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Abstract

We enumerate unrooted planar maps (up to orientation preserving homeomorphism)
having two faces, according to the number of vertices and to their vertex and face
degree distributions, both in the (vertex) labelled and unlabelled cases. We first
consider plane maps, i.e., maps which are embedded in the plane, and then deduce
the case of planar (or sphere) maps, embedded on the sphere. A crucial step is the
enumeration of two-face plane maps having an antipodal symmetry and use is made
of Liskovets’ method in the process. The motivation for this research comes from
the topological classification of Belyi functions.

Résumé

Nous dénombrons les cartes planaires (& homéomorphisme préservant I'orientation
pres) non pointées a deux faces, selon le nombre de sommets et selon la distribu-
tion des degrés des sommets et des faces, étiquetées (aux sommets) ou non. Nous
abordons d’abord les cartes planes, c’est-a-dire plongées dans le plan, et déduisons
ensuite le cas des cartes planaires (ou sphériques), plongées sur la sphere. Une étape
cruciale est le dénombrement des cartes planes a deux faces admettant une symétrie
antipodale et la méthode de Liskovets est utilisée pour cela. La motivation de cette
recherche provient de la classification topologique des fonctions de Belyi.

Key words: Planar maps, unrooted maps, plane maps, sphere maps, degree
distributions, species, Belyi functions,

1 Introduction.

The interest of studying maps is now well established. Not only are they
interesting on their own, but the combinatorics of maps is also closely related
to other topics, such as Galois theory, algebraic number theory or the theory
of Riemann surfaces and algebraic combinatorics (see Arnold [1], Goulden
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and Jackson [11] and Shabat and Zvonkin [21]). The enumeration of maps is
a difficult problem. One way to approach this problem is to consider rooted
maps, that is, maps with a distinguished and directed edge. The fact that
rooted maps have only the trivial automorphism facilitates their enumeration.
For papers on the enumeration of rooted planar maps, see Tutte ([24],]26]),

Cori [8], Arques [2], Bender and Wormald [5].

This paper deals with the enumeration of unrooted planar maps having two
faces. Our main objective is to enumerate these maps according to their vertex
and face degree distributions. This problem is motivated by the classification
of Belyi functions, which are in correspondance with planar (hyper)maps; see
Magot [18], Magot and Zvonkin [19], and Shabat and Zvonkin [21]. The case
of only one face reduces to plane trees and has been completely solved; see
Harrary, Prins and Tutte [12] and Tutte [25] for rooted trees, and Walkup [27]
and Labelle and Leroux [14] for unrooted trees.

For other work on the enumeration of unrooted maps, see Liskovets [15]-[16],
Liskovets and Walsh [17], Tutte [23] and Wormald [28], [29]. Note also that
Magot [18] has given an algorithm for the generation of non rooted planar
two-face maps, according to their face degree distribution.

A planar map m is a cellular embedding of a connected graph (multiple edges
and loops permitted) into the 2-sphere S2. This defines a partition of S?
into vertices (points), edges (open arcs whose endpoints are vertices) and
faces (regions of S? obtained by deletion of the vertices and edges, which are
homeomorphic to open discs). Two planar maps are called equivalent if there
exists an orientation preserving homeomorphism of S? which sends one into
the other.

By contrast, a plane map, or graph, is a proper embedding of a connected graph
into the plane. It can be seen as a planar map with a distinguished (exterior)
face. Although not traditional, the more precise terminology of sphere maps,
for planar maps, seems appropriate here to distinguish them from plane maps.
This terminology will be used in the rest of this paper.

We will consider sphere and plane maps (up to equivalence) as structures on
the set of labelled vertices. Let m and m’ be two sphere maps (resp. plane maps)
with vertex sets U = V(m) and U’ = V(m') respectivly. Then an isomorphism
of maps m=m’ is a bijection of the vertices o : U=U’ which is induced by an
orientation preserving (possibly trivial) homeomorphism of the sphere (resp.
of the plane) sending the map m into m’. In this manner, unlabelled maps,
that is isomorphism classes, correspond exactly to the topological equivalence
classes of maps.

In order to enumerate two-face maps, we first express the species of two-face
plane maps in terms of circular permutations and of planted plane trees (see



section 2). This yields the enumeration of both labelled and unlabelled two-
face plane maps with n vertices, using Lagrange inversion. Moreover, the above
expression can be refined, using appropriate weights, to incorporate the vertex
degree and the face degree distributions.

In a second stage, two-face sphere maps are considered as orbits of two-face
plane maps, under the antipodal transformation which exchanges the interior
and the exterior faces. A crucial step then is to enumerate plane maps having
an antipodal symmetry. In the labelled case, this is easily done since only the
one-vertex and two-vertex cycles have this symmetry. In the unlabelled case
one can use a direct bijective approach or compute the cycle index polynomial
of a particular action of the dihedral group; see Bousquet [6]. Here, we rather
adopt a hybrid but simpler approach which makes use of Liskovets” method
[15,16], for the enumeration of sphere maps: unlabelled two-face sphere maps
on n > 3 vertices can be considered as orbits of the symmetric group acting
on labelled sphere maps. One difference with [15] is that the symmetric group
acts on the vertices here instead of the half-edges or bits (or “brins”).

