GENERATING TREES AND THE CATALAN
AND SCHRODER NUMBERS

JULIAN WEST

ABSTRACT. A permutation w € S, avoids the subpattern 7 iff 7 has no subse-
quence having all the same pairwise comparisons as 7, and we write m € S,,(7).
We present a new bijective proof of the well-known result that |S,(123)] =
|5, (132)| = ¢, the n-th Catalan number. A generalization to forbidden pat-
terns of length 4 gives an asymptotic formula for the vexillary permutations.
We settle a conjecture of Shapiro and Getu that |S,(3142,2413)| = s,,_1, the
Schréder number, and characterize the deque-sortable permutations of Knuth,
also counted by s,_1.

1. INTRODUCTION TO FORBIDDEN SUBSEQUENCES

We regard a permutation 7 € S, as a sequence of n elements, 7 = {7(i)}" .
We say that 7 contains the 3-letter pattern 231 iff there is a triple 1 <1 < j <
E < n such that 7(k) < 7(¢) < 7(j). Otherwise 7 avoids the pattern. We define
T-avoiding permutations similarly for every 7 € Sj:

Definition 1.1. For 7 € Si, a permutation © € S, is T-avoiding iff there is no
1 < iy <ira) < ... < iy < n osuch that w(iy) < w(iz) < ... < 7w(ig). The
subsequence {W(QTT(j))}é?:l is said to have type T.

Two sequences, 7, p of length n are evidently of the same type iff they have
the same pairwise comparisons throughout, namely if 7(i) < 7(j) < p(i) < p(J).
We denote by S,(7) the set of all permutations in S, which avoid 7. If R =
{o1,09,...,0,}, we abbreviate S,(R) = S,(01,...,0,) =N 5,(0;). Fundamental
questions are to determine |S,(R)| viewed as a function of n, and if |S,(R)| =
|S,(R')| to discover an explicit bijection between S, (R) and S, (R').

The most studied case has been to forbid a single pattern of length 3. Because
of obvious symmetry arguments described below, there are only two distinet cases
to enumerate, |S,(123)| and |5,(132)|. It happens that these two functions are

S,(123)] = [8,(132)] = ¢, = ().

Historically, these two enumerative results were obtained independently [13],
[10]. The first satisfactory bijection between the two cases was presented by
Rodica Simion and Frank Schmidt [20], and a second was given by Dana Richards

[15].

equal,
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In section two, we present a new bijective proof that [5,(123)| = |S,(132)].
This proof has the advantage that the enumerative result also follows natu-
rally. In section three, we generalize the result of section two to show that
|9,(1234)| = |S,(1243)] = |59,(2143)|. Permutations which avoid the pattern
2143 have been studied elsewhere under the name wvexillary permutations. In
section four, we use our techniques to settle a conjecture of Shapiro and Getu,
namely that |5, (3142, 2413)| = s,,_1, the n—1-th Schréder number. The Schroder
numbers have many connections with the Catalan numbers.

To conclude this introduction, we detail the symmetry arguments that reduce
somewhat the number of problems which can sensibly be posed. A more natural
way to think of definition 1.1 is in terms of the familiar permutation matrices. If
7= {n(i)}7_,, let M(7) be the n X n matrix with entries m; ; = 6; ~(;) in terms
of the Kronecker delta. Then a permutation 7 contains 7 as a subsequence if the
corresponding matrix M (7) contains M(7) as a submatriz.

In addition to making the definition clearer, this point of view makes trivial
the following observation: M(7) contains M(7) iff the transpose matrix M ()T
contains M(7)". The same may be said for simultaneously reflecting both the
matrices M(7) and M(7) in either a horizontal or a vertical mirror. These op-
erations together generate the dihedral group acting on the permutation matri-
ces in the obvious way. Since M(7)" = M(77'), it follows immediately that
|S.(7)] = [Sa(771)|. The operations corresponding to reflecting the permu-
tation matrix in a mirror carry 7 = {7(i)}%, into 7 = {7(k + 1 — )} and
T ={k+1-7(1)}.

