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Abstract

We find the size of the largest union of two or three chains in the
lattice of partitions of » under dominance order. We also present some
partial results and conjectures on chains and antichains in this lattice.

1 Introduction

Let P, denote the poset of partitions of the positive integer n, ordered by
dominance (aka majorization), i.e. p < vif puy+pe- -+ pup < vi+vo+-- -+
for all k. This poset is a lattice, and is self-dual under conjugation. P, is not
graded for n > 7, since there exist saturated chains from {n} to {1"} of all
lengths from 2n — 3 to cn®? [2, 6].

Given any poset P, there exists a partition A(P) such that the sum of the
first k£ parts of A is the maximal number of elements in a union of k chains
in P. In fact, the conjugate of A\ has the same property with chains replaced
by antichains [1, 4, 5]. Let Ax(P) denote the kth part of this partition.

The length h(P,) of the longest chain in P, has been known for some time

6]. If n = (m;d) +7,0<r <m,then h(P,) = m3§m + rm. In other words,

M (P,) = m33—m + rm + 1. Our main results are the following theorems.

Theorem 1. Forn > 16, \y(P,) = A\ (P,) — 6.

*This material is based upon work supported under a National Science Foundation
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Theorem 2. Forn > 135, A\3(P,) = X2(P,) — 6.

Consider the subposet ), of P, consisting of the partitions that appear in
chains of length h(P,). Clearly @, is self-dual under conjugation, since con-
jugation takes a decreasing chain to an increasing chain of the same length.
It seems likely that @), is a graded lattice, but for our purposes it will suf-
fice to use a weaker statement, namely: for u € @, define r(p) to be the
length of the longest chain from {n} to p; then p # {1"},{n} is covered
by an element v such that r(v) = r(u) — 1 and covers an element v such
that 7(v) = r(p) + 1. In other words, every element of @), is on a fixed
level. Figure 1 shows an example of a poset ) with this property that is not
graded. Note that the top element is level 0, and the levels increase as we
move down.

Figure 1: A non-graded poset with well-defined levels.

The covering relation in P, comes in two flavors. Following the methods
of [6], we represent Ferrers diagrams with vertical parts, as illustrated in
Figure 2. We say p covers v by an H-step if there exists ¢ such that v; = p;—1,
Vigr = piv1 + 1, and v, = py for k # 4,7+ 1. In terms of Ferrers diagrams,
this corresponds to moving a box horizontally one space to the right (and
down some distance). The other flavor is a V-step, which is an H-step on the
conjugate, and corresponds to moving a box vertically one space down (and
right some distance). Chains from {n} to {1"} consisting of H-steps followed
by V-steps are maximal.

Figure 2: The partition {5,4,3,3,1}.




2 Down to work

First we focus on Theorem 1. The cases where n < 16 will be handled
separately, so for now assume n > 16.

We will prove Theorem 1 by showing that there exist two disjoint chains
in @, of lengths h(P,) and h(P,) —6. Since @, is a subposet of P,, these are
also chains in P,. Since there are six elements of P, in saturated antichains
of size 1, this is clearly the maximum possible number of elements in two
chains, thus giving A\y(P,) exactly.

To that end, we seek two disjoint chains in @, from {n —2,1,1} and
{n—3,3}to {2,2,2,1" %} and {3,1"3}. Let Q’ denote Q,, without the top
three and bottom three elements.

Lemma 1. If Q) has at least two elements on every level, then it has two
disjoint chains of maximal length.

Proof: Clearly we can start two chains with the two elements in the top
level, so proceed by induction. The only potential problem is if we reach two
elements on level £ that both cover only one and the same element on level
k + 1. In that case, take a second element on level £ + 1 and a maximal
chain ending at it. This chain has a lowest point of intersection with one of
the two old chains, so just replace that old chain with the new one from that
point on. See Figure 3. O

Figure 3: Salvaging a dead end.

Since @)} is self-dual, it will suffice to show that the first half of its levels
have at least two elements. We do this by explicitly constructing two disjoint
chains to the halfway point. As a first approximation of these chains, take
the following construction.