An important use is made of the following fact:

Lemma 1 (See [3]). Any periodic orientation preserving homeomorphism of
the 2-sphere is conjugate by an orientation preserving homeomorphism to a
rotation around a certain azis.O

It follows that a non trivial automorphism of a sphere map leaves exactly two
cells (vertex, edge, or face) fixed and that for n > 3, the representation of
map automorphisms by vertex permutations is faithful. For two-face sphere
maps, we can classify all possible automorphisms and enumerate their fixed
points, using the concept of quotient maps as in [15,16]. This approach is
easily adapted to include the vertex and face degree distributions and gives
the desired results. See section 3.

We would like to thank A. Zvonkin for suggesting and motivating this work,
R. Cori and G. Schaeffer for useful discussions, and the referees for helpful
suggestions.

2 Two-face plane maps.

Our analysis of two-face plane maps will involve the species A of planted plane
trees, that is, of rooted plane trees with a half edge attached to the root, which
contributes one unit to the root degree and prevents the other incident edges
from fully rotating around the root (see Figure 1).



Fig. 1. A planted plane tree.

A planted plane tree is therefore an asymmetric structure. If the sets of labelled
and unlabelled planted plane trees with n vertices are respectively denoted by
A, and A,, then their cardinalities satisfy the relation

|Aa] = nl| A,

and the corresponding generating series

Aw) = X 1A% and Alw) = Y |Ade

n>1 n>1

of labelled (exponential series) and of unlabelled planted plane trees, are equal:
A(z) = A(z). The species A of planted plane trees satisfies the combinatorial
identity

A= XI(A), (1)

where X is the species of singletons, and L, that of total orders (lists). This
implies the following well known relation (see Tutte [25]) on the generating
series :

x

A® = =i

which can be solved algebraically to obtain

1

Ae) =Y+ (2” - 2) 2", )

n\n—1

More generally, by Lagrange inversion, for any integer a > 0, we have

A%(2) zgaznoia(%;a)xn. (3)




To keep track of the vertex degree distribution in a planted plane tree, we in-
troduce a sequence r = (ry,r9,73,...) of formal variables and a weight function
w which assigns to each planted plane tree a, the weight

w(a) = r{'ry’ry e (4)

where d; is the number of vertices of degree 7 in a. The vertex degree distribu-
tion is thus described by a vector d = (dy,ds, ...) and the following notations
are used throughout this paper:

d] = Y d; and [jd] = Y id; ()

7

corresponding respectively to the number of vertices and the total degree. The
corresponding weighted species, denoted by A,, satisfies the combinatorial
identity

Ap = X L(Ay), (6)

where

LT:17”1 —I_XT’Q —I_XTQS—I_"'

is the weighted species of lists where a list of length ¢ has the weight 7.
We then have A,(z) = T3>0 rigiAl(z), Ax(z) = Aq(x), and it follows from
Lagrange inversion (see Tutte [25]) that

a3(0) = 25 () et )

Bk

where
ﬁ /8 1 2 ,.13
(h’ N h17h27h3,--. and T‘h:r? rél Tg T

the sum being taken over all integers 3 > «, and vectors h such that |h| = 3
and ||h|| = 206 — «a.

Let C' denotes the species of oriented cycles, for which
7 1 ~ 1

Cl) =Y = =log—, C(e) = ——, 8)

v21




and the cycle index series Z¢ is given by (see [4], [13])

1
11—z,

Ze(xy, w9, x3,...) = Z qu;n) log

m>1

where ¢ is the Euler phi function.

Recall that a two-face plane map is a two-face sphere map with a distingui-
shed face. See Figure 2 for an example where the exterior (infinite) face is the
distinguished one. We see that any two-face plane map can be decomposed
as an oriented cycle of X L?( A)-structures, where an X L?( A)-structure is in-
terpreted as a vertex to which is attached an ordered pair of lists of planted
plane trees (Figure 3). In conclusion, we have the following structure theorem
for the species of two-face plane maps, denoted by M.

Fig. 2. A two-face plane map.

Theorem 2 The species M of two-face plane maps satisfies the following com-
binatorial identity:

M = C(XL2(A)). (10)

Note that since A = X L(A), we have

(XI2(A)) () = 202 ()

X

Let M,, be the set of labelled two-face plane maps over the vertex set [n] =
{1,2,...,n} and M,, the corresponding set of unlabelled maps. We have

IM,.| = n![z"]M(z) and |M,|= [z"]M(z). (12)



Fig. 3. An X L%(A)-structure.

By using (10) and (11), we have

(13)
Using (3), we deduce that

_ (n;l)!w o (25»

It follows from Theorem 2 and (9) and from general principles (see Theorem

1.4.2 of [4]) that

M(w) =Zc ((XLZ(AL)>N($m))m21
= Z @log (1 — M)

m>1 "
from which we deduce the value (15) of |M,| below. Hence, we have:

Theorem 3 The numbers |M,,| and |M,| of labelled and unlabelled two-face

plane maps on n vertices are respectively given by

M| = @ (22n - (27:‘)) . (14)



and
= 3ol (2 (). (15)

d

Remark 4 Let ¢, be the number of (unlabelled) rooted sphere maps having
two faces and n vertices (or n edges). It is easy to see that n|M,| = nlt, so
that t,, = n+1)'|Mn| and formula (14) is equivalent to

(
) R oo S

The sequence {t,}, whose first terms are 1,5,22.93,386, 1586, ... appears in
Tutte rm [26] and is presented in Sloane-Plouffe’s Encyclopedia of integer
sequences [22] under #M3920. Similarly formulas (28), (37) and (44) below

could be reformulated in terms of rooted sphere maps.

