
HR - A System for Machine Discovery in Finite Algebras
Alan Bundy, Simon Colton

�

and Toby Walsh
�

Abstract. We describe the HR concept formation program which
invents mathematical definitions and conjectures in finite algebras
such as group theory and ring theory. We give the methods behind
and the reasons for the concept formation in HR, an evaluation of its
performance in its training domain, group theory, and a look at HR in
domains other than group theory.

1 Introduction

We are trying to identify aspects of the concept formation processes
performed by pure mathematicians. To understand these processes,
we turn them into computational procedures undertaken by a com-
puter program, HR, acting as a machine discoverer in pure mathem-
atics. Working primarily in group theory, we aim to:

1. Allow HR to invent a large subset of concepts found under the
'definition' headings of standard group theory texts.

2. Use procedures which can be applied to any finite algebra, and
possibly other areas of mathematics.

3. Produce results understandable by mainstream mathematicians.

4. Keep the theory behind the concept formation clear and concise.

1.1 Background

Machine discovery in mathematics had an enthusiastic start and early
programs, such as Lenat's AM, as described in [4], excited people
because they re-invented classically interesting mathematical con-
cepts. For example, AM looked at elementary number theory, and
re-invented well known concepts such as prime numbers and square
numbers, and well known conjectures such as Goldbach's conjecture
(that every even number is the sum of two primes), and the unique
prime factorisation theorem.

Unfortunately, the theory behind the concept formation performed
by AM is very difficult to understand. In particular, the distinction
between the space to be searched and the heuristics employed is very
blurred. The methodology behind and reporting of AM's achieve-
ments has been widely criticised. Ritchie and Hanna, in [16] believe:

... that it would be extremely difficult to base further work in
this area on AM, since the disparity between the written ac-
count and the actual program means that there is not in fact a
tested theoretical basis from which to work.

There were, however, attempts to extend Lenat's work. Lenat him-
self, in [11], wrote Eurisko, an extension of AM which invented its

�
Department of Artificial Intelligence, University of Edinburgh, 80 South
Bridge, Edinburgh EH1 1HN. Scotland

�
APES Group, Department of Computer Science, University of Strathclyde,
Glasgow G1 1XL. Scotland.

own heuristics. Other efforts to improve Lenat's work include the
Cyrano programs by Haase, [9], which identified problems in Eur-
isko and put them right, and the DC program from Morales, [15].
Shen, in [17], tidies up some theoretical aspects underlying AM by
separating the space to be searched and the heuristics behind the
search strategy. Shen concentrates on the first aspect, introducing
functional transformations which derive one function from another.
These functional transformations were implemented in the ARE sys-
tem which was used in AM's domain, elementary mathematics with
encouraging results. Among other improvements over AM were the
elimination of many special-purpose operations and a more parsimo-
nious and understandable theory of concept formation.

Breaking from the AM mould, Sims, as detailed in [18], chose a
narrower range of concepts to be invented by his IL program. Given
specifications for operators on number types such as Conway num-
bers, IL invents possible operators and uses the heuristic of build-
ing on those operators which satisfy the most specifications. IL fol-
lows the routine of generating a possible operator, testing empirically
whether it satisfies the specifications, and if it does, using a first order
theorem prover to prove or disprove that it works for all the numbers.
Sims calls this the generate, prune and prove method.

Epstein's GT, as discussed in [6], works in graph theory, and gen-
erates and proves theorems of particular types, such as: a graph has
property P iff it has property Q. Another graph theory program, Fa-
jtlowicz's Graffiti, as described in [7] is probably the only machine
discovery program which has inspired mathematicians to write pa-
pers about its work. Graffiti uses a database of around 200 graphs and
heuristically checks for conjectures about graph invariants. Typically,
for each graph, it calculates the number of occurrences of some phe-
nomena, such as cliques, and compares it with the number of some
other phenomena. If, for every graph in the database, the number of
one is always less than the number of the other, this conjecture is
made for the general case. Some of the conjectures made by Graffiti
have inspired mathematicians to prove or disprove them, and this has
sometimes lead to new mathematics, for instance, [5].

All the programs cited above have empirical aspects. Bagai et al
in [1], break this mould. They invent theorems in plane geometry by
starting with a blank plane and adding general points or general lines
through points or relationships between lines and points, such as a
point being on a line or two lines being parallel. Each addition is rep-
resented as either a function or a predicate which allows an efficient
theorem prover to check for consistency whenever a new addition is
made. A theorem is proved from every inconsistency reported.

For the HR project, we intend to learn from all of these programs. In
particular, we want HR, like AM, to explore entire domains, but, like
Shen, we want it to do so using a clear theory of concept formation.
Like IL, we want HR to have specific tasks for its concepts to perform,
and like Graffiti, we want our program to produce and inspire new
mathematics.

ECAI 98 Workshop Programme.

1.2 Search Space and Strategy

Consider the following mathematical objects:

�
Equilateral triangles in geometry, which are those triangles with
all their sides the same length.�
Cliques in graph theory, which are those subgraphs in which each
node is connected to all the others in the subgraph.�
Central elements in group theory, which are those elements which
commute with all the others.

Although from different areas of mathematics, we see that in each
case a new concept arises as a specialisation of an old concept where
some property is true in as many cases as possible. This technique
allows the specialisation of triangles into equilateral triangles, sub-
graphs into cliques and elements (of groups) into central elements.
Not only do techniques like this occur across domains, they re-
peatedly occur within the same domain. To see this, we only have
to look at Abelian groups: these are groups where all the elements
are central elements. We have identified six general production rules
such as the one above, for inventing a new mathematical definition
by basing it on an old one. The concepts which can be reached using
these production rules make up the space HR searches when perform-
ing concept formation. The production rules are discussed in

�
2.

These objects also have something in common:

�
The Alexander polynomial of a knot.�
The set of element orders of a group.�
The number of nodes in a graph.

Each of these is a certain kind of calculation, namely an invariant,
ie. some value which does not differ however the object is represen-
ted. For example, if one draws a knot on paper, there are many pos-
sible outcomes depending on which direction the knot was viewed,
and the same knot can easily be given two very different 2D repres-
entations. However, no matter how a knot is drawn, the Alexander
polynomial, which can be calculated from the drawing, will always
be the same. Similarly, no matter how one chooses to label the ele-
ments of a group, the set of element orders will always be the same,
and obviously the number of nodes in a graph does not change if the
nodes are labelled differently or the edges are moved. We see that,
when addressing the task of identifying objects, calculations which
are invariants have a desirable property.

This, and other tasks, have been identified for HR to complete, and
measures with respect to the tasks have been derived by which we
can assess the importance of any concept produced. This has enabled
the use of a heuristic search strategy for the concept formation. This
strategy is to (i) measure each concept, (ii) measure each production
rule in terms of the value of the concepts it produces and (iii) build
the new concept from the best old concept, using the best production
rule. The tasks addressed by HR, the measures of the concepts and
the heuristics used are discussed in

�
3.

2 How HR Invents Concepts

Most concept formation in group theory occurs by basing a new
concept on others which have already been defined. For example, the
concepts of central elements, centres of groups, Abelian groups and
central series are all based on the idea of commutativity. Each step
from one concept to another involves a slight change in the semantics
of the concept. For instance, from a pair of commutative elements of
a group, � : �����	��
�

����� s.t.
��������������

we easily reach the concept of central elements:���
� s.t. �

���
�
�	�������������

The collection of central elements gives us the centre of the group
and if the centre is the entire group, we have an Abelian group. This
process of basing one concept on others is a good way to automate
some of the concept formation process, and we have identified six
general production rules to do this. Five of these production rules
base a new concept on one old one, and a single production rule
bases a new concept on two old ones.

