it is an order of magnitude

lower than the probability of failure per invocation. In this case a suitable value is

ρ = 10−16. This value can be adjusted if necessary if the coverage is deemed to be

insufficient, or if the algorithm execution time is too long for a particular message set.

132

4.6 Implementation of the Probabilistic Algorithm

4.6 Implementation of the Probabilistic Algorithm

The analysis can be efficiently implemented as a recursive procedure, exploring the

tree depth-first and using a simple data-structure to record the results. An algorithm is

shown in Figure 4.5.

procedure Response(t, ∆t, Eprev, ppath) is
–– Recursive procedure to solve eqn (4.8)
–– Eprev is En−1

i in eqn (4.9)
if ∆t = 0 then –– Base case: Converged

AddToPDF(t, ppath);
else if t > Ti− Ji then –– Base case: only R≤ T

AddToPDF(NOTSCHED, ppath);
else –– Recursive case

for j ∈ {n ∈ N|ppath·Poisson(n, ∆t, λ)≥ ρ} do
p j←Poisson(j, ∆t, λ);
–– Probability of j errors

E j←Errors(i, j, ∆t);
–– Overhead of j errors

tnew←Ci +B(i)+ I(i, t)+Eprev +E j;
Response(tnew, tnew− t, Eprev +E j, ppath · p j);

end for;
end if;

end Response;;

for i ∈ messages do
ClearPDF();
Response(Ci,Ci,0,1.0);
PrintPDF();

end for;

Figure 4.5: Analysis Algorithm.

The algorithm is presented in a form designed for clarity, rather than implementa-

tional efficiency. However, it should be noted that the test for the second base case

(p(path) < ρ) is implicit in the for loop. A real implementation of the algorithm

should also make a number of further optimisations (such as calculating Interference

and Blocking outside the loop). Also, extreme care should be taken if implement-

ing with floating point arithmetic because the algorithm may need to manipulate both

133

4 Probabilistic Analysis of CAN

large and very small values together while avoiding loss of precision. Functions such

as Poisson() are particularly vulnerable. A high precision numeric library or calcula-

tions package is suggested.

4.7 Improving the Analysis

The algorithm in Figure 4.5 in Section 4.3 explores the search space generated by the

worst case response time equations. The analysis is very general and can be applied in

a number of scheduling scenarios including CPU scheduling. However, in the specific

case of faults on CAN, it is possible to modify the analysis to reduce the computation

time of the algorithm and eliminate branch pruning to achieve complete coverage.

Section 4.7.1 first makes a small improvement by pre-computing response times,

then Section 4.7.3 exploits the specific fault model to produce a scheme which has a

very low computation cost and achieves full coverage.

4.7.1 Pre-computing Response Times

As the examples later in this chapter illustrate, the shape of the probability distribution

output is ‘stepped’. The cause is the simple nature of the error overhead function,

equation (4.4). It is noted, therefore, that there are only a relatively small number of

possible worst case response times. A large number of different scenarios contribute

to the probability of each response time value; the probability of each response time

is the sum of the probabilities of these scenarios.

Therefore, it is possible to pre-compute the set of possible response times up to

some point (such as the period of the message, which is the limit of the analysis) and

then calculate the possible scenarios which contribute to each response time. There is

a computational advantage in doing this because:

• the size of the computation is reduced because several iterations of the worst

case response time equations are able to be compressed into one iteration;

134

4.7 Improving the Analysis

• computations involving time (worst case response times, interference etc.) are

only done once, rather than throughout the algorithm.

Pre-computing the response times is done in the expected manner, by forming a

recurrence relation from equation (4.12).

Ri|K = Bi +Ci + I(Ri|K)+Ei|K(Ri|K) (4.12)

where

Ei|K(t) = K(E + max
∀ j∈hep(i)

C j) (4.13)

4.7.2 Scenarios

After pre-computing the possible worst case response times, it is necessary to con-

sider the scenarios that contribute to each possible value. In the next section, an anal-

ysis scheme is presented which avoids having to enumerate all possible scenarios, but

the discussion of these scenarios in this section is useful to aid understanding of the

scheme.

As Section 4.3.3 explained, the possible response times generate a set of non-

overlapping intervals, as shown in Figure 4.6. The notation e(K) is used to denote the

number of faults that occur in time interval (Ri|K−1,Ri|K] (or (0,Ri|K] where K = 0).

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·

∞

0

e(0) e(1) e(n−1)

Ri|0 Ri|1 Ri|2 Ri|n−1 Ri|n

Figure 4.6: Response Times for Improved Algorithm.

Using the shorthand, [210] to mean the scenario e(0)=2, e(1)=1, e(2)=0, Table 4.3

shows the scenarios which contribute to a given response time. Note that (for exam-

ple) the sequence [1020] cannot contribute to R3, since the sequence begins [10] which

135

4 Probabilistic Analysis of CAN

Table 4.3: Enumeration of Scenarios.

Response
Time

Possible Scenarios
(Shorthand)

Number of
Scenarios

Ri|0 [0] 1
Ri|1 [10] 1
Ri|2 [200], [110] 2
Ri|3 [3000], [2100], [2010], [1200], [1110] 5
Ri|4 [40000], [31000], [30100], [30010],

[21100], [21010], . . .
14

contributes only to Ri|1 because at time Ri|1, there has been only one fault therefore

the iteration of the WCRT equation terminates. This further illustrates the difference

between this analysis and the previous WCDFP analysis which would have pessimisti-

cally considered [1020] to contribute to the response time for 3 faults, Ri|3.

The sequence of the number of scenarios which constitute each response time grows

rapidly. It begins 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012,

742900, and is known as the Catalan Series [150] given by the formula:

(2K)!
K!(K +1)!

(4.14)

where K is the number of faults, as in Ri|K.

Although the next section shows that is not necessary to enumerate all the scenarios,

it is nevertheless possible to generate all scenarios described previously. For small

values of K, complete coverage may be obtained, however for larger values of K, is it

infeasible to enumerate all scenarios so branch pruning could be used.

Generating the scenarios could be done either by considering the sequence directly,

or by considering a tree very similar to that used to explore the original analysis in

Section 4.3. The only difference is that instead of each node representing an iteration

of the worst case response time equation, in this case each node is a possible number

of faults e(x) where x is the depth of the tree. A further advantage of using this same

tree-searching style of algorithm is that it is easy to incorporate branch pruning using

ρ because this is simply a base case of the recursion.

136

4.7 Improving the Analysis

One problem of using an analysis based on pre-computed worst case response times

(rather than the general form of the analysis that was initially presented) is that it leads

to a difficulty in determining the coverage. Response times greater than the deadline

are indistinguishable from parts of the search tree that are not covered. Therefore, it

is not possible to check the coverage directly. However, in general, since uncovered

regions are added to the probability of being unschedulable, this does not affect the

overall results of the analysis.

4.7.3 Efficient Probabilistic Analysis

From the precomputed response times, an efficient probabilistic analysis can be used

to find the probabilities of the response times without enumerating all the scenarios.

The technique is presented in this section.

Notation

For clarity, the notation p(n, t) is used to denote the probability of n faults occurring

in interval t, p(n, t)≡ pt(n), as defined in equation (4.2). The notation p(Ri|K) is the

upper bound on the probability that a frame i is affected by exactly K faults and hence

may arrive no later than Ri|K. Ri|K is precomputed as shown in Section 4.7.1.

The analysis will be derived by considering the scenarios which contribute to each

particular response time.

Calculating Ri|0

The worst case response time with no faults, Ri|0, is the upper bound on the probability

of faults not causing a frame i to exceed this time, p(Ri|0). It is simply the probability

that there are no faults in the interval (0,Ri|0]. As Table 4.3 showed, this is the only

possible scenario that can produce a response time of Ri|0. This is exactly the same as

the previous analysis.

p(Ri|0) = p(0,Ri|0)

137

4 Probabilistic Analysis of CAN

Calculating Ri|1

For the response time Ri|1, i.e. 1 fault, there is only one scenario which can cause

this. Table 4.3 shows this to be [10], there must be exactly one fault in (0,Ri|0] and no

faults in (Ri|0,Ri|1]. The previous section suggested that the probability of [10] may be

calculated by summing the probabilities of the scenarios (just one in this case).

However, an alternative approach is to begin with the probability of having exactly

one fault in the interval (0,Ri|1], which is p(1,Ri|1). This can occur in only two ways:

[01] or [10], of which only [10] is of interest. The probability of scenario [01] is already

partially calculated because this is p(Ri|0) multiplied by the probability of 1 fault in

(Ri|0,Ri|1].

p(1,Ri|1) =

p(Ri|1) [10]

+p(Ri|0)p(1,Ri|1−Ri|0) [01]

Hence:

p(Ri|1) = p(1,Ri|1)−p(Ri|0)p(1,Ri|1−Ri|0)

Calculating Ri|n

Likewise, to calculate p(Ri|2), is it possible to begin with the probability that there

must be exactly two faults in (2,Ri|2] and then exclude the scenarios where there were

exactly 0 faults in (0,Ri|0], or exactly 1 fault in (0,Ri|1] since these scenarios would

give rise to smaller response times.

p(Ri|2) =p(2,Ri|2)

−p(Ri|1)p(1,Ri|2−Ri|1)

−p(Ri,|0)p(2,Ri|2−Ri|0)

The result is generalised as follows. The probability of exactly n faults in Ri|n is

derived directly from the Poisson distribution equation, p(n,Ri|n). However only some

permutations of faults can possibly lead to such a response time. The permutations

138

4.8 Multiple Invocation Analysis

which cannot lead to Ri|n are those which would lead to a response time Ri| j where

j < n.

If there are j faults in (0,Ri| j] then (because there are n faults in (0,Ri|n]) there must

be n− j faults in (Ri| j,Ri|n]. So, the probability of j faults in (0,Ri| j] given that there

are n faults in (0,Ri|n] is p(Ri| j)p(n− j,Ri|n−Ri| j). This value can then be subtracted

from the probability p(Ri|n).

The resulting general equation for the upper bound on the probability of worst case

response time Ri|n is:

p(Ri|n) =p(n,Ri|n)

−
n−1
∑

j=0

p(Ri| j)p(n− j,Ri|n−Ri| j)
(4.15)

Results obtained from this scheme should also have greater accuracy than the tree

based probabilistic schemes because there are far fewer calculations, hence less ac-

cumulated rounding errors. Additionally, it should be noted that there is no branch

pruning; therefore full coverage should be achieved.

Implementation of this is trivial, so code is not shown. A software implementation

based on equations (4.12) and (4.15) was used to perform the study in Section 4.9.

4.8 Multiple Invocation Analysis

The efficient analysis explained in Section 4.7.3 is applied only to the critical instant

where all frames are released. As Chapter 3 showed, there are advantages to analysing

other invocations in the hyperperiod rather than just the worst case. A probabilistic

analysis of all invocations in the hyperperiod is the next logical extension. However,

there are prohibitive difficulties in doing so and no probabilistic multiple invocation

analysis is presented in this thesis.

It is possible to construct an implementation of such an analysis, based on the orig-

inal tree-searching analysis from Section 4.3 with trivial modifications to consider

multiple invocations. Experiments performed with the tool showed that the expected

139

4 Probabilistic Analysis of CAN

advantages of considering multiple invocations can be achieved within the probabilis-

tic framework. However, the computation required to perform the analysis for realis-

tic length hyperperiods is prohibitive; whilst for a single invocation, the tree is small

enough to be practical, for multiple invocations the tree grows infeasibly large.

A multiple invocation analysis based on the later, more efficient approach in Sec-

tion 4.7.3 does not follow trivially because of difficulties calculating the idle time

in a probabilistic manner. The problem arises because the approach requires pre-

calculation of all possible response times, yet in the multiple invocation analysis, there

are potentially many thousands of response times. The response time of each invoca-

tion depends on the response times of the previous invocation (because of the idle time

calculation). Therefore, immediately there are very many possible response times.

Perhaps one method to achieve a probabilistic multiple invocation analysis is to

strive only for a pessimistic upper bound, hence a single valued idle time may be used

for the calculations of each iteration. This may be considered in future work.

Despite the lack of a probabilistic multiple invocation analysis, its use is not nec-

essary to gain understanding of the probability of failure for an event-triggered bus.

The single invocation probabilistic analysis allows detailed consideration of the worst

case, which is the most useful case to consider because it forms an upper bound on all

other cases.

4.9 Evaluating the Analysis

In this section, the new probabilistic analysis is evaluated by use of two case studies.

The results of the analysis are compared to data obtained through software simulation,

and to a previous study.

4.9.1 Peugeot Message Set

The first case study used was proposed by Navet [114]. It is used in this thesis in

order to enable a comparative study with his previous result. The original source was

provided by Peugeot-Citroen Automobiles Company. There are 12 periodic messages

140

4.9 Evaluating the Analysis

Table 4.4: Peugeot Example Message Set.

Priority Length Period WCRT
i Ci Ti(ms) Ri(ms)

12 528 10000 1028
11 328 14000 1368
10 328 20000 1708

9 288 15000 2008
8 408 20000 2428
7 408 40000 2848
6 368 15000 3228
5 408 50000 3648
4 368 20000 4028
3 488 100000 4448
2 408 50000 4708
1 248 100000 4720

from six devices in a prototype car. A data-rate of 250kbit/s is used. The message set

is not a particularly ‘strenuous’ one: under no-fault conditions, the worst case response

time for all messages is less than the shortest period in the set. Therefore, no frame

can experience interference from any other frame more than once. The bus utilisation

is only 21.6%. It should be noted that the messages are also schedulable at the slower

(and therefore less prone to faults3) data-rate of 125kbit/s, and that the priorities are

not ordered rate monotonically (RMPO). For all messages, the deadline is equal to

the period and there is no release jitter. The message set is shown in Table 4.4 with

standard worst case response time calculations shown for comparison.

The analysis in Section 4.7.3 was applied at the fault rate of λ = 30faults per sec-

ond. This value of λ is used because it has been frequently used in the past [114, 127]

as an expected number of faults in an aggressive environment. Reading the results di-

rectly from Table 4.5 one can get a feel for the analysis. Only three frames are shown,

however they are representative of the other frames: they all show similar results. It

can be seen that the probabilities of messages being significantly delayed are very low.

The probability of any message being delayed beyond its deadline is insignificant (less

than ρ , see Section 4.5). The full data set is plotted as a cumulative probability graph

in Figure 4.7. The ‘steps’ are due to the nature of the error overhead function, Ei(t),

3§2.5.3.

141

4 Probabilistic Analysis of CAN

Table 4.5: Probabilistic Analysis Results, (Peugeot Set, λ = 30.0).

(a) Frame 12

Ri p(Ri)
(ms)
1028 9.696307 ·10−01

1684 2.932066 ·10−02

2340 1.009100 ·10−03

2996 3.795376 ·10−05

3652 1.514530 ·10−06

4308 6.300757 ·10−08

4964 2.703161 ·10−09

5620 1.187428 ·10−10

6276 5.314400 ·10−12

6932 2.414760 ·10−13

7588 1.111030 ·10−14

8244 5.165844 ·10−16

(b) Frame 5

Ri p(Ri)
(ms)
3648 8.963359 ·10−01

4304 9.618337 ·10−02

4960 7.016588 ·10−03

5616 4.374734 ·10−04

6272 2.516691 ·10−05

6928 1.382444 ·10−06

7584 7.381265 ·10−08

8240 3.869713 ·10−09

8896 2.004302 ·10−10

9552 1.029642 ·10−11

10208 5.259833 ·10−13

11404 2.633599 ·10−14

12060 1.754993 ·10−15

(c) Frame 1

Ri p(Ri)
(ms)
4720 8.679684 ·10−01

5376 1.205092 ·10−01

6032 1.069119 ·10−02

6688 7.773385 ·10−04

7344 5.062092 ·10−05

8000 3.079614 ·10−06

8656 1.791207 ·10−07

9312 1.009935 ·10−08

9968 5.568988 ·10−10

11164 2.972493 ·10−11

11820 2.065001 ·10−12

12476 1.227213 ·10−13

13132 6.917263 ·10−15

142

4.9 Evaluating the Analysis

as explained in Section 4.7.

