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Abstract

In this paper we consider the generalized Catalan numbers F (s, n) = 1
(s−1)n+1

(
sn
n

)
,

which we call s-Catalan numbers. For p prime, we find all positive integers n such

that pq divides F (pq, n), and also determine all distinct residues of F (pq, n) (mod pq),

q ≥ 1. As a byproduct we settle a question of Hough and the late Simion on the

divisibility of the 4-Catalan numbers by 4. In the second part of the paper we prove

that if pq ≤ 99999, then
(
pqn+1

n

)
is not squarefree for n ≥ τ1(pq) sufficiently large

(τ1(pq) computable). Moreover, using the results of the first part, we find n < τ1(pq)

(in base p), for which
(
pqn+1

n

)
may be squarefree. As consequences, we obtain that(

4n+1
n

)
is squarefree only for n = 1, 3, 45, and

(
9n+1

n

)
is squarefree only for n = 1, 4, 10.

Keywords. Binomial Coefficients, Catalan Numbers, Congruences, Squarefree Numbers
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pq-Catalan Numbers and Squarefree Binomial Coefficients

1 Introduction

Problems involving binomial coefficients were considered by many mathematicians for over

two centuries. R.K. Guy in [6] mentions several problems on divisibility of binomial coef-

ficients (see B31, B33). Erdös conjectured that for n > 4,
(
2n
n

)
is never squarefree. This

was proved by Sárközy in [13], for sufficiently large n, and by Granville and Ramaré in [5]

for any n > 4 (see also [17] for another proof).

Many people (see, for instance, [1, 2, 7, 8, 9, 12, 15]) proposed and studied the following

generalization of classical Catalan numbers 1
n+1

(
2n
n

)
, which we will call s-Catalan numbers,

namely F (s, n) = 1
(s−1)n+1

(
sn
n

)
. There are many interpretations of this sequence (see

[2, 7, 9, 12, 15]), for instance: the number of s-ary trees with n source-nodes, the number

of ways of associating n applications of a given s-ary operator, the number of ways of

dividing a convex polygon into n disjoint (s+ 1)-gons with nonintersecting diagonals, and

the number of s-good paths (below the line y = sx) from (0,−1) to (n, (s− 1)n− 1).

Naturally, some of the questions proposed by Erdös on the classical Catalan numbers,

may be asked here as well, as Hough and the late Simion proposed [8]: (a) When p is prime,

for what values of n is F (p, n) divisible by p? (b)∗ For what values of n is F (4, n) divisible

by 4? (c)∗ What can you say when s takes on the other composite values? There are no

answers yet known for (b) and (c). In this paper we give a simple proof to (a), and we show

that F (p2, n) is divisible by p2, unless (p2− 1)n+ 1 is an even power of p, or a p-term sum

of odd powers of p, thereby answering (b), and (c) for s = p2. We generalize this result

describing all integers n, for which pq divides F (pq, n), q ≥ 3. In the second part of the

paper, we show that if pq ≤ 99999, then
(
pqn+1

n

)
is not squarefree for n ≥ τ1(pq) sufficiently
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large (computable). If n < τ1(pq), we employ the generalized Catalan numbers to find

the set of integers n, where
(
pqn+1

n

)
might be squarefree. As consequences, we obtain that(

4n+1
n

)
is squarefree only for n = 1, 3, 45, and

(
9n+1

n

)
is squarefree only for n = 1, 4, 10.

2 Preliminary Results

Let [x] be the largest integer smaller than or equal to x. In this section we state a few results

which will be needed later. Lucas (1878) (see [3]) found a simple method to determine
(
m
n

)
(mod p).

Theorem 1 (Lucas). If p is prime, then
(
m
n

)
≡
([m/p]

[n/p]

)(
m0

n0

)
(mod p), where m0, n0 are

the least non-negative residues modulo p of m, respectively n.

In 1808 Legendre showed that the exact power of p dividing n ! is

[n/p] + [n/p2] + [n/p3] + · · · . (1)

We define (see [4]) the sum of digits function σp(n) = n0 +n1 + · · ·+nd, if n = n0 +n1p+

· · ·+ ndp
d. Then, using σ, (1) transforms into

n− σp(n)
p− 1

. (2)

Kummer found a way to determine the power to which a prime p divides a binomial

coefficient.

Theorem 2 (Kummer). The power to which the prime p divides the binomial coefficient(
m
n

)
, say vp(

(
m
n

)
), is given by the number of carries when we add n and m− n in base p.