For subsequences of length 3, these elementary considerations provide that
|5, (123)] = [5,(321)|, and that |S,(231)| = |S,(132)] = [5,(213)| = |S9,(312)],
reducing the enumerative problem from six to just two cases. For length 4, the
number of cases is reduced from 24 to seven, these being represented by 1234,
1243, 1324, 1432, 1423, 2413 and 2143.

2. A CATALAN TREE

For a given forbidden permutation 7, we define recursively a rooted tree in
which the vertices on the n-th level are identified with the permutations of S, (7).
Let the root be the permutation (1) € S1(7), and let each # € S,,(7) be a child
of the permutation 7’ € S,,_(7) obtained from 7 by deleting the largest element,
n. (Clearly, a deletion cannot introduce a forbidden 7.) Call the resulting tree
T(T).

Given 7 € S,,, and given i € [n + 1], let

we will call this inserting n + 1 into the site 1.

Definition 2.1. With respect to a particular T we will call site i of 7 € S,(T) an
active site if the insertion of n+ 1 into site i creates a permutation ™ € S, 1 1(T).
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Clearly the children of 7 in T(7) are just the elements 7' as ¢ ranges over the
active sites of 7 relative to 7. In all proofs involving a structural description of a
tree T(7), we will rely heavily on the following observations, valid for all 7, 1.

(1) If 7* does not contain sequences of type 7, neither does 7.

(2) If © contains sequences of type 7 but 7 does not, then new element n + 1
participates in all such sequences.

(3) n + 1 is the largest element of 7'; therefore if it participates in a sequence
of type 7, it does so as the largest element of 7.

(4) If the site in 7 between py and pgyy is not active, then neither is the site
between py and ppyq in 7.

In the following structural lemmas, we characterize the trees T'(123) and T(132).
It will here be convenient to label each vertex of T'(7) with the number of its chil-
dren (equally, with the number of active sites in the associated permutation).
We use the following notation, a succession rule, to connect the label of a parent
with the label of its ¢ children:

(p) — (e)(ea)(es) -~ (c).

The label (p) will usually include information about the value of ¢, but in general
this will not be sufficient information. It is always our goal to introduce labels
leading to a family of succession rules, each globally applicable throughout the
tree, and together fully determining its structure. For the trees presently under
consideration, one succession rule suffices:

Lemma 2.2. In T(123)

(t) — (2)(3)4)--- (t+1).

Proof. Let ™ be any node in T(123) having label . Note that all sites to the
left of the first ascent in 7 are active, but none to the right are. So p; is the
leftmost element which is not a left-to-right minimum. (If + = n + 1, then 7 is
the descending permutation.)

If n+ 1 is inserted into the leftmost site, the new permutation 7% = (n +
L, p1,p2,...,pn) has t + 1 active sites, namely all those to the left of p;. On the
other hand, if n + 1 is inserted elsewhere to the left of p;, say to form 7%, then
n + 1 itself becomes the new leftmost ascent. Hence 7° receives the label s.

The children of 7 in T(123) are 7*, 72,7, ..., 7', and these receive the labels
t+1,2,3,....t respectively. O

Example 2.3. Consider the following typical node of T(123), in which the active
sites are numbered from left to right:

T = (15233144><2><)

3 we are left with 3 active sites, those to the right vanishing:

7 = (159336 1,4,2)

If we form w
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Lemma 2.4. In T(132)
(1) — (2)B)E)--- [t +1).

Proof. The active sites are no longer necessarily the first ¢ sites, so suppose they
are numbered from the left aq, as, ..., a;.