To determine these production rules, we first narrow down the
types of concept they deal with, to functions which output the results
of a calculation made directly from the Cayley table (as described
in
�
2.1) of any input group. To encompass concepts about element

types, the collection of the types of elements is taken as the output
to a function. So for instance, we can include the concept of central
elements by representing them as a function taking a single group as
input which outputs the set of central elements (ie. the centre). With
these kinds of constructions, we can cover a good deal of the con-
cepts formed in elementary group theory, and can reason about each
concept as if it is a function taking a single group as input. This does
not cover higher level concepts such as sequences of groups, but we
introduce them later, as discussed in

�
2.4.

2.1 Representation of Concepts in HR

The next thing to address is how to represent concepts in HR. In
fact, concepts are represented by only two things. Firstly, the in-
formation about how they were constructed is stored, namely the old
concept, production rule and parameters (as discussed in

�
2.2) which

were used to construct the concepts. Each production rule performs a
mathematically accountable operation, so, if we know the definition
of the old concept, then given only the construction history of the
new concept, we can express its definition. Secondly, the results of
the calculation are stored as a representation of the concept, in a data
table, and examples of these tables are given later. The data table is
the main form of representation, and the construction information is
not used in the concept formation process.

Noting that each concept produced may be used later as input to
a production rule, we see that the input and output format of each
production rule must be the same - a data table. This allows us to
express the transformations of concepts as manipulations of one data
table into another. To start the process, we give HR only one concept,
the Cayley tables of the models of the algebra it is working with.
All the concepts produced are based on this. Cayley tables of groups
are pictorial ways of representing the product,

�����
of every pair of

elements,
�

and
�

in the group, � . To be input to a production rule,
this information must be in the form of a data table. So, these Cayley
tables:

C1.1 1
1 1

C2.1 1 2
1 1 2
2 2 1

C2.2 1 2
1 2 1
2 1 2

are represented as the following data table:

Table 0
G � �"!#

C1.1 1 1 1
C2.1 1 1 1
C2.1 1 2 2
C2.1 2 1 2
C2.1 2 2 1
C2.2 1 1 2
C2.2 1 2 1
C2.2 2 1 1
C2.2 2 2 2

This table is all HR needs to start its concept formation process. The
functional definition of the calculation producing this table is:

��� ����
���� ����� � ����
�
������� �
	 � � ������ �

The result of the calculation for a particular group can be lifted dir-
ectly from the table, by taking all the rows where its name appears
in the first column (but not taking the first column of the rows). It is
also important to note that this calculation can be used to describe
the group. So, for example, table 0 describes C2.1 with this list of
triples: [[1,1,1],[1,2,2],[2,1,2],[2,2,1]]. These descriptions are used
to categorise the groups, which is central to the assessment of the
concepts, as discussed in

�
3.

2.2 The Production Rules

Each production rule simply takes in an old data table (or two old
data tables), and manipulates them in some way to produce a new
data table. For a given old data table, there are a number of ways
a production rule could turn it into the new table, and exactly what
will happen must be specified in a set of parameters given to the
production rule. The action of the production rules, the parameters
which control them and examples of them at work are given here in
roughly ascending order of complexity.

The exists Production Rule

This simply removes columns from a data table. The parameters for
this production rule tell it which columns to keep under the condition
that column 1 is never removed, as this would remove the subject of
the calculation. If this production rule is given table 0 above, and the
parameters tell it to keep columns 1 and 2 only, we get:

Table 0
G � �"!#

C1.1 1 1 1
C2.1 1 1 1
C2.1 1 2 2
C2.1 2 1 2
C2.1 2 2 1
C2.2 1 1 2
C2.2 1 2 1
C2.2 2 1 1
C2.2 2 2 2

exists���� �������
Table 1

G �
C1.1 1
C2.1 1
C2.1 1
C2.1 2
C2.1 2
C2.2 1
C2.2 1
C2.2 2
C2.2 2

and the functional definition of the calculation producing table 1 is:

�
�

�
�

���� � �

��	�� ��� ����
�� ��� � s.t.
���� ����� �

The permute Production Rule

This permutes the columns of a data table. The parameters tell it
which permutation to use under the condition that a column which
previously contained objects of one type cannot contain objects of a
different type after the permutation. If this production rule is given
table 0 above, and the parameters tell it to use the permutation:� ��������������! we get:

Table 0
G � � !

C1.1 1 1 1
C2.1 1 1 1
C2.1 1 2 2
C2.1 2 1 2
C2.1 2 2 1
C2.2 1 1 2
C2.2 1 2 1
C2.2 2 1 1
C2.2 2 2 2

permute�"�� ���#�"�����#���
Table 2

G � � !
C1.1 1 1 1
C2.1 1 1 1
C2.1 2 1 2
C2.1 1 2 2
C2.1 2 2 1
C2.2 1 1 2
C2.2 2 1 1
C2.2 1 2 1
C2.2 2 2 2

and the functional definition of the calculation producing table 2 is:

�
�

�
�

���� ����� � ���
�

� � ��� �
	 ���� ����� �

The match Production Rule

This extracts rows from a data table where certain columns have
identical entries. The parameters tell it which columns must have
identical entries under the condition that no two columns are matched
where the type of object in the first is different to that in the second.
If this production rule is given table 0 and the parameters tell it to
extract rows where columns 2, 3 and 4 are the same, we get:

Table 0
G � � !�

C1.1 1 1 1
C2.1 1 1 1
C2.1 1 2 2
C2.1 2 1 2
C2.1 2 2 1
C2.2 1 1 2
C2.2 1 2 1
C2.2 2 1 1
C2.2 2 2 2

match�"�� �����$���$���%�
Intermediate

G � � !�
C1.1 1 1 1
C2.1 1 1 1
C2.2 2 2 2

��� Table 3
G �

C1.1 1
C2.1 1
C2.2 2

(Note that the [1,2,2,2] parameters say that column 1 should match
column 1, and columns 2, 3 and 4 should all match column 2).
Columns 3 and 4 are discarded in the above process, because they
always contain the same elements as column 2, and are redundant.
The functional definition for the calculation producing table 3 is:�'& � �
���� � �

��	 � ��� � �(� �

The conjunct Production Rule

This is the only production rule which takes two old data tables as
input. It extracts those rows in the first table which somehow match
a row in the second table, with the parameters telling it how to match
the rows, under these conditions: (i) column one is always matched
to column one, and (ii) no two columns are matched if they contain
objects of different types. Note that if a row in the first table matches) rows in the second table, the row is repeated) times in the new
table, as this information should not be lost. If this production rule is
given tables 0 and 2 above, and the parameters tell it to find rows in
table 0 for which there is an equal row in table 2, we get:

Table 0
G � �"!#

C1.1 1 1 1
C2.1 1 1 1
C2.1 1 2 2
C2.1 2 1 2
C2.1 2 2 1
C2.2 1 1 2
C2.2 1 2 1
C2.2 2 1 1
C2.2 2 2 2

&

Table 2
G � � !�

C1.1 1 1 1
C2.1 1 1 1
C2.1 2 1 2
C2.1 1 2 2
C2.1 2 2 1
C2.2 1 1 2
C2.2 2 1 1
C2.2 1 2 1
C2.2 2 2 2

conjunct�"�� �����$�#�"���*�
Table 4

G � � !�
C1.1 1 1 1
C2.1 1 1 1
C2.1 1 2 2
C2.1 2 1 2
C2.1 2 2 1
C2.2 1 1 2
C2.2 1 2 1
C2.2 2 1 1
C2.2 2 2 2

(Note that the [1,2,3,4] parameters say that column 1 of table 0
should match column 1 of table 2, column 2 of table 0 should match
column 2 of table 2, and so on). Table 4 is exactly the same as table
1 because the functional definition of the calculation producing table
4 is the following:

��+ � �
 ��� �����	� �$�
��
��� � � ��	 � ��� ���

and
���� ���� �

and the groups C1.1, C2.1 and C2.2 are Abelian, so all triples
����� � ���

which satisfy
���� ���

also satisfy
� ��� ���

.