The left chain starts at {n—2,1,1}. At every step, we take the right-most
possible H-step, e.g. the next partition is {n—3,2,1}. The right chain starts
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at {n — 3,3}. At every step, we take the left-most possible H-step, e.g. the
next partition is {n — 4,4}. The names come from the relative positions of
the chains when plotted, as in Figure 7. Both chains will eventually reach
{m,m—1,...,r+1,r,r,r—1,...,2,1}, which is at least the halfway point
6], so the idea is to modify the left chain as little as possible to make it reach
the halfway point without intersecting the right chain.

Once we’ve done that, we can apply Lemma 1 to get two disjoint chains
of length h(P,) — 6, then append the top and bottom three elements to one
of them two get the desired chains. The following proposition will be used
to prove several lemmas concerning the right chain.

Proposition 1. If = {u, po, . .., pu} is in the right chain, then p;—p; 1 <
2 fori=1,2,...,k—2. In other words, only the last difference can be greater
than 2. Moreover, excluding the last difference, p cannot have more than one
difference equal to 2.

Proof: By construction, we are always doing the left-most possible H-step.
At first there is nothing to prove, since k = 2 through {%, %} or {"T“, "T’l )
Think in terms of partition diagrams as in the definition of H-steps. If there
are no differences greater than 1 (excluding the last one), then push one box
from i to increase the last part (or from gy increase the number of parts).

Now move to the left, pushing one box at a time until p; — ;11 < 2 for

1=1,2,...,k — 2 again. Clearly we never get a difference greater than 2 or
more than one difference of 2 unless we had one before, so the result follows
by induction. O

3 Proof of Theorem 1

The proof comes in six cases, depending on r. We begin with general calcu-
lations that will be used in multiple cases. If p = {1, o, p3, . . .} is reachable
from {n} by only H-steps, such as the elements of the left and right chains,
then r(pu) = po + 2us + 3ug + - - -, since each box in g; had to be moved
horizontally 7 — 1 times.

Note that any p in the left chain with gy — pe > 2 is not in the right
chain by Proposition 1. This means that the left chain makes it safely to the
partition {m +r,m —1,m —2,...,2,1} at level m36’m for r > 2. For r > 2,
we can continue safely to {m+2,m—1,m—2,...,r—2,r—2,...,2,1} (using

both assertions in Proposition 1) for an additional m(r — 2) — (ng) levels.




So we're done if 2(m(r — 2) — (T;2)) > rm. For r > 4, this comes down to

mz%:r—ler_%. For r = 5, this means m > 6. In fact m =5

also works, since we really just needed m(r — 2) — (T;2) > {%J For r > 5,

we just need m > r (since m must be an integer), but that’s as general as
possible since r < m by definition. Thus we’ve established Theorem 1 when
r > 5.

If r = 4, then the above construction gets us to one level shy of where
we need to be, since we only reach {m + 2,m — 1,m — 2,...,3,2,2,1}
safely. Since h(FP,) is always even when r is even, the middle level con-
sists of self-conjugate partitions. Note that not all self-conjugate partitions
are in @), but one will be if it is covered by an element of (),, since by du-
ality it covers the conjugate of that element. Now we simply observe that
{m+2,m—1,m—2,...,3,2 2,1} covers the self-conjugate partition {m +
2,m—1,m—2,...,3,2,1,1,1}. This partition cannot be in the right chain by
Proposition 1 (it is also not H-reachable from {n} [6]), so this establishes The-
orem 1 when r = 4. Alternatively, the step to {m+1,m,m—2,...,3,2,2,1}
is safe for m > 4, which will be more useful for proving Theorem 2.

If r = 0, then we safely reach {m + 1,m —2,m — 2,...,2,1}, one level
shy again. Once again, we simply observe that this covers the self-conjugate
partition {m +1,m —2,m —2,...,3,1,1,1}, which is not in the right chain
by Proposition 1, so this establishes Theorem 1 when r = 0.

The remaining cases each require a lemma to get past the shortfall in the
above argument.