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 2000 4000 6000 8000 10000 12000 14000

1-
C

um
ul

at
iv

e
Pr

ob
ab

ili
ty

Response Time (us)

12
11
10

9
8
7
6
5
4
3
2
1

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Figure 4.7: Probability Distribution of Response Times for All Frames (Peugeot Set,
λ = 30).

The software simulator noted in the previous chapter is used to accurately model

the CAN bus in the presence of faults. It is possible to simulate for extended periods,

or to repeatedly simulate conditions after a critical instant.

In order to explore the pessimism and accuracy of the analysis, the analysis results

for the frame with priority 5 are compared to the repeated simulation of a critical

instant. The same Poisson fault model of λ = 30 faults per second was used for

both the analysis and simulation, and the simulation was run 1,500,000 times. The

results of both the simulation and the analysis for this frame are plotted in Figure 4.8.

Note that both the simulation and analysis refer only to conditions following a critical

instant—other invocations are not considered here.

The analysis and the simulation results are very similar. We consider first the re-

sponse times with probability greater than about 10−6 (near the top of the graph). The

analysis is slightly pessimistic: shown by the fact that the analysis line is always to

143

4 Probabilistic Analysis of CAN

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 2000 4000 6000 8000 10000 12000 14000

1-
C

um
ul

at
iv

e
Pr

ob
ab

ili
ty

Response Time (us)

Analysis
Simulation

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Figure 4.8: Response Time Probability, Analysis vs. Simulation, Frame 5, (Peugeot
Set, λ = 30).

the right of the simulation line. The pessimism here comes mainly from the fact that

the analysis always uses a maximal error function Ei(t) whereas the simulation more

accurately models network faults occurring in frames. However, the pessimism is not

extreme—as can be see from the graph, the lines are very close.

For the longer response times at low priorities (lower in the graph), the simulation

and analysis results differ. The longer response times suggested by the analysis never

occurred in the simulation; they are unlikely to because the simulation run had far

fewer than 1013 iterations. Yet the analysis predicts that such response times may

occur during longer periods of execution. It is these low probabilities which need to

be carefully considered in a critical system.

The advantage of probabilistic analysis over simulation or monitoring is clear: in

order to be likely to observe events at probabilities as low as 10−13, it would be neces-

sary to simulate for at approximately the reciprocal of this number of times [94] which

is clearly infeasible. Based on the simulator used here, this would take approximately

144

4.9 Evaluating the Analysis

80 years of simulation, whereas the analysis took only seconds to achieve the result.

In comparison with Navet [114], the analysis in this thesis is far less pessimistic.

Navet shows the worst case deadline failure probability for frame 5, p(Ri > 50ms),

with λ = 30 to be approximately 0.045. According to the analysis presented in this

chapter, the probability of any frame being unschedulable is insignificant. As the

deadline was never approached in the 1,500,000 simulation runs, this shows that 0.045

is indeed an overly pessimistic value.4

4.9.2 Probabilistic Evaluation of SAE Benchmark

The second case study used to evaluate the analysis is Tindell’s widely published

simplification [159] of the Society of Automotive Engineers (SAE) Benchmark [147],

see Table 3.1 on page 91. Release jitter is neglected for the following experiments.

Recall that the message set is only just schedulable, frames 12, 9 and 8 are particularly

vulnerable to missing their deadlines because their worst case response times are close

to their deadlines.

The analysis was performed with λ = 10 faults per second, a lower value than used

in the previous Peugeot tests since the message set is a more demanding one; 10 faults

per second has also been used as an expected fault model on CAN previously [127].

The results of the analysis are similar in form to the previous case study, and are

plotted in Figure 4.9.

Notice that not all the lines in Figure 4.9 continue down to the very low probabili-

ties, frame 15 is an example of this.The probability at the lowest point on a line can

be interpreted as the probability of the message being unschedulable, taking coverage

into account. As the efficient analysis is used, it achieves full coverage.

However, if the tree-based analysis is used then the lowest point of the line is deter-

mined by a combination of two factors: either because the analysis does not consider

response times greater than the period of the message; or the coverage is low.

4The fault model used is similar to Navet’s (Poisson, same λ) so it is appropriate to compare these
values. Nevertheless, the models are different (no burst errors) so a direct comparison should not
be misinterpreted. See Section 4.2.2 for further details of the pessimism.

145

4 Probabilistic Analysis of CAN

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

1000 10000 100000 1e+06

1-
C

um
ul

at
iv

e
Pr

ob
ab

ili
ty

Response Time (us)

17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Figure 4.9: Analysis of all frames (SAE benchmark, λ = 10).

High-mid Priority Frames

The high and mid-priority frames in Figure 4.9 (except the very highest priority mes-

sage) have response times very close to their periods and so have relatively high prob-

abilities of deadline failure, e.g. for message 12, p(R12 > D12) = 0.0416. Therefore

(depending on the particular requirements of the system) the analysis here might indi-

cate that the probability of deadline failure at a critical instant with this message set is

not acceptable.

Low Priority Frames

For the lowest priority message in this example, they have such long deadlines that

the probability of network faults leading to a deadline failure is very low.

146

4.9 Evaluating the Analysis

Message 15 in Detail

The analysis results for message 15 (which is the third line from the left in Figure 4.9)

appear in Table 4.6 expressed to 4 significant figures and are plotted (also with the

simulation results) in Figure 4.10. The WCDFP for one invocation is then calculated

as 1.208 ·10−5, this being an upper bound for the real probability of frame 15 missing

a deadline.

Table 4.6: Probabilistic Analysis of Frame 15 (SAE set, λ = 10).

Ri p(Ri)
(ms)
2736 9.730 ·10−01

3568 2.640 ·10−02

4400 5.760 ·10−04

1e-05

0.0001

0.001

0.01

0.1

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1-
C

um
ul

at
iv

e
Pr

ob
ab

ili
ty

Response Time (us)

Analysis
Simulation of Critical Instant

PSfrag replacements

R0

R1
R2

Rn−1

Rn

· · ·
∞

Figure 4.10: Analysis and Simulation for Frame 15 (SAE benchmark, λ = 10).

Again, the simulations confirm the analysis results and indicate that the analysis is

slightly pessimistic in all cases.

147

4 Probabilistic Analysis of CAN

Table 4.7: Comparison of new Analysis, Previous Approach and Simulation.

Probability of Deadline Failure
Priority New Analysis Navet Simulation

17 1.854660 ·10−07 3.072870 ·10−07 0.000000
16 9.368960 ·10−06 1.255530 ·10−05 0.000000
15 2.638460 ·10−04 3.034240 ·10−04 0.000000
14 4.031250 ·10−04 4.468920 ·10−04 9.000000 ·10−06

13 8.015490 ·10−03 8.290030 ·10−03 8.300000 ·10−05

12 1.198650 ·10−01 1.198650 ·10−01 2.029000 ·10−03

11 2.485930 ·10−02 3.055750 ·10−02 4.700000 ·10−05

10 3.338800 ·10−02 3.384190 ·10−02 3.780000 ·10−04

9 2.360710 ·10−01 2.360710 ·10−01 4.377000 ·10−03

8 2.496980 ·10−01 2.496980 ·10−01 3.916900 ·10−02

7 9.291990 ·10−02 1.176530 ·10−01 0.000000
6 4.822250 ·10−06 1.530720 ·10−05 0.000000
5 7.867910 ·10−06 1.614900 ·10−05 0.000000
4 2.880640 ·10−05 6.730180 ·10−05 0.000000
3 1.021330 ·10−17 2.838210 ·10−17 0.000000
2 0.000000 2.943790 ·10−17 0.000000
1 0.000000 2.865470 ·10−17 0.000000

4.9.3 Comparison with Previous Approaches

The result of the new analysis is a probability distribution; the result of Navet’s anal-

ysis is a single probability of failure. Therefore it is easy to compare the two analyses

by considering a single point in the probability distribution (the deadline), as explained

in Section 4.5.

Table 4.7 compares the results of applying the new probabilistic analysis at the

deadline, Navet’s analysis (after correcting the multiple faults problem, Section 4.2.3)

and simulation of the SAE benchmark.

It is clear that the new analysis offers an improvement in pessimism over the old

analysis; in some cases by a large amount. To further compare the results, the data is

plotted, however due to the wide range of the probabilities, it is not useful to plot all

messages on the same axes, even using a logarithmic scale. Therefore, the data plotted

in Figure 4.11 is scaled by normalising against the results of the new probabilistic

analysis. The vertical axis is therefore the ratio between the probability of deadline

148

4.9 Evaluating the Analysis

failure of the new analysis and the other lines.

0.001

0.01

0.1

1

10

2 4 6 8 10 12 14 16 18

Pr
ob

ab
ili

ty
 R

at
io

Frame

New Analysis
Navet Analysis

Simulation

PSfrag replacements

R0

R1
R2

Rn−1

Rn

· · ·
∞

Figure 4.11: Comparison of Navet and New Probabilistic Analyses, Normalised
Against New Analysis.

The main difference between the two analyses is that the one presented in this thesis

removes the source of pessimism in Navet’s analysis where faults after a message has

arrived (but before the deadline) are assumed to delay the message. Therefore, it is

possible to provide an approximate value (for this single test case) of the impact of

this particular form of pessimism. For messages whose response time is very close

to the deadline, there is little difference, indeed where one fault would exceed the

deadline, the results are mathematically identical (e.g. frame 12). For other frames

with a lower probability of failure (e.g. 6, 5, 4) the new analysis produces values

approximately 30%–50% lower. For messages which are extremely unlikely to miss a

deadline, (1, 2, 3—streams 1 and 2 not shown) it is meaningless to compare the results

because: (a) the probabilities are very low and (b) the rounding errors introduced by

the implementations are of the same order of magnitude as the results).

However, there is still a significant difference between the new analysis and the sim-

149

4 Probabilistic Analysis of CAN

ulation results, this is due to other sources of pessimism in the analysis, as discussed

in Section 4.3.1.

Other Differences in Application

In addition to the pessimism improvements, there are other differences between the

probabilistic analysis introduced in this section and previous approaches.

One additional use of the new analysis is that instead of calculating the probability

for a single point (e.g. deadline) the response time distribution may be used to an-

swer the question “with an acceptable probability p, what is the longest response time

expected?”.

Further, this form of analysis can be used to allow a far greater understanding of

the behaviour of a flexible communication system with faults. Rather than simply a

‘Yes/No’ schedulability test, when the results are plotted, the designer can view the

data graphically, to visualise how the reliability of the system changes as the level of

faults increases.

4.10 Summary

The flexibility of an event-based bus allows it to cope well with unpredictable faults

by retransmitting corrupt frames as necessary. In this chapter, an argument for using

a random fault model based on a simple Poisson arrival model was presented, ac-

commodating the idea that faults may arrive at any time. Further, there is always a

non-zero probability that faults will cause delays leading to a deadline failure. Hence

it is usually necessary to write code that is sufficiently tolerant of occasional late or

omitted messages.

The standard industrial practice of merely applying the standard schedulability anal-

ysis [159] is not sufficient to be able to guarantee performance in critical systems

because it relies on the assumption of a minimum inter-arrival time between faults.

This chapter has shown that no analysis can provide a guarantee of performance, but

150

4.10 Summary

instead, it is possible to gain a probabilistic understanding of the response times ex-

pected.

Analysing the workings of a flexible system is difficult; in general real-time research

has focused only on worst case analysis. Applying probabilistic notions directly to

worst case analysis [38] for CAN with faults leads to very pessimistic results, as Sec-

tion 4.2.1 showed. Considering the bus in a more precise way improves the pessimism,

but Section 4.2.2 showed that previous research still shows significant pessimism.

The main contribution of this chapter is a new analysis technique which eliminates

the bounded fault model, and the requirement to derive a level of confidence in such

a model. Instead the probabilistic fault model allows for the concept that faults can

occur at any time, with no limit to their frequency.

The new analysis removed a pessimistic assumption in a previous form of analysis

[114]. Specifically, the new analysis removes the assumption that a fault occurring

after a frame is delivered may cause the frame to be delayed. In general, the new

analysis produces accurate probabilities of failure which are significantly lower (less

pessimistic) than were previously obtainable. Sources of pessimism are naturally still

present, however, the remaining pessimism is not extreme; the analysis data closely

matches results obtained by accurate simulation.

The analysis has been completely automated, execution times of the algorithm were

no more than a few milliseconds for the typical message sets used. Further, no changes

are required to the system in order to perform this analysis as it models a standard

CAN bus. Tool support can be provided in a way that is compatible with standard

practice tools which currently use Tindell’s schedulability analysis.

The result is an analysis which is both practical to use and accurately models

the flexibility of real-time event-triggered communication, adding to the evidence in

Chapter 3 that the flexibility of an event-based bus can be exploited to provide pre-

dictable systems.

151

152

5 Predictable Failure

A FAULT-MODEL IS ESSENTIAL for any form of response time analysis, yet even the

use of a non-bounded, probabilistic model in the previous chapter does not guarantee

correct operation under high-levels of faults. In this chapter, a CAN based protocol

called Timely-CAN (TCAN) is developed which under fault conditions sacrifices as-

sured delivery (that messages will arrive through eventually) for timeliness (any mes-

sages that arrive will arrive on time). This leads to an effective scheme for providing

predictable behaviour under failure conditions [33].1

5.1 Approach and Justification

Previous chapters have shown that missing deadlines in an analysable way is both

acceptable and useful in a real-time system. Furthermore, it is clear that the unpre-

dictable nature of faults means that it is not possible to ever guarantee both assured

and timely delivery of messages (although as the previous chapters have shown, the

number of deadlines missed is analysable and can be very small).

In the presence of faults, the CAN protocol attempts to provide assured delivery,

which it can only achieve at the expense of timeliness of messages. In general, the

aims of assured and timely delivery are in conflict. CAN sits at one end of the scale

providing assured delivery with no attempt at timely delivery—the CAN protocol it-

self does not even assimilate the concept of timely delivery. At the other end of the

scale are time-triggered protocols such as TTP and Time-triggered CAN (TTCAN)

where frames are transmitted at predetermined times. These focus on timely delivery

1In the original conference publication, TCAN was named LST-CAN. The names are synonymous,
but TCAN is preferred.

153

5 Predictable Failure

at the expense of assured delivery, since if a fault affects a frame then that frame is

abandoned (no re-delivery attempt is made).

In real-time systems, it is widely accepted [39] that time should be treated as a first

class entity, rather than something that is added on afterwards. This is opposite to

CAN where, time is not directly considered. Yet, as previously indicated, a criticism

of time-triggered protocols is that they may have a low reliability in the presence of

network faults because they do not have the flexibility to provide efficient active fault

tolerance. In this chapter a simple extension to CAN is presented, TCAN, which is

placed somewhere between CAN and TTCAN. It does this by directly considering

both timely and assured delivery, each where it is useful to do so.

As timely delivery and assured delivery are in conflict, the protocol provides a best-

effort approach to assured and timely delivery on CAN where if it is possible to deliver

a frame in a timely fashion, then the frame is delivered, otherwise the frame is not

delivered at all. The bandwidth released by not transmitting frames that would arrive

late can be used to absorb delays and hence help to provide timely delivery of other

frames.

To justify this approach it is considered that a late message has no value according

to the firm fault model advocated in earlier chapters and common in industrial prac-

tice.2 As further justification for using the firm model: in a hard real-time system if

a message does not arrive on time then it is considered a fault and error recovery op-

erations are performed. Therefore, there is no use in attempting delivery of a frame

after its deadline has expired. This behaviour ties closely with the timed asynchronous

model of communication [46].

Additionally, since faults are considered to be unpredictable, even if analyses such

as the schemes introduced earlier in this thesis are used, off-line absolute guarantees

of timely behaviour are not possible. During the lifetime of the system, exceptional

bursts of high levels of faults may occur, the effects of which are beyond the analyt-

ical scenarios considered off-line and so on-line schemes are required if predictable

behaviour is to be maintained.

As Chapter 3 showed, by allowing a small number of deadlines to be missed (in an

2See Sections 2.4.2 and 2.1.5.