If inserting n + 1 creates a 132, then n 4+ 1 plays the part of 3. This cannot
happen if n + 1 becomes the leftmost element, so site 1 is always active (a; = 1).
Furthermore 7 = 7' has label t 4+ 1, because the t active sites of 7 remain
active (and one new one is introduced preceding the new element). For consider
inserting n + 2 in any site of 7'. A subsequence (n + 1,n + 2,p;) cannot be of
type 132. Hence any 132 created must be of form (p;,n + 2, p;), but this would
have caused the site to be inactive in 7.

On the other hand, suppose n + 1 is inserted into active site a, for s > 2. This
will render inactive all the sites to the left of the insertion, except for the first
site. This is because (p1,n+2,n+ 1) would be a forbidden sequence. This leaves
t — (s — 1) to the right of n + 1, plus the leftmost site, a total of t — s 4 2.

The children of 7 in T'(132) thus receive the labels t + 1,¢,..., 3,2 respectively
as the active sites are considered in order from left to right. O

Example 2.5. Consider the following typical node of T(132):
T = (1523,431,24)

We insert at the third active site (a3 = 4) to form 7, we are left with 3 active
sites, those to the left vanishing:

7 = (15,3,4.691.23)

From these two lemmas, we conclude that 7(123) and T(132) are isomorphic
trees, and it is easy to see that the trees have trivial symmetry groups and so
the isomorphism is unique. Since siblings receive distinct labels, a vertex can be
uniquely determined in each tree by listing the labels of its ancestors.

Example 2.6. We list on the left a node of T(123), then the labels of its ancestors
from the root down, then the corresponding node of T(132).

132 (2,2,2) 123
312 (2,2,3) 312

231 (2,3,2) 213
213 (2,3,3) 231
321 (2.3,4) 321

Example 2.7. The vertices from the above examples, (536142) € T(123) and
(534612) € T(132) are carried to each other by the unique bijection induced by
the tree isomorphism.
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If a sequence of vertex labels (fi, fo,..., f.), having the property that f; =2
and 2 < f; < f;.1 4+ 1 is converted into a sequence (ay,as, ..., a,) according to
a; =t + 2 — f;, then the new sequence will be non-decreasing with 1 < a; < 1.
Such sequences are a familiar instance of the Catalan numbers, being naturally
associated with non-diagonal-crossing lattice paths. We conclude

Theorem 2.8. For all n > 1. [S,(123)] = |5,(132)] = ¢, = = (*).

References to the Catalan number are almost everywhere dense in the com-
binatorial literature; historically minded readers might be interested in [3] (but
references go back at least to Euler and Segner, 1758). The first enumeration
of $,(123) is in [13], for 5,(132) see [10]. The first purely bijective proof that
|9,(123)| = |S,(132)| was presented in [20]. This bijection has the advantage of
fixing the intersection of the two groups. The new bijection presented here does
not; see elements 213 and 231 in the above table. On the other hand, we were
able to produce the enumerative result with little extra effort.

We strengthen the enumerative result somewhat by counting the number of
permutations avoiding 123, with length n and t active sites. First let N(m,s) be
the number of nodes on level m 4 1 with m + 2 — s children. Small values of this
function are given in table 1, the first column corresponding to the fact that the
tree has one node on level one, labelled 2.

Since there will be exactly one permutation on level n + 1 having label r for
each permutation on level n having a label > r — 1 it follows that (for all m >1
and 1 < s <m),

(2.9) N(m,s) = Z N(m —1,i)
i=1
s—1

(2.10) = Y N(m—=1,i)+ N(m—1,s)
i=1

(2.11) = N(m,s—1)+ N(m—1,s)

It follows that N(n,s) counts the number of non-diagonal-crossing integer lat-
tice paths from (0,0) to (m, s), the number of these obeying the same recurrence,
and the initial conditions imposed by the first column. In closed form, the number

of such paths is well-known to be (qu) — (':jf) Hence

Theorem 2.12. The number of 7 € S,(123) having t active sites relative to 123

18
2n —t 2n —t
n—t+1 n—t

The rooted trees T(7) introduced here seem to be entirely natural objects, but
do not appear widely in the literature. The technique appears to be original to
Chung, Graham, Hoggatt and Kleiman, who introduce it to examine the reduced
Baxter permutations in [4]. This paper explicitly suggests application to other
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classes of permutations, but we have not heard of any such work appearing in
the 10 years between that paper and the beginnings of the present work.