If r =1, then we safely reach {m +2,m —2,m —2m—3,...,2,1}, but
in fact we can go further along the left chain.

Lemma 2. The partitions {m + 1,m — 1,m — 2,...,2,1} and {m,m —
L.,k + Lk kk—2,...,21}, 5 < k < m, do not occur in the right
chain.

Proof: If {m +1,m — 1,m —2,...,2,1} occurred in the right chain, then it
would have to be preceded by {m+2,m—2,m—2,...,2, 1} or {m+1,m,m—
3,...,2,1} (otherwise we couldn’t have done the left-most H-step), both of
which violate Proposition 1.

Iif {m,m—1,...;k+ 1,k k,k—2,...,2,1} occurred in the right chain,
then it would have to be preceded by {m,m—1,... k+1,k, k,k—1,k—4,k—
4,...,2,1} (note this works even for k& = m) which violates Proposition 1
unless k£ — 4 = 0, hence the need for £ > 5, or by {m,m — 1,...,k +
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Lk+1,k—1,k—2,...,2,1}. In this case, we can recursively work our
way back to {m 4+ 1,m —1,m —2,...,2, 1}, which is not in the right chain
since it would have to be preceded by {m + 2,m — 2,m — 2,...,2,1} or
{m+1,m,m —3,...,2,1}, both of which violate Proposition 1. O

Now apply Lemma 2 to extend the left chain safely to {m,m—1,...,5,5,
3,2,1}, which occurs at level W. Since h(P,) = m3—§2m7 it suffices if
m3+5m—24 > m>+2m, or m > 8. m = 7 also works since h(Py) = 119 and
we reach level 59. The case m = 6, n = 22 can be dealt with individually.
The left chain gets to {6, 5,5, 3,2, 1} at level 37, but intersects the right chain
at level 38 with {6,5,4,4,2,1}. However, the right chain reaches {6, 5, 4,4, 3}
at level 37, which also covers the self-conjugate partition {5,5, 5,4, 3}, so this
establishes Theorem 1 when r = 1.

If r = 2, then we safely reach {m +2,m —1,m—2,m—3,...,2,1}, but
in fact we can go further along the left chain.

Lemma 3. The partitions {m+1,m,m—2,m—3,...,2,1} and {m+1,m—
ILm—2,....k+1kkk—2...,21}, 1<k <m-—1, do not occur in the
right chain.

Proof: If {m+1,m,m —2,m —3,...,2,1} occurred in the right chain, then
it would have to be preceded by {m + 2,m — 1,m — 2,m — 3,...,2,1},
{m+1,m+1,m-3,m-3,...,2, 1}, or {m+1,m,m—1,m—4,m—4,...,2, 1},
all of which violate Proposition 1. Note that we are tacitly assuming that
m > 4, but that’s fine since n > 16, so m > 5.

Since {m+1,m—1,m—2,..., k+1,k,k,k—2,...,2,1} has two differences
of size 2 for k > 2, Proposition 1 takes care of those cases (note k = m — 1
means the partitionis {m+1,m—1,m—1,m—-3,...,2,1}). f {m+1,m—
I,m —2,...,3,2,2} occurred in the right chain, then it would have to be
preceded by {m+2,m—-2,m—-2,...,3,2,2} or {m+1,m,m—3,...,3,2,2},
both of which violate Proposition 1. £ =1 is similar. O

Now apply Lemma 3 to extend the left chain safely to {m+1,m—1,m—
2,...,2,1,1}, which occurs at level "‘3’%65"‘. Since h(P,) = "‘3’435"‘, this estab-
lishes Theorem 1 when r = 2.

Finally, if » = 3, we safely reach {m +2,m —1,m —2,...,2,1,1}. Now
we just modify Lemma 3. Note we could also show that the right chain has
no elements ending in 1,1 until it’s too late, but this method is cleaner.

Lemma 4. The partitions {m + 1,m,m —2,...,2, 1,1} and {m + 1,m —
Lm=2,...,k+ 1,k kk—2...,2,1,1}, 4 < k <m—1 do not occur in the
right chain.