154

5.2 Intuition

analysable way), very large improvements can be made on the quantity of data that a

bus can safely carry. Now, improvements can be made flexibly at run-time, in addition

to just considering the behaviour through off-line analysis.

5.2 Intuition

Chapter 3 showed how weakly-hard analysis can take advantage of the fact that in

an event-triggered bus (such as CAN), frames rarely take as long as their worst case

response time, Ri, to reach their destination. Most of the time, a frame will arrive

considerably earlier [24, 21]. This is because the worst case scenarios upon which the

worst case response time Ri is derived only occur infrequently. In particular,

• the amount of interference that each frame can possibly receive from other

frames varies on each invocation of a frame;

• when other factors such as the maximum bit-stuffing assumption, blocking and

jitter are not producing their maximal overhead, the response time of a particular

frame is reduced.

Additionally from Chapter 4:

• faults affecting the system are not predictable and certainly not consistent, there-

fore infrequent, but bad, scenarios of faults would be expected to be observed.

Therefore, for much of the time, there is considerable slack in the system which

may be devoted to error correction (retransmissions). However, when near-worst-

case scenarios are observed, the available bandwidth is limited, therefore the desire

to retransmit corrupted frames has to be balanced against the delaying effect that this

may have on other frames.

The TCAN protocol presented in this chapter aims to exploit the flexibility of an

event-triggered bus in a predictable way by only providing error recovery when it is

useful to do so.

155

5 Predictable Failure

5.3 The Timely-CAN Protocol

In this section the details of the TCAN protocol are explained. In outline, the section

proceeds by arguing that some frames need not be transmitted, then a policy for which

frames to not transmit is derived. Finally, semantics for the transmitters and receivers

are defined.

5.3.1 Aborts

In a critical system, it is usually necessary to consider the consequences of not receiv-

ing a message (for example if the sending process fails, or in the event of transient or

permanent bus communication failures). It is usual to write code to handle losing a

message safely. Indeed, Chapter 4 showed that this is often necessary.

This chapter continues with this argument and supposes that in the general case,

losing a message should not be considered fatal and the system should continue to

function as normally as possible without the message. Control laws, for example, are

generally able to maintain stability and work effectively if a small number of data

values are lost (vacant sampling) [116].

Considering the firm deadline model, advocated in earlier chapters (where there is

no utility in delivering a late message), it is noted that CAN makes repeated attempts

to transmit a message, whether it is late or not. Removing the requirement for assured

delivery allows the use of error recovery techniques that make informed decisions

about whether or not to transmit specific frames.

To maintain terminology with current hardware devices and literature, the term

abort when applied to a CAN frame will mean to cease attempting to transmit a frame.

This corresponds to removing a frame from a transmission queue in a typical CAN

hardware device, rather than stopping frame transmission in mid-frame.

5.3.2 Example

The basis of the TCAN protocol is to never transmit a message which would arrive late

(due to errors), in order to provide bandwidth to ‘absorb’ delays. An aborted message

156

5.3 The Timely-CAN Protocol

can be considered to be a form of real-time error confinement.

The scheme may be explained by example: Figure 5.1 shows how the protocol

can ensure the deadlines of other messages on the bus after a continuous block of

interference. Figure 5.1(a) shows a scenario where frames are scheduled in priority

order. The points marked X are deadlines set by some appropriate scheme (see later).

In Figure 5.1(b), a burst of network interference prevents any message from appear-

ing correctly on the bus for some time, all messages are delayed and arrive after their

deadlines. Figure 5.1(c) shows how the protocol suggested deals with errors: mes-

sages 1 and 2 cannot possibly arrive before X, therefore they are abandoned, which in

this case allows all other messages to arrive on time.

5.3.3 TCAN in detail

Time is used directly in the protocol: each frame is associated with a delivery threshold

time which is known a priori to all nodes (i.e. common knowledge). The delivery

threshold can be viewed as a deadline for transmission and it may be treated as a firm

deadline, but note that this is not necessarily the same as the actual deadline which is

derived from application requirements.

On the bus during a message transmission, there are two participating classes of

node: one or more transmitters and zero or more receivers. Informally: the transmit-

ters must ensure that a frame does not appear on the bus after the threshold, and the

receivers must only listen for the frame until the threshold. The responsibilities of

each are explained below in detail.

Initially, a single global clock is assumed with which all nodes are perfectly syn-

chronised; this (unrealistic) requirement is relaxed later.

Using similar notation as used in Chapter 3, for each frame 〈i,k〉 (the kth mes-

sage within a stream i) there is a globally known threshold, Xi,k. This is an absolute

time with respect to the global clock. A globally known threshold is available with

periodic messages, for example. Other messages where it is not possible to state a

global delivery threshold are also considered in Section 5.6. There are a number of

possible schemes for determining a suitable delivery threshold; these are discussed in

157

5 Predictable Failure

Time

X

X

X

X

X

X
6

5

4

3

2

1

M
es

sa
ge

pr
io

ri
ty

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

(a) Error Free Operation.

Time���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

X

X

X

X

X

X
6

5

4

3

2

1

M
es

sa
ge

pr
io

ri
ty

PSfrag replacements

R0

R1
R2

Rn−1

Rn

· · ·
∞

(b) Network Fault Delays All Messages.

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Time

6

5

4

3

2

1

M
es

sa
ge

X

X

X

X

X

X

pr
io

ri
ty

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

(c) Losing Two Messages Allows All Others to Arrive on Time

Figure 5.1: TCAN: Simple Example Showing How Losing Messages Can Improve
Timeliness of Others.

158

5.3 The Timely-CAN Protocol

Section 5.5.

The basis of the protocol is that no part of a frame may appear on the bus after its

delivery threshold/deadline Xi,k. This must be adhered to strictly, in order not to break

further the atomic broadcast expectation.3 This leads to the property that at (the global)

time Xi,k, the frame 〈i,k〉 has either been transmitted successfully, or it will never be

transmitted.

Since the worst case duration of each frame, Ci, is known, a cut-off point, termed

the latest send time (LST), donated Li,k is defined. This marks the latest time that

message transmission may begin, in order to ensure that if there are no faults then it is

received by Xi,k:

Li,k = Xi,k−Ci (5.1)

In the following sections, the semantics of the transmitters and receivers are ex-

plained. Some simplified pseudo-Ada code is used (Figures 5.2 and 5.3) to show the

semantics of TCAN. The code also shows how the protocol may be implemented in

software, although a software implementation is not necessarily the best realisation.

Section 5.8 discusses implementation strategies in more detail.

The example code uses Ada tasking, protected objects and the Ada select statement.

It assumes a protected object (lst interface) which the application and hardware use

for communication with the driver task. For clarity, it only deals with messages of a

single priority.

Transmitter Specification

For the most part, a TCAN transmitter acts exactly the same as a CAN transmitter:

messages are queued and transmitted as usual and an error detected during transmis-

sion causes the frame to be re-queued.

The major difference in interface is that application software must additionally spec-

ify a delivery deadline (threshold) for each frame, in addition to the data.

From equation (5.1) the responsibility of a transmitter is to guarantee that the start

3Refer to Section 2.5.7.

159

5 Predictable Failure

of frame bit occurs no later than at time Li,k. In other words, a frame must not attempt

to enter arbitration after time Li,k. The start of the frame may of course occur at any

time before this.

At time Li,k, if the frame has not already started transmission, the transmitter must

have completed the removal of the frame from the transmission queue. It may cor-

rectly complete the removal before Li,k; however this causes a performance loss. An

implementation should therefore aim to abort a frame as late as possible, but always

before Li,k.

The action of the transmitter may be implemented by the Ada code in Figure 5.2.

1 task body lst sender is
2 m : frame;
3 begin
4 loop
5 lst interface.readmsg(m);
6 candevice.send(m.data,m.id);
7 −− write message to device for transmission
8 select
9 lst interface.sent; −− protected object guarded entry which only

10 −− opens when the hardware interrupt has occurred, meaning
11 −− that the message has been correctly sent
12 lst interface.markaborted(m); −− set field in the frame so the
13 −− application knows that it was sent
14 or
15 delay until m.L − delta t;
16 candevice.doabort(m.id);
17 −− send abort to device (if the frame is currently being
18 −− transmitted then it is not removed however it is not
19 −− requeued if there is an error)
20 lst interface.markaborted(m); −− set field in the frame so the
21 −− application knows that it was not sent
22 end select;
23 end loop;
24 end lst sender;

Figure 5.2: Code for TCAN Transmitter.

In order to ensure that a message never begins transmission after L, it is necessary

to adjust the delay in line 15 by some value δt (delta t) to take into account execution

time and delays. The instruction to remove the message from the hardware must not

be executed late, (however it may be removed earlier than Li,k).

Therefore, the delay must be until only Li,k−δt where

160

5.3 The Timely-CAN Protocol

δt is the worst case time that it can take for the second branch of the

select statement to execute including the worst latency of the delay until

statement.

Receiver Specification

A TCAN receiver acts like a CAN receiver for all parts, except that the application

may also specify the deadline by which it wishes to receive the message.

If such a deadline is specified, then a receiver must ensure that it accepts any frame

that begins transmission at any time up to L. As the transmitter will never send a frame

after L, there is no penalty in listening after L, except for an obligation to the receiving

application to (timely) notify that there was no frame.

Receiver code appears in Figure 5.3.

1 task body lst receiver is
2 m:frame;
3 begin
4 loop
5 lst interface.getidtoreceive(m);
6 candevice.listen(m.id); −− configure CAN hardware
7 select
8 lst interface.received; −− guarded protected object entry
9 −− which only opens when a message has been received correctly

10 candevice.read(m); −− read from device
11 or
12 delay until m.LST + Ci + delta r;
13 candevice.stop listen(m.id);
14 end select;
15 end loop;
16 end lst receiver;

Figure 5.3: Code for TCAN Receiver.

In order to guarantee that a receiver will accept any message up to the deadline, the

delay must be increased in line 12 by a value δr (delta r): where

δr is the worst case time that it can take to execute to the end of the first

branch of the select statement, starting from the time of the end of the last

bit of a frame.

161

5 Predictable Failure

5.4 Properties

The TCAN protocol described in Section 5.3 is extremely simple. Yet as Section 5.9

will show, the effect of it is to provide significant improvements to the number of

messages that arrive on time in a flexible communications system. In general, using

TCAN delivers approximately twice as many frames on time as CAN does under high-

fault conditions. This section provides an insight into why it works, then explores

the properties that any system based on TCAN can expect from the communication

subsystem.

5.4.1 Insight

TCAN works by exploiting the fact that in an event-triggered system, tasks (or mes-

sage frames) tend to suffer different levels of interference on each iteration. The inter-

ference depends on the relative periods of the higher priority tasks (or frames). This

was explored in Chapter 3. In particular, with reference to Figures 3.1 and 3.2 on

pages 78 and 79, note that there is only a relatively small number of peaks.

In CAN, instances of a frame suffer more interference (from higher priority frames)

near to a critical instant. Where faults affect frames near the critical instant, frames

may be pushed beyond some deadline. However, away from the critical instant, the

same pattern of faults may not be sufficient to delay the frames beyond the deadline.

Therefore, although the system may be able to function safely with some faults for

most of the time, when the faults occur near the critical instant there is insufficient time

to recover from them. It is these frames that the TCAN protocol does not transmit,

thereby transmitting frames only if there is sufficient time to do so.

5.4.2 Properties of the Communication System

Never attempting to send a frame if it cannot arrive on time will provide a service

with:

• Real-time error confinement: because there are no late messages, a late mes-

sage cannot adversely affect the timing of any further messages, allowing the

162

5.4 Properties

bus to quickly “catch up”. Compare this with normal CAN where after errors, a

congested bus must first transmit all the late frames.

• Timeliness: timeliness is independent of faults. No matter how many network

faults there are, messages will not be delayed beyond Xi—at the end of the

window, the frame is lost.

• Predictability: Chapter 4 discussed why CAN cannot provide a predictable

worst case delivery time for messages in the presence of faults. By eliminating

all late messages, an element of predictability is provided on the bus. For each

message, a well defined window exists, during which the message may appear.

At run-time, TCAN ensures that the message cannot be on the bus outside of

this window.

• High reliability: by maintaining the flexibility of CAN and allowing frames to

be retransmitted at any time when the bus is available (except when a frame is

late), the natural robustness of CAN to errors is not lost. In Section 5.9 this is

demonstrated by means of simulation.

• Atomic Broadcast is unaffected: with the exception of the effect described

in Section 2.5.7 which can prevent guaranteed atomic broadcast, either all re-

ceivers will receive the frame or no receivers will; the addition of TCAN does

not change the existing semantics of CAN in this respect.

• Common Knowledge of message delivery: the delivery threshold deadline is

known a priori. Therefore, at time Xi, all nodes know whether a frame has been

received by all nodes, or whether the frame will never be received by any node.

This is handled by the protocol, therefore the application never has to deal with

late messages, only message omissions. Note that this property only applies

under certain circumstances, described in Section 5.6.

• Reliability of delivery not ensured: Reliability of delivery is dependent on

the nature of the errors and the amount of spare bandwidth reserved for errors.

This requires the application designer to carefully consider the failure actions

of a message not being delivered, but this is a good thing and is helped by the

163

5 Predictable Failure

fact that there is always a known point in time where the system knows that a

message is definitely not going to arrive.

Note that while there are no faults and assuming that appropriate timing analysis has

been performed, TCAN works exactly as for normal CAN: all messages are assured

and timely. Only in the presence of faults may some messages be lost in order to

ensure timeliness. As shown later, the chance of actually losing a message is small

because in general only a small number of messages actually arrive close to their

threshold times.

5.5 Strategies for Deadline Calculation

A significant number of policies emerge for which frames to abort and which to trans-

mit. TCAN uses the concept of a delivery threshold or deadline for a frame. This

section discusses several different schemes for setting the delivery thresholds and con-

trasts their effects.

A great deal of flexibility is available in deciding Xi,k. There may be a system-

wide policy, different policies for each message stream, or even different policies for

each individual frame. It should be noted that, ideally, thresholds are known to both

the transmitter and the receiver. Therefore, the most useful thresholds may be ones

that can be determined off-line, or inferred at run-time without further communication

between nodes.

The threshold deadlines may be calculated dynamically, based on some suitable

algorithm, or may be static in nature. Only static thresholds of the form:

Xi,k = Si,k +Xi

where Xi is a constant for the stream are considered in the following because they are

effective and easy to reason about. Dynamic deadlines (not of the form Xi,k = Si,k +Xi)

lead to extra complexity for little practical benefit.

164

5.5 Strategies for Deadline Calculation

5.5.1 Application Driven

To set frame thresholds, it may be useful to appeal to the applications’ needs: a study

of transactions or acceptable latencies within the application may prove a useful guide.

However, setting Xi = Di is not necessarily the best course of action because

• in many industrial scenarios, there is often little understanding of why particular

deadlines are used or how they are derived; this is little justification for using

such values here, where the thresholds are directly related to the reliability of

the system;

• better performance may be achieved with alternative values.

5.5.2 Manual Flexibility

In general, increasing the deadline for a frame increases the chance of delivery for the

frame (since the size of the window in which it may be transmitted is increased). The

cost of increasing Xi is the potential to delay lower priority frames.

Conversely, earlier deadlines (lower values of Xi) allow the bus to recover faster

from faults and ensure that the particular frame has less effect on lower priority frames.

This comes at the expense of an increased probability that the particular frame will be

lost.

The deadlines may be manually adjusted to give more time for more important

messages. In the case of a vital message, the threshold could be set to infinity so

that the message will eventually get through if it can, even if it means losing other

messages.

Consider a periodic sensor reading. If a process misses one reading then it may be

appropriate for the receiving application to assume some value until a valid reading

actually arrives, since control laws are generally able to cope easily if a data value is

lost. A mode-change message however should not normally be lost since it is express-

ing a change. Therefore, regardless of the priority of the message, the importance of

the mode change message may be expressed by increasing its delivery deadline.