Vertex degree distribution.

To enumerate two-face plane maps according to their vertex degree distribu-
tion, we define the weight function w, on the species M: given a two-face map
m, we set

wy(m) = r{'ryry (17)

where dj is the number of vertices of m of degree k. For example, the map in
Figure 2 has the weight r#6r2ri3rirZrg. 1t is well known (see J.W. Moon [20])
that there exists a tree having d = (dy,ds, ...) as vertex degree distribution if
and only if ||d|| = 2|d| — 2. Tt easily follows that a two-face map with vertex

degree distribution d exists if and only if
|d]| = 2|d|. (18)

Theorem 2 can be generalized to express the species M, of two-face plane
maps weighted by vertex degree in terms of the species A, of planted plane
trees weighted by vertex degree, defined by (6):

va :O( Z er+k+2AT+k)
m,k>0
COOoAX,, A (19)

A1
A>1



where X,. denotes the species of singletons, with weight r;.

Let My denote the set of labelled two-face plane maps over the set [|d|] and
having d as vertex degree distribution. From (19), we deduce that

Mal = [d]![rz!*]M,, (), (20)

where

va (‘1;) = Z % (TZ + 2T3A—p(l’) + 3T4AZ($) + 4T5Ai($) + - .)’y

~
= Z T—( 7 )r§2(2r3)g3(3r4)g4 o (Ap())setreat o (21)
y>1 Y \g2,93, - - -

g2tgzt =7

In this sum, g; corresponds to the number of vertices of degree 1 on the cycle.
Note that ¢; does not appear, which is consistant with the fact that there
cannot be any vertices of degree one on the cycle. We also have |g| = v and

93+ 294 +3g5 + - = ||gll — 2|g| = ||g|| — 27, so we can write (21) as

S L SED ol (A EE SRR (22)

y>1 v a>0  gl=~
llgll=a+2y

In this sum, « represents the number of planted plane trees which lie around
the cycle. If & = 0, all the vertices are on the cycle. Using (7), we can rewrite

(22) as

Mo (2) = 3 “rn 4 30 % (;)(i) 20304 .. pTthtE (93)

n>1

the second sum being taken over all integers v, «, 3 > 1 and all vectors g =
(917927 . ) and h = (h17h27 . ) such that |g| =7 ||g|| = a+277gl = 07 |h’| =
3, and ||h|| = 28 — a. One can write «, 3 and « in terms of g and h, that is

a=|lgll-2lgl, 8 =|h| and v =|g|. (24)
A pure coefficient extraction, in the case a > 1, gives

H(d):=[rz!*M,, ()
lgll —2lgl {11\ (1B\.o,.0
=2 TR (g)(h)” | )

ag.h



the sum being taken over all pairs of non-zero vectors (g, k) such that g+h = d
and ¢g; = 0.

For unlabelled two-face plane maps having d as vertex degree distribution, we

deduce from (19) that

Ml = [ ¥]M,,, (z), (26)
with, by the composition theorem for weighted species (see [4], section 4.3),

'va(x) = Zc (E /\TTH:EmAﬁEI(:Bm)) , (27)
m>1

A>1

where A,m is the weighted species of planted plane trees in which the weight of
each structure, as defined in (4), is raised to the m-th power. After expanding
and extracting coefficients we obtain the following result.

Theorem 5 Lel d be a vector satisfying ||d|| = 2|d|. Then the number |My|
of labelled two-face plane maps having d as vertex degree distribution is given

by (|d] — 1)! if |d| = d2, and otherwise, by
IMa| = [d|'H(d), (28)
where H(d) is given by (25). Also the number |Md| of unlabelled two-face plane

maps having d as vertex degree distribulion is given by [Mg| = 1 if |d| = d,
and otherwise by

Wl = 3 ) b ), (29)

m|d m

the sum being taken over common divisors m of all components of d, with

d/m = (di/m,dy/m,...). O

Face degree distribution.

In order to enumerate two-face plane maps according to their face degree
distribution, we introduce a new weight function w; defined, for a two-face
map m, by

wy(m) = s7"u", (30)

10



where s,¢ and u are formal variables and +, m and k respectively denote the
number of vertices lying on, outside and inside the cycle. For example, the
map appearing on Figure 2 has the weight s31*325,

Let « denote the degree of the outer face and (3, the degree of the inner face.
The triplet (v, m, k) is sufficient to determine this degree distribution. Indeed,
we have

a=~+42m and 3 =~+ 2k, (31)

and a+ 3 = 2(y+k+m) = 2n, where n is the number of vertices of the map.
We then deduce that a and 3 must have the same parity. One can easily verify
that this condition is also sufficient for the existence of a two-face sphere map
having face degree distribution (a, [3).