Proof: Exactly the same as Lemma 3, since the second 1 at the end never
comes into play. O

Now apply Lemma 4 to extend the left chain safely to {m+1,m—1,m—

2,...,5,4,4,2,1,1}, which occurs at level Z2FLm=18 " Gipce p(P,) = m28m

6 3
it suffices if m3 + 11m — 18 > m3 + 8m, or m > 6. When m = 5, we get
to level 27, and h(Ps) = 55, so this case is fine as well. This establishes

Theorem 1 when r = 3, and thus completes the proof. O

4 Proof of Theorem 2

At all times in this proof, we assume that n is arbitrarily large. Looking back
on it, we’ll see we never needed more than n > 135.

Once again we wish to construct disjoint chains to the middle level. We
use the left and right chains constructed in the proof of Theorem 1, plus
a middle chain which will start at {n — 5,4,1}. By construction, we can
easily tell that some partitions do not occur in the left chain, in analogy with
Proposition 1.

Proposition 2. If i = {1, po, - - ., i } is in the left chain, then p;—p;q < 2
fori=2,...,k— 1. In other words, only the first difference can be greater
than 2. Moreover, excluding the first difference, p cannot have more than
one difference equal to 2.

Thus we will try to keep the middle chain safe by keeping the second
difference greater than 2, or having two differences equal to 2 somewhere in
the middle. Unfortunately, Lemma 1 does not generalize in the most obvious
way for finding three chains, due to posets such as the ones shown in Figure 4.
Consider the subposet R, of P, consisting of the partitions that appear in
chains formed from top to bottom by a block of H-steps followed by a block
of V-steps (note some steps may be both H-steps and V-steps). This is a
subposet of @, and is self-dual under conjugation (which switches H-steps
and V-steps) [6]. Let R} denote R, without the top six and bottom six levels.

Lemma 5. If R; has at least three elements on every level, then it has three
disjoint chains of mazimal length.

Proof: We can show this inductively, as in Lemma 1, if we can show that we
do not have any two consecutive levels with connecting relations as shown in
Figure 4. The pairs of bold lines indicate that we could have more lines like
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them without creating a third chain (e.g. one element covering three or four
others, rather than just the two shown). Aside from the bold relations, there
must be no other partitions in or relations between the two levels shown.

Figure 4: Three elements on every level but no three disjoint chains of max-
imal length.

Proving that these levels do not arise is extremely tedious, so we will not
show all the details here. We’ll just do a partial case to show how the general
argument works; in particular we show that, with a few exceptions that can
be ignored, we cannot get either of the subposets in Figure 5, where there
are no other covering relations between these two levels involving «, (3, or 7.
This will prove that the first scenario shown in Figure 4 does not occur with
either part as in Figure 5. By duality, it suffices to show that the one with
H-steps does not occur.

Y 04
vV vV H H
o B v
Figure 5: Two special cases.

Since an H-step from « is possible only where « has a difference greater
than 1, or last part greater than 1, and since any H-step from « will stay in
R,,, a must be of the form {a,a—1,...;a—4,0,b—1,...,b—j,c,c—1,...,1}
or{a,a—1,...,a—14,b,b—1,....b—j} wherea—i—b>1,b—j—c>1lor
b—j>1, and each run (a,...,a— 14, b,...,b—j, and ¢,...,1) has at most
one repeat.

Ifais {a,a—1,a—1,...}, {a,a—1,...} (but not {a,a—1,a—1,...}) or
{a,a,...}, then the partition v we get by taking the right-most possible H-
step is also covered by a partition of the form {a, a,a—2,...}, {a+1,a—2,.. .},
or {a+1,a—1,...}, respectively, where the ... ending matches the end of ~.
Thus the first run of o must be just a. Similarly the second run must have
just one or two numbers in it, and the third run is just ¢ = 1 or empty. Thus

« is {a, b}, {a,b,1}, {a,b,b}, {a,b,b — 1}, {a,b,b,1} or {a,b,b—1,1}.
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If « = {a,2}, then 5 ={a—1,3}, v = {a, 1,1}, and we have an exception
to the claim. This exception can be ignored, though, since it happens in the
upper levels of R,, that are not in R;. If o = {a,b} where b > 2, then
f=Ha—-1,0+1}, v = {a,b,b — 1}, and 7 is also covered by {a + 1,b —
1,b—1}. Working through the other cases, we similarly find only the isolated
exceptions a = {5,3,1}, {4,2,2}, {5,3,3,1}. These are easily ignored since,
for such small values of n, R} does not have at least three elements on every
level.