165

5 Predictable Failure

Note that the CAN ‘priority’ (ID) is not the same as ‘importance’. Messages can

generally be assigned a ‘priority’ based on either rate monotonic ordering, i.e. how

often the message should be transmitted; or by deadline monotonic ordering i.e. how

soon the message should arrive as viewed from the application’s perspective. The

‘importance’ of a message is related to how necessary it is for the message to arrive.

In normal CAN, increasing the priority of a message does not increase the chance of

it arriving (although it may increase the chance of it arriving before its deadline under

fault conditions).

5.5.3 CAN⊂ TCAN

As the deadline of a frame is increased, the probability of the frame being success-

fully transmitted increases. The limit is where the deadline is set to infinity—which

corresponds to no timeout. This is exactly equivalent to normal CAN.

Therefore, TCAN is a superset of CAN, meaning that any CAN system can be

implemented using TCAN. Hence, TCAN is regarded as an extension to CAN (rather

than a modification).

This may be considered as two general classes of messages:

A. Xi < ∞, non-assured delivery, but guaranteed worst case delivery time;

B. Xi = ∞, (almost4) assured delivery, but frames may arrive late (normal CAN).

The two classes may be safely used on the same bus since the addition of a time-

out does not affect the functional operation of CAN. Note however that the use of

class B messages at higher priorities than class A messages may lead to more class A

messages being lost in the presence of high levels of faults.

5.5.4 Global Strategies for Deadlines

As there is a range of possibilities for deadlines, they may be arranged in a scale,

ranging from 0 to infinite, see Figure 5.4. With the exception of Xi = 0, each range

4Reliable delivery with the usual restrictions of CAN, such as the Atomic Broadcast problem and bus
partitioning. Both of these are regarded as outside the fault model here.

166

5.5 Strategies for Deadline Calculation

has a useful function.

0

WC response time
WCRT with faults

(period)
(hyperperiod)

No Deadline

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·

∞R+ER AT

Figure 5.4: Possible Values for Deadlines.

In the following text, particular points and regions of interest are explained in a

non-chronological order.

Xi = ∞ As discussed previously, an infinite delivery deadline (meaning no timeout)

corresponds to normal CAN. This provides assured delivery, but with none of

the advantages of using a timeout.

Xi = Ti At the next level, the deadlines could be set at the period of the message (for a

periodic message). Simulations reveal that this is actually an extremely effective

approach overall, with only a very small fraction of frames being aborted, even

for high levels of faults. However, this policy tends to have an extremely bi-

ased distribution of aborted priorities—nearly all aborted frames have the same

priority. This is because having long deadlines does not provide much error

confinement, delays can propagate down the priorities just like normal CAN.

Eventually, the delays are absorbed by a frame where the response time hap-

pens to be close to the threshold.

Xi = Ri Setting the deadline to be equal to the worst case response time is an ex-

tremely useful scheme, as will be demonstrated later.

Consider a bus with no faults, the worst case response time, Ri, can be calcu-

lated. It represents the longest time that a frame should take to reach its desti-

nation. If a frame takes any longer than Ri then it is clear that there have been

some faults on the bus. Therefore, if the deadline is set equal to the worst case

response time, then the TCAN protocol acts as a run-time guard against faults

causing delays on the bus.

167

5 Predictable Failure

It might also be expected that using Xi = Ri would be effective at removing bias

in the distribution of aborted messages over the different priorities so that one

particular application is not penalised, since each frame has a similar level of

‘slack’ time before the threshold.

On the other hand, a shorter deadline would increase the number of aborted

messages. Xi = Ri may be too small to be useful in the general case.

Xi = Ri +Ei In a noisy environment, or if lost messages are more critical, time re-

dundancy may additionally be used to tolerate a specified level of errors. In an

effort to increase the deadlines from Xi = Ri it is possible to set the deadlines to

slightly higher than the worst case response time with no faults.

One way to do this is to incorporate redundancy into the worst case response

time analysis using a bounded fault model, such as the sporadic fault model,

equation (2.10) in Section 2.6.4 or (for example) Punnekkat’s equation for E(ti)

[131]. If the response time analysis shows that the system is schedulable then

while errors are within the fault model used to calculate E(ti), reliability, pre-

dictability and timeliness are maintained. Only if faults at run-time exceed the

fault model used in analysis is there a chance of losing a message (in which case

timeliness and predictability are maintained).

In all cases, the TCAN extension acts as a run-time guard to maintain timeliness

and predictability if faults exceed the fault model used for analysis.

0 < Xi ≤ Ri It is possible to set delivery deadlines that are less than the worst case

response time. Of course if a deadline is less than the worst case response

time then this does not guarantee that frames will arrive before their deadlines,

and in the case of TCAN, this does not guarantee that frames will arrive at all.

However, a threshold that is lower than the worst case response time can be

useful.

Recall from Chapter 3 that if the frames have no-harmonic periods then huge

variation is introduced into the response times of individual frames, with the

worst case usually much worse than the average case. Therefore, a threshold less

than the worst case (but greater than the average) would allow most messages

to be sent, but would not send messages in the worst case.

168

5.5 Strategies for Deadline Calculation

This may be an effective means of increasing bus utilisation, particularly in non-

critical systems. Additionally, it could be used to handle transient overloads in

a predictable manner.

5.5.5 Weakly Hard and Probabilistic Guarantees

One of the most useful approaches for setting the delivery threshold policy is to com-

bine TCAN with a combination of the weakly-hard and probabilistic analyses from

the preceding chapters.

Weakly-hard Analysis

The multiple invocation analysis in Chapter 3 provides the worst case response times

for all invocations in the hyperperiod. Using this analysis, and a specification of re-

quired performance (expressed as weakly-hard constraints) a value of Xi can be chosen

such that the minimum weakly-hard specification is maintained.

As a trivial example, suppose that the set of worst case response times (incorpo-

rating some fault model) is {400, 200, 100} and a weakly-hard specification of
(2

3

)

is required, then a threshold Xi = 200 will guarantee the constraint (if faults do not

exceed the model used for analysis) but will not attempt to waste bandwidth on trans-

mitting this frame near a critical instant where the response time may be up to 400. To

increase the probability of the constraint being satisfied if faults do exceed the model

used in analysis, then the value of Xi can be increased using probabilistic analysis.

Probabilistic Analysis

The probabilistic analysis in Chapter 4 can be used to explore what-if scenarios and

derive an appropriate value for Xi to ensure a sufficient probability of delivery.

Using an estimation of the fault rate, the probabilistic analysis will generate a prob-

ability distribution for the response time at the critical instant. Assuming that a desired

probability of meeting the deadline can be specified, an appropriate value for the de-

livery threshold can be read directly from the distribution.

169

5 Predictable Failure

By using this technique, a high level of fault confinement can be provided through

the use of TCAN, yet the system is analysable and shown to be capable of supporting

the minimum requirements for delivery.

5.6 Common Knowledge of Delivery Threshold Times

So far it has been assumed that a global delivery deadline Xi,k is known to the trans-

mitter and all receivers of a particular frame. In some cases this is possible, in others it

is not. This section first discusses the circumstances where it is possible to determine

a global deadline for a frame, then the use of TCAN when it is not possible to set a

global deadline is explained.

As an example of a class of message where a global threshold value is known, a

periodic message stream is considered. As an example of a class of messages where a

global threshold cannot be determined, sporadic messages are used.

5.6.1 Periodic Messages

For purely periodic messages in a stream, the following are assumed to known a priori:

• the period, T , of the message;

• the offset Oi of the stream: the time that the first message in the stream is re-

leased relative to a common event such as an epoch.

Based on the common knowledge above, the threshold for a periodic message, Xi,k,

can be calculated:

Xi,k = Oi + kTi +Xi (5.2)

Xi,k and hence Li,k are therefore known to all nodes in the system. The advantage of

common knowledge of Xi,k is that at this time, all receivers must have either received

the message or know that the message will never arrive. Therefore, any receiving

application may begin error recovery actions for a lost/late message at a known point

in time.

170

5.6 Common Knowledge of Delivery Threshold Times

The above parameters are in accordance with the widely used periodic model. How-

ever, although time-triggered real-time systems necessarily require an offset, event-

triggered real-time systems are often designed without using any explicit form of

offset, even though an offset may implicitly exist. If it is not possible to determine

the offset then it is not possible to determine a global deadline without some further

communication between nodes; instead treating the frame as non-periodic (see sec-

tion 5.6.2) may be useful.

5.6.2 Non-periodic Messages

A non-periodic message may be queued at any time, only known to the transmitter. So

in a distributed system with TCAN there is no timely way for a receiver to know that

the message is queued for transmission, hence no way to know the deadline. Therefore

receivers cannot know when to stop listening for a given message. Two ways of using

non-periodic messages with TCAN are explained below.

No timeout: One way is to consider the nature of non-periodic activity. Non-periodic

messages tend to occur infrequently and tend to contain data which indicates

an event or a state-change. For these messages, simply setting the delivery

threshold to infinity (normal CAN semantics) may be more appropriate so that

a non-periodic message will never be lost due to timeout.

Using this method, schemes often used in normal CAN such as time-stamping

the data may be useful to allow application to know when the message was sent.

Asymmetric Scheme: Alternatively, for non-periodic messages where the data is not

critical or where the data will expire, it is better to use a timeout in order to

provide error confinement. An asymmetric scheme may be used where:

• the transmitter does enforce a delivery threshold;

• but the receivers do not have a timeout.

This asymmetric treatment of non-periodic messages means that messages will

not arrive ‘late’ with the benefits of error confinement and preventing further

delays on the bus.

171

5 Predictable Failure

However, there is an important semantic difference compared to periodic mes-

sages. For a late non-periodic frame, the receiver application has no idea that

a sporadic transmission attempt was made, whereas for a periodic message all

receivers infer that there was a periodic transmission that failed due to faults.

5.7 Clock Synchronisation

Previously, in order that each node can know a priori the delivery threshold time of

each message frame, there has been the assumption that all clocks are exactly syn-

chronised. Clearly, this is unrealistic. In this section, the requirement for exact clock

synchronisation is relaxed. Two schemes are explained, first a method by which ap-

proximate clock synchronisation is sufficient; second, a scheme is provided such that

if the clock synchronisation assumptions are broken at run-time, then the TCAN pro-

tocol can still function correctly.

5.7.1 Effects of Clock Skew

It is the responsibility of the sender never to begin to send a message after the latest

send time, Li,k, has expired. However if a receiver’s clock is faster than the sender’s

clock then the transmitter may send the message too late for the receiver to receive

it. Therefore the receiver will reject the message while others with slower clocks may

accept it, as shown in Figure 5.5. This may or may not be a problem for a particular

system, but it provides opportunities to further break atomic broadcast in CAN.

Section 2.5.8 introduced means of providing clock synchronisation on CAN. The

schemes were divided into two classes: software implementations with a low accu-

racy of synchronisation, and schemes which use hardware support to provide a higher

degree of accuracy. The symbol ε is used to mean the bounded clock difference: i.e.

the maximum simultaneous difference between any two clocks in the system.

The two general ways of dealing with clock skew are called unprotected-TCAN

which is mostly suitable for small ε (low clock drift), usually when hardware clock

synchronisation is used. It requires the clock drift to be guaranteed to be less than ε .

172

5.7 Clock Synchronisation

Transmission begins after

Node 1

Node 2

Node 3

L

(Fast Clock)

Timed out waiting

L
node 3 has reached L

L
Receives Message

(Slow Clock)

Real time

Transmitter

Receivers

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Figure 5.5: Effect of Clock Skew.

That is, if the clocks happen to drift beyond ε then inconsistent scenarios may be

observed where frames are accepted at some nodes and rejected at others.

The other mechanism, called protected-TCAN, is better suited to larger values of ε ,

where such accurate synchronisation is not possible. Its correctness is not dependent

on any value of ε—if at run-time the clocks happen to drift beyond ε then this will not

lead to inconsistent scenarios—although very large run-time clock drift will result in

performance loss.

5.7.2 Unprotected-TCAN

The basis of the unprotected-TCAN scheme is to ensure that even if a receiver’s clock

is late, and the transmitter’s clock is early, then receivers never miss a message. To

guarantee this, each receiver makes an adjustment for bounded clock skew: all re-

ceivers accept messages until the local time Llocal
i,k + ε . Transmitters still continue to

transmit until Llocal
i,k . Therefore there is a window during which any difference in clock

synchronisation will be compensated.

This can impose more traffic on the bus than was intended, however the extra traffic

is extremely small and will not significantly affect performance. In any case, clock

synchronisation may be included in worst case response time analysis to guarantee

schedulability. This is a practical way of dealing with clock skew. This mechanism is

called unprotected-TCAN.

173

5 Predictable Failure

In theory, it does not matter whether transmitters or receiving nodes adjust the win-

dow; they are exactly equivalent, the difference being that the overall value of Xi,k is

assigned a different value. Although it is possible for the senders to make the adjust-

ment: senders do not attempt to transmit a frame after time Llocal
i,k − ε , so a receiver

should listen for the start of the message until time Llocal
i,k , assuming the worst case

skew like this could lead to messages with short response times never being transmit-

ted even under normal conditions. It is preferable for receivers to make the adjustment

by extending their window by ε .

5.7.3 Protected-TCAN

The Protected-TCAN mechanism involves a further change to the protocol but pro-

vides a more robust way of dealing with clock skew. This mechanism is particularly

suited to larger values of ε or where ε cannot be guaranteed.

If a receiver receives the start of a message after Li,k for that message has passed

(according to its local clock) then it is an error. Errors are signalled to all other nodes

on the bus by transmitting a CAN error frame immediately after the complete arbitra-

tion field has been sent. Therefore all other nodes will reject the frame and the sender

will abort transmission (see Figure 5.6). This mechanism is called Protected-TCAN.

(Slow Clock)

(Fast Clock)

Error Frame

Node 1

Node 2

Node 3

L

L

L Times Out

Aborts Send

Late arrival

Real time

Transmitter

ReceiversPSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Figure 5.6: Protected-TCAN: A Late Message Generates an Error Frame So No Nodes
Receive the Message.

174

5.8 Implementation

The advantage of Protected-TCAN is that the protocol still preserves the same level

of atomic broadcast as CAN, even if the clock synchronisation fails to stay within the

assumed precision. This is important since clock synchronisation relies on commu-

nication between the nodes, which is not guaranteed in the presence of faults. Some

level of synchronisation is still required, as very large differences in clock synchroni-

sation will result in performance loss because more messages will be aborted, but if

the bus is so noisy that not even the clock synchronisation messages get through, then

messages lost due to clock drift are insignificant compared to the messages lost as a

direct consequence of the interference itself.

5.8 Implementation

Implementation of the protocol does require modification of the CAN protocol, but

changes are minimal and can be seen as extensions, rather than deviations.

There are two suggested implementation routes: either a custom hardware con-

troller, or for some COTS hardware, CAN driver software may be modified to provide

TCAN.

An approach such as FTTCAN [3] could also be used to implement timeouts in

CAN. However, TCAN is intended as a small change to CAN, and it is better imple-

mented without the network overhead or complexity of FTTCAN.

In practice, custom implementation of a TCAN controller may be the best imple-

mentation and in critical systems this may well be done as a matter of course. Nowa-

days, the availability of dedicated single chip computers and FPGA hardware makes

implementing a custom controller feasible for smaller projects.

Nevertheless, the protocol can be implemented in driver software using current

COTS CAN controller hardware such as the Philips SJA1000 [124] or Intel 8257 [71].

Note that not all CAN controllers are capable of supporting TCAN, for example the

Motorola TouCAN [109] controller is not capable because of its internal buffer ar-

rangement. The CPU overhead of a software implementation is fairly low and merely

involves removing messages from the queue if the deadlines expire.

175

5 Predictable Failure

A TCAN protocol implementation may be based on either BasicCAN or FullCAN

interfaces. The difference between BasicCAN and FullCAN is that in BasicCAN the

hardware is much simpler, typically providing only one transmit buffer and minimal

receive filtering. A FullCAN controller does much more in hardware, usually provid-

ing message “objects” which can be individually programmed to transmit or receive

particular frames.