The species M,,, of two-face plane maps, weighted by wy, can then be expressed
as

M.y, = C (X, - L(A(X)) - L(A(X))) (32)

f

where X is the species of singletons weighted by s and similarly for X; and
X,. Let @ > 0 and 3 > 0 have the same parity and set n = (a + 3)/2. Let
M., denote the set of all two-face plane maps on [n] having (o, 3) as face
degree distribution. We have

Mgl =n! > [swt(a_”)ﬂu(ﬁ_ﬂ/?aﬁ”]wa (x). (33)
1<y<min(a,p)
2|v+a
Note that
A(X) = XL(A(X,), (34)

so that at the level of generating series,

LA(X)) () = 20D (35)

xt

and similarly for A(X,). Therefore, using (32) and (3), we have

~

(tuzx)”

M, (z)= Z AV (xt) A" (zu)

v>1 7

11



i fy (2@ )2 (2] — ’Y) STHY i = i =
’Y ) — J
~ 2m —I_ Y Qk —I_ Y Sytmuklﬁ—}—m—}—k
w Cm+ )2k +y)\m+y )\ k+7y

’Yﬁ (cﬁv> (va) Swt(a—v)/Zu(ﬁ—w)ﬁx(a+;3)/27 (36)
5 B4y

2

Il
QM sM BN

the last sum being taken over all triplets of integers v, a, 3 such that v >
La,B > ~,2|a — v,2|8 — v. The next result follows, using the identity, for
a=0 (mod 2),

Sl o) = ) ()

2|aty
which can be deduced from a formula due to Knuth (see [10], eq. 3.152), with
similar computations in the unlabelled case.
Theorem 6 Let o and 3 be two strictly positive integers having the same

parity. The number |M, g| of labelled two-face plane maps having (o, 3) as
face degree distribution is given by

R o )

where n = (o + 3)/2 is the number of vertices. Moreover, the corresponding
number M, g)| of unlabelled 2-face plane maps is given by

) _aza:mqb ( L%Jl) (%[;)- (38)

Joint vertex and face degree distributions.

Consider the plane map shown in Figure 2. The vertex and face degree
distributions are respectively given by

d = (46,2,13,7,0,0,0,2,1,0,...) and (a,3) = (89,53). (39)

12



The vector d decomposes as the sum of the three vectors

d=g+h+tk,

where g, h et k respectively denote the degree distributions of vertices that
lie on, outside and inside the cycle. In our example, we have

g =(0,0,0,0,0,0,0,2,1,0,...), b = (29,1,7,6,0,...)
and k = (17,1,6,1,0,...).

We note that 2|h| — ||k|| = 10 and 2|k| — ||k|| = 9, which are respectively the
number of outer and inner ordered rooted trees. The term 2|h| — ||h|| is called
the residual degree of h and is denoted by res(h).

Let s = (s1,82,83,...), t = (t1,12,13,...) and v = (uy, ug, us,...) be three
infinite sequences of formal variables and m be a two-face plane map. We
consider the weight function w, defined by:

wyf(m) = s9thuk,

where

ki ko ks

3155253 th = t}flt?tg?’---, and u® = Uyt Uyt ug -

s7 = s7'sys3" -,

respectively describe the distributions of degrees of vertices which lie on, out-
side and inside the cycle. For instance, the map shown in Figure 2 has the
weight s2s8t291,t518ul"usuSuy. Note that this weight is sufficient to fully des-
cribe both vertex and face degree distributions, since

d=g+h+k, a=2lh|+|g|, and 3 = 2|k| + |g].

The corresponding weighted species is then expressed by

My, =C( 3 X, ALAT). (40)

£,m>0

Let Mg (,5) be the set of two-face plane maps over the set [n], where n = |d| =
(o + 3)/2, having d and («, 3) as joint vertex and face degree distributions.
Let M(gn k) be the set of all two-face plane maps having (g, h,k) as vertex
degree distributions respectively on, outside and inside the cycle. We have

IMa, 03] = D Mgl (41)

g.h.k

13



the sum being taken over all triplets (g, h, k) satisfying the following condi-
tions

l.d=g+h+Ek;

2. a=2lh|+|g|, 8=2[kl+]gl;

3.91=0, g#0; (42)
4. tes(h) > 0, and res(h) = 0= h = 0;

5. tes(k) > 0, and res(k) = 0= k = 0;

We find, after computations,

|M(g7h7k)| = |d|![sgthuk:1:”]vaf(:1:)

_ Idl@(h)qﬁ)@(g,h) <|zl) (I:I) (IZ|)7 (43)

where the functions © and @ are defined by

O(g,h) = [Zres(h)](l +2)%2(1+ 2+ 22)94(1 +2422+ 23)95 e

and

res(h)/|h|, if res(h) > 1,
®(h)=11,if h=0,

0, otherwise.

Similar techniques are used for the unlabelled case. We then have the following
result.

Theorem 7 Lel d, satisfying ||d|| = 2|d| and a,8 > 0, two integers having
the same parily, where |d| = (a + 8)/2 = n. Then the number Mg )| of
labelled two-face plane maps on [n] having joint vertex and face degree distri-
butions d and (a, 3) is given by

|Md7(a75)| = n’H(dv (a7ﬁ)) (44)

and the corresponding number |R/|Jd7(aﬁ)| of unlabelled two-face plane maps is
given by

— m d o
e S N ) (49
m|(d,a,8)

14



with

H(d,(a,8)) = ¥ ®(h)®(k)O(g, h) (|g|) (IZI) <|:|)7

g,k k |g| g

where the sum runs over all g,h and k satisfying condilions 1-5 in (42).
O

3 Sphere maps.

Fig. 4. Antipodal involution of a plane map.