The technique is now beginning to be more widely used, and the objects have
aquired the name generating trees. Recent applications involving permutations
include [23], [22], [8], [5]. If the objects generated are restricted permutations,
we may wish to speak of restricted permutation trees. But there is no reason to
stop here. Other classes of combinatorial objects for which generating trees have
been produced include directed animals [25], binary trees [§], planar maps [3],
and semiorders [below].

The particular object T(123) (without the permutations attached) is an espe-
cially natural object; we hereby name it the Catalan tree. We imagine that this
particular generating tree must appear in other settings; we would be interested
to learn of any in addition to the following.

Although she does not use the fact, the mimimal semiorders introduced by
Karen Stellpflug in [24], [1] are also generated by a Catalan tree. A partially
ordered set is a semiorder iff it can be represented by a set of equal length
open intervals in the real line, with the order relation (a,b) < (¢,d) iff b < c.
A semiorder has representation number k if it has a representation in which
all intervals have integer endpoints and the same length &, but has no such
representation with intervals of length k& — 1.

Stellpflug shows how to obtain the minimal k-representable semiorders in-
ductively by the process of duplicating one minimal element. If a minimal k-
representable semiorder has r minimal elements, it produces by her construction
r minimal & 4 1-representable semiorders, having variously 2,3,4,...,7 + 1 min-
imal elements. Noting that this process forms a Catalan tree amounts to an
alternate proof of Stellpflug’s result that the number of these k-representable
semiorders is ¢;,.

3. TREES FOR FORBIDDEN SEQUENCES OF LENGTH 4

We repeat the arguments of the above section for certain 7 € 5y, retaining
the definition of an active site, but augmenting the notion of a label on a node.
We begin with the tree T(1234). To each node © € S,(1234) we associate an
ordered pair (z,y) as follows. Let x be the position of the first ascent in 7.
In the terminology of Schensted [17], = is the index of the first element of the
second basic subsequence (or n+ 1 if none exists). Let y be the number of active
sites in 7. In this instance, y is the index of the first element of the third basic
subsequence (or n + 1).

Lemma 3.1. In T(1234)

N
2

(r,y) — 2,y+ 1) B,y+1) ... (r,y+ )(x,x+ 1) (e, 2 4+2) . (v,y) e+ 1,y+1)

Proof. Let 7 be a node of T(1234) with label (z,y). The y active sites of & are
the first y sites. By considering the new locations of the first elements of the
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second and third basic subsequences we verify that 7' is associated in T(1234)
with

(3.2) (r+1,y+1) ifi=1,
. (iL,y+1) if2<i<un,
(3.4) (r,0) ifx4+1<i<y.
O

Next consider the tree T(1243), in which the nodes are again to be labelled
(x,y) according as x is the position of the first ascent, and y is the number of
active sites. The y active sites are no longer necessarily the first y sites on the

left.

Lemma 3.5. In T(1243)

(z.y) — (2,y+1D)By+1) . (zy+ Dz, o+ (2,2 4+2) .. (z.y)(x+ 1y +1)

Proof. Let the y active sites be numbered left-to-right as ay, as, ..., a,. Note that
the first x sites are active, as an n + 1 here cannot find an increasing pair to its
left to form a 1243.