Define n!p to be the product of all integers ≤ n, that are not divisible by p. We see that

n!p =
n!

[n/p]!p[n/p]
. Granville in [4] proves the following beautiful generalization of both

Lucas and Kummer’s Theorems.
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Theorem 3 (Granville). Suppose that the prime power pq and positive integers m = n+r

are given. Let Nj be the least positive residue of [n/pj ] (mod pq) for each j ≥ 0 (that is,

Nj = nj + nj+1p + · · · + nj+q−1p
q−1, where n = n0 + n1p + · · · + ndp

d): also make the

corresponding definitions for mj ,Mj , rj , Rj. Let ej be the number of indices i ≥ j for which

mi < ni (that is, the number of carries, when adding n and r in base p, on or beyond the

jth digit). Then

1
pe0

(
m

n

)
≡ (±1)eq−1

M0!p
N0!pR0!p

M1!p
N1!pR1!p

· · · Md!p
Nd!pRd!p

(mod pq),

where (±) is (−1) except if p = 2 and q ≥ 3.

Our first result gives a complete answer to the first posed question (a), generalizing

the well-known result on Catalan numbers, or equivalently, on middle binomial coefficients

(see [6]), which states that 4 |
(
2n
n

)
, unless n = 2k, for some k. Denote by N the set of

nonnegative integers.

Theorem 4. Let p be a prime. Then, p divides F (p, n), unless n is of the form pk−1
p−1 , k ∈

N, in which case F (p, n) ≡ 1 (mod p).

Proof. We rewrite F (p, n) = 1
(p−1)n+1

(
pn
n

)
= 1

pn+1

(
pn+1

n

)
. Since p 6 |F (p, 0), we assume n >

0. Applying Lucas’ Theorem repeatedly for the base p representations (0 ≤ mi, ni ≤ p−1),

m = m0+m1p+· · ·+mdp
d and n = n0+n1p+· · ·+ndp

d, we obtain
(
m
n

)
≡
(
m0

n0

)(
m1

n1

)
· · ·
(
md
nd

)
(mod p). For m = pn+ 1 ≡ 1 (mod p), we get

F (p, n) ≡
(
pn+ 1
n

)
≡
(

1
n0

)(
n0

n1

)
· · ·
(
nd−1

nd

)
(mod p), nd 6= 0.

If F (p, n) 6≡ 0 (mod p), we must have 1 ≥ n0 ≥ n1 ≥ · · · ≥ nd > 0, therefore nj = 1,

0 ≤ j ≤ d. In that case, n = 1 + p+ · · ·+ pd = pd+1−1
p−1 and F (p, n) ≡ 1 (mod p).
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The following lemma will be extensively used throughout the paper.

Lemma 5. We have

vp(F (pq, n)) =
σp((pq − 1)n+ 1)− 1

p− 1
.

Proof. Using (2) we get that the power of p dividing
(
m
n

)
is

vp

((
m

n

))
=
σp(n) + σp(m− n)− σp(m)

p− 1
. (3)

If m = pqn+ 1, by using the identity F (pq, n) = 1
pqn+1

(
pqn+1

n

)
, (3) becomes

vp(F (pq, n)) =
σp(n) + σp((pq − 1)n+ 1)− σp(pqn+ 1)

p− 1
=
σp((pq − 1)n+ 1)− 1

p− 1
,

since σp(pqn+ 1) = σp(n) + 1.

3 Scarce squarefree p2-Catalan numbers

Denote by n = (ab . . .)p the base p representation of n, a being the most significant digit.

Our next result refers to the third question of Hough and Simion, if s = p2.

Theorem 6. Let p be a prime. Then, p2 divides F (p2, n), unless n is of the form

p2t − 1
p2 − 1

, t ∈ N, in which case F (p2, n) ≡ 1 (mod p2), or of the form

∑s
j=1 cjp

2ij+1 − 1
p2 − 1

,

i1 < · · · < is, where cj > 0 and
s∑

j=1

cj = p, s ≥ 2, in which case F (p2, n) ≡
(

p

c1, c2, . . . , cs

)
(mod p2) (the multinomial coefficient).

Proof. By Lemma 5, if F (p2, n) 6≡ 0 (mod p2), then

vp(F (p2, n)) =
σp((p2 − 1)n+ 1)− 1

p− 1
≤ 1, (4)

which implies that σp((p2 − 1)n+ 1) is 1 or p.
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If σp((p2 − 1)n + 1) = 1, then (p2 − 1)n + 1 = pk ≡ (−1)k (mod (p + 1)), therefore k

must be even, say k = 2t, and n =
p2t − 1
p2 − 1

.