The most difficult aspect of the implementation is dealing with clock skew: if ac-

curate clock synchronisation is not available, then it is appropriate to use Protected-

TCAN (see Section 5.7.3). This requires modification to the CAN hardware. Imme-

diately upon receipt of certain message IDs, the hardware must transmit an error flag

to the bus. Although this in itself is not a difficult task in a hardware implementation,

the controller must have exact ID matching/filtering which few controllers currently

provide.

If accurate clock synchronisation is ensured then the implementation of the receive

operation is considerably easier because unprotected-TCAN may be used. This can

be done entirely in software. The TTCAN synchronisation mechanism is suggested as

an appropriate hardware supported clock synchronisation method. This is not difficult

to implement in custom hardware. Alternatively, future COTS CAN controllers are

likely to support this directly.

It should be noted that the TCAN protocol is ineffective if the controller suffers

from problems such as inner priority inversion (where a node continues to attempt to

transmit a lower priority frame in its buffer even when a higher priority frame becomes

queued for transmission on the same node). Mechanisms for ensuring correct priority

scheduling are often supplied in application notes for individual COTS controllers

[124].

A hybrid implementation using an FPGA and a COTS CAN controller is underway

[57]. This uses the CAN controller to manage normal message transmission, and

programmable hardware to keep track of delivery timeouts and clock synchronisation

efficiently.

176

5.9 Evaluation

5.9 Evaluation

This section evaluates the effectiveness of TCAN through fault injection modelling

using the software CAN simulator previously described. The simulation aims are:

• to test the ability of the protocol to confine faults;

• to measure the reliability of delivery provided by the protocol.

5.9.1 Model for Simulations

As in the previous chapters, the simulator is set to model worst case message length

and bit stuffing, and accurate modelling of faults at the bit level.

The (harmonic) SAE message set (see page 91) is used again as a benchmark in the

following tests. Recall that for some messages even one fault is sufficient to cause a

deadline failure.

In the simulations, single bit errors and burst errors are injected onto the bus. Single

bit errors affect exactly one bit on the bus; burst errors affect the bus for 1000 µs (125

bits). The faults were distributed randomly according to a Poisson distribution.

Each simulation was repeated for normal CAN and for TCAN protocols. The faults

were injected at exactly the same times for the CAN and TCAN simulations. Each

simulation was performed for 100 times the hyperperiod of the messages. The first

frame of each stream was released at time t = 0 plus some random jitter in the range

specified in Table 3.1.

5.9.2 Testing Fault Confinement

The first set of simulations explores the overall ability of TCAN compared to CAN to

deliver messages on time during very high levels of faults that exceed normal working

conditions. Success of delivery is measured using a simple count of missed deadlines

and lost messages.

177

5 Predictable Failure

Simulations were performed at a variety of fault rates, incorporating single-bit and

burst errors. For the TCAN experiments, the delivery threshold is set to the deadline,

Xi = Di (which is equal to the period, Ti, for most of the streams). This assignment

of Xi makes an explicit equivalence between late and aborted messages; other assign-

ments are possible of course where the delivery threshold does not equal the deadline.

The results are summarised in Table 5.1 for 13 different fault models. The ‘Late

Frames’ column shows the number of frames that arrived late due to faults in normal

CAN per second. The ‘Aborted’ column shows the number of frames that were not

delivered according to the TCAN protocol for exactly the same fault scenarios. The

percentage columns contain the late/aborted frames as a fraction of the total number of

messages sent per second. The rightmost column Aborted
Late shows the ratio of messages

that were lost in TCAN compared to the ones that arrived late in CAN.

Table 5.1: TCAN and CAN Fault Injection Results. All Values are for 1 Second.

CAN TCAN
Key Bit Burst Late Aborted

errs. errs. Frames % Frames % Aborted
Late

A 20 0 0.13 0.009% 0.13 0.009% 1.000
B 40 0 0.78 0.054% 0.73 0.051% 0.936
C 80 0 3.88 0.269% 3.53 0.244% 0.910
D 120 0 11.55 0.800% 9.29 0.643% 0.804
E 160 0 24.45 1.693% 18.79 1.30% 0.769
F 200 0 45.21 3.13% 31.92 2.21% 0.706
G 260 0 100.82 6.98% 55.57 3.85% 0.551
H 320 0 16.406 11.4% 84.17 5.83% 0.513
I 10 5 0.11 0.008% 0.11 0.008% 1.000
J 20 10 0.43 0.030% 0.42 0.030% 0.977
K 40 15 2.07 0.143% 1.93 0.133% 0.932
L 80 20 8.36 0.579% 7.19 0.500% 0.860

Frames queued per second = 1444

For occasional, single bit errors, the simulations show that the TCAN and CAN

protocols perform very similarly. In fact, for model ‘A’ (20 single bit errors per sec-

ond), in both simulations exactly the same messages missed their deadlines (or were

aborted in the case of TCAN). It is interesting to note that even though the analysis

cannot guarantee all frames will be timely, the actual proportion of frames which do

178

5.9 Evaluation

not arrive on time is extremely low (0.009%).

For high error rates the simulations indicate that the TCAN protocol provided sig-

nificant improvement over CAN in terms of number of late (lost) messages. For fault

model G for example, approximately one third as many frames were lost in TCAN

than arrived late in CAN, showing the capability of the protocol to maintain a high

reliability during exceptional levels of faults.

It is clear that where the faults are very high, in order to prevent the bus from lagging

further and further behind, it is necessary to abort some retransmissions, which TCAN

does. Of note from this experiment:

• it is perhaps surprising that the number of aborted/late frames is so low: only

0.25% of frames were aborted at the fairly high error rate of 80 single bit errors

per second;

• most of the frames that were lost were of the same priorities (12 and 8). This

very skewed distribution is due to the fact that the worst case response times of

those messages is close to their delivery deadlines, hence only a few faults are

required before the threshold is exceeded. For model E, 1239 out of the 1879

aborted messages (66%) were frame 8. The same is true for CAN, 1643 late out

of the 2445 (67%) were frame 8.

The skew noted in the experiment is highlighted in Figure 5.7 which shows the

distribution across priorities of aborted frames.

5.9.3 On Removing Bias

Faults anytime in the system can cause a domino effect, delaying all frames until one

of them exceeds the deadline, at which time the bus is allowed to catch up. Where

thresholds are close to the worst case response times, those particular frames are the

ones that are lost. The TCAN protocol is able to reduce the skewed distribution of lost

messages by considering a less naive threshold strategy than simply using Xi = Di.

Section 5.5 provided a number of policies for determining threshold values. In par-

ticular, it noted that setting the threshold to some function of the worst case response

179

5 Predictable Failure

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10 12 14 16 18

Fr
ac

tio
n

of
 F

ra
m

es
 L

os
t

Priority

X=D

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Figure 5.7: Distribution of Lost Frames for Model F.

time is useful. Repeating the experiments with Xi = Ri (where Ri is the worst case

response time not considering any faults) gives stream 8 some reprieve from missing

deadlines, but at the cost of losing some other frames.

However, the very low priority frames lose considerably more frames than before

due to their shortened thresholds. Note that the period of the highest priority mes-

sage is larger than most other frames, therefore frame 17 may only interfere with the

lower frames occasionally (once per second); whereas for the lower priority frames,

the frame 17 always interferes. It is worth noting that including the highest priority

message in the analysis is almost the same as including an error term. If the high-

est priority message is removed from the simulation (and the response times lowered

accordingly) then more frames are lost/late than if the frame is kept in.

Ideally, to increase the chance of an individual frame being received, a larger value

of Xi should be used to include some overhead for faults as previously discussed.

However, as this message set cannot guarantee to tolerate even one fault for frame 8,

then it is not possible (or useful) to increase the threshold of the higher priority frames.

180

5.10 Summary

Nevertheless, it is possible to use a hybrid scheme: for priorities 17–8, let Xi = Ri,

for the others, let Xi = Di. This results in a slight flattening of the distribution, see

Figure 5.8, but as there is little slack in the deadline for frame 8, there is very little

that can be done.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10 12 14 16 18

Fr
ac

tio
n

of
 F

ra
m

es
 L

os
t

Priority

X=D
High Priority: X=R, Low Priority: X=D

PSfrag replacements

R0

R1

R2
Rn−1

Rn

· · ·
∞

Figure 5.8: Distribution of Lost Frames for Model F with 3 Threshold Schemes.

5.10 Summary

The Timely-CAN (TCAN) protocol presented here is a small extension of CAN which

enforces predictable timing behaviour on CAN in the presence of unspecified transient

network faults. It prevents network faults affecting the timeliness of messages by sac-

rificing guaranteed delivery. It can be used to help systematically provide operational

status with degraded performance in the presence of unknown network errors. The

protocol is simple to understand and to implement, and the run-time CPU overhead is

small.

181

5 Predictable Failure

TCAN provides real-time predictability by guaranteeing that late messages are not

allowed on the bus. Each frame has a delivery deadline (or threshold); various schemes

were discussed for setting the deadlines. One suitable scheme was highlighted: setting

the deadline to be equal to the worst case response time including some redundancy for

faults. This ensures that while network-born faults are within the fault model assumed

for worst case response time analysis, the protocol behaves exactly as normal CAN.

However if errors exceed the fault model (possibly introducing unanticipated delays)

then any late messages are not sent on the bus. This can be seen as a form of real-time

error confinement, allowing the bus to recover quickly from faults.

Messages queued for transmission may not necessarily arrive, therefore applications

must be able to cope with lost messages. However, the sender and receivers always

know whether or not a periodic message has successfully been sent. At a globally

known point in time, all nodes will either have received the frame, or they will know

that the frame will never arrive. This is an advantage for system design because it is

generally easier to reason about lost messages than it is to consider messages which

may arrive at some unknown time later. For example, assumptions about bounded size

buffers still hold [46].

Normal CAN messages (which do not have a timeout) can also be transmitted si-

multaneously on the same bus. They are assured delivery messages (to the same

extent that CAN normally provides assured delivery) but the timing behaviour of such

messages in the presence of unpredictable faults is unpredictable—the same as for

normal CAN. However, some speed-up might be expected if there are higher priority

messages which do have a delivery threshold.

Simulation shows that the protocol is effective at providing error confinement and at

improving the overall reliability of the bus (measured in terms of the number of frames

delivered on time). Results with the SAE benchmark indicate that the overall success

of delivery of TCAN is high even for exceptionally disturbed buses. An additional

example showed how the protocol can work in conjunction with weakly-hard and

probabilistic analysis.

The TCAN protocol has been shown by these examples to give a considerable in-

crease in quality of service on CAN under high levels of faults. Furthermore TCAN

182

5.10 Summary

still allows the flexible nature of CAN to be used to accommodate errors, leading

to an extremely reliable (nearly all messages get through) yet predictable bus in the

presence of network faults.

TCAN can be considered to lie somewhere between CAN and TTCAN: it exploits

the natural robustness of CAN by allowing message retransmission. However it only

allows the (re-)transmissions within a specified window, the width of which is deter-

mined by response time analysis. This provides the timing predictability of TTCAN

and yet ensures that the CAN re-transmissions are used to good effect to provide a

very reliable bus.

183

184

6 Conclusion

THE ABILITY TO MAKE SCHEDULING DECISIONS AT RUN-TIME is a key aspect

of flexibility that may be exploited to provide dependable real-time communication.

Such flexibility has the potential to allow a bus to achieve efficient fault tolerance

and support non-periodic data or messages with partially known timing requirements,

attributes which are of increasing concern in distributed control systems.

The ‘uncertainty’ often associated with flexibility has been prohibitive in the use of

a flexible bus in dependable systems: the predictability of a bus is important [146].

However even though it is not possible to predict the exact sequence of events on a

flexible bus, it is not necessary to do so: the properties of the bus are predictable at

a higher level—at the interface to the application, where a well-defined, predictable

service can be provided.

Throughout, this thesis has referred to the unpredictable nature of faults and the

difficulty of estimating faults which may affect a communications bus in the future.

Flexible communication, making scheduling decisions at run-time, can be a powerful

way of dealing with such uncertainty. Simulations and analysis have shown that high

reliability can be obtained through the use of this fault tolerance.

This thesis has shown that flexibility may be exploited in event-triggered commu-

nication to provide a reliable, fault tolerant service which is capable of supporting

dependable systems. This thesis has demonstrated this in the preceding chapters us-

ing a number of techniques including analysis schemes and run-time support. In the

following, the themes in this thesis are summarised briefly and evaluated.

185

6 Conclusion

6.1 Missing Deadlines

The assumption that all contributions in this thesis share is that missing deadlines

in real-time communication is not always catastrophic. Applications tend to exhibit

robustness to a small number of timing faults: for many applications, occasional single

missed deadlines can be safely handled and recovered from. The firm deadline model

(as currently used in many avionics applications) is adopted.

Additionally, this thesis asserts that missing deadlines in real-time communication

is:

Unavoidable since the faults that will affect the communications bus are hard (or

impossible) to predict, no electrical bus system can guarantee reliable and timely

delivery unless the future fault conditions are known.

Analysable but not constraining: the concept of a hard deadline provides a clean

way of describing correct behaviour, however other forms of deadline (such as

weakly-hard deadlines and probabilistic deadlines) are also well-defined ways

of describing timing behaviour and with appropriate analysis may be used to

predict behaviour.

Useful since although deadlines may be missed in the worst case(s), in most cases

deadlines are still met, and missing occasional deadlines can be used to enhance

the schedulability, fault tolerance and utilisation of a bus.

Missing deadlines therefore is more acceptable than is often implied by some other

research in real-time systems. This thesis makes the step from hard deadlines (with

their advantages in reasoning about a system) to other forms of deadline that are not

hard, but yet are still analysable and provide practical advantages over systems de-

signed using only hard deadlines. In particular, the firm deadline model is assumed

with additional information about the number of deadlines that may be missed, such

as weakly-hard constraints and probabilistic guarantees.

186

6.2 Exploiting Variation

6.2 Exploiting Variation

In an event-based bus, it follows that the response times of the invocations of a mes-

sage in a stream will vary according to the current traffic on the bus. Specifically, for

CAN, this means the interference of higher priority frames varies for different invoca-

tions of the same message.

Although predicting the exact response times is infeasible, if sufficient is known

about the pattern of interference from higher priority frames, then multiple invoca-

tion analysis can be used to derive a worst case response time for individual invoca-

tions. This then leads to weakly-hard deadline guarantees where specific bounds can

be placed on the number and pattern of deadlines missed, as described in Chapter 3.

Where periodic messages with non-harmonic periods are used, then the frequency

of near-worst case occurrences is much reduced, and the variation in response times is

maximised. Although in a traditional real-time system, variation is considered difficult

to deal with, weakly-hard analysis on CAN allows real-time behaviour to be analysed

and predicted.

The advantage of using the analysis is that the overhead of a high number of faults

can be incorporated into the calculations—much higher numbers of faults than nor-

mal worst case response time analysis can consider. This means that even though a

bounded fault model is used in the analysis, the parameters of the fault model can be

increased to consider the behaviour at higher fault levels. Therefore the probability of

faults at run-time exceeding the fault model used for analysis is smaller. Hence more

confidence can justifiably be placed in the behaviour and performance of the system.

6.3 Exploiting Dynamic Fault-tolerance

The advantages and the problems of the bounded fault model have been referred to

many times throughout this thesis. A more realistic way to model faults is to con-

sider a random fault model where faults occur at random times, following a known

distribution such as the Poisson distribution. This leads to the concept that worst case

response time analysis (in the usual sense) is not possible, because a known worst case

187

6 Conclusion

(i.e. bounded network activity) is a necessary condition for worst case analysis.

However, it is possible to exploit the fact that in an event-based bus, bandwidth may

be used flexibly to retransmit corrupt data. Therefore the probability of a message

being lost (or late) due to faults is not dependent on merely the probability of a frame

being corrupted (as in the case of TDMA communication) but it is also a function of

the amount of network activity near the time of the fault.

The effect of the dynamic fault-tolerance is analysable with a random fault model

to provide the probabilistic worst case response time analysis introduced in Chapter 4.

One advantage of a probabilistic worst case response time analysis is that rather than

an over-simple ‘Yes/No’ schedulability test, the analysis gives a quantitative indication

of reliability to the designers, showing potential areas of failure where alternative fault

tolerance may need to be applied.