The insertion of n + 1 into site a; of @ splits it into two sites, both potentially
active. We may verify that if a site was active in 7, it remains active in 7% unless
it falls to the right of x and to the left of position a;. It is then easy to check
that a; has the associated pair

(3.6) (r+1,y+1) ifi=1,

(3.7) (y+1) if2<i<u,

(3.8) (r,o+y+1—1) ifa+1<i<uy.
|

We define the tree T(2143) analogously, with a being the position of the first
ascent and y being as usual the number of active sites. We can prove in an almost
identical fashion that

Lemma 3.9. In S,(2143),
(r,y) — 2, y+ 1) B,y+1) .. . (r,y+ 1)(x,x+ 1)z, 2 +2).. (v,y)r+1,y+1)

Combining the results of lemmas 3.1, 3.5 and 3.9, we hav the following theorem
and its immediate corollary.

Theorem 3.10. T(1234) = T(1243) = T(2143), and these isomorphisms are

N
)

unique.
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Proof. In each tree the root is labelled (2,2). Applied recursively, the structural
lemmas above ensure the isomorphisms.

From the labels (x,y), we can count the number of children of each node, and
the number of children of each child. The sets of these are different for different
pairs (x,y), and it is easy to check that no siblings ever have the same label.
Therefore the trees have trivial symmetry groups. O

Corollary 3.11. |S,(1234)] = |5,(1243)| = |5,(2143)|, for all positive n.

Regev has shown [14] that |5,(1234)| is asymptotic to ¢ - % for a constant
¢. This result can now be applied to the sets |S,(1243)] and |5,(2143)] as well.
The permutations of |S,(2143)| in particular have been extensively studied, as
these are precisely the wexillary permutations. The vexillary permutations are
relevant to the theory of Schubert polynomials, and therefore to the cohomolog-
ical structure of flag manifiolds. They are a superset of the dominant and of the
Grassmannian permutations. For alternative characterizations of the vexillary
permutations, see section 2 of Lascoux and Schiitzenberger [11] and chapter one
of MacDonald [12], which also defines the dominant and Grassmannian permu-
tations.

There is considerable work still to be done with restricted permutation trees,
even for single forbidden subsequences of length 4. The following questions were
posed in [?]. The first was answered in the affirmative by Stankova [23], the
others are believed to be open.

Question 3.12. [s T(4132) = T(3142)7
Question 3.13. Is T(1342) a proper subtree of T(1432)%
Question 3.14. s T(1423) a proper subtree of T(1324)%

This is also a convenient place to mention Ira Gessel’s conjecture that S,(R)
is P-recursive, for any set R of restrictions [6].

4. A SCHRODER TREE

The Schroder numbers are closely related to the Catalan numbers, but less well
known. Like the Catalan numbers, they have many combinatorial interpretations,
including one in terms of lattice paths. For some references see [18], [2], [9]. [16],
[21]. The Catalan numbers, as seen above, count the number of non-diagonal-
crossing lattice paths from the origin to (n,n) composed of the vectors (0, 1) and
(1,0). The Schroder numbers count the number of non-diagonal-crossing lattice
paths from the origin to (n,n) composed of the vectors (0,1), (1,0) and (1,1).
They are thus the diagonal elements in table 2.
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This characterization leads directly to the following formula for the n-th Schroder
number, the i-th term being the number of paths using 7 diagonal steps (1,1).

" (2n —
Sp = Z < . >Cn_7j

i=0 !

Lou Shapiro and Seyoum Getu conjectured [7] that s, 1 is the number of
permutations of length n having no subsequence of type 3142 or 2413. We settle
this conjecture in the affirmative. The result is of interest, as it is the first non-
trivial enumerative result to be obtained for any problem involving forbidden
subsequences of length & > 4. There have since been others obtained by the
author, by Stankova, and by Dulucq, Gire and Guibert.

As in the Catalan-tree case, we begin by defining recursively a rooted tree,
T(3142,2413). Let the root be (1), and let each 7 € 5,,(3142,2413) be a child of
the permutation 7’ € S, 1(3142,2413) obtained by deleting the largest element
of . Again, we label each vertex with the number of its children. We have the
following structural lemma.