The forall Production Rule

As we are working with finite tables, we can check that all the ele-
ments of a group are present in a particular column of a data table,
or that all possible pairs of elements are found in two columns of a
data table, etc. The parameters for this production rule tell it which
columns to look for elements in, under the condition that the columns
actually contain elements. Then, suppose row no. X contained data

about group � , ie. � was the name in the first column of row X. Then
row X is kept only if there is a row for every element of � (or pair of
elements, etc.), which matches row X. If this production rule is given
table 0 above and the parameters tell it to find all groups where every
triple

����� � ����
��
� � ����� appears in columns 2,3 and 4, we get:

Table 0
G � � !

C1.1 1 1 1
C2.1 1 1 1
C2.1 1 2 2
C2.1 2 1 2
C2.1 2 2 1
C2.2 1 1 2
C2.2 1 2 1
C2.2 2 1 1
C2.2 2 2 2

forall�"�� �$�#�"���*� Intermediate
G � � !

C1.1 1 1 1

�"� Table 5
G

C1.1

Again, columns 2,3 and 4 are discarded as we are only interested in
which groups have all the triples, and if a group has all of them, we
know what they are, and are not interested. The functional definition
of the calculation producing table 5 is:� � �
�� true iff �

����� � ����
��
��� � � �

� ���� ��� �
and the output in this case is boolean. Therefore, table 5 describes
C1.1 as 'true' and all the other groups as 'false'.

The fold Production Rule

This production rule only works if the last column of the data table
contains elements of the group. Given a data table with) columns, a
function,

�
, is defined in the following way:

� ���
�

� � ��� ��� ��� �

���� �
iff the row

� �
�

� � � ����� �
	 is found in the data table (and is the first row
found which matches

�
�

� � ��� ��� ��� �). The parameters then tell this
production rule how to use

�
to fold the element in the last column

into another column, under the condition that the other column actu-
ally contains elements. Suppose the data table has four columns, the
last of which contains elements and the parameters tell the produc-
tion rule to fold the last column into column 2, which has elements
in. Then, for every row,

� �
� ���	� �$� 	 , an orbit of elements is construc-

ted by left folding the output of
�

into column 2 in the following way:� �

� � �
�
� ��� �

, � �

� � �
�
��� �
�
� ��� ��
 � ��

,� & � � �
�
� � �
�
��� �
�
� ��� ��
 � ��
 � ��
 �

etc.
This continues until the orbit makes a cycle (which must happen in a
finite group). After all the rows have had their orbits collated, a new
table is constructed with columns

� �
� ��� � � �� 	 for each ��� found in

the orbit of
� �
� ��� � 	 . Note that the parameters are allowed to fold the

last element into more than one column. If this production rule is
given table 0 above and the parameters tell it to fold the last column
into column 2, we get:

Table 0
G � � !

C1.1 1 1 1
C2.1 1 1 1
C2.1 1 2 2
C2.1 2 1 2
C2.1 2 2 1
C2.2 1 1 2
C2.2 1 2 1
C2.2 2 1 1
C2.2 2 2 2

fold�"�� �%�

Table 6
G � � !

C1.1 1 1 1
C2.1 1 1 1
C2.1 1 2 2
C2.1 1 2 1
C2.1 2 1 2
C2.1 2 2 1
C2.1 2 2 2
C2.2 1 1 2
C2.2 1 1 1
C2.2 1 2 1
C2.2 2 1 1
C2.2 2 1 2
C2.2 2 2 2

The functional definition of the calculation producing table 6 is:� � �
���� �����	� �$�
��
� � � � ��	� � � ��� �

or
� � ������
 �� �

or
� � �	��� ����
"���
 �� �

etc
� �

2.3 Negation and Counting

In group theory, positive examples of concepts are often more inter-
esting than negative examples. For instance, central elements have
a place in the theory, but non-central elements do not (probably be-
cause the central elements form a subgroup, but the non-central ones
do not). However, these negative examples are genuine mathemat-
ical constructions and they should be included in the search space. In

fact, they may give HR its best chance to find an important concept
that has been overlooked classically. We decided that the negation of
a concept should be formed at the same time as the concept itself, to
cut down on computation time. There is no easy way to produce neg-
ative tables with the exists, fold or permute production rules.
However, when the conjunct, forall, and match production
rules are used, they produce two tables, one with positive examples
of the concept, and one with negative examples. The negative tables
are as you would expect: when using the conjunct production rule,
the rows in the first table which do not match those in the second table
constitute the negative table. Similarly, those rows which do not have
the full complement of elements attached form the negative table for
the forall production rule, and those rows where the columns do
not match correctly form the negative table for the match produc-
tion rule.

There is one further complication. You may have noticed that
table 1 above has repeated rows. This is undesirable for two reasons.
Firstly, every production rule works by going through the old data
table row by row and manipulating each row into a new row in the
new table. The manipulation would be repeated if there are repeated
rows in the input table, and this would be a waste of time. Secondly,
the data table produced does not quite match the output functional
definitions of the calculation if there are repeated rows. In the func-
tional definition for table 1, there is no mention that each element,

�
is repeated) times (where) is the number of pairs of elements

��� � ��

for which

������ �
).

For these reasons, any data table with repeated rows is passed
through a filter which removes the duplication. However, in doing
this, the information about how many times the row appeared in the
table is lost, and this information could be useful. Therefore, along-
side the filtered table, a second table is produced which calculates
how many times the distinct row appeared in the original table. For
example, the filtering process produces these tables from table 1:

Table 1
G �

C1.1 1
C2.1 1
C2.1 1
C2.1 2
C2.1 2
C2.2 1
C2.2 1
C2.2 2
C2.2 2

d-filter���
c-filter

Table 7 - Distinct
G �

C1.1 1
C2.1 1
C2.1 2
C2.2 1
C2.2 2

&

Table 8 - Counted
G � �

C1.1 1 1
C2.1 1 2
C2.1 2 2
C2.2 1 2
C2.2 2 2

Note that the) column in table 8 contains integers. The functional
definition of the calculation producing table 7 is the same as that for
table 1, but now the table actually fits the definition. The calculation
producing table 8 has the following functional definition:

��� � �
���� �����)
 	 � � � �) ��� � ��� ���
�
� � ��	 ����� ����
� � �

The filtering process guarantees that any table produced has distinct
rows. So, any table input to a production rule will have distinct rows.
Because of this, most of the production rules produce a table which
is also guaranteed to have distinct rows and the filtering process is
only needed for tables produced by the exists production rule and
the positive tables produced by the conjunct production rule.