6.4 Exploiting Missed Deadlines

For an application with explicitly firm deadlines, it is possible to further exploit the

flexibility of a bus to make scheduling decisions at run time, by legitimately not trans-

mitting messages that would arrive late. This frees bandwidth and allows the bus to

recover from faults faster than if it had to first transmit queued messages. This run-

time mechanism can be viewed as a real-time fault-confinement scheme, to protect

against exceptional levels of faults that may occur.

The net result is that under even very high levels of faults, only a small number

of frames need to be sacrificed in order to deliver other frames on time, providing a

high reliability communications bus. Additionally, it allows the specification of an

acceptable window of transmission for each frame. This means that the effects of any

number of faults on the timing behaviour of the bus is limited to within the delivery

deadline of queued frames only. An extension to CAN, named Timely-CAN (TCAN)

has been suggested in this thesis which incorporates the notion of delivery deadlines

into CAN.

188

6.5 Evaluation

6.5 Evaluation

This thesis forms only part of continuing research around the world into flexible real-

time communication and its use in dependable systems. This research includes sig-

nificant recent work on the reliability and timing properties of CAN [140, 117, 3, 55,

113, 57]. Collectively, this research provides a strong argument that a flexible bus may

be used to provide communication in a dependable system. In particular, this thesis

shows how the flexibility can be exploited to implement fault tolerance in a predictable

way.

Where this thesis differs from similar research [126, 131, 142] on real-time com-

munication is the acceptance that real-time computing is not the same as simply guar-

anteeing hard deadlines. Indeed, the starting point of this work is that it is not nec-

essarily possible to guarantee deadlines at all in embedded communication because

the external effects of environmental interference may be unpredictable [35]. Such an

observation is frequently missed in analytical real-time research [127, 2, 96].

Therefore, the approach taken here, to accept deadline misses and to try to exploit

the variation and flexibility of event-triggered communication, intrinsically leads to

very practical results that may be particularly suited to industrial applications. Cur-

rent best practice is to make timing behaviour ‘guarantees’ for CAN based on worst

case response time analysis [159]. This necessarily involves accurately deriving a

worst case error overhead function, Ei(t), for each application through measurement

or estimation. However, the difficulties of doing so (with any accuracy) are clear; un-

surprisingly, few guidelines are available for such a derivation. In comparison with

current practice, this thesis shows that:

• worst case response time analysis is not necessarily the best way to view the sys-

tem, instead looking at the other (non-worst case) invocations and probabilities

of failure can show a (perhaps surprising) level of reliability;

• a bounded Ei(t) is not necessary, instead only approximate estimations of faults

are required to gain an understanding of the probability of failure.

The acceptance of a firm deadline model (as normally used in ARINC-629 com-

munication in avionics [8]) rather than considering only hard deadlines, is one key to

189

6 Conclusion

releasing the flexibility of CAN. As Chapters 3, 4 and 5 showed, allowing a flexible

bus to miss occasional deadlines under fault conditions can provide considerable ad-

vantages in terms of the ability to support practical levels of analysable traffic, and the

overall reliability of communication.

It is easy to overlook the fact that dependability comes from the combination of

reliability, timeliness, availability, safety and other facets. System dependability must

be considered as a whole, taking into account the services and interactions of all parts.

No bus can guarantee both timely and reliable delivery in the presence of unpredictable

faults, so it would seem that some compromise between timely delivery and reliable

delivery is required. The results of this compromise may be measured using metrics

such as reliability and availability, with subjective evaluations of predictability and

safety, leading eventually to a justifiable argument for dependability.

In time-triggered communication, including ARINC-629, the focus is mainly on

timely communication; fault tolerance concerns are secondary. TTP for example im-

plements tolerance against data corruption by routinely transmitting all data twice [83]

to increase the probability of delivery. CAN on the other hand has increased potential

to recover from faults efficiently (but at the cost of guaranteed timeliness). The natu-

ral robustness of a flexible bus may be used to good effect, message retransmissions

need only take place where necessary, and as many times as necessary. Therefore,

the use of a flexible bus, such as CAN, may improve system dependability through its

efficient error recovery mechanism. To ensure other parameters of dependability, such

as predictability, a combination of analysis and the TCAN protocol can be used.

The importance of being able to support partially known, or flexible, timing re-

quirements in dependable communication is reflected in the design of FlexRay [19],

the automotive industry’s new protocol which is likely to succeed CAN for in-vehicle

requirements. FlexRay, although largely TDMA based contains some slots reserved

for event-triggered communication. The advantages and disadvantages of this hybrid

approach have been discussed before in a variety of areas [100, 128, 14]. One partic-

ular motivation for using a TDMA foundation is to guard against any timing failures

(whether caused by disturbances on the bus, or by faulty nodes). In many respects

TCAN is able to provide a similar level of protection as a TDMA bus by enforc-

ing acceptable windows for transmission, whilst maintaining the flexibility to support

190

6.5 Evaluation

partially known timing requirements. However, a CAN based protocol such as TCAN

does not implicitly have the ability to detect faulty nodes which incorrectly transmit

data to the bus (and hence potentially starve other nodes of sufficient bandwidth to

meet their timing requirements. Recent work on the babbling idiot failure may help

to ensure predictable timing behaviour even when nodes are faulty [34].

In summary, the approaches described in this thesis, supplemented by relevant ex-

amples and simulations, which in conjunction with other evidence mentioned through-

out the thesis, provide strong argument for the use of flexible communication in de-

pendable systems.

6.5.1 FlexRay

At the time of writing, FlexRay is beginning to take a stable form. Recall that FlexRay

implements a TDMA schedule with slots reserved for event-triggered communica-

tion; within the event-triggered slots, a protocol called ByteFlight [123] is used to

provide arbitration. The draft specification [19] seems to be generally accepted. The

recent FlexRay workshop in June 2003 promoted the protocol as one which has been

carefully considered to cater for the many needs of the members of the FlexRay con-

sortium,1 including support for deterministic behaviour, robustness against transient

faults, application-controlled safety (“application is responsible for decision concern-

ing vehicle safety/availability”) and data consistency/agreement within distributed ap-

plications. It is relevant to briefly compare the results of this thesis with FlexRay.

The similarities between FlexRay and TCAN are notable. Since FlexRay is TDMA

based, there is no inbuilt mechanism for selective retransmissions of corrupt frames.

Therefore both FlexRay and TCAN (but not CAN) present the same ‘firm deadline’

interface to the application, a frame either arrives on time, or it does not arrive at all.

This model supports the deterministic behaviour requirement, since for each message,

a defined window in time can be stated during which the message must arrive.

TCAN and FlexRay both move fault tolerance upwards to the application level,

making the application aware of the failure, although the extent to which this is done

1See the presentations online from www.flexray.com .

191

www.flexray.com

6 Conclusion

differs. The FlexRay documents state that an application should be able to tolerate

several cycles with no message reception [19]. Since FlexRay does not make any

attempt at retransmission of corrupt frames, it might be expected that the proportion

of lost frames in FlexRay is higher than in TCAN which directly supports robustness

against transient faults.

One fundamental difference between FlexRay and CAN is that the higher bit-rate

of FlexRay means that the signal propagation time is greater than one bit time. The

implication is that the protocol cannot guarantee that messages are delivered to all

devices consistently [123]. Notably, the transmitter has no (inbuilt) way of discover-

ing whether or not a frame was correctly received. Higher level agreement protocols

are necessary if an acknowledgement is required [19]. In fact, neither FlexRay nor

ByteFlight provide any support for retransmission of data (although a higher level

protocol may be used to implement such a mechanism). This, in contrast to CAN

and TCAN, reduces the potential flexibility of FlexRay to be able to tolerate corrupt

frames through retransmission in order to provide agreement. Nevertheless, higher

level protocols may well emerge which exploit the higher bit-rate of FlexRay (up to

10Mbit/s per channel) and use reserved event-triggered slots for selective message

retransmission. There are numerous possibilities as this new technology evolves.

The analyses in Chapters 3 and 4 are specifically for CAN and are related to re-

transmissions in CAN, but it may be possible to adapt them for FlexRay with a higher

level protocol, perhaps using techniques similar to those of Audsley in timing analysis

of APEX (ARINC-653) [13].

6.6 Exploitation of Results

The three main contributions in this thesis are directly concerned with the CAN pro-

tocol and as such they are of interest to the wide audience of industrial users of CAN.

The two new forms of analysis for CAN presented in Chapters 3 and 4 may be

applied directly to new and existing systems. These contributions are of particular

interest to designers using CAN because their use does not require any changes to

the design nor to the design process. Tool support could easily be provided in a way

192

6.7 Future Work

that is compatible with existing tools since both forms of analysis are able to be fully

automated (they do not require any interaction with the analysis process). An existing

tool vendor may be the most appropriate route for exploitation.

Although the advantages of timeouts in TCAN may be viewed very favourably by

the users of CAN, the TCAN protocol is much less likely to see widespread use than

the analysis techniques. The reason is that the TCAN protocol usually requires a small

change to the CAN hardware in order to be efficiently implemented, see Section 5.8.

The existing level of industrial investment in CAN is very high, including an efficient

high volume/low cost manufacturing process. To use any CAN-based protocol requir-

ing hardware modifications would be costly, and a manufacturer would be unlikely to

risk the investment for a non-standard chip. For small scale use, TCAN implementa-

tion in programmable hardware is a useful implementation route [138].

An alternative exploitation route would be through the standardisation process; the

TTCAN protocol is currently being incorporated into the latest ISO standard for CAN

[72] and will eventually become ‘Part 4’ of the standard. However, the standardisation

progress is too far advanced for any additional changes. Hence TCAN is unlikely to be

recognised as a standard. In addition to the above, now 15 years after its introduction,

CAN may be regarded as an old protocol, to be replaced (in new automotive applica-

tions at least) by the higher bandwidth ‘FlexRay’ within the next few years. Therefore

interest begins to move towards FlexRay, rather than a further change to CAN.

6.7 Future Work

This thesis has provided a practical framework for using CAN in dependable systems.

Nevertheless, as Section 6.5 explained, dependability is only achieved through the

combination of many attributes. Work continues in this field including the following

specific areas of interest.

A useful addition would be the ability to apply probabilistic analysis to multiple

invocations. Although a technique was suggested in Chapter 4, the computational

complexity of doing so is infeasible. Further investigation may lead to a way to incor-

porate probabilistic fault analysis with multiple invocation analysis.

193

6 Conclusion

There is considerable new work [17, 30, 106] on the use of flexible timing require-

ments in control systems. This is closely related to the use of non-harmonic periods

for weakly-hard analysis. The link between these areas of work is yet to be made

explicit.

Concerning the TCAN protocol. This thesis has presented TCAN in the context

of a run-time guard against extreme faults, but there is another possible use for the

protocol, as suggested in Chapter 5, that deserves further consideration. Neglecting

faults, setting the delivery threshold to values less than the worst case response time,

Xi < Ri, where there are non-harmonic periods, may lead to an effective way of provid-

ing a very high bus utilisation and a high reliability whilst maintaining weakly-hard

constraints. This has similarities with EDF scheduling, but using the fixed priority

mechanism directly rather than attempting to encode deadlines into the arbitration

field.

Finally, the babbling idiot failure [160] (where a faulty node repeatedly suffers

commission faults and therefore consumes more resources than it would normally use)

has been a longstanding issue in real-time communication, although little research has

been done. Preventing babbling idiots is a major issue in future dependable systems

[19]. Some recent progress has been made on detection of the babbling idiot failure

with CAN [32, 34].

6.8 Concluding Remarks

This thesis has contributed two forms of bus analysis to provide evidence of pre-

dictable behaviour at high levels of faults, it has re-addressed the standard fault model

used for CAN analysis, suggested using non-harmonic periods where possible to in-

crease fault-tolerance, and proposed the Timely-CAN protocol.

This thesis argues that through the use of these techniques, the flexibility of event-

triggered communication may be exploited to provide a dependable communication

mechanism for real-time systems.

194

List of References

[1] AEEC. Design guidance for integrated modular avionics. ARINC 651 (Draft 9),

AEEC, Sept 1991.

[2] C. Almeida, J. Rufino, and P. Verı́ssimo. DDRAFT: Supporting dynamic dis-

tributed real-time applications with fault-tolerance. Technical Report CSTC

RT-98-02, Centro de Sistemas Telemáticos e Computacionais do Instituto Su-

perior Técnico, Lisboa, Portugal, Feb 1998.

[3] L. Almeida. Flexibility and Timeliness in Fieldbus-based Real-time Systems.

PhD thesis, University of Aveiro, Portugal, Nov 1999.

[4] L. Almeida and J. Fonseca. FTT-CAN: A network-centric approach for CAN-

based distributed systems. In IFAC 4th Symposium on Intelligent Components

and Instruments for Control Applications, Buenos Aires, Argentina, Sept 2000.

[5] L. Almeida, P. Pedreiras, and J. A. Fonseca. FTTCAN: why and how? IEEE

Transactions on Industrial Electronics, Jun 2002.

[6] R. Alur and D. Dill. Automata for modeling real-time systems. In M. S. Pa-

terson, editor, Proceedings of the 17th International Colloquium on Automata,

Languages and Programming (ICALP), Warwick University, 1990.

[7] E. Anceaume and I. Puaut. A taxonomy of clock synchronization algorithms.

Technical Report 1103, Institut de Recherche en Informatique et Systèmes

Aléatoires, www.irisa.fr, Jul 1997.

195

List of References

[8] ARINC. ARINC Specification 629 Multi-transmitter data bus. Aeronautical

Radio INC, 2551 Riva Road Annapolis, Maryland, 1990.

[9] ASSC. Guide to low and medium speed digital interface standards for avionic

applications. Technical Report ASSC/110/2/42, Avionic Systems Standardisa-

tion Committee, Mar 1999.

[10] K. J. Åström and B. Wittenmark. Computer Controlled Systems. Prentice Hall,

third edition, 1997. ISBN 0133148998.

[11] N. C. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. Apply-

ing new scheduling theory to static priority pre-emptive scheduling. Real-time

Systems, 8(5):284–292, 1993.

[12] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard Real-Time

Scheduling: The Deadline Monotonic Approach. In Proceedings 8th IEEE

Workshop on Real-Time Operating Systems and Software, Atalanta, 1991.

[13] N. C. Audsley and A. Grigg. Timing analysis of the ARINC 629 databus for

real-time applications. Microprocessors and Microsystems, 21:55–61, 1997.

[14] N. C. Audsley and A. J. Wellings. Analysing APEX applications. In Proced-

dings of the 17th IEEE Real-time Systems Symposium, pages 39–44, Washing-

ton, D.C., USA, 1996.

[15] J. Azevedo and N. Cravoisy. The WorldFIP protocol. WorldFIP International

Technology Centre, Clamart, France, Aug 1998.

[16] I. Bate, J. McDermid, and P. Nightingale. Establishing timing requirements

for control loops in real-time systems. Microprocessors and Microsystems,

27(4):159–169, 2003.

[17] I. Bate, P. Nightingale, and J. McDermid. Establishing timing requirements and

control attributes for control loops in real-time systems. In Proceedings of the

15th Euromicro Conference on Real-Time Systems, pages 121–128, Jul 2003.

196

List of References

[18] I. J. Bate. Scheduling and Timing Analysis for Safety Critical Real-Time Sys-

tems. PhD thesis, Department of Computer Science, University of York, York,

YO10 5DD, 1999.

[19] R. Belschner, J. Berwanger, C. Ebner, H. Eisele, S. Führer, T. Forest, T. Führer,

F. Hartwich, B. Hedenetz, R. Hugel, A. Knapp, J. Krammer, A. Millsap,

B. Müller, M. Peller, and A. Schedl. FlexRay Requirements Specification.

FlexRay, www.flexray.com, v2.0.2 edition, Apr 2002.

[20] S. J. Berger. ARINC-629 digital communication system application on the 777

and beyond. In ERA Avionics Conference, 1995.

[21] G. Bernat. Specification and Analysis of Weakly Hard Real-time Systems. PhD

thesis, Universitat de les Illes Balears, Palma, Spain, Jan 1998.