If σp((p2 − 1)n + 1) = p, then (p2 − 1)n + 1 =
p∑

k=1

pαk , α1 ≤ α2 ≤ · · · ≤ αp, with

α1 < αp. It follows that

(p2 − 1)n ≡ −1 + p
∑

αi odd

1 +
∑

αi even

1

≡ −1 + p2 − (p− 1)
∑

αi even

1

≡ −(p− 1)
∑

αi even

1 (mod (p2 − 1)),

so
∑

αi even

1 must be divisible by p + 1. Since 0 ≤
∑

αi even

1 ≤ p, we see that
∑

αi even

1

must be an empty sum. Therefore, all αj = 2ij + 1. We obtain n =

∑s
j=1 cjp

2ij+1 − 1
p2 − 1

,

i1 < i2 < · · · < is,
s∑

j=1

cj = p and the first claim is proved.

For the second part of our theorem, we use the congruence F (p2, n) ≡
(
p2n+1

n

)
(mod p2).

Let n−1 = 0. Consider n =
p2t − 1
p2 − 1

. It follows that n = (1010 · · · 101)p, and since p2n+ 1

attaches to this string the block 01 to the right, it is of the same form. Moreover, Mi = Ni−2

and Ri!p = 1, except for R2t−1!p = (p− 1)!. By Granville’s theorem, we get

F (p2, n) ≡ pe0(−1)e1
M0!pM1!p
R2t−1!p

(mod p2). (5)

Now, M0!p = 1,M1!p = (p − 1)!. Thus, (5) becomes F (p2, n) ≡ pe0(−1)e1 ≡ 1 (mod p2),

since e0 = e1 = 0.

Consider n =

∑s
j=1 cjp

2ij+1 − 1
p2 − 1

, i1 < · · · < is and
s∑

i=1

ci = p, with s ≥ 2. It follows

that

n =

∑s
j=1 cj(p

2ij+1 − p) + p2 − 1
p2 − 1

=
s∑

j=1

cj

ij∑
k=1

p2ij−2k+1 + 1

= csp
2is−1 + csp

2is−3 + · · ·+ (cs + cs−1)p2is−1−1 + · · ·+ 1.

(6)
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By Kummer’s theorem, there is a carry in this case, so e0 = e1 = 1. Also, n0 = 1, M0!p =

1,M1!p = (p−1)!, Ri!p = 1 except for R2ik !p = (ckp)!p =
(ckp)!
ck!pck

and R2ik+1!p = (ck)!p = ck!,

for k = 1, 2, . . . , s. Applying Granville’s theorem we get

F (p2, n) ≡ pe0(−1)e1
M0!pM1!p

R0!p · · ·R2is+1!p
≡ (−1) p

(p− 1)!∏
k

(ckp)!p ck!

≡
(

p

c1, c2, . . . , cs

)
(−1)∏

k

(ckp)!p
≡
(

p

c1, c2, . . . , cs

)
(mod p2),

(7)

since (ckp)!p ≡ (−1)ck (mod p) and
s∑

k=1

ck = p.

The following corollary gives a complete answer to the second question of Hough and

Simion.

Corollary 7. F (4, n) is divisible by 4, unless n is of the form
22t − 1

3
, in which case

F (4, n) ≡ 1 (mod 4), or of the form
22t+1 + 22j+1 − 1

3
, for t > j, in which case F (4, n) ≡ 2

(mod 4).

In [10] we study products of factorials modulo p, and a consequence of one of our results

is that the multinomial coefficients appearing in our previous theorem cover all residues of

the form p k modulo p2, where 0 ≤ k ≤ p− 1 (except for p = 5). Therefore, the residues of

F (p2, n) modulo p2 will be {1} ∪ {p k| 0 ≤ k ≤ p− 1} (except for p = 5, in which case the

residues are {0, 1, 5, 10, 20}).