Consider the two plane maps shown in Figure 4. Embedded in the plane,
these two maps are distinct. No orientation preserving homeomorphism of the
plane can send one onto the other. However, when considered embedded on
the oriented sphere, both structures represent the same map. Imagine that the
cycle lies along the equator. The left structure represents a north pole view
of the map while the right structure represents a south pole view. We observe
that this transformation essentially exchanges the choice of the distinguished
face. Equivalently, it can be seen as a 180° rotation around an axis which passes
through the equator. This transformation is clearly involutive, therefore it will
be called the antipodal involution, and will be denoted by 7. A two-face plane
map m is said to have an antipodal symmetry if 7(m) = m.

Consider the group <7> = {Id, 7}, where Id is the identity transformation,
and 72 = Id. This group acts on the species of two-face plane maps. More
precisely, we have a familly of actions: for each finite set U, the function

<r> x M[U] = M[U]
(46)
(gam) = g-m

15



is an action of the group <7> on the set M[U] of all labelled two-face plane
maps over /. Also, this action commutes with any relabelling along a bijection
o: U — V. Note that it preserves the vertex degree distribution and that it
reverses the face degree distribution.

From this point of view, the two-face sphere maps can be seen as orbits of the
action of <7> on the plane maps and the species of two-face sphere maps,
which will be denoted by M, is the quotient of the species M of two-face plane
maps by the group <7>. This is written as

M=M/<r>. (47)

It follows from the Cauchy-Frobenius Theorem (alias Burnside Lemma) that
for any finite class C of plane maps (labelled or unlabelled), closed under the
action of 7, the cardinality of the corresponding class C = C/<7> of sphere
maps is given by

C] = [C/<m> | = 5 (IC] + [Fixc 7)), (48)

DO | =

where |Fixc 7| is the number of maps in C having an antipodal symmetry.

3.1  Enumeration of labelled two-face sphere maps.

Let M,, Mg, My, s and Mg 1, 5 be the sets of labelled two-face sphere maps
respectively corresponding to the sets M,,, Mg, M(, gy and My, ) of labelled
two-face plane maps. By applying equation (48) to these sets, and noting that
the only labelled two-face plane maps having an antipodal symmetry are the
l-cycle (1) and the 2-cycle (12), we find:

Proposition 8 Let d satisfy ||d|| = 2|d|, and a, 3 > 0, be two integers having
the same parity, and such that n = |d| = (o + 3)/2 and n > 3. Then

1
1
Mal = 5IMal, (50)

|M(oz,[3)|7 lfa%ﬁa

1 (51)
§|M(a7a)|, ifa= 5 > 2,

(Mol =

16



and

Mg ap), if a#p,

1 (52)
§|Md7(a7a)|, otherwise,

| Ma a8y =

where [M,.|, [My|, |[M(, 5| and |Mg, g)| are respectively given by equations
(14), (28), (37) and (44). O

3.2 Enumeration of unlabelled two-face sphere maps.

Let M,, denote the set of unlabelled two-face sphere maps with n > 3 vertices.
Formula (48) immediately gives

I P ‘
M, | = §(|Mn| + |F1X|\~/In7'|). (53)

Different methods, bijective or algebraic, can be used to compute the term
|Fixa, 7| in (53) and hence the number | M,,|. See [6], sections 3.2.2 and 3.2.3.
The approach presented here uses the method of Liskovets [15,16], for the
enumeration of unlabelled (and unrooted) planar (= sphere) maps: we consider
unlabelled sphere maps as orbits of labelled maps under vertex relabellings,
that is we write M,, = M, /S,, and invoke Burnside’s Lemma, using the
concept of quotient map to enumerate the fixed points. The advantage of this
method is that the maps we enumerate are labelled. We have

M, | = H(JMn + E |Fixm, o), (54)

cE€S,\Id

where Fixp, 0 denotes the set of labelled two-face sphere maps for which o is
an automorphism.

It follows from Lemma 1 that any non trivial automorphism of a sphere map
can be described as a rotation around an axis which intersects two of its
elements. Any two-face sphere map can be drawn on the sphere in such a way
that the boundary between the two faces corresponds to the equator. In this
case, any non trivial automorphism is in fact a rotation around an axis of one
of the four following types:

e axis intersecting the two faces: type F'F
e axis intersecting a vertex and an edge on the equator: type V £}
e axis intersecting two vertices on the equator: type V'V

17



e axis intersecting two edges on the equator: type KF.

Axes of type F'V (face-vertex) or F'F (face-edge) are obviously not allowed
here since any non trivial automorphism leaving one face fixed must leave the
other face fixed as well. A two-face map having an automorphism around an
axis of type F'F' is said to have an equatorial symmetry, while a map having
an automorphism around an axis of type VE, VV or FFE is said to have an
antipodal symmetry.