[22] G. Bernat. Weakly hard real-time systems. IEEE Transactions on Computers,

50(3):308–321, Mar 2001.

[23] G. Bernat and A. Burns. Weakly-hard temporal constraints. Tech. Report YCS-

99-320, Department of Computer Science. University of York, 2000.

[24] G. Bernat, A. Burns, and A. Llamosi. Weakly hard real-time systems. IEEE

Transactions on Computers, 50(4):308–321, Apr 2001.

[25] G. Bernat and R. Cayssials. Guaranteed on-line weakly-hard real-time systems.

In 22nd IEEE Real-Time Systems Symposium, pages 25–35, London, UK, Dec

2001.

[26] S. Biyabani, J. A. Stankovic, and K. Ramamritham. The integration of critical-

ness and deadlines in scheduling real-time tasks. In Proceeding of the 9th IEEE

Real-Time Systems Symposium, pages 152–169, 1988.

[27] D. R. Boggs, J. C. Mogul, and C. A. Kent. Measured capacity of an ethernet:

myths and reality. Computer Communication Reviews, 18(4):222–34, 1988.

[28] Bosch, Postfach 50, D-700 Stuttgart 1. CAN Specification, version 2.0 edition,

1991.

197

List of References

[29] I. Broster. Distributed real-time safety-critical control systems. Qualifying

dissertation, Department of Computer Science, University of York, 2000.

[30] I. Broster, N. C. Audsley, G. Bernat, A. Burns, G. Buttazzo, P. Gai, M. González

Harbour, and G. Lipari. First architecture framework: Key scheduling tech-

nologies for the future. Technical Report D-AF1-v1, University of York, 2003.

FIRST EU Project deliverable.

[31] I. Broster, G. Bernat, and A. Burns. Weakly hard real-time constraints on con-

troller area network. In Proceedings of the 14th Euromicro Real-time Systems

Conference, pages 134–141, Vienna, Jun 2002.

[32] I. Broster and A. Burns. The babbling idiot in event-triggered real-time systems.

In G. Fohler, editor, Proceedings of the Work-In-Progress Session, 22nd IEEE

Real-Time Systems Symposium, YCS 337, pages 25–28. IEEE, Department of

Computer Science, University of York, 2001.

[33] I. Broster and A. Burns. Timely use of the CAN protocol in critical hard real-

time systems with faults. In Proceedings of the 13th Euromicro Conference on

Real-time Systems, pages 95–102, Delft, The Netherlands, Jun 2001. IEEE.

[34] I. Broster and A. Burns. An analysable bus-guardian for event-triggered com-

munication. In Proceedings of the 24th Real-time Systems Symposium, pages

410–419, Cancun, Mexico, Dec 2003. IEEE.

[35] I. Broster, A. Burns, and G. Rodrı́guez-Navas. Probabilistic analysis of CAN

with faults. In Proceedings of the 23rd Real-time Systems Symposium, pages

269–278, Austin, Texas, 2002.

[36] M. J. Buckingham. Noise in Electronic Devices and Systems. Series in Electri-

cal and Electronic Engineering. Ellis Horwood/Wiley, 1983.

[37] A. Burns. How to verify a safe real-time system: The application of model

checking and timed automata to the production cell case study. Real-Time Sys-

tems Journal, 24(2):135–152, Mar 2003.

198

List of References

[38] A. Burns, S. Punnekkat, L. Strigini, and D. Wright. Probabilistic scheduling

guarantees for fault-tolerant real-time systems. Technical Report YCS-311,

Department of Computer Science, University of York, 1998.

[39] A. Burns and A. J. Wellings. Real-Time Systems and Programming Languages.

Addison Wesley, 3rd edition, 2001.

[40] D. W. Caldwell and S. N. Chau. Spacecraft information

systems. Technical report, NASA, 1993. Available from

http://fst.ipl.nasa.gov/library/papers/avionix/.

[41] A. Carpenzano, R. Caponetto, L. Lo Bello, and O. Mirabella. Fuzzy traf-

fic smoothing: an approach for real-time communication over ethernet net-

works. In th IEEE International Workshop on Factory Communication Systems,

WFCS?02, Västerås, Sweden, Aug 2002. IEEE.

[42] W. C. Carter. A time for reflection. In Proc. 8th IEEE Int. Symposium on Fault

Tolerant Computing (FTCS-8), page 41, Santa Monica, Jun 1982.

[43] A. Cervin. Analyzing the effects of missed deadlines in control systems. In

ARTES Real-Time Graduate student conference, pages 17–26, Lund, Sweden,

Mar 2001.

[44] J. Charzinski. Performance of the error detection mechanisms in CAN. In

Proceedings of the 1st International CAN Conference, pages 20–29, Mainz,

Sept 1994.

[45] CiA. CANopen. CiA (CAN in Automation), 2002. EN 50325-4 Standard.

[46] F. Cristian and C. Fetzer. The timed asynchronous distributed system model.

IEEE Transactions on Parallel and Distributed Systems, 10(6):642–657, 1999.

[47] Echelon. Introduction to the LONWORKS System. Echelon Corporation, 4015

Miranda Avenue, Palo Alto, CA 94304, USA, 1.0 edition, 1999.

[48] C. A. Ericson. Software and system safety. In Proceedings of the 5th Interna-

tional Safety Conference, volume 1-1, pages III–B–1–III–B–11. System Safety

Soc., 1981.

199

http://fst.ipl.nasa.gov/library/papers/avionix/

List of References

[49] David Evans. EMI: A serial killer? Aviation Today: Avion-

ics Magazine, PBI Media, Nov 2000. Archive available from

http://www.aviationtoday.com/reports/avionics/previous/1100/column3.htm.

[50] P. Ferriol, F. Navio, J. Pons, J. Proenza, and J. Miro-Julia. A double CAN archi-

tecture for fault-tolerant control systems. In 5th International CAN Conference,

ICC’98, San Jose CA, Nov 1998.

[51] L.-B. Fredriksson. A CAN kingdom. Technical report, KVASER AB, Sweden,

1995.

[52] T. Führer, B. Muller, W. Dieterle, F. Hartwich, R. Hugel, and M. Walther. Time

triggered communication on CAN. Technical report, Robert Bosch GmbH,

2000. Available from http://www.can.bosch.com/.

[53] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo. A new kernel approach for

modular real-time systems development. In Proceedings Euromicro Conference

on Real-time Systems, pages 199–206, Delft, The Netherlands, Jun 2001. IEEE.

[54] B. Gaujal and N. Navet. Fault confinement mechanisms on CAN: Analysis

and improvements. In Proc. 4th FeT IFAC Conference, FeT’2001, Fieldbus

Technology, Nancy, France, Nov 2001.

[55] B. Gaujal and N. Navet. Fault confinement mechanisms of the CAN protocol:

Analysis and improvements. Rapport de Recherche RR-4603, Institut National

De Recherche en Informatique et en Automatique, France, Oct 2002.

[56] M. Gergeleit and H. Steich. Implementing a distributed high-resolution real-

time clock using the CAN bus. In Proceedings of the 1st International CAN

Conference. CiA, 1994.

[57] G.Rodrı́guez-Navas, M. Barranco, J. Proenza, and I. Broster. COTS-based

hardware support to timeliness in CAN networks. In Emerging Technologies

and Factory Automation, Lisbon, Portugal, Sept 2003. (To Appear).

[58] J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a dis-

tributed environment. Journal of the ACM, 37(3):549–587, Jul 1990.

200

http://www.aviationtoday.com/reports/avionics/previous/1100/column3.htm
http://www.can.bosch.com/

List of References

[59] R. W. Hamming. Error detecting and error correcting codes. The Bell System

Tech. Journal, XXIX(2):147–160, 1950.

[60] P. Hansen. FlexRay protocol picks up support. The Hansen Report on Automo-

tive Electronics, 15(2), Jun 2002. www.hansenreport.com.

[61] F. Hartwich, B. Muller, T. Führer, and R. Hugel. CAN network with time-

triggered communication. In 7th international CAN Conference. CAN in Au-

tomation GmbH, Oct 2000.

[62] S. Heathfield. The ARINC-629 databus. DCSC report DCSC/TN/92/30, Uni-

versity of York, Department of Computer Science, Dependable Computing Sys-

tems Centre, Oct 1992.

[63] Albert Helfrick. Avionics & portable electronics : Trouble in the air? Avionics

News Magazine, Sept 1996.

[64] H. Hilmer, H.-D. Kochs, and E. Dittmar. A fault-tolerant communication archi-

tecture for real-time control systems. In Proc. IEEE Int. Workshop on Factory

Communication Systems, Barcelona, Spain, Oct 1997.

[65] A. L. Hopkins, T. B. Smith, and J. H. Lala. FTMP—a highly reliable fault-

tolerant multiprocessor for aircraft. Proceedings of the IEEE, 66(10):1221–39,

Oct 1978.

[66] P. Horowitz and W. Hill. The Art of Electronics. Cambridge University Press,

2nd edition, Sept 1989. ISBN 0521377099.

[67] R. A. Hulsebos. The fieldbus reference list. Available from

http://ourworld.cs.com/rahulsebos/Links.htm, (Referenced)2002.

[68] IBUS. The INTERBUS System—INTERBUS UART’s view. INTERBUS Sup-

port Center, Jun 1998.

[69] IEE. EMC and functional safety. IEE guidance document, IEE, Sept 2000.

Available from http://www.iee.org.uk/PAB/EMC/core.htm.

201

http://ourworld.cs.com/rahulsebos/Links.htm
http://www.iee.org.uk/PAB/EMC/core.htm

List of References

[70] IEEE. 802.3 Part 3: Carrier sense multiple access with collision detection

(CSMA/CD) access method and physical layer specifications. IEEE Computer

Society, 3 Park Avenue, New York, NY 10016-5997, USA, Mar 2002.

[71] Intel. Automotive Products. Number 281792-007 in Automotive Series. Intel

Literature, 1994.

[72] International Standards Organisation. ISO 11898. Road Vehicles—Interchange

of digital information—Controller area network (CAN) for high speed commu-

nication, 1993.

[73] ISO. Information technology—Open Systems Interconnection—Basic Refer-

ence Model: The Basic Model. ISO/IEC, 7498-1 edition, 1994.

[74] ISO. Road vehicles—low-speed serial data communication—part 2: Low-

speed controller area network (CAN). Technical Report 11519-2, International

Organization for Standardization, 1994.

[75] ISO. Road Vehicles—Interchange of digital information—Controller area net-

work (CAN) part 4: Time triggered Communication. International Standards

Organisation, 2000. Working Draft.

[76] F. Jahanian and A. Mok. Safety analysis of timing properties in realtime sys-

tems. IEEE Trans. Software Eng, SE-12(9):890–904, Sept 1986.

[77] D. M. Johnson. Integrated modular avionics. Computer systems scientific and

engineering, 11(3):125–133, May 1996.

[78] J. Kaiser and M. A. Livani. Invocation of real-time objects in a CAN-Bus

based system. In Proceedings of the First International Symposium on Object

Oriented Distributed Real-time Computing Systems, Kyoto, Apr 1998.

[79] J. Kaiser and M. A. Livani. Achieving fault-tolerant ordered broadcasts in

CAN. In European Dependable Computing Conference, pages 351–363, 1999.

[80] H. Kim and K. G. Shin. Modeling of externally-induced/common-cause faults

in fault-tolerant systems. Technical report, Real-time Computing Lab, Depart-

202

List of References

ment of Electrical Engineering and Computer Science, University of Michigan,

1993.

[81] H. Kopetz. A solution to an automotive control system benchmark. In Proc.

15th IEEE Real-Time Systems Symposium, pages 154–158, Puerto Rico, Dec

1994. IEEE.

[82] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded

Applications. Kluwer Academic, 1997.

[83] H. Kopetz. Time-triggered model of computation. In Proceedings 19th Real-

Time Systems Symposium, pages 168–177, Madrid, Spain, Dec 1998.

[84] H. Kopetz and W. Ochsenreiter. Clock synchronisation in distributed real-time

systems. IEEE Trans. Computers, 36(8):933–940, 1987.

[85] Seok-Kyu Kweon, Kang G. Shin, and Qin Zheng. Statistical real-time com-

munication over ethernet for manufacturing automation systems. In IEEE Real

Time Technology and Applications Symposium, pages 192–202, 1999.

[86] Peter B. Ladkin. Electromagnetic interference with aircraft systems: why

worry? Technical Report RVS-J-97-03, University of Bielefeld—Faculty of

Technology, 1997.

[87] G. Le Lann. Deterministic multiple access protocols for real-time local area

networks. Research Report 246, INRIA, France, 1983.

[88] J. C. Laprie. Dependability—Basic Concepts and Terminology, volume 5 of

Dependable Computing and Fault-tolerant Systems. Springer-Verlag, 1992.

IFIP WG 10.4.

[89] G. Leen and D. Heffernan. Expanding automotive electronic systems. IEEE

Computer, 0018-9162/02:88–93, Jan 2002.

[90] J. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm:

Exact characterization and average case behavior. In Proceedings of the 10h

IEEE Real-Time Systems Symposium, pages 166–171, Santa Monica, Califor-

nia, USA, Dec 1989. IEEE, Computer Society Press.

203

List of References

[91] J. Y. T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling

of periodic real-time tasks. Performance Evaluation, 2(4):237–250, Dec 1982.

[92] N. G. Leveson. Software safety: why, what and how. ACM Computing Surveys,

18(2):125–163, 1986.

[93] N. G. Leveson. Safeware: system safety and computers. Addison-Wesley, 1995.

ISBN 0201119722.

[94] Bev Littlewood and David Wright. Some conservative stopping rules for the op-

erational testing of safety-critical software. Software Engineering, 23(11):673–

683, 1997.

[95] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in

a hard-real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[96] M. A. Livani and J. Kaiser. EDF consensus on CAN bus access for dynamic

real-time applications. In IPPS/SPDP Workshops, pages 1088–1097, 1998.

[97] M. A. Livani, J. Kaiser, and W. J. Jia. Scheduling hard and soft real-time com-

munication in the controller area network. In Proceedings of the 23rd IFAC/I-

FIP Workshop an Real-Time Programming, 1998.

[98] M.A. Livani. SHARE: A transparent approach to fault-tolerant broadcast in

CAN. In Proceedings of the 6th International CAN Conference (ICC6), Torino,

Italy, Nov 1999.

[99] C. D. Locke. Best Effort decision Making for real-time scheduling. PhD thesis,

CMU, 1986. CMU-CS-86-134.

[100] H. Lonn and J. Axelsson. A comparison of fixed-priority and static cyclic

scheduling for distributed automotive control applications. In Proceedings of

the 11th Euromicro Conference on Real-time Systems, pages 142–149, York,

England, UK, Jun 1999. IEEE Computer Society Press.

[101] G. A. Maciag. The next generation of insurance road war-

riors has hit the information superhighway. News item, Acord

204

List of References

Global Insurance Standards, 1999. Archive available from

http://www.acord.org/News/NewsDetail.aspx?Type=1&aid=646.

[102] N. Malcolm and W. Zhao. Hard real-time communication in multiple access

networks. Real-time Systems, 8(1):35–78, 1995. Kluwer.

[103] G. K. Manacher. Production and stabilization of real-time task schedules. Jour-

nal of the ACM (JACM), 14(3):439–465, Jul 1965.

[104] P. Martı́, J. M. Fuertes, and G. Fohler. Minimising sampling jitter degradation

in real-time control systems. In IV JORNADAS DE TIEMPO REAL, Zaragoza.

Spain, Feb 2001.

[105] P. Martı́, J. M. Fuertes, G. Fohler, and K. Ramamritham. Jitter compensation

for real-time control systems. In Proceedings Real-Time Systems Symposium,

pages 39–48, London, UK, Dec 2001. IEEE.

[106] Pau Martı́, Josep M. Fuertes, Gerhard Fohler, and Krithi Ramamritham.

Improving quality-of-control using flexible timing constraint : Metric and

scheduling issues. In Proceedings Real-Time Systems Symposium, pages 91–

100, Austin, Texas, Dec 2002. IEEE.