4 Divisibility of pq-Catalan numbers

Let p prime and q ≥ 2 fixed. For easy writing we denote by S the set of all positive

integers of the form
∑s

k=1 ckp
qtk+jk − 1

pq − 1
, tk ∈ N, 1 ≤ ck < p, 0 ≤ m < q, l =

∑
k

ck =

m(p− 1) + 1, d =
∑

k ckp
jk − 1

pq − 1
∈ N, qtk + jk 6= qti + ji and 0 ≤ j1 ≤ j2 ≤ · · · ≤ js < q.
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Concerning arbitrary powers of an odd prime, we prove

Theorem 8. If p is a prime and q ≥ 3, then pq divides F (pq, n), unless n is of the form

ptq − 1
pq − 1

, for some t ∈ N, in which case F (pq, n) ≡ 1 (mod pq), or n is in S, in which

case, F (pq, n) ≡ ε pe0+m(pq−1−1) pq−1!
(lpq−1)!

(
l

c1, c2, . . . , cs

)
(mod pq), if jk ≥ 1, tk ≥ 1, where

ε = 1 for p = 2 and ε = (−1)eq−1 for p ≥ 3.

Proof. By Lemma 5, if pq 6 |F (pq, n), then vp(F (pq, n)) =
σp((pq − 1)n+ 1)− 1

p− 1
≤ q−1, so

σp((pq−1)n+1) = m(p−1)+1, for some 0 ≤ m ≤ (q−1). Ifm = 0, then (pq−1)n+1 = ptq+i,

for some 0 ≤ i ≤ q − 1. Working modulo pq − 1 implies i = 0. Thus, n =
ptq − 1
pq − 1

. Next,

assume 0 < m ≤ q − 1. We obtain, for l = m(p − 1) + 1, (pq − 1)n + 1 = pα1 + · · · +

pαl , α1 ≤ · · · ≤ αl, where no p of the αi’s can be equal. Thus, n =
∑s

k=1 ckp
qtk+jk − 1

pq − 1
,

1 ≤ ck < q, 0 ≤ j1 ≤ j2 ≤ · · · js < q,
∑s

k=1 ck = l and
∑

k

ckp
jk ≡ 1 (mod pq−1), therefore,

n is in S.

To find the residues of the generalized Catalan numbers modulo pq, we use the con-

gruence F (pq, n) ≡
(
pnn+1

n

)
(mod pq), Granville’s theorem and the proof of Theorem 6. If

n =
ptq − 1
pq − 1

, m = pqn + 1 and r = ptq. We observe that Mi+q = Ni. Moreover, Miq = 1,

Miq+1 = pq−1, Miq+2 = pq−2, · · · , Miq+q−1 = p, M(i+1)q = 1, for any 0 ≤ i ≤ t − 1;

Ri!p = 1 except for Rqt−q+1 = pq−1, Rqt−q+2 = pq−2, · · · , Rqt−1 = p. Since e0 = e1 = 0,

we get

F (pq, n) ≡ pe0
M0!p ·M1!p · · ·Mq−1!p
Rqt−q+1!p · · ·Rqt−1!p

(mod pq)

≡ (pq−1)!p · · · (p2)!p · p!p
(pq−1)!p · · · (p2)!p · p!p

(mod pq) ≡ 1 (mod pq).

We find the residues of F (pq, n) modulo pq when jk ≥ 1, tk ≥ 1, for any k. In base p,
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using jk ≥ 1, tk ≥ 1, we get

n =
s∑

k=1

ckp
jk

(
pq(tk−1) + · · ·+ 1

)
+ d

= · · ·+ d(pq − 1) + 1 + d = 1 + dpq + · · · = 1 + d′pq + · · ·

(0 ≤ d′ < p and the power of p in the missing terms is at least q + 1). Moreover, pqn +

1 = 1 + pq + d′p2q + · · · . Thus, M0 = 1,M1 = pq−1,M2 = pq−2, . . . ,Mq−1 = p. Since

R =
∑s

k=1 ckp
qtk+jk , then Rk!p = 1, except for Rq(ti−1)+ji+1 = cip

q−1, Rq(ti−1)+ji+2 =

cip
q−2, . . ., Rqti+ji+1 = ci, for any i. By Granville’s theorem, using

s∑
i=1

ci = l = m(p−1)+1

and (ci pk)!p =
(ci pk)!

(ci pk−1)! pci pk−1 , we obtain

F (pq, n) ≡ ε pe0

q−1∏
k=1

(pk)!p

s∏
i=1

q−1∏
k=0

(cipk)!p

≡ ε pe0

q−1∏
k=1

(pk)!
(pk−1)! ppk−1

s∏
i=1

ci!
q−1∏
k=1

(cipk)!
(cipk−1)! pcipk−1

≡ ε pe0

pq−1!
p(pq−1−1)/(p−1)

s∏
i=1

(cipq−1)!
pci (pq−1−1)/(p−1)

≡ ε pe0+m(pq−1−1) pq−1!
s∏

i=1

(ci pq−1)!