If @ covered three or more partitions by H-steps, then the above argu-
ment would actually be simplified, thanks to the additional runs and large
differences. Similarly, it really does suffice just to rule out the subposets in
Figure 4.

A partition p is H-reachable (i.e. there exists a chain of H-steps from {n}
to p) if the parts of p that come in runs with differences of at most 1 each
have at most one repeated part, and that part appears no more than two
times. p is V-reachable (i.e. there exists a chain of V-steps from p to {1"})
if its conjugate is H-reachable, i.e. p has no differences greater than 2, and
any two differences of size 2 must have a repeated part between them [6].

To handle cases involving both H-steps and V-steps, we can use the fact
that R, only has H-steps between H-reachable partitions, and V-steps be-
tween V-reachable partitions. Of course, some partitions are both, and as
long as r > 0 the number of such partitions will grow with m. With sufficient
patience and brute force, the rest of the proof is straightforward. O

Note that this lemma will not apply when r = 0, but that’s ok since the
three chains we construct in that case end on self-conjugate partitions, and
hence can be extended to their full length by conjugation. We only need
Lemma 5 when r and m are both odd, so that h(P,) = m33—m + rm is odd,
i.e. the number of levels of P, is even.

Just to take the first few steps along the middle chain without intersecting
the right chain, we need n > 14 so that we can go through {n — 5,4, 1},
{n—6,5,1},{n—"7,6,1}, {n—7,5,2}, and {n—7,5,1, 1}, after which we just
keep the second difference greater than 2 as long as possible. First we deal
with the cases where r > 4. We safely reach {m+r—2,m+1,m—2,...,2,1},
and continue on to {m+2,m+1,m—2,...,r —4,r—4,...,21} at level
mlom 9 4 om(r —4) — (T;4). We want this to be at least half of 2= 4,

6 3
orm>r—1+ % for r > 8. So if r > 16, then this works for all m (since

m > r by definition), and for 8 < r < 16 we just have to exclude finitely
many values of m.



Now we can take another step, to {m+2,m,m—1,m—3,m—4,...,r—
4,7 —4,...,2,1}. This is not in the right chain by Proposition 1, and one
must check that it is not in the left chain, but the usual argument of looking at
possible predecessors and seeing they all violate Proposition 2 works. From
now on, we will say that such a partition is “safe by the usual methods.”
From there we continue along to {m+1,m+1,m—1,m—-3,m—4,...,r—
4r—4,...,2, 1} {m+1,m+1,m—2,m—-2,m—4,...,r—4,r—4,...,2,1},
and on down to {m+1,m+1,m—-2,m—-3,m—4,...,r—3,r—3,...,2,1}.
This is m — r + 2 levels beyond where we last computed. One more step
to{m+1,mm-—1,m—-3m—4,...,r—3,r—3,...,2,1} is safe by the

usual methods, and on down to {m-+1,m,m—2m—-3,m—4,...,.r—1,r—
Lr—3,r—=3,r—4,...,2,1} (here we need r — 1 < m — 2, or m > r), and
finally one more to {m+1,m—1,m—1,m—-3,m—4,...,r—1,r—1,r—

3,r—3,r—4,...,2,1}. That’s another m — r + 2 steps, for a grand total of
mlom 4 9 4o (r —4) — (r;4) +2m — 2r +5. We want this to be at least half

6
of m33_m+7"m, orm(r —4) >r* —5r+4,or m >r — 1 for r > 4. Since we
already assumed m > r, this means the only possible bad cases are where
m =r =5,6,...,15. Since we only care about large n, we ignore these 11

cases, and we've established Theorem 2 when r > 5.