[107] R. T. McLaughlin. EMC susceptibility testing of a CAN car.

SAE Technical Paper 932886, SAE, 1993. Available from:

http://www.warwick.ac.uk/devicenet/publications.htm.

[108] MoD. Safety management requirements for defence systems. Defence Standard

00-56, Ministry of Defence, Dec 1996.

[109] Motorola. MC68336/376 Users Manual. Motorola, 1996.

[110] C. J. Murray. Automotive groups divide on road to data bus. EE-

Times, Sept 2001. Number OEG20010927S0080. Archive available from

http://www.eetimes.com/story/OEG20010927S0080.

[111] C. J. Murray. Automakers asked to can CAN. EETimes, May

2002. Number OEG20020531S0078. Archive available from

http://www.eetimes.com/story/OEG20020531S0078.

205

http://www.acord.org/News/NewsDetail.aspx?Type=1&aid=646
http://www.warwick.ac.uk/devicenet/publications.htm
http://www.eetimes.com/story/OEG20010927S0080
http://www.eetimes.com/story/OEG20020531S0078

List of References

[112] M. Natale. Scheduling the CAN bus with earliest deadline techniques. In

Proceedings of the 21st IEEE Real-time Systems Symposium, pages 259–268,

Florida, USA, Dec 2000. IEEE.

[113] N. Navet and Y.-Q. Song. Validation of real-time in-vehicle applications. Com-

puters in Industry, 46(2):107–122, 2001.

[114] N. Navet, Y.-Q.Song, and F. Simonot. Worst-case deadline failure probability

in real-time applications distributed over controller area network. Journal of

Systems Architecture, 46(1):607–617, 2000.

[115] NHTSA. Development, evaluation, and demonstration of a tractor trailer in-

telligent communication and power link. Technical Report DOT HS 808685,

NHTSA, Jan 1998.

[116] J. Nilsson, B. Bernhardsson, and B. Wittenmark. Some topics in real-time

control. In Proceedings of the 17th American Control Conference, pages 2386–

2390, Philadelphia, Pennsylvania, Jun 1998.

[117] T. Nolte. Reducing Pessimism and Increasing Flexibility in the Controller Area

Network. Licentiate thesis, Mälardalens University, Västerås, Sweden, 2003.

[118] T. Nolte, H. Hansson, C. Norström, and S. Punnekkat. Using bit-stuffing distri-

butions in CAN analysis. In IEEE Real-Time Embedded Systems Workshop at

the Real-Time Systems Symposium, London, UK, 2001.

[119] T. Nolte, H. Hansson, and M. Sjödin. Efficient and fair schedul-

ing of periodic and aperiodic messages on CAN using EDF and con-

stant bandwidth servers. MRTC Report ISSN 1404-3041 ISRN MDH-

MRTC-73/2002-1-SE, Mälardalens University, Mälardalen Real-Time Re-

search Centre, Mälardalen University, May 2002. Available from

http://www.mrtc.mdh.se/showPublications.phtml.

[120] B. Patt. A theory of clock synchronization. Technical Report MIT/LCS/TR-

680, Institut de Recherche en Informatique et Systèmes Aléatoires, France,

1994.

206

http://www.mrtc.mdh.se/showPublications.phtml

List of References

[121] C. R. Paul. Introduction to electromagnetic compatibility. Wiley, New York,

1992. ISBN0471549274.

[122] P. Pedreiras, L. Almeida, and P. Gai. The FTT-Ethernet protocol: Merging flex-

ibility, timeliness and efficiency. In Proceedings of the 14th Euromicro Confer-

ence on Real-Time Systems (ECRTS’02), pages 152–160, Vienna, Austria, Jun

2002. IEEE, Computer Society Press.

[123] M. Peller, J. Berwanger, and R. Grießbach. byteflight specification. BWM AG,

draft edition, Nov 1999. Available From www.byteflight.com.

[124] Philips. SJA1000 stand-alone CAN controller. Technical Report IC18

SJA1000, Philips Semiconductors Ltd, Jan 2000.

[125] Philips. Tja1054; fault-tolerant can transceiver. Datasheet IC18/TJA1054,

Philips Semiconductors, 2000.

[126] L. M. Pinho and F. Vasques. Timing analysis of reliable real-time communica-

tion in CAN networks. In Proceedings of the 13th Euromicro Conference on

Real-time Systems, Delft, The Netherlands, 2001.

[127] L. M. Pinho, F. Vasques, and E. Tovar. Integrating inaccessibility in response

time analysis of CAN networks. In Proceedings of the 3rd IEEE Workshop On

Factory Communication Systems, pages 77–84, Porto, Portugal, Sep 2000.

[128] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis of mixed

time/event-triggered distributed embedded systems. In Proceedings of the 10th

International Symposium on Hardware/Software Codesign (CODES 2002),

pages 187–192, Estes Park, Colorado, USA, May 2002.

[129] J. Proenza and J. Miro-Julia. MajorCAN: A modification to the Controller

Area Network protocol to achieve Atomic Broadcast. In IEEE Int. Workshop

on Group Communications and Computations (IWGCC), Taipei, Taiwan, Apr

2000.

[130] ProfiBus. Technology and Application—System Description. ProfiBus Interna-

tional Support Center, Haid-und-Nau-Straße 7, D-76131 Karlsruhe, Germany,

Oct 2002.

207

www.byteflight.com

List of References

[131] S. Punnekkat, H. Hansson, and C. Norström. Response time analysis under

errors for CAN. In Proceedings of the 6th Real-Time Technology and Applica-

tions Symposium (RTAS), pages 258–265, Washington DC, 2000. IEEE.

[132] M. Rahnema. Overview of the GSM system and protocol architecture. IEEE

Communications Magazine, 31(3):92–100, Apr 1993.

[133] J. H. Reppy. Concurrent Programming with Events—The Concurrent ML Man-

ual. AT&T Bell Lab., version 0.9.8 edition, Feb 1993.

[134] P. Richards. Timing properties of multiprocessor systems. Technical Report

TD-B60-27, Tech. Operations, Inc., Burlington, Mass., Aug 1960.

[135] H. Rischel and H. Sun. Design and prototyping of real-time systems using

CSP and CML. In Proceedings of the 9th Euromicro Workshop on Real Time

Systems, pages 121–129, Toledo, Spain, Jun 1997.

[136] M. A. Rivas and M. G. Harbour. POSIX-compatible application-defined

scheduling in MaRTE OS. In Proceedings of the 14h Euromicro Conference

on Real-time Systems, pages 67–75, Vienna, Austria, Jun 2002. IEEE.

[137] L. Rodrigues, M. Guimarães, and J. Rufino. Fault-tolerant clock synchroniza-

tion in CAN. In Proceedings of the 19th Real-Time Systems Symposium, pages

420–429, Madrid, Spain, Dec 1998. IEEE.

[138] Guillermo Rodrı́guez-Navas, Manuel Barranco, Julián Proenza, and Ian

Broster. COTS-based hardware support to timeliness in CAN networks. In

Proceedings of the 9th IEEE International Conference on Emerging Technolo-

gies and Factory Automation (ETFA2003), Lisbon, Portugal, Sept 2003. IEEE.

[139] M. Rucks. Optical layer for CAN. In Proceeding of the 1st International CAN

Conference, volume 2, pages 11–18, Mainz, Germany, 1994. CiA.

[140] J. Rufino. Computational System for Real-time Distributed Control. PhD thesis,

Universidade Técnica de Lisboa Instito Superior Técnico, Jul 2002.

208

List of References

[141] J. Rufino and P. Verı́ssimo. Hard real-time operation of CAN. Technical Report

CSTC RT-97-02, Centro de Sistemas Telemáticos e Computacionais, Instituto

Superior Técnico, Lisboa, Portugal, Jan 1997.

[142] J. Rufino, P. Verı́ssimo, and G. Arroz. Defining a CAN-based infrastructure for

fault-tolerant real-time distributed computing. In Proceedings of the 19th Real-

Time Systems Symposium, Work In Progress, pages 27–30, Madrid, Spain, Dec

1998. IEEE. (published as Technical Report UNL-CSE-98-002, from Univer-

sity of Nebraska-Lincoln, Department of Computer Science and Engineering).

[143] J. Rufino, P. Verı́ssimo, and G. Arroz. A Columbus’ egg idea for CAN media

redundancy. In Digest of Papers, The 29th International Symposium on Fault-

Tolerant Computing Systems, pages 286–293, Madison, Wisconsin, USA, Jun

1999. IEEE.

[144] J. Rufino, P. Verı́ssimo, and G. Arroz. Embedded platforms for distributed real-

time computing: Challenges and results. In Proceedings of the 2nd Interna-

tional Symposium on Object-oriented Real-time distributed Computing, pages

147–152, Saint Malo, France, May 1999. IEEE.

[145] J. Rufino, P. Verı́ssimo, G. Arroz, C. Almeida, and L. Rodrigues. Fault-tolerant

broadcasts in CAN. In Digest of Papers, The 28th International Symposium

on Fault-Tolerant Computing Systems, pages 150–159, Munich, Germany, Jun

1998. IEEE.

[146] J. Rushby. A comparison of bus architectures for safety-critical embedded

systems. Technical report, Computer Science Laboratory, SRI International,

Menlo Park, CA, 2001.

[147] SAE. Class C application requirement considerations. Technical Report

J2056/1, Society of Automotive Engineers, 1993.

[148] SAE. Single Wire J2411: CAN Network for Vehicle Applications. SAE, Avail-

able from www.sae.org, Feb 2000.

[149] C. E. Shannon. A mathematical theory of communication. Bell System Techni-

cal Journal, 27:379–423 and 623–656, Jul and Oct 1948.

209

www.sae.org

List of References

[150] N. J. A. Sloane. Sequence a000108—catalan numbers. Available from

http://www.research.att.com/∼njas/sequences/Seis.html, 2003. On-Line Ency-

clopedia of Integer Sequences.

[151] T. Standage. The Turk: The Life and Times of the Famous 18th Century Chess

Playing Machine. Walker and Co, Apr 2002. ISBN 0802713912.

[152] D. L Stanislaw. ARINC-629: the new airline databus. Avionics, Jun, Jul, Aug

1989.

[153] J. A. Stankovic, A. Burns, K. Jeffay, M. Jones, G. Koob, I. Lee, J. Lehoczky,

J. Liu, A. Mok, K. Ramamritham, J. Ready, L. Sha, and A. van Tilborg. Strate-

gic directions in real-time and embedded systems. ACM Computing Surveys,

28(4):751–763, 1996.

[154] N. Suri, C. J. Walter, and M. M. Hugue. Advances In Ultra-Dependable Dis-

tributed Systems, chapter 1. IEEE Computer Society Press, 10662 Los Vaqueros

Circle, P.O. Box 3014, Los Alamitos, CA 90720-1264, 1995.

[155] J. P. Thomesse. A review of the fieldbuses. Annual Reviews in Control, 22:35–

45, 1998.

[156] H. A. Thompson, H. Benitez-Perez, D. Lee, D. N. Ramos-Hernandez, P. J.

Fleming, and C. G. Legge. A CANbus-based safety-critical distributed aero-

engine control systems architecture demonstrator. Microprocessors and Mi-

crosystems, 23:345–355, 1999.

[157] K. Tindell. Fixed Priority Scheduling of Hard Real-Time Systems. PhD thesis,

Department of Computer Science, University of York, 1994.

[158] K. Tindell and A. Burns. Guaranteed message latencies for distributed safety-

critical hard real-time networks. Technical Report YCS 229, Department of

Computer Science, University of York, May 1994.

[159] K. Tindell, A. Burns, and A. J. Wellings. Calculating controller area network

(CAN) message response times. Control Engineering Practice, 3(8):1163–

1169, 1995.

210

http://www.research.att.com/~njas/sequences/Seis.html

List of References

[160] K. Tindell and H. Hansson. Babbling idiots, the dual-priority protocol, and

smart CAN controllers. In Proceedings of the 2nd International CAN Confer-

ence, pages 7.22–28, 1995.

[161] M. R. Tolhurst. Open Systems Interconnection. Macmillan Computer Science

Series. Macmillan Education, 1988.

[162] Eduardo Manuel de Medicis Tovar. Supporting Real-Time Communications

with Standard Factory-Floor Networks. PhD thesis, Universidade do Porto,

1999.

[163] TTP. TTP/C protocol specification. Technical report, TTTech Computertech-

nik, Wien, Austria, Jul 1999.

[164] TTTech. TTP plan—the TTP cluster design tool. Technical report, TTTech

Computertechnik AG, 2002. Available from http://www.tttech.com/.

[165] Klaus Turski. A global time system for CAN networks. In Proceedings of the

1st International CAN Conference. CiA, 1994.

[166] J. Unruh, H. J. Mathony, and K. H. Kaiser. Error detection capabilities of the

CAN protocol. Technical report, Robert Bosch GmbH, Stuttgart, Germany,

Dec. 1989.

[167] P. Verı́ssimo, J. Rufino, and L. Ming. How hard is hard real-time communica-

tion on field-buses? In Digest of Papers, The 27th International Symposium on

Fault-Tolerant Computing Systems, pages 112–121, Seatle, Washington, USA,

Jun 1997. IEEE.

[168] H. E. Waterman. FAA’s certification position on advanced avionics. AIAA

Astronaut. Aeronaut, pages 49–51, May 1978.

[169] John Woods. News article on EMI affecting Black Hawk helicopter. Risks

Digest, 5(56), Nov 1987. Archive available from http://catless.ncl.ac.uk/Risks.

[170] H. Zeltwanger. Failure detection and error handling in CAN-based networks.

In Seminario Anual de Automática, Electrónice Industrial e Instrumentación,

Pamplona, Spain, Sept 1998.

211

http://www.tttech.com/
http://catless.ncl.ac.uk/Risks

List of References

[171] K. M. Zuberi and K. G. Shin. Non-preemptive scheduling of messages on

controller area network for real-time control applications. In Proceedings of

Real-Time Technology and Applications Symposium, pages 240–259, Chicago,

Illinois, May 1995.

[172] K. M. Zuberi and K. G. Shin. Scheduling messages on controller area network

for real-time CIM applications. IEEE Transactions on Robotics and Automa-

tion, 13(2):310–314, 1997.

212

	Abstract
	Table of Abbreviations
	Table of Symbols
	Acknowledgements
	Declaration
	Flexible and Dependable Communication
	Distribution
	Environment
	Flexibility
	Real-time and Control Systems
	Contribution

	Real-time Communication
	Real-time Systems
	Real-time Communication
	Dependability
	Flexibility in Real-time Communication
	Controller Area Network
	CAN Worst Case Response Time Analysis
	Bus Faults on CAN
	Scheduling on CAN
	Summary

	Weakly-hard Analysis of CAN
	Motivation
	Intuition
	Weakly-hard Theory
	Guaranteed Weakly-hard Analysis of CAN
	Incorporating Faults: Calculating Ei,k(t)
	Conversion to Weakly Hard Constraints
	Critical Instants and Harmonic Periods
	Relaxing Clock Synchronisation
	Evaluating Weakly Hard
	Simulation of CAN
	Resilience of the Analysis
	Pessimism in Weakly-hard Analysis
	Summary

	Probabilistic Analysis of CAN
	Worst Case Analysis and Fault Models
	Probabilistic Analysis Approaches
	A New Probabilistic Analysis of CAN
	Interpretation of the Distribution
	Probabilities, Complexity and symb]
	Implementation of the Probabilistic Algorithm
	Improving the Analysis
	Multiple Invocation Analysis
	Evaluating the Analysis
	Summary

	Predictable Failure
	Approach and Justification
	Intuition
	The Timely-CAN Protocol
	Properties
	Strategies for Deadline Calculation
	Common Knowledge of Delivery Threshold Times
	Clock Synchronisation
	Implementation
	Evaluation
	Summary

	Conclusion
	Missing Deadlines
	Exploiting Variation
	Exploiting Dynamic Fault-tolerance
	Exploiting Missed Deadlines
	Evaluation
	Exploitation of Results
	Future Work
	Concluding Remarks

	List of References