≡ ε pe0+m(pq−1−1) pq−1!
(lpq−1)!

(
lpq−1

c1pq−1, . . . , cspq−1

)
≡ ε pe0+m(pq−1−1) pq−1!

(lpq−1)!

(
l

c1, c2, . . . , cs

)
(mod pq),

(8)

where ε = 1 for p = 2 and ε = (−1)eq−1 for p ≥ 3.

We use in the next section the following

Corollary 9. pq divides 1
(pq−1)n+1

(
pqn
n

)
if and only if pq divides

(
pqn+1

n

)
.
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5 Squarefree Binomial Coefficients

In this section we study squarefree binomial coefficients of the form
(
pqn+1

n

)
, by employing

the previous results on the generalized Catalan numbers.

In [5], the authors proved that if
(
n

k

)
is squarefree, then n or n − k must be small.

Finding explicit bounds is a much more difficult task. They showed that
(

2n
n

)
is squarefree

for n > 21617, and used some clever arguments to simplify the computer’s work, in checking

the possible exceptions n = 2r up to 21617. In this section of the paper we rely on [5] and use

some estimates on the Chebyshev’s function
∑

d≤x Λ(d), where Λ(d) is the Von Mangoldt’s

function, Λ(d) = log r, if d = rs, r prime and Λ(d) = 0, otherwise, to show our results.

Define e(x) = ex and ψ(x) = 0, if x is an integer, and ψ(x) = {x} − 1
2 , otherwise, where

{x} is the fractional part of x.

The following lemma proves to be very useful

Lemma 10. If pq ≤ 99999, the inequality

0.9999975
√
pqn+ 1− 1.0000025

√
(pq − 1)n+ 1 >

21.683 p
23q
48 n

23
48 (log (256((pq − 1)n+ 1))))

11
4 +

11
8

(3 log n+ 2q log p).
(9)

is true for n ≥ τ0 sufficiently large.

Proof. First,
(√
x+ 1 +

√
x− 1

)2 = 2x + 2
√
x2 − 1 ≤ 4x, since 2

√
x2 − 1 ≤ 2x. Thus,

√
1 + x+

√
1 + x− n ≤

√
x+ 1 +

√
x− 1 ≤ 2

√
x, for 2 ≤ n ≤ x+ 1. Now, let x′ = 1 + x.

We evaluate

(1− α)
√

1 + x− (1 + α)
√

1 + x− n =
(1− α)2x′ − (1 + α)2(x′ − n)
(1− α)

√
x′ + (1 + α)

√
x′ − n

=
n(1 + α)2 − 4αx′

(1− α)
√
x′ + (1 + α)

√
x′ − n

≥ n(1 + α)2 − 4αx′

(1 + α)(
√
x′ +

√
x′ − n)

≥
n
(

(1−α)2

1+α − 4α
n(1+α)x

)
2
√
x

.
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Therefore,

(1− α)
√

1 + x− (1 + α)
√

1 + x− n ≥
(

(1− α)2

1 + α
− 4α

1 + α

x

n

)
n

2
√
x
. (10)

Taking x = pqn, α =
1

4 · 105
, in (10), we get

0.9999975
√
pqn+ 1− 1.0000025

√
(pq − 1)n+ 1

≥
(

0.99999752

1.0000025
− 1

100000.25
pq

)
1

2
√
pq
n

1
2 .

(11)

If pq ≤ 99999, then (11) implies our claim that the inequality (9) is true for n ≥ τ0

sufficiently large, since, by (11), the left side of (9) is O(n
1
2 ) and the right side is O(n

23
48 ).

As before, p is a prime and q ≥ 2 is an integer. Also, τ0 is the bound obtained in

Lemma 10 and τ1(pq) = max
(

e60−1
pq−1 , 5

10p5q, τ0

)
. Our main result of this section is stated

in the next

Theorem 11. Assume pq ≤ 99999. Then,
(
pqn+1

n

)
is not squarefree for n ≥ τ1(pq).

Moreover, if n < τ1(pq),
(
pqn+1

n

)
may be squarefree only for n of the form occurring in

Theorem 8 (q ≥ 3) or Theorem 6 (q = 2).