2.4 Other Concept Types

Calculations made from the Cayley table of a group are the simplest
type of concepts, and there are more interesting concept types which
can be built from these which HR can find. Firstly, HR invents maps
from one group to another. At the moment, this is done in only one
way, but we intend to look into other methods. Presently, a map from

one group to another is formed by taking a calculation concept which
outputs a set of elements, � , for every input group, � , and seeing if
a new group can be derived from these elements. There are two ways
HR tries to derive a new group from � : (i) it checks if � forms a
group, that is, if the set of triples

����� � ���
��
� ��� ��� satisfy the

group axioms, and (ii) it checks if � generates a group, that is, if the
set of triples

����� � � � ����
 �
� ��� � � satisfy the group axioms,

where
�

is the operation from the parent group, � . If a group can be
derived, and it is sometimes different from the original, then HR has
invented a map concept.

From maps of groups, HR can form another type of concept,
namely sequences of groups, where a subgroup of a group is itself
checked for subgroups and so on. Unfortunately, in group theory, the
order of a subgroup must divide the order of the parent group (Lag-
range's theorem), and when only a handful of models of groups are
in the database, the sequences HR produces are short and not very
interesting. However, due to the natural ordering of the integers, the
sequences produced in number theory, as described in

�
5.1, are much

more interesting. HR also forms categorisations of groups using the
descriptions they are given by the data tables. These categorisations
are discussed more extensively in the next section.

3 Why HR Invents Concepts

In the previous section, we decided how HR would turn one
concept into another, thus defining the space HR searches when per-
forming concept formation. Using all the production rules except
conjunct, and taking into account all the negative tables and all
the counted tables, there are 44 possibly different tables which can
be produced from table 0 alone. Each one of these can be input to a
production rule, and any two can be used in the conjunct produc-
tion rule, so the search HR undertakes is subject to the combinatorial
explosion, and an exhaustive search is infeasible.

One way to improve the search is to cut down redundancy. As the
search progresses only by basing one data table on another, if there
are two equal data tables in the database, there will be duplication of
work if one is not removed. For this reason, whenever HR constructs
a new data table, it checks to see if it already has this table in the
database and discards it if so. A more pro-active way of avoiding
duplication of concepts is to stop particular paths. For instance, the
permute production rule can be used to make any permutation of
the columns, and so there is no point having two permute steps in
a row, as this path is possible in just one permutation. HR has a set of
forbidden paths which cut down the trivial duplication of concepts.
Also, if a data table produced has no rows in it, then no progress will
be made from this table, and it is discarded.

Another way to improve the search is to use a heuristic to decide
what to do next. For each concept formation step, there is a choice
of (a) old concept to use, (b) production rule to use and (c) paramet-
erisation for the production rule, and we require sensible ways for HR
to make these choices. At the moment, the parameters are not chosen
by any heuristic, HR simply tries each possible parameterisation in
a pre-determined order. Future heuristics may choose the paramet-
erisation, but at the moment, they concentrate on choosing the best
old concept and best production rule to use in the next step.

To choose which old concept to use next, HR measures each data
table in certain ways, and takes a weighted sum of the measures. It
then chooses the old concept with the highest total to base the next
concept on. To choose which production rule to use next, HR uses
the fact that each concept is produced by a single production rule.
So, for a particular production rule, an average of the scores for each

concept it produced can be used to measure the production rule itself.
Therefore, we only need to derive sensible measures of the concepts
produced to determine a heuristic search.

To derive measures, we wanted to give HR concrete tasks to
achieve. These tasks, along with the relevant measures we have de-
rived are discussed in

�
3.1 and

�
3.2. One measure which is independ-

ent of the task being addressed is the parsimony of the calculation.
As previously stated, for an input group, the results of a calculation
can be used to describe the group, and it is desirable to have these
descriptions as succinct as possible. The amount of data produced in
the calculation corresponds to the size of the descriptions and so the
parsimony measure is based on the size of the data table: If a data
table, � , has � rows of

�
columns then:

Parsimony
�
�

�����

�
�

Another independent measurement which is soon to be implemen-
ted is the clarity of a concept. This depends on the construction
path of the concept, which is a hierarchy of the concepts which have
been built upon in succession to arrive at the present concept. As
this list gets larger, it becomes more difficult to understand what the
concept actually is. For this reason, we propose that the clarity meas-
ure should be inversely proportional to the depth of the construction
path. We may also introduce a bias towards construction paths con-
taining concepts produced by easy to understand production rules.
For example, a concept with lots of conjunct steps in its construc-
tion path is usually difficult to understand.

3.1 Classification of Groups

In the introduction, we mentioned certain calculations called invari-
ants, and pointed out that the Alexander polynomial gives knot theor-
ists the ability to tell when two knots are different (if the polynomials
calculated for each are different). Unfortunately, the Alexander poly-
nomial, and the other invariants they have invented so far, sometimes
give the same result for two different knots. In fact, knot theorists
are attempting to classify knots, that is, find some way of describing
knots which is an invariant, but which differentiates between every
pair of distinct knots.

Similarly, group theorists are trying to classify groups up to iso-
morphism. Two groups are isomorphic if there is a 1:1 mapping of
the elements from the first to the elements of the second which makes
the Cayley table of the first look identical to that of the second. Math-
ematically, the map � , taking group � to group � should follow the
rule that �

��� ���
�
�
�
�����"��
 �

�
���#
 � �

����

, where

�
is the operation

in � , and � is the operation in � . To a group theorist, two groups are
essentially the same if they are isomorphic, because they differ only
in the choice of labels for the elements. Unfortunately, using Cayley
tables to check if two groups are isomorphic is computationally ex-
pensive, although some good algorithms have been devised for this
purpose, one of which is described in [14].

Historically, classification has been a high priority in group theory.
In 1870, Kronecker devised a classification of Abelian groups up to
isomorphism. This theorem states that each Abelian group can be
decomposed into a cross product of cyclic groups, and that this de-
composition is an invariant up to isomorphism, but differs between
every pair of non-isomorphic Abelian groups. Therefore, given any
two Abelian groups, a group theorist can find their decomposition
into cyclic groups, and say for sure whether they are the same or
not up to isomorphism. Also, in 1980, a landmark in human achieve-
ment was reached when the classification of finite simple groups was
achieved, as described in [8].

So, classification of groups up to isomorphism is a worthy motiva-
tion for HR to form concepts. This can be stated as a task: given a set
of groups, say [C1.1, C2.1, C2.2, C3.1, C3.2], and their classification
up to isomorphism: [C1.1],[C2.1,C2.2],[C3.1, C3.2], (where groups
in the same list are isomorphic), HR is asked to find a calculation
which, when used to describe groups, gives the same categorisation
of the groups as the isomorphic classification. This allows us to use
the usual tactic in problem solving which is to generate possibilit-
ies, choose the one which best fits the solution criteria, and use this
to generate more possibilities. We have derived the invariance and
discrimination measures for a data table which show how good a
concept is at telling whether two isomorphic groups are the same,
and how good a concept is at telling whether two non-isomorphic
groups are different.