For any o € S,,, the set Fixp, 0 can then be expressed as the following union

Fixyp, 0 = U Fixm, (o,T),
Te{FF,VE,VV,EE}

where Fixa, (0,1) denotes the set of maps for which o is an automorphism
of type I'. This union is disjoint, for n > 3, and we have

— 1 .
(M| = = (IMa] + > [Fixm, (o, T)]). (55)
n. c€Sp\Id
Te{FF,VEVV,EE}

In this formula, we realize that a part of the sum, namely 3, |Fixum,, (o, F F)|,
has essentially been computed, while enumerating two-face plane maps. In-
deed, the analog of (54) and (55) for unlabelled plane maps is

1

n!

IM,|==(M,+ > |Fixm,o])

c€S,\Id

:%(Mﬁ S |Fixu, (o, FF))) (56)

c€S,\Id

since any automorphism of a two-face plane map must leave the two faces
fixed. Also, for n > 3, it is clear that

IM,,| =2|M,,| and |Fixm, (o, FF)| = 2|Fixm, (o, F F)|

and we deduce from (55) that

1

n!

> [Fixa, (o, 1) (57)

cESR\Id
re{VE,VV,EE}

1 ~
./Mn :—Mn
M| = 5M, ] +
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and, comparing with (53), that

: 2 :
[Fixg 7| = ] > |Fixm, (o, T)]. (58)
: ceSp\Id
Te{VE,VV,EE}

Note that (58) could be proven directly using a standard result on the orbits
of two commuting group actions on the same set (see [4], Exercise A.1.9),
namely the groups < 7 > and &,, acting on M,,. Another observation is that
the previous reasoning remains valid if we restrict ourselves to maps having a
given vertex degree distribution d, with |d| = n > 3, that is

— 1 — ‘
|Md| = §(Md —|— |F1XI\7IdT|)’ (59)

where

: 2 :
|F1X|\~/|d7-| = ! ge;:\m |F1XMd(Ja ). (60)
Te{VE,VV,EE}

There remains to compute the various terms of (58) and (60) of the form
Yoes\d |Fixe(o,T)[, for C = M, or Mgand I' = VE,VV or EE. To do this,

we will use the concept of quotient map, following Liskovets [15,16].

Computation of 3 ,cs,\1a |Fixe(o, VE)|.

12
11

10 9

Fig. 5. A map having a symmetry of type V F and its associated quotient.
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Consider a two-face sphere map m with n > 3 vertices and vertex degree
distribution d, having an automorphism o of type V E. See Figure 5. In this
case, o corresponds to an antipodal rotation ® of angle 180° around an axis
intersecting one vertex and the opposite edge. This vertex is left fixed while
all other vertices are exchanged pairwise. We conclude that the number n of
vertices is odd and that o is of type A(¢) = 1'2("=1)/2_ Since there are

n!

2e=172((n — 1)/2)!

permutations of cyclic type 1'20*=1/2 and |Fix¢ (o, V E)| only depends on this
cyclic type, for C = M,, or Mg, we can write

n!
|Fix¢(o, VE)| = |Fixe(oo, VE)|,  (61)
P 2 1))

where this time, o is the particular permutation og = (1)(2,3)--- (n — 1,n).

Consider the action of the subgroup < ® >= Z; generated by the rotation
® on the sphere S*. The quotient space S?/(®) = Z, is obtained by identi-
fying points on the sphere lying in the same orbit, and the induced cellular
decomposition is called the quotient map of m by ®. To keep track of which
elements of the map were originally intersected by the rotation axis, the two
corresponding elements in the quotient map are pointed. In the quotient map,
the vertices are orbits (cycles) of o¢ and they are labelled according to the
increasing order of the minimum elements of the cycles.

In the present case, the quotient map m’ = m/® is a labelled plane tree, having
n' = (n +1)/2 vertices, canonically pointed at vertex 1 and planted at vertex
4 where is attached the half edge corresponding to the edge of m intersecting
the rotation axis, as shown in Figure 5. The number I(m’) of liftings of m’,
that is the number of different labellings of m giving rise to the same quotient
is given by

I(m') =271 =2"% (62)

since after choosing the vertices 1,2 and 3 in a canonical way, there are two
choices for each remaining cycles of og. As we know from (2), there are

(n' —1)! (2(;/__ 11)) (63)

labelled planted plane trees on n' vertices. If we express n’ in terms of n, we
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get

Fixaq, (00, V E)| = 2" (”2:)'( (n”__l)l /2). (64)

Now, combining (61) and (64), we find, for C = M,, and I' = V' E,

S [Fixum, (0, VE)| = %!((n"__l)l/Q). (65)

c€S,\1d

For C = My, it should be observed that the only fixed point of oq is of even
degree, say 2k, and that the vector d has exactly one odd component, dy. Let
§; denote de vector having 1 as its /** component, and 0 as other components.
In the quotient map m’, the canonically pointed vertex number 1 has degree
k and the degree distribution d’ of m’ is given by

d' = (d— 6)/2 + 5.

’

Using (7) with @ = 1, we know that there are % (Z,) unlabelled planted plane

trees having vertex degree distribution d'. There are dj, ways to select a vertex
of degree k in m’ and, after assigning the label 1 to it, there are (n’ —1)! ways
to label the other vertices.

Taking into account that there are 2("=3)/2 possible liftings, we obtain

‘ . d [n
[Fixa, (00, VE)| = 2 mﬂ)ﬁ(d/)(“ﬂ —1)! (66)

By combining (61) and (66), and expressing d' in terms of d, we obtain

S |Fixay (o, VE)| = %(&":52)//22). (67)

€S, \Id

Computation of 3, cs \1a |[Fixe (o, VV)].