We proceed to the proof of the theorem. Let P = n(pqn − n + 1)(pqn + 1). Corollary

3.2 (p. 82) of [5] implies

Lemma 12. Suppose that
(
pqn+1

n

)
is squarefree. Then,∣∣∣∣∣∑

d∈I

ψ

(
pqn+ 1

d

)
Λ(d)

∣∣∣∣∣+
∣∣∣∣∣∑
d∈I

ψ
(n
d

)
Λ(d)

∣∣∣∣∣
+

∣∣∣∣∣∑
d∈I

ψ

(
(pq − 1)n+ 1

d

)
Λ(d)

∣∣∣∣∣ ≥ 1
2

∑
d∈I,(d,P )=1

Λ(d),

(12)

where I is the set of integers d in the range
√

(pq − 1)n+ 1 < d ≤
√
pqn+ 1.



13

An immediate consequence of Lemma 7.1 of [5] (see also [16]) is∣∣∣∣∣∑
d∈I

ψ

(
X

d

)
Λ(d)

∣∣∣∣∣ ≤ 1
2R+ 2

∑
d∈I

Λ(d) +

 ∑
0<|r|≤R

|a±r |

 max
X≤x≤XR

∣∣∣∣∣∑
d∈I

e
(x
d

)
Λ(d)

∣∣∣∣∣ ,
where a±r =

i

2π(R+ 1)

(
π

(
1− |r|

R+ 1

)
cot
(

πr

R+ 1

)
+
|r|
r

)
± 1

2R+ 2

(
1− |r|

R+ 1

)
.

Taking R = 10 and using Mathematica1 we obtained
∑

0<|r|≤10

|a±r | ∼ 0.868 ≤ 86
99

, which

implies

Lemma 13.∣∣∣∣∣∑
d∈I

ψ

(
X

d

)
Λ(d)

∣∣∣∣∣ ≤ 1
22

∑
d∈I

Λ(d) +
86
99

max
X≤x≤10X

∣∣∣∣∣∑
d∈I

e
(x
d

)
Λ(d)

∣∣∣∣∣ .
Using (12) and the previous lemma we get

1
2

∑
d∈I, (d,P )=1

Λ(d) ≤

∣∣∣∣∣∑
d∈I

ψ

(
pqn+ 1

d

)
Λ(d)

∣∣∣∣∣+
∣∣∣∣∣∑
d∈I

ψ
(n
d

)
Λ(d)

∣∣∣∣∣
+

∣∣∣∣∣∑
d∈I

ψ

(
(pq − 1)n+ 1

d

)
Λ(d)

∣∣∣∣∣
≤ 3

22

∑
d∈I

Λ(d) +
86
99

max
pqn+1≤x≤10(pqn+1)

∣∣∣∣∣∑
d∈I

e
(x
d

)
Λ(d)

∣∣∣∣∣
+

86
99

max
(pq−1)n+1≤x≤10((pq−1)n+1)

∣∣∣∣∣∑
d∈I

e
(x
d

)
Λ(d)

∣∣∣∣∣
+

86
99

max
n≤x≤10n

∣∣∣∣∣∑
d∈I

e
(x
d

)
Λ(d)

∣∣∣∣∣
≤ 3

22

∑
d∈I

Λ(d) +
86
33

max
n≤x≤10(pqn+1)

∣∣∣∣∣∑
d∈I

e
(x
d

)
Λ(d)

∣∣∣∣∣ .
Since,

∑
d∈I, (d,P )>1

Λ(d) ≤ log n + log ((pq − 1)n+ 1) + log (pqn+ 1) ≤ 3 log n + 2q log p, for

n ≥ 2, we obtain

∑
d∈I

Λ(d) ≤ 43
6

max
n≤x≤10(pqn+1)

∣∣∣∣∣∑
d∈I

e
(x
d

)
Λ(d)

∣∣∣∣∣+ 11
8

(3 log n+ 2q log p). (13)

1A Trademark of Wolfram Research
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Schoenfeld [14], obtained, for x ≥ e30, (see also [11])∣∣∣∣∣∣
∑
d≤x

Λ(d)− x

∣∣∣∣∣∣ < 1
4 · 105

x.

Since
∑
d∈I

Λ(d) =
∑

d≤
√

pqn+1

Λ(d)−
∑

d≤
√

(pq−1)n+1

Λ(d), we obtain

√
pqn+ 1− 1

4 · 105

√
pqn+ 1−

√
(pq − 1)n+ 1− 1

4 · 105

√
(pq − 1)n+ 1

−11
8

(3 log n+ 2q log p) = 0.9999975
√
pqn+ 1−

1.0000025
√

(pq − 1)n+ 1− 11
8

(3 log n+ 2q log p)

<
43
6

max
n≤x≤10(pqn+1)

∣∣∣∣∣∑
d∈I

e
(x
d

)
Λ(d)

∣∣∣∣∣ ,
(14)

for n ≥ e60 − 1
pq − 1

.