Lemma 4.1. In T(3142,2413),
(t) — (3)4)--- O +1)(t+1)

Proof. Let m be an arbitrary element on level n of T(3142, 2413), having label (¢).
We again consider active sites, but instead of clearing sites to left or right, an
insertion will clear sites across the middle. By the middle of a permutation, we
mean the position of the largest element, n. Note that the two sites immediately
adjacent to n are always active: if placing n 4 1 here created a sequence of either
type 3142 or 2413, then n would already play the same role in a like sequence, a
contradiction.

Now divide the permutation 7 into blocks of contiguous elements, the blocks
being separated by the active sites. We note that if a block B is right of n but
left of C, then all the elements in B are larger than all those in C'. Otherwise,
a smaller element b in B and a larger element ¢ in C' would form a sequence
n,b,c of type 312, rendering inactive the supposedly active site separating the
blocks B and C'. It follows that the values in the blocks to the right of n decline
monotonically to the right of the middle. A symmetric claim can be made on the
left of the middle.

In fact, we can say something stronger. Let v and w be two elements in the
same block B right of the middle, and let x be an element left of the middle
such that v < x < w. If v is to the left of w then x,n,w, v is of type 2,4,1,3, a
contradiction. It follows that within B all the elements larger than x are toward
the middle, and all those smaller than 2 are away from the middle. Now consider
the site separating these two bunches of elements. If this site is inactive, then it
falls within a sequence of type 31|2 or 2|13. Suppose such a sequence exists; those
elements playing the roles of 1 and 2 in this sequence must be within the block B,



10 JULIAN WEST

otherwise one of the active sites adjoining the block would also be deactivated.
Since the near elements are all larger than the far elements, type 31|2 is excluded.
For type 2|13, the element playing the role of 3 cannot be within the block B,
since it would then be bigger than the element playing 2, nor can it be in a block
to the right, by the remarks of the previous paragraph.

The conclusion is that each block is composed of consecutive elements from [n].
Therefore we can order the blocks by taking an arbitrary representative from each
one; those t — 1 elements just toward the middle from the ¢ active sites will do.
We call this the inner subsequence. This subsequence is unimodal (downwards),
since it takes one representative from each block.

Number the active sites 0,0,1,2,...,t — 2 according as they are associated with
the largest, next largest, etc. members of the inner subsequence. We claim
that insertion of n + 1 into the site thus numbered ¢ produces a permutation
with ¢ + 1 — ¢ active sites. For insertion splits one active site into two sites (both
automatically active because associated with the largest element), and then ¢ sites
are deactivated. The deactivated sites are precisely those which were numbered
< ¢q, except for the highest-numbered one in this set which is on the far side of
the middle.

To see this, let the element associated with the insertion site be 2, and assume
w.l.o.g. that the insertion is left of the middle. Then n+ 1, z,n forms a sequence
of type 312, deactivating all sites between x and the middle. Likewise, the site
right of the middle with the highest number < ¢ is associated with an element y
which is greater than x and so the sequence n+ 1, x, y provides the same service.
But the site associated with y is itself not deactivated, nor are those further to
the right of y (or left of x).

We check this last claim for sites right of y: if one of these is deactivated, it
is because of a sequence involving n + 1, therefore some n + 1, v, w with v < w
and v between x and y and w to the right of y. First note that w cannot be
greater than y because it is located in a block to the right of y’s block. If w < =,
then z,v,y, w is of type 3142, a contradiction. If w > x, then the element of the
inner subsequence in its block is likewise greater than a (and less than y). But
this contradicts our choice of y as the smallest element of the inner subsequence
larger than 2 and right of the middle. (The claim for sites to the left of 2 is easy
to check from the descending block structure.)