In this case, o corresponds to an antipodal rotation of angle 180° around
an axis intersecting two vertices. These two vertices are left fixed while all
other vertices are exchanged pairewise. Therefore the number n of vertices
must be even and ¢ must be of type A(o) = 122(»=2)/2 _Since there are

n!

220-272((n — 2)/2)!
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permutations of cyclic type 122=Y/2 and |Fixc(o, V E)| only depends on this
cyclic type, we can write

n!
|Fixc (o, VV)| = |Fixc (o0, VV)|, (68)
Ues%m} ( ) 220212 ((n — 2)/2)!

where ¢ is the particular permutation o9 = (1)(2)(3,4)---(n — 1,n). With
this particular choice of g, the quotient map is a labelled plane tree having
n' = (n 4 2)/2 vertices, and canonically pointed at vertices number 1 and 2,
as shown in Figure 6.

11

Fig. 6. A map having a symmetry of type V'V and its associated quotient.

2 n!'—1
example 3.1.17). Also note that the number of liftings, in this case, is given

There are =2 (2(n/_1)) labelled plane trees on n' vertices (use (63) or see [4],

by 2"=4/2 Then, expressing n’ in terms of n, we find, for C = M,,,

S [Fixp, (0, VV)| = %’(n%) (69)

€S, \Id

For C = My, note that the two fixed points of g are of even degree, say 2k
and 2/, and we may assume that & < /. There are two subcases to consider:

either k <l or k = /.

If & </, the vector d has exactly two odd components, namely dy; and doyy.
The quotient map m’ is then a labelled plane tree having d' = (d — a1, —
820)/2 4 O + 0, as vertex degree distribution, and whoses vertices 1 and 2 are
of degree k and /, or £ and k. There are (n” — 2)! <Z:) ways to select a labelled
plane tree having this distribution (use (7) or see Tutte [25]). The next step
consists in choosing a vertex of degree k& and one of degree ¢. There are d.d
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possibillities. This structure can then be unlabelled in 1/n'! ways since it is
asymmetric.

Now, assign label number 1 (or 2) to the distinguished vertex of degree k.
This will determine the label of the distinguished vertex of degree /; there are
two choices here. All other vertices are then labelled in (n’ —2)! possible ways.
Since there are 2(*=9/2 possible liftings, we have

!/

2
Fisugloo VY| = 207902 =) (o0

Using (68) and (70), and expressing n’ and d’ in terms of n and d, we finally
find, in the case where d has exactly two odd components, dy;, and dy,

S |Fixa, (o, VV)| = %!((d _(”5; i)éi)/Q) . (71)

€S, \Id

We now consider the case where ¢ = k. This can happen only if d has no odd
components. Fix 2k such that dyx # 0, and suppose that the axis of symmetry
intersects two vertices of degre 2k. The quotient map is then a labelled plane
tree having vertex degree distribution

d/ — d/2 - 52k—|—2(sk7

and whose vertices number 1 and 2 are both of degree k. To construct such
a map, first select one of the (n' — 2)!(3;) possible labelled plane trees. In
this tree, select a first vertex of degree k., then a second vertex of degree k.
This is possible since dj, > 2. There are d(d}, — 1) possibilities. The structure

obtained is now asymmetric, hence there are

G =1) 0, (Zi)

n'l

corresponding unlabelled structures. Assign label number 1 to the first selected
vertex and label 2 to the second one. The rest of the tree can be labelled in

n—4)/2

(n' — 2)! ways. Since there are 2( possible liftings, we have, for the case

where d has no odd components,

2(n—4)/2((n/ _ 2)!)2

n'l

|FiXMd(JO,VV)| = Z

k>1
do#0
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Using (68) and (72), and expressing, n’ and d' in terms of n and d we obtain
in this case

T DL (73)

€S, \Id E>1

Computation of 3~ ,cs,\1a |Fixe(o, EE)].

In this case, o corresponds to an antipodal rotation of angle 180° around an
axis intersecting two edges. All vertices are exchanged pairwise. Therefore the
number n of vertices must be even and o must be of type A(o) = 2%/2 Since
there are n!/(2%/%(n/2)!) permutations of cyclic type 22, and |Fix¢(o, EE)|
only depends on this cyclic type, we can write

S [Fixe(o, EE)| = mec(ag,mn (74)

€S, \Id

where og is the particular permutation of (1,2)(3.4)--- (n—1,n). The quotient
map is an (unorderly) biplanted labelled plane tree having n’ = n/2 vertices,
as shown in Figure 7. Let G denote the species of orderly biplanted plane trees
and |G|, the number of labelled G-structures on n’ vertices. For C = M,,, the
number of quotient structures is then given by |G,/|/2. The species (¢ satisfies
the combinatorial identity,

(G+1)A= A",

as shown in Figure 8, where A denotes the species of planted plane trees
and A°®, that of pointed planted plane trees. Therefore we have G(z) =

(A*(z)/A(x)) — 1. Since
we obtain
After coefficient extraction, we get

n'l (2n'
G| = — )
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Fig. 7. A map with a symmetry of type FF and its associated quotient.