Now, we apply Theorem 9 of [5], a consequence of some very important bounds on

exponential sums.

Theorem 14 (Granville-Ramaré). If k > 0 integer and y ≤ 1
5x

3/5, then∣∣∣∣∣∣
∑

y≤d≤y′

e
(x
d

)
Λ(d)

∣∣∣∣∣∣ ≤ 50
3
y

(
x

y
k+3
2

) 1

4(2k−1)

(log 16y)
11
4 ,

for any y ≤ y′ ≤ 2y.

Since
√
pqn+ 1 ≤ 2

√
(pq − 1)n+ 1, the above theorem of Granville and Ramaré ap-

plies, and we get for n > 510p5q (to have the bound y ≤ 1
5x

3/5),

max
n≤x≤10(pqn+1)

∣∣∣∣∣∑
d∈I

e
(x
d

)
Λ(d)

∣∣∣∣∣ ≤ max
n≤x≤10(pqn+1)

50
3

√
(pq − 1)n+ 1×

(
x

((pq − 1)n+ 1)
k+3
4

) 1

4(2k−1) (
log (16

√
(pq − 1)n+ 1)

) 11
4
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=
50
3

√
(pq − 1)n+ 1

(
10(pqn+ 1)

((pq − 1)n+ 1)
k+3
4

) 1

4(2k−1)

×

(
log (16

√
(pq − 1)n+ 1)

) 11
4 ≤ 50

3
11

1

4(2k−1) p
q

4(2k−1) ×

n
1

4(2k−1) ((pq − 1)n+ 1)
1
2
− k+3

42(2k−1) 2−
11
4 (log (256(pq − 1)n+ 1))

11
4 ≤

50
3

2−
11
4 11

1

4(2k−1) p
q
(

1
2
− k−1

42(2k−1)

)
n

1
2
− k−1

42(2k−1) (log (256((pq − 1)n+ 1)))
11
4 .

We obtain (by taking k = 2 - that will suffice for our purpose)

max
n≤x≤10(pqn+1)

∣∣∣∣∣∑
d∈I

e
(x
d

)
Λ(d)

∣∣∣∣∣ ≤ 50
3

2−
11
4 11

1
12 p

23q
48 n

23
48 (log (256((pq − 1)n+ 1)))

11
4

By combining (14) and the previous inequality, we get (by Lemma 12) that if
(
pqn+1

n

)
is squarefree, and n ≥ max

(
e60−1
pq−1 , 5

10p5q
)
, then

0.9999975
√
pqn+ 1− 1.0000025

√
(pq − 1)n+ 1 ≤

21.683 p
23q
48 n

23
48 (log (256((pq − 1)n+ 1)))

11
4 +

11
8

(3 log n+ 2q log p),
(15)

which is false for n ≥ τ0 by Lemma 10. By taking τ1(pq) = max
(

e60−1
pq−1 , 5

10p5q, τ0

)
, the first

claim of Theorem 11 follows. If n < τ1(pq), then we use the fact that pq divides
(
pqn+1

n

)
(therefore it it is not squarefree, since q ≥ 2), unless n is of the form

ptq − 1
pq − 1

, for any t ∈ N,

or of the form
∑m(p−1)+1

k=1 pqtk+jk − 1
pq − 1

, for any ti ∈ N, 1 ≤ m ≤ q − 1, 0 ≤ ji ≤ q − 1, and∑
i

pji ≡ 1 (mod pq − 1). The proof of Theorem 11 is done.

Remark 15. The inequality (9) provides explicit bounds for n, for any choice of p and q,

with pq ≤ 99999. We can increase the bound for pq, by using a weaker result of Schoenfeld

[14]. However, in doing that we increase the bound on n as well, so we preferred a better

bound on n.

If q = 2, using Theorem 6, we get better results for the number of exceptions up to

the bound τ1(p2). We give here two samples in our next theorem.
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Theorem 16. Except for 1, 3 and 45,
(
4n+1

n

)
is not squarefree. Except for 1, 4 and 10,(

9n+1
n

)
is not squarefree.