Before stating these measures, we should appreciate that the clas-
sification of groups up to isomorphism is just one way to classify
groups. This classification is very important, for obvious reasons, but
a group theorist may also want to find a calculation which, say, clas-
sifies groups as cyclic and non-cyclic, (ie. they want a calculation
which gives the same value for each cyclic group, but a different
value for non-cyclic groups). For this reason, HR does not automatic-
ally try and classify groups up to isomorphism, but is given a 'gold
standard' categorisation of groups by the user which it should aim
for (of course, this could be the isomorphic classification). This gold
standard can also be a partial categorisation if the user is only inter-
ested in one or more particular categories, and isn't worried about
how the other categories look.

Now, for a data table, � , and a set of groups, � , the descriptions of
each group can be lifted from � and used to categorise the groups in
� , by saying that two groups are in the same category if they have the
same description. We use the notation �

���
� to show that group� is in the same category as group � in the categorisation of � given

by � . We also use the notation �
�
��� � to show that � and � are

in the same category in the gold standard categorisation. Then, the
following measures are calculated for � :

Invariance
�
�

�� � � �

�
�
�

 	 � �

��� � and �
���
�
�
�

� � �
�
�
�

 	 � �

��� �
�
�

Discrimination
�
�

�� � � �

�
�
�

 	 � �� ��� � and � ���� �

� �
� � �
�
�
�

 	 � �� ��� �

�
�
These give us an idea of how well the concept performs with respect
to the task of classifying the groups.

3.2 Understanding the Domain

When HR forms concepts in order to classify groups up to isomorph-
ism (or any other categorisation), it is looking for a particular cal-
culation which completes the task, and when it has one, it can stop.
This is a reactive process: a group theorist may be given a categor-
isation of groups and be asked to find a calculation which achieves
this categorisation. One way for a group theorist to be pro-active is to
try and make as many different categorisations of the group as pos-
sible, so they may have an answer at hand for future questions. This
may sound unproductive, but would certainly help to understand the
domain. The more categorisations the group theorist comes up with,
the more ways they have of saying that two or more groups are/aren't
the same, and this is an understanding of the domain at one level.

To encourage the production of many different categorisations, the
novelty measure of a concept is used, which is based on how often
the categorisation has been seen. If, when a new table, � , is formed,

the categorisation of groups it produces has been seen � times, and
there are) distinct categorisations of groups in the database, then the
novelty of the concept is given by:

Novelty
�
�

�� �
	 � 	 �

)
Note that every time a new concept is invented, the novelty value for
every other concept is possibly affected, and they have to be updated.

To understand the domain at a higher level, it is necessary to con-
jecture and prove theorems about the objects in the domain. HR has
no theorem proving abilities, although we intend to link it to a the-
orem prover, as discussed in

�
6. However, it can make conjectures

based on empirical evidence. One type of conjecture which can be
made is that two calculations are always the same, no matter what
group they are performed on. For example, for any group, � , these
calculations: ��� � �
���� � �

��	 ���� � �(��� � �
���� ���
�
	 � is an identity of �

�
always produce the same (singleton) set of elements. So the conjec-
ture in this case, which is easy to prove, is:
For any group, � ,

�
is an identity in � iff

� ��� � �
.

If HR invented
���

then
��

above, it would notice that the results for
both calculations is (empirically) always the same, decide whether or
not to state this conjecture, and then discard

��
, to avoid duplication

of work, as discussed in
�
3. A decision about whether the conjec-

ture is worthy of keeping is required because many of these con-
jectures occur in a typical concept formation session. HR assesses
the likely difficulty to prove such conjectures by looking at the con-
struction paths of the two calculations. These paths have to pass two
thresholds. Firstly, they must have a combined length greater than
the complexity threshold (usually taken at 6 or 7). This ensures that
at least one of the concepts being conjectured about is not trivial.
Secondly, taking all the concepts which appear in either path, the
percentage of them which appear in only one path must be above the
difference threshold (usually taken at 70%). This ensures that the
two calculations are not trivially related, and so the proof (or dis-
proof) of the conjecture will probably be non-trivial.

When HR specialises the notion of group, eg. into cyclic groups,
the conjectures it makes from these concepts are only about the spe-
cial groups. A plausibility measure for conjectures is planned, which
will ensure that the conjecture is about a large subset of the groups HR
has, and not just a few. One of the reasons Graffiti's conjectures are so
plausible is that they are true for a large number of graphs. Note that
the measures of conjectures do not affect the search, as they are not
measures of the concepts themselves. We plan to implement a meas-
ure of each concept which takes the average of the interestingness
of the conjectures for the concept and thus helps to push the search
towards concepts producing interesting conjectures. We believe that
making conjectures is a more worthy task for HR than just inventing
concepts, and we intend to improve HR's conjecture making abilities.

3.3 User Defined Parameters

In summary, the heuristic search works by (i) measuring each
concept in various ways and taking a weighted sum of the results
for a total indication of the importance of the concept, (ii) measuring
each production rule in terms of the concepts it has produced, and
(iii) choosing the best old concept to base the new concept on, using
the best production rule to do this and running through every pos-
sible parameterisation of the production rule. The measures HR has

at the moment are: parsimony, invariance, discrimination and nov-
elty, and the weights for the weighted sum of these can be set by the
user. At present, there are 'modes' which HR runs under. One such
mode is the classifying mode, where the weights for the parsimony
and novelty are zero, so these measures do not affect the search, and
HR spends all of its time looking for a classifying calculation. There
is an equivalent mode for novelty, and an exhaustive mode, where all
the weights are zero. The user can define and keep their own modes.

The other parameters which can be changed to alter the search
are the initial ordering of the production rules, the forbidden paths
and when to reorder the agenda. HR can measure and re-order the
concepts and production rules at each step, but this produces a slower
search. In practice, the reordering is only performed after some new
concepts have been found. How many concepts HR must invent before
reordering is chosen by the user. Values around 10 seem to produce
the best results. Note that, once a concept and production rule pair
have been used up (ie. all the possible parameterisations have been
tried), HR keeps the present concept, but moves on to the next best
production rule in the list. Only when all the production rules have
been tried does HR move on to the next concept in the list.

A problem with this search method is that if a concept is not pro-
ducing new concepts, the reordering will not happen, and the concept
will continue to be looked at. For this reason, HR has a productiv-
ity threshold which the user can set. If a concept has been used in,
say, ten steps in a row, none of which have produced a new concept,
then the search moves to the next concept in the list. Of course, this
might not be a good idea if the user is looking for conjectures. In any
case, the productivity threshold can be set by the user, and this, along
with the other extra parameters are supplements to the main heuristic
intended to make the search quicker and more productive.

4 An Assessment Of HR in Finite Group Theory

We have chosen three out of many ways to assess HR. In
�
4.1, we

assess whether HR is accomplishing the tasks we have set it, namely
the classification of groups and gaining an understanding of the do-
main. In

�
4.2 we choose twenty concepts occurring classically in

finite group theory and check whether HR re-invents them, giving
derivations for those it finds and explanations for those it misses.

Before any more detailed assessment, we can assess HR by the
four criteria laid down by Valdes-Perez in [21]. These criteria are
about the knowledge produced by the programs, and not about the
theory behind the concept formation. This is because they are meant
to assess programs such as Graffiti, which collaborate with human
researchers and so a means-end analysis is appropriate. HR aspires to
be such a program and it is appropriate to assess it by these criteria.
Valdes-Perez states that machine discoverers in science should pro-
duce knowledge which is (i) novel (ii) interesting (iii) plausible and
(iv) intelligible, and we look at these in turn.