(]

As we did with the Catalan trees, we determine a recurrence for the number
of permutations on the n-th level of the Schroder tree having ¢ children. Again
for simplicity, we let m =n — 2 and s = n+ 1 — t, then seek f(m,s). From the
lemma, we can see that

s—1

flm,s) =" flm—1,4)+2f(m—1,s).

1=0
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Into this we substitute the formula for f(m, s—1) to obtain f(m,s) = f(m,s—1)—
flm—=1,s=1)+2f(m—1,s). We take for our boundary conditions f(2,s) = 26,
since there are 2 permutations on level n = 2, each having 3 children. We
illustrate this in table 3. In this figure, it is apparent that the diagonal elements
are (with one exception) the same as those in table 2, which was governed by the
recurrence g(m,s) = g(m,s — 1)+ g(m —1,5s = 1) + g(m — 1,5). The following
very elegant proof that the diagonals are identical was provided by Ian Goulden
[personal commmunication].

Lemma 4.2. f(i,i) = g(i,i) for all i > 1.

Proof. Tn table 2, let G = Y22, g(7,4)z" be the generating function for the diagonal
elements. These are the number of non-diagonal-crossing paths from the origin to
(7,7). Note that every such path returns to the diagonal for a first time. If this is
at (7, j) for some j < i, we can decompose the path into a non-diagonal-crossing
path of length j — 1 from (1,0) to (j,7 — 1) and a non-diagonal-crossing path of
length i — j from (j,7) to (¢,7). From this observation we derive the equation
G = 2G?+2G+1. (The 2G? term comes from the paths which begin with a step
to the east; the zG term from those which begin with a step to the northeast.)
In the second table, begin by halving all the elements. Let F = % > flii)at
be the generating function for the diagonal. F' is the sum, taken over all paths
beginning at the origin and using & of each of (0,1) and (1,0) and [ of (1,1),
of (2)F(1)F(=1)!a*. By the same argument as above, therefore, F = 22 F? +
(=1)xF + 1. Verify that substituting F' = % into this equation produces the
familiar generating function equation for the Schroder numbers, as desired. O

Theorem 4.3. |5,(3142,2413)| = g(n — 1,n — 1) = 5,1, the n — 1-th Schréder
number.

Proof. Lemma 4.2 shows that the number of permutations of length n+1 avoiding
3142 and 2413 and having 3 active sites is s,,_1. But there is exactly one node
labelled 3 on level n + 1 for every node on level n (if n > 2). So |5,(3142,2413)|
is also equal to s,,_1. O

It is interesting that we were able to find a simpler expression for the numbers
|5, (3142,2413)| than for |S,(1234)]. Why? We offer two suggestions.

First, the fact that 3142 is 2413 written in reverse means that T(3142,2413) is
invariant under mirror reflection (if embedded in the plane with siblings arranged
in lexicographic order). Perhaps this symmetry somehow enables us to obtain a
single-parameter labelling, where two parameters were necessary for T(1234).

Second, we see that the permutation matrices corresponding to 3142 and 2413
form a complete symmetry class under the action of the dihedral group Dy4. It
seems combinatorially more natural to forbid this entire set of objects than to
impose a single restriction. Indeed, Shapiro and Getu’s attention was drawn to
this case by considering a class of permutations characterized by avoiding these
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two submatrices (and thus invariant under the action of the dihedral group). We
ask, therefore, whether more natural enumerative results may be obtained by
forbidding entire symmetry classes of permutations.

We offer a possible method for a second proof that |S,(3142,2413)| = s, ;.
From the generating function equation G = 2G? 4+ 2G + 1, it is easy to derive the
following recurrence for the Schroder numbers:

n
Sp = Sp—1+ Zsj—l © Sp—j
j—1
The corresponding equation for the Catalan numbers is
n
Cnt1 = Z Cj - Cn—j
j=0

and can be used to prove that |S,(132)| = ¢,. To count the permutations of
length n + 1 which avoid 132, suppose n + 1 is fixed in position 7 + 1. Then
there are j elements to the left, and n — j to the right. Which these elements
are 1s precisely determined by the observation that no element on the left can
be smaller than any on the right. How they may be arranged is determined
recursively: [S;_1(132)] ways on the left and |S,_;(132)| ways on the right. If
either side is empty, we have the base case Sy(123) = 1 = ¢;. Summing over j,
the recurrence follows.
The data we have examined support the following conjecture.