Proof. If (p, q) = (2, 2), the inequality (9) changes into

0.9999975
√

4n+ 1− 1.0000025
√

3n+ 1 >

42.1311n
23
48 (log (768n+ 1))

11
4 +

33
8

log n+ 1.65566,
(16)

which is true for n ≥ 21518 = τ0. Observe that τ1 = τ0 = max
(

e60−1
3 , 510210, τ0

)
. Theorem

6 and Corollary 9 imply that the exceptions for n < 21518 (if they exist) are of the form

22t+1 + 22j+1 − 1
3

, j ≤ t (we include j = t in the count). Observe that the number of pairs

(j, t), giving different numbers of the above form, is less than
(
761
2

)
∼ 218.2.

If (p, q) = (3, 2), the inequality (9) changes into

0.9999975
√

9n+ 1− 1.0000025
√

8n+ 1 >

26.04n
23
48 (log (2048n+ 1))

11
4 +

33
8

log n+ 2.62417,
(17)

which is true for n ≥ 3956 = τ0. Observe that τ1 = τ0 = max
(

e60−1
8 , 510310, τ0

)
. As in

the previous case, we get that the exceptions for n < 3956 (if they exist) are of the form

32t+1 + 32j+1 + 32i+1 − 1
8

, i ≤ j ≤ t (we include i = j = t in the count). Observe that the

number of triples (i, j, t), giving different numbers of the above form, is less than
(
478
3

)
.

To check divisibility by squares up to τ1, we need only concern ourselves with integers

of the described forms. First, take the binomial
(
4n+1

n

)
. We used Granville’s theorem (or

Kummer’s theorem) to find the power to which p = 3 divides
(
m
n

)
, m = 4n+1. We expanded

n, m in base 3 and then compared their digits. The computation took about 6 hours on our

PC (850Mhz with 256Mb of RAM). After the first run of the algorithm, we obtained that all

binomial coefficients
(
4n+1

n

)
(for n among the above values) are divisible by 32, except for the

following integers n = 1, 3, 13, 45, 85, 171, 181, 2731, 2733, 10965, 13653, 43861, 44741973,
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181753173. For n = 1, we get
(
5
1

)
= 5. For n = 3, we get

(
10
3

)
= 2·11·13. For n = 45, we get(

181
45

)
= 2·3·5·7·13·23·29·47·53·59·71·73·79·83·89·137·139·149·151·157·163·167·173·179·181.

For the remaining values of n, the binomial coefficient
(
4n+1

n

)
is divisible by 52 for n =

171, 181, 2731, 2733, 10965, 13653, 43861, 44741973, 181753173; divisible by 72 for n = 13;

divisible by 132 for n = 85. The first claim follows.

We ran a similar program for
(
9n+1

n

)
, which unfortunately stopped (because of integer

overflow) after a few days. Meanwhile, we wrote another program in Python (which we

ran on a PC with the same features), based on the known fact that the number of carries

is
[log2 m]+1∑

t=1

([m
2t

]
−
[ n
2t

]
−
[
m− n

2t

])
. For each t, we checked if the number of carries is

greater than or equal to 2, and if it is, we stopped the summation (the expression inside

the sum is either 0 or 1). The output of our program (which ran for 9 days) is that the

binomial coefficient
(
9n+1

n

)
(for n among the above values) is divisible by 22, except for

the following integers: 1, 4, 10, 34, 64, 274, 277, 280, 304, 334, 550, 5194, 24604, 199297,

199324, 201754, 202024, 145285144. Among these, for n = 34, 64, 274, 280, 304, 334, 24604,

199324, 201754, 202024, 145285144, we have divisibility by 52; for n = 277, 550, 199297, we

have divisibility by 72; for n = 5194, we have divisibility by 112. For n = 1, 4, 10, we get(
10
1

)
= 2 · 5,

(
17
4

)
= 3 · 5 · 7 · 17 · 37, respectively,

(
91
10

)
= 7 · 11 · 13 · 17 · 29 · 41 · 43 · 83 · 89.

The second claim follows.

Remark 17. Since we were successful in getting the computation done in Python, we

experimented with a large set of integers n for divisibility of
(
4n+1

n

)
and

(
9n+1

n

)
by squares

of various other primes r. It might be worth mentioning that the output in each case was

a very short list of integers for which we have no divisibility by r2 (or 22, respectively 32).

Further investigation is needed to find a bound for the number of binomial coefficients of
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the form
(
pqn+1

n

)
(or more general

(
m
n

)
), which are not divisible by either p2 or r2 (p, r

primes).
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