For r = 0, we safely go through {m+1+(m—4),m,m—3,m—4,...,2,1},

and eventually reach {m+1,m,m—3,m—4,m—4,...,2,1}. One more step
to{m+1,m—1,m—2,m—4,m—4,...,2,1} is safe by the usual methods, and
then we take two more steps to reach {m,m,m —3,m —3,m —4,...,2,1}

(note the order of these steps actually matters, we must make the m,m
first). Now we’re just one step away from the middle level of self-conjugate
partitions, so we simply observe that this covers the self-conjugate partition
{m,m,m—3,m—3,m—4,...,3,2,2,2}, and we're done.

The cases r = 2, 3,4 are each straightforward with lemmas such as those
used in proving Theorem 1. The case r = 1, however, requires something
more clever. The trick we use turns out to give quick proofs for the other
three cases as well, so we just use one lemma to settle all four cases.

Lemma 6. The partitions {m,m—1,m—2,m—3,...,r+5,r+4,r+4,r+
3,...,4,1,1}, r =1,2,3,4, can be reached safely on the middle chain.

Proof: We certainly reach {m +1+ (m+r —4),m,m —3,m—4,...,2/1}
safely. Now the trick is to move the difference of 3 to the right. This will
make finding a fourth disjoint chain much more difficult, but fortunately
we’re only trying to construct three chains. First we continue as before to
{m+1+(m+r—5),m,m—3,m—4,...,2,1,1}. Then it’s on to {m+1+(m+
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r—=6),m,m—3,m—4,...,3,3,1,1} (do not proceed to {...,3,2,2,1}), and
eventually {m+1+r,m,m—3,m—3,m—4,...,4,3,1,1}. From there we go
to{m+r,m+1,m—-3,m—-3,m—4,...,4,3,1,1}, then {m+r,m,m—2,m—
3,m—4,...,4,3,1,1}, then {m+r,m—1,m—-1,m—-3,m—4,...,4,3,1,1}
(safe thanks to two differences of size 2 in the middle), and continue along
until reaching {m +r,m —1,m —2,m —3,...,4,4,1,1}, and finally on to
{m,m—-1,m—-2m—=3,...,r+5,r+4,r+4,r+3,...,4,1,1}. O

For r =1, we reach {m,m—1,m—2,m—3,...,5,5,4,1,1} by Lemma 6
3 3
at level mcﬁ — 5, which is at least the halfway point, namely %, for
m > 10.

For r = 2, we reach {m,m—1,m—2,m—3,...,6,6,5,4,1,1} by Lemma 6
at level nﬂ% — 10, which is at least the halfway point, namely mgﬁﬂ, for
m > 10.

For r = 3, we reach {m,m — 1,m —2,m —3,...,7,7,6,5,4,1,1} by
Lemma 6 at level ”MT”’“ — 16, which is at least the halfway point, namely
”‘3%68"‘, for m > 11.

For r = 4, we reach {m,m —1,m —2,m —3,...,8,8,7,6,5,4,1,1} by
Lemma 6 at level m‘u% — 23, which is at least the halfway point, namely
m?”“%, for m > 12. Other arguments can handle this case for m > 6, but
even m = 12, r =4 gives us n = 76 < 136.

The largest case we did not settle was m = r = 15, or n = 135. This
completes the proof of Theorem 2. O

5 Smaller cases and related questions

The smaller n for which A\2(P,) = A\, (P,) —6 are 10, 13, 14, and 15. Figure 6
shows P53 and ()3, to give some idea of what’s going on. In fact, Ri3 = )13,
though this equality does not hold in general. For example, {5,2,1,1,1} is
in 19 but not in Ry,. Figure 7 shows ()15. Since there are levels of size 1 in
the middle, Pjg cannot possibly have two chains of the desired lengths. Due
to the size of the posets we are working with, we do not attempt to classify
all n for which three chains of the desired lengths exist.