The concepts HR produces are likely to be novel because the search
space it looks at is large, and it finds concepts which humans have
overlooked. Group theory has been intensely studied, and the con-
cepts HR produces in lesser known algebras are likely to be novel
more often. The conjectures HR makes involve these novel concepts,
and there is a good chance that they too will be novel. As detailed in�
5.1 below, a sequence of integers HR found has been overlooked by

humans, and is certainly novel.
Assessing whether a concept is interesting in pure mathematics is

a very difficult task. It is unlikely that Diophantine equations would
be so interesting if a correct proof to Fermat's last theorem had been
found in his margin. It is possible that HR will define a novel concept

that may prove useful in solving a problem or which appears in some
data from the physical sciences, and then the concept will become
interesting. It is exactly for this reason that we give HR specific tasks
to do because, if it finds concepts which achieve the task, we can
appeal on utilitarian grounds that they are interesting.

As stated previously, the conjectures HR makes are not as plausible
as they could be, because they are based on a small amount of empir-
ical evidence. HR's concepts, however, are plausible because models
of them exist. For example, if HR invented the concept of a group
which has two distinct identities, it would find no examples of such a
group, and discard the concept. They are also plausible because they
are the product of a series of mathematically accountable operations.

This also adds to the intelligibility of the concepts. We have
worked very hard to allow the user to understand HR's inventions
and there are four ways the output can be investigated. Firstly, there
are command line queries available within the Prolog environment.
Secondly, using the dot program [10], HR draws graphs showing the
construction history of its concepts. Thirdly, HR writes and displays
a marked up LATEX script which gives a mathematical definition of
each concept, the examples of it HR has, the categorisation of the
groups given by it and any notes or conjectures HR has about the
concept. Finally, there is a Java front end, a demonstration of which
can be seen at [2]. This allows the user to navigate through the con-
cepts and find ones with certain properties. We also hope to reduce
the number of concepts which are difficult to understand, using the
clarity measure described in

�
3.

4.1 Does HR do the Tasks it was Set?

All the sessions in group theory have started with the same set of
data: the Cayley table of the trivial group and two isomorphic Cayley
tables for each group up to order six. This comes to 15 Cayley tables
which make a data table containing 285 quadruples.

Classification Up to Isomorphism

If asked to find a calculation which classifies the group up to or-
der six, a group theorist would probably collate the orders of the
elements for each group. In a series of sessions with varying para-
meters, HR has come up with over 50 ways to classify these groups.
Of these, we've identified only three genuinely distinct core classi-
fying concepts, with the others closely related to these. None of the
core concepts were the set of element orders, as to get to them, HR
had to pass through the concept of elements and their orders, which
scored zero for invariance, as it depends on the naming of the ele-
ments. However, one of the core classifying concepts HR invented
was very close to the idea of element orders. This, and another core
classifying concept have fairly complicated definitions. However, we
were genuinely surprised when HR invented the following concept,
and told us that it classified the groups up to order 6:

� � �
���� � ����� � ���
�
� � ��� �
	 ��������

and
��� � � � �
� �

We had thought that there wasn't a classifying concept with such a
concise definition.

We should also assess the heuristic of building on concepts which
produce a classification close to the gold standard. Unfortunately, the
above classifying concept was not produced while HR was using this
heuristic, but was found during a session when HR was exploring and
understanding the domain. However, this is an exception, and almost
all the other classifying concepts have been produced by using the
classification heuristic at some stage. Interestingly, we have found

that using the heuristic straight away is a bad idea, as HR doggedly
follows paths from concepts invented at the start of the session, which
never lead to a classifying concept. So, in practice, we ask HR to find
50 or more categorisations of groups by exploring the domain before
we ask it to look specifically for a classifying concept. It then has
a broader range of good concepts to choose from, and can afford to
abandon dead ends.

Using a combination of the novelty and classifying modes, HR has
found a concept which categorises the groups in every way we have
asked it. We have given it the following gold standards: classifica-
tion up to isomorphism, classification into Abelian and non-Abelian
groups, and into cyclic and non-cyclic groups, classification by iden-
tity element and others. In every case, HR has found a concept which
classifies the groups correctly. It is not always true that the concept is
the one we would expect (eg. the concept of the identity elements to
classify the groups by their identity). However, in terms of achieving
the classification, HR does its job well, and a comparison with other
classification algorithms is planned.

Understanding the Domain

Here we can measure how well HR is doing by counting the num-
ber of categorisations of groups it comes up with. In a recent run,
we asked HR to come up with 200 different ways of categorising the
15 groups in its database, using the the novelty mode previously de-
scribed. It took about one hour to accomplish this task, and invented
381 distinct concepts to do this. Noting that the categorisations give
us ways of comparing and contrasting groups, we measured the av-
erage number of reasons HR could give why any two groups are the
same (ie. a calculation performed where the output is the same for
both). There were 72 reasons HR could give. Also, HR had 38 reasons
it could give, on average, why any three groups were the same, and
28 reasons why any four groups were the same.

We have found that the heuristic performs well in this task, and
the novelty measure is a good way of getting the search to find new
categorisations of groups. An exhaustive search for an hour produces
less than 60 ways of categorising groups. Therefore, using the nov-
elty measure increases the number of distinct categorisations formed
by a factor of three. This has been borne out in many other similar
comparisons of performance. Note that we want to improve HR be-
fore assessing its conjecture forming abilities.

4.2 Re-inventing Classical Definitions

Perhaps the most ambitious way to assess HR is to see if it re-invents
any concepts which appear in standard group theory texts. Of course,
as HR is trained in group theory, progress is made by identifying con-
cepts it cannot find and adding production rules so that the search
space expands to contain the desired concepts. In the development of
HR, each new production rule has enlarged the space to include mul-
tiple new classically interesting concepts. For instance, the forall
production rule brought centres of groups, Abelian groups and iden-
tities of groups into reach, and the fold production rule brought
element orders and cyclic groups within reach. Therefore, it should
come as no surprise that HR finds these concepts.

However, HR does itself no favours by throwing away concepts
with equal data tables to previous ones. For example, it might come
up with one concept which outputs the centre of the group for all
the groups it has, but the calculation is not actually defined by the
centre of the group. When it does define the centre of the group,
this will be thrown away because the data table is the same as the
previous one. It may turn out that the two definitions are provably

logically equivalent, and in some cases, we have to claim that as a
partial success, until HR retains all the definitions it makes. In other
cases, the correct definition is returned, and there is no arguing that
HR has re-invented the concept. Sometimes, nothing like the concept
is returned, and we give one of three excuses for these omissions:
(i) the concept is in the search space, but is missed by the heuristic
search, (ii) the concept is not in the search space, but we intend to
expand HR's capabilities to find it and (iii) the concept is not in the
search space, and it is unlikely that it will be, for some good reason.

The following twenty concepts have been picked as representative
of those found in standard group theory texts. HR only starts with the
group operation, ie. the set of triples

����� � �$�

, such that

� � � ���
, so it

has to invent even the most elementary of concepts. It easily finds the
elements of a group using exists with the group operation data.
It finds the order of the group by using this elements concept in
another exists step, and counting their number. In group theory,
the left identities are the same as the right identities, so HR never
retains both tables, and so cannot conjunct them together to get
the concept of an identity of a group. HR does, however, come up
with the logically equivalent definition of identities: those elements,�

for which
� ����� �

. HR misses inverses of elements for the same
reason it misses identities.