Conjecture 4.4. Among all the permutations of S,(3142,2413), take those in
which 1 appears in position 7. For each of these, count 1 less than the number of
active sites (with respect to 3142 and 2413 ). Then the total is s;_y - S,_;.

The Schroder recurrence 4 would follow immediately from this conjecture. By
counting active sites, we are tallying the permutations of S, (3142,2413). The
terms inside the sum come from letting the position of n range along the permu-
tation of length n. Subtracting 1 for each permutation produces the extra term
of s,, outside the sum.

5. KNUTH’S DEQUE PERMUTATIONS

It has been seen that the framework of forbidden subsequences unifies various
problems from the literature which have to do with excluded configurations. For
instance, the permutations which can be sorted by passage through a stack are
those of S,(231) [10]. The matrices corresponding to S,,(3142,2413) are exactly
those which do not fill up under ‘bootstrap percolation’ [19].

We offer a characterization of the permutations which can be sorted by an
output restricted double-ended queue, the number of which is also a Schroder
number. In [10], Knuth characterizes by S, (312) those permutations that can be
realized using a stack. This is equivalent to saying that the permutations which
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avoid the inverse permutation, 231, are those which can be sorted using a stack.
The fashion recently is to adopt the latter viewpoint.

In the same source, Knuth introduces the permutations which can be sorted
(realized) using an output-restricted double-ended queue. That is, we are given
a queue with three permitted operations, .S to insert an element on the left, )
to insert on the right, and X to remove from the left. We ask for which n-
permutations can a sequence of 2n operations be specified which produces the
identity.

Knuth shows that the number of such deque-sortable permutations is the
Shréder number: |Deq,, | = s,-1. We will show that they form precisely the
set 9,(2431,4231). First, note that neither 2431 nor 4231 is deque-sortable. This
can be done by trying all sorting sequences of S, ), and X, and noting that
the identity is never produced. Then observe that any permutation containing a
subsequence of one of these types cannot be deque-sorted either, because intro-
ducing new elements does nothing to undo the essential knot produced by these
4. Thus Deq, C 5,(2431,4231). We now show that the |S,(2431,4231)| = s, 1,
establishing the equality of the two sets.

In section one we remarked that |S, (1) = |S,(77")

|5, (4132,4231)|. But we have

; therefore |5,,(2431,4231)| =

Lemma 5.1. In T(4132,4231),
(1) — (3)&)--- O+ 1)t + 1)

Proof. Let 7 be an arbitrary node on level n of T(4132,4231), with label (¢). A
site is inactive, if and only if there is either a 231 or a 132 to its right. Thus if a
site w is inactive, any site v left of w is also inactive, under the influence of the
same 231 or 132 which deactivated w. It follows that the ¢ active sites are those
furthest to the right in 7.

Inserting n 4+ 1 in the rightmost site creates no 231 or 132, hence deactivates
no sites. It therefore gives rise to a child permutation with label (f +1). On the
other hand, inserting n + 1 in any other active site (except the very leftmost)
does create some 231s and /or 132s, the rightmost of which begins in the lefthand
neighbour of the insertion. Hence all sites left of this point are rendered inactive.
If the insertion is into site number 2,3, ... ¢, counting from the right, only the
3,4,...,t4+ 1 right of the lefthand neighbour of the insertion remain active. [

Therefore T(4132,4231) = T(3142,2413), whence |5,,(2431,4231)| = s,,_1. We

conclude

Theorem 5.2.

Deq, = S,(2431,4231)
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