More generally, Table 1 shows the partitions of chain lengths for P,, 1 <
n < 14. Tt is interesting to note that in all of these cases, the elements added
between Ay 1(P,) and A\¢(P,) form a chain that is added to the previous
k — 1 chains (and similarly for antichains). This is not the case for arbitrary
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Figure 6: Py3 (left) and Q3 (right).

posets, such as Figure 8. The proofs of Theorems 1 and 2 show that this is
the case for every P, when k = 2 or 3; it would be interesting to know if it
holds for all .

While the proof of Theorem 1 is constructive in the cases where h(P,)
is even, so that the middle level consists of self-conjugate partitions, it is
not constructive when h(P,) is odd, since in those cases the proof relies on
Lemma 1. It would be interesting to give an explicit construction of two long
chains in those cases, and similarly for three or more chains.

Note that each chain constructed so far was guaranteed to be disjoint
from the others by where it had differences greater than 1. We can thus
hope to construct arbitrarily many disjoint chains to the middle level for
large n, though of course the argument grows more technically difficult with
each chain. This idea motivates the following conjecture.

Conjecture 1. For large n, A\;(P,) — \i11(P,) depends only on i.

Note that A\;(P,) — Ai+1(P,) need not always be 6. It appears that the
fourth chain starts just one level further down, so we conjecture that A3(P,) —
A (P,) = 2 for large n. Indeed, we can show this for large r by taking a

12
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Figure 7: Elements of Pjg on maximal chains.

13



Figure 8: A poset P such that the largest chain is not one of the largest two
chains. A(P) = {4,2}.

A(P)

{1}

{2}

{3}

{5}

{7}

{9,2}

{12,3}

{15,7}

{18,9,3}

10 | {21,15,4,2}

11 | {25, 18,10, 3}

12 | {29,21,13, 10,4}
13 | {33,27,18,14,6,3}
14 | {37,31,24,19, 15,6, 3}

0 1 O Ui W N -3

Ne}

Table 1: Known values of A(P,).
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chain of partitions where the third difference is greater than 2, the technical
difficulties arise when r is small.

Let M be the transition matrix from the bases {e,} to {m, } of homo-
geneous symmetric functions of degree n. Since M,, > 0 iff v < y/, it is
a theorem of Gansner and Saks (independently) that a generic matrix with
the same 0 entries will have jordan blocks whose sizes are exactly the parts
of \(P,) (see [1, 3, 7]). Using Table 1 and Maple, one can verify that M is
sufficiently generic at least for n < 13.

Another open problem is to find the size a(n) of the largest antichain in
P,. Let p(n) be the number of partitions of n. There is the obvious up-
per bound a(n) < p(n). By Dilworth’s theorem, a(n) > p(n)/(h(P,) + 1),
so we have Q(n=°2e"V2/3) < q(n) < O(n_le”\/m). It would be in-
teresting to find a constructive proof that a(n) is at least as large as the
lower bound. In addition to the values of a(n) implied by Table 1, we
can see that a(15) = 9. Moreover, A\g(Py5) = 2, with the long antichains
being 718, 62215, 5416, 532213, 525, 44314, 442221, 433311, 3% and their conju-
gates. One can also verify that a(16) = 10, with Ajo(Pig) = 5. The sequence
of a(n)’s is number A076269 in [8].

One construction that shows a(n) has a lower bound of the form e®v™
is as follows. Begin with the antichain 7321%, 722221, 651°, 642211, 63322,
553111, 55222, 54421, 4444 in Pig. Let v + 7n denote a partition v from
the list with 7n added to each part. Consider v to have 7 parts, so some of
them might be 0. Then {v + Tn,v+7(n —1),...,v + 7,v} is a partition of
N =16(n+1)+ 49”2% = 2n? + O(n). There are 9"™! choices for the v’s,
yielding an antichain of size 9"*! in Py. This yields a lower bound for a(n)
of eV™ where ¢ = In9,/2/49 = 0.4439.... By starting with a 28-element
antichain in P»; where each v has at most 9 parts, and largest part at most

8, one can similarly get ¢ = m% = 0.555.... This is still a long way from

my/2/3 = 2.565. .., but at least it’s constructive.
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