HR does re-invent the concept of cyclic groups - those groups for
which there is an element which generates the entire group - by us-
ing fold to produce the orbits of pairs of elements under the group
operation, then match to find the orbits

��� �
�
� � & � � ���

, then forall
to find an element with all the other elements in its orbit. The route
to the concept of elements and their orders also uses fold, and
HR reaches this concept. Unfortunately, as mentioned earlier, this
concept scores zero for invariance, and paradoxically, only one step
away is the invariant concept of the set of element orders, which is
not reached because the heuristics steer it away from the badly scor-
ing concept. The forall production rule was implemented for HR
to reach, amongst other things, Abelian groups, but these were found
in another way, using the negation of conjunct twice to define a
group, � for which:

� � ����� ��
�� � � � for which
�� � ���� � �

, which
is very close to the classical way of defining Abelian groups: � for
which �

����� ��
��
��� �

� ����� � � ���
. Elementary Abelian groups

and p-groups are out of HR's reach because it does not know about
prime numbers. As prime numbers are important in many domains,
we could justify giving HR a primality test. Even though they have
equivalent algebraic definitions, is unlikely that HR will re-invent the
definition of dihedral groups as they have their origin in geometry,
or quarternion groups as they originate from a number type.

It will take some extra production rules for HR to invent the import-
ant concept of left cosets, and we have to be sure that the production
rules we introduce are indeed general. For this reason HR misses a
large area of very important group theory, as left cosets are needed
to define quotient groups from which we get normal subgroups,
and simple groups. We intend to introduce general production rules
which bring some of this theory within range. HR does re-invent
the centre of groups using permute to look at triples

����� � � ��

for

which
������� �

, then using conjunct to look at triples for which���� � �
and

���� � �
. It then uses exists to look at pairs

�����	�

for which

� ���
=
����

, then forall to look at those
�

for which�
���

�
� � � �� � � �

. These are the central elements, and their collec-
tion is the centre of the group. HR does not yet use subgroups broadly
enough to invent concepts such as the index of subgroups, but we
intend to add these aspects to the functionality. Finally, because HR
does not find the quotient group, and series of groups are defined us-
ing this, HR finds none of the classically interesting series of groups,

such as the central series and derived series. (Derived series also
need the concept of a commutator, which we hope to extend HR's
production rules to find). HR's sequence making skill in group theory
is an area we intend to improve upon.

A quick count of the twenty concepts shows that HR finds (a) 5
exactly, (b) logically equivalent definitions for 2 of them, and HR
misses (c) 2 because of the heuristic search missing them, (d) 9 which
we hope to include in future versions of HR, and (e) 2 which we do
not intend HR to find at the moment. We aim to move concepts from
(b), (c) and (d) to (a) in future versions of HR.

5 HR in Other Domains

Another way of evaluating HR is by looking at its performance in
other domains. Because the input that HR takes is simply a data table,
and the production rules it uses are very general manipulations of
data tables, it is possible to look at any algebra and lots of other areas
of mathematics. We concentrate here on number theory and graph
theory. We also mention some other algebras, and explain why we
have not assessed HR in these domains yet.

5.1 Number Theory

It recently occurred to us that information about integers, such as
their factorisations, can be represented as a table, ie.

� � �
� � � � ���

�
�
�

� � �
�
�
� � ���

�
�

��� Integer Factor Factor

1 1 1
2 1 2
2 2 1
3 1 3

Without making any modifications to HR, we ran it with the factor-
isations of the integers up from 1 to 100. As we weren't interested
in any particular classification of the integers, we ran it in the nov-
elty mode so that it produced as many classifications of the integers
as possible. We were surprised at how many classically interesting
number theory concepts were in the search space. Among the initial
concepts HR produced were square numbers and prime numbers, and
the tau function, which counts the number of factors of an integer.

At one stage, HR invented a type of number, which when listed in
numerical order gave this sequence of numbers:

� � �
���#���#� � �

� � � � �
	
�
���
�
	�
���
�
�
��
���
�
���

���
	
����� ���

�
�

which looked fairly interesting. Before asking HR to tell us the defini-
tion of this sequence, we checked whether this was a known sequence
of numbers, using the online encyclopedia of integer sequences [20].
This service informed us that the sequence was not among the 30,000
or so in its database. Because of this, we expected the sequence to
have a very unintuitive and complicated definition, and be rather dull.
We were amazed to find that they have a very succinct definition: they
are those integers for which the number of factors is itself a factor of
the integer. We have called these re-factorable numbers.

Encouraged by their novelty and succinct description, we have
submitted them to the online encyclopedia of integer sequences, and
they were accepted - their reference number is A033950. We have
also proved that there are an infinite number of re-factorable num-
bers and that every odd re-factorable number is a square number.
There are still two open conjectures concerning pairs of re-factorable
numbers. The examples between 1 and 10,000 are (1,2), (8,9) and
(1520,1521), and there are only thirteen such pairs between 1 and
1,000,000. The conjectures are: (i) there are an infinite number of
such pairs and (ii) (1,2) is the only pair where the odd number comes

first. If these conjectures are taken up by the mathematical com-
munity and take a lot of work to settle, re-factorable numbers may
make it into mainstream mathematics. In any case, this is perhaps the
first case of HR producing a mathematical concept of some interest.

Note that HR did not make any of the conjectures or theorems just
stated, but did make some, such as one concerning those re-factorable
numbers,) , which are such that the number� � ����� ��
����

�
� 	 � ����

and
������) �
�

does not divide) . The conjecture HR made was that these numbers
are always square numbers, and we have proved this also. One pro-
posed extension to HR's functionality in number theory is to get it to
accept a sequence of integers, and it give the next in the sequence, by
forming a concept which explains the sequence. This is similar to the
work done in [13]. HR will perform better in number theory once we
give it the information about addition of integers, and then it should
find concepts such as perfect numbers and triangle numbers.

5.2 Graph Theory

We have only very recently looked at graph theory, by turning direc-
ted graphs into tables, by listing the pairs of from-nodes and to-nodes
on an edge, and how many edges are between the two nodes. eg.

�
1

�
2

�
2

3
�

�
1

�
����� �

� � ���
� �

G1
G2 ��� Graph From Node To Node Edges

G1 1 2 2
G2 1 3 1
G2 2 1 1
G2 3 2 1

While we have not looked closely at HR's abilities in graph theory,
certain elementary concepts such as multigraphs, pseudographs and
disconnected graphs have been found. At present, HR's fold produc-
tion rule only gives the first orbit of a function, and this may not
be unique. For this reason, HR can invent the concept of cycles, but
doesn't calculate all the cycles within a graph, only the first one en-
countered for each edge. Other concepts such as cliques should be in
HR's search space, but haven't been seen in the output yet. Also, there
is an isomorphic classification in graph theory, so we can test whether
HR can classify graphs as well as it classifies groups. Unfortunately
we have not had time to do this yet.

We hope to compare and contrast the conjectures formed by Fa-
jtlowicz's Graffiti with those formed by HR. Certainly, Graffiti's con-
jectures will be more plausible because they have been tested on a
larger number of graphs. However, HR, unlike Graffiti, will be able
to claim that not only did it invent the conjecture, it also invented the
concepts about which the conjecture is stated.