Using the fact that there are 2°~%/2 liftings and expressing n’ in terms of n,
we conclude that

3 HHXNM(U,EED|::§§(RZQ). (75)

€S, \Id

I

/ - /

Fig. 8. (G+1)A = A°.

For C = My, observe that the quotient map is an unorderly biplanted labelled
plane tree having d' = d/2 as vertex degree distribution. To construct such a

nl/

tree, first consider one of the possible (n” — 2)! (d,,) labelled plane trees having
d' = d' 426, as vertex degree distribution, where n” = |d"| = n'+42. By doing
so, the two star vertices in the quotient structure in Figure 7 are temporarily
considered as ordinar vertices. In such a tree, select a first vertex of degree
one (a leaf), and then a second vertex of degree one. There are d{(d] — 1)
possibilities. The structure obtained has become asymmetric, hence we can
divide by n”! to obtain the corresponding unlabelled structures. The next
step is to label all vertices except the two distinguished ones. We obtain an
orderely biplanted labelled plane tree. The result has to be divided by 2 since
we are aiming at unorderly biplanted plane trees. Considering the 2(7=2)/2
possible liftings, it follows that

1 2(n—2)/2 " _ 912 "
[Fixug (oo, EE)| = ; ((n" —2)!) (n )d,l,(dlll ). (76)

n''! d’
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Using the two previous equations, and expressing everything in terms of d and
n, we obtain

S |Fixu, (0, EE)| = %’(Z@ (77)

cE€S,\Id

We can now state the following results.

Theorem 9 The number |A7n| of unlabelled two-face sphere maps on n > 3
vertices is given by

— 1 | 2 70 ,)44f nis odd,
|M.,| = ED(%)(Q% - ( ‘9)) +{f(< 512 (78)
4

sin S (n%) ,  otherwise.

PROOF. Formula (57) states that

1

n!

Z |Fixm, (o, T)].

cE€Sp\1d
re{VE,VV,EE}

— 1 —
M| = IV +

Replacing |Mn| by its value, given by (15), yields the first term of (78) while
summing formulas (65), where n is odd, and (69) and (75), where n is even,
and dividing by n!, gives the second term. 0O

Similarly, we can now use (59) and sum formulas (67), (71), (73), and (77) to
obtain the following theorem. Also recall that |My| is given by (29).

Theorem 10 Let d be a vector satisfying [|d|| = 2|d|, with n = |d| > 3,
and let v be the number of odd components in d. Then the number |[Mgy| of
unlabelled two-face sphere maps having d has vertex degree distribution is given

by
. 1 — ‘
(M| = §(|Md| + [Fixg 71),
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where

1(n/2) )
— 1+ - Zdzk ,if r=0;
(e (i)
(n—1)/2
, =1, dy odd;
|FiX|\~/IdT| = ( d — 0y, /2) g 2 (79)
—2)/2
(d ”5k 26/2), ifr =2, dy, and dyy 0dd ;
2k — 02¢)
0, r>3.
O

Let J\A/iJ{aﬁ} denote the set of unlabelled two-face sphere maps having {a, 3}
as face degree distribution. If a # 3, there is no antipodal symmetry, and we
have

Moyl = M), (80)
since in this case, we can choose the north or inner face to be that of smallest

degree. Recall that |R/|J(a7/3)| is given by (38)

If o = 3, the set K/IJ(‘MY) is closed under the action of 7 and we can apply (48).
We have

_ 1/~ _
Mos| = 5 (M| + Fix71). (s1)

Since o = 3, we simply have a = n, the number of vertices. Therefore

|FiX|\7|{a7a}T| = |Fixg 7l (82)

The term |FiX|\7|nT| can be easily deduced from (48), (15) and (78), and the

next result follows.

Theorem 11 If o > 0 and 3 > 0 have the same parity, then the number
| Mapy| of unlabelled two-face sphere maps having {o, 3} as face degree dis-
tribution is given by

M)l ifar # 3,
(Mol = %|’M<a,a)| +3(.05)), i @ = Bis odd, (83)
%| (;}2), if a = (3 is even



d

Finally, let 4'\7,17{075} denote the set of all unlabelled two-face sphere maps
having joint vertex and face degree distribution given by d and {a,3}. If
a # 3, we have

|-’Wd,{a,l3}| = |Mg (a,5); (84)

since in this case, there are no possible antipodal symmetries. Recall that

|’Md7(a75)| is given by (45).

If & = 3, by (48), we have

— 1~ 1.
|-/Md,{oz,oz}| = §|Md,(a,a)| + §|F1X'\7'd,(a,a)7|’ (85)

and «a is completely determined by d: a = |d|, hence we have

|FiX|\7|d7(a7a)T| = [Fixg 7. (86)
Theorem 12 Lel d # 0 be a vecltor of nonnegalive integers satisfying ||d|| =
2|d| and «, be two posilive inlegers having the same parity and such thal
(a+B)/2 =|d| =n > 3. Then the number of unlabelled two-face sphere maps

having joint vertex and face degree distributions d and {a, 3} is given by

= Ma (a0 if a#p,
|-’Md,{a,/3}| = 1 1 e . (87)
5|Md7(a7a)| + §|F1X|\~/Id Tl if a = 3,
where |FiX|\~/|d 7|, is given by (79). O
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