5.3 Other Algebras

We have deliberately avoided evaluating HR's performance in other
algebras such as ring theory, and will continue to do so until we near
the end of the project. Once all the functionality we intend for HR has
been implemented and trained on the domain of group theory, we
will assess HR in other algebras, and use the assessment as part of an
overall evaluation of the generality of the methods we employed. We
hope to show that the theories formed in these algebras are influenced
not only by the search space and the search strategies, but by the
domain itself. This will be true because HR cannot do anything with
an empty table, and so will discard any concept for which there are
no examples. So, for instance, if a particular algebra we are looking
at has no central elements, then this concept will be discarded. While

it may be dangerous to ignore a concept on empirical grounds, it will
mean that the domain itself influences the concept formation.

HR has its own constraint solver enabling it to produce examples
of algebras given only their axioms. Using this, we have models of
groups, loops, quasigroups, semigroups, moufang loops and medial
quasigroups, and intend to use HR on some of these lesser known
algebras, and others, to (hopefully) invent something new and of use.

6 Conclusions and Future Development

We can now address the four aims we set down in the introduction.
Firstly, we have allowed HR to invent a small subset of concepts
found under the 'definition' headings of standard group theory texts,
and have pointed out many ways we intend to improve the coverage.
Secondly, our procedures are (i) production rules which work with
data tables which could come from any algebra and (ii) heuristics
based on measures for classification and understanding the domain,
which work on any tables, given any gold standard categorisation.
Hence our procedures can certainly be applied to any algebra, and
we have shown some success applying them to other areas of math-
ematics, namely number theory and graph theory. HR's results are
understandable by mainstream mathematicians, as they are given in
a standard mathematical language, and are constructions they should
be used to. Finally, by explaining the theory and implementation of
HR in this short article, we hope to have shown that the theory behind
the concept formation is clear and concise.

Along with all the other minor improvements to HR we have men-
tioned previously, such as more production rules and more measures,
we have two major additions we wish to make. The first of these is
to improve HR's abilities in understanding the domain. We wish to
improve its conjecture making skill by letting HR make many types
of conjectures, such as: the centre of a group is always a subgroup.
We also wish to link HR to OTTER, a first order resolution theorem
prover, [12], which has been used with some success in group the-
ory. This will give two extensions to HR's abilities. Firstly, HR will
be able to prove a subset of its conjectures - those which can be
expressed in a language acceptable by OTTER. Secondly, HR may
be able to prove that the only model for a particular concept is the
trivial group, and so the concept is uninteresting. For example, in�
2.2, the forall production rule invented the concept of groups,� , for which �

����� � �$�
��
� � � � �

� � � � � �
, and it is easy to

prove that there is only one such group, the trivial group.
The second major addition is to give HR another task to achieve,

namely to find more models of the algebra it is working with. That
is, we want HR to finish a session with more Cayley tables than it
started with. As mentioned in

�
5.3, HR has its own constraint solver

which allows it to find models of algebras given only the axioms. We
first intend to link HR to Slaney's FINDER, [19], which is a much
more efficient model generator. Then we intend to have HR output
constraints to FINDER which make the search for models more ef-
ficient. Recently, we gave FINDER the axiomatisation of groups by
the quasigroup and associativity axioms. We then gave it the extra
information that ��� � for which

�� � ���
. When asked to find groups

up to order six, FINDER performed better with the extra informa-
tion, which could easily have been provided by HR. We hope to take
this further, and introduce measures such as the efficiency measure
for concepts in [3], which will improve the yield of concepts which
increase the number of models found by FINDER.

To conclude, we can list the mathematical tasks accomplished by
HR. Using all its functionality, given only the axioms of group theory
(or any other algebra), HR can (i) find models of groups, (ii) categor-

ise the groups up to isomorphism - it has an isomorphism checker,
(iii) find group theory concepts such as calculations from the Cayley
table, subgroups and series of groups (iv) find a calculation which
classifies the groups it has up to isomorphism and (v) make conjec-
tures about the concepts it has invented. Future versions of HR will
(vi) prove some of its conjectures and (vii) invent constraints which
help it to find more models of groups with which to work.

ACKNOWLEDGEMENTS

This project has been funded by EPSRC research grant GR/L
11724 and EPSRC studentship GR/K/65706. We would like to thank
Jeremy Gow for his helpful comments on this paper.

REFERENCES
[1] R Bagai, Shanbhogue, J V, Zytkow, and S Chou, `Automatic theorem

generation in plane geometry', in Lecture Notes in Artificial Intelli-
gence, 689, pp. 415–424. Springer Verlag, (1993).

[2] S Colton, HR - Automatic Concept Formation in Pure Mathematics,
http://dream.dai.ed.ac.uk/group/simonco/hr/hr.html.

[3] S Colton, S Cresswell, and A Bundy, `The use of classification in
automated mathematical concept formation', in Proceedings of SimCat
1997: An Interdisciplinary Workshop on Similarity and Categorisation.
Department of Artificial Intelligence, University of Edinburgh, (1997).

[4] R Davis and D Lenat, Knowledge-Based Systems in Artificial Intelli-
gence, McGraw-Hill Advanced Computer Science Series, 1982.

[5] E DeLaVina and S Fajtlowicz, `Ramseyian properties of graphs', Elec-
tronic Journal of Combinatorics, 3, (1996).

[6] S Epstein, `On the discovery of mathematical theorems', in Proceed-
ings of the 10th International Joint Conference on Artificial Intelli-
gence. IOS Press, (1987).

[7] S Fajtlowicz, `On conjectures of graffiti', Discrete Mathematics 72, 23,
113–118, (1988).

[8] D Gorenstein, Finite Simple Groups: An Introduction to Their Classi-
fication, Plenum Press, New York, 1982.

[9] K Haase, `Discovery systems', in Proceedings of the 7th European
Conference on Artificial Intelligence, (1986).

[10] E Koutsofios and C North, Dot User's Guide, AT+T Bell Labs, Murray
Hill, NJ.

[11] D Lenat, `Eurisko: A program which learns new heuristics and domain
concepts', Artificial Intelligence, 21, (1983).

[12] W. McCune, `The Otter user's guide', Technical Report ANL/90/9, Ar-
gonne National Laboratory, (1990).

[13] Marsha J. Ekstrom Meredith, Seek-Whence: A Model of Pattern Per-
ception, Ph.D. dissertation, Department of Computer Science, Indiana
University, 1987.

[14] G L Miller, `On the ������� � � isomorphism technique', Technical Report
TR17, The University of Rochester.

[15] E Morales, DC: a system for the discovery of mathematical conjectures,
Master's thesis, Department of Artificial Intelligence, University of Ed-
inburgh, 1985.

[16] G Ritchie and F Hanna, `AM: A case study in methodology', Artificial
Intelligence, 23, (1984).

[17] W Shen, `Functional transformations in AI discovery systems',
Technical Report CMU-CS-87-117, Computer Science Department,
Carnegie-Mellon University, (1987).

[18] M Sims, `IL: An artificial intelligence approach to theory formation in
mathematics', Technical Report ML-TR-33, Department of Computer
Science, Rutgers University, (1990).

[19] J Slaney, FINDER 3.0 Manual, Centre for Information Science Re-
search, Australian National University.

[20] N Sloane, The Online Encyclopedia of Integer Sequences,
http://www.research.att.com/ njas/sequences/eisonline.html.

[21] R Valdes-Perez, `Why some machines do science well', in Proceed-
ings of ICDC, The International Congress on Discovery and Creativity,
Forthcoming. Ghent University, (1998).

