Appendix

CORRECTIONS AND UPDATES — 1%t JANUARY, 2003

The book by K. Ohshika has been translated in english [Ohshi-02]. The
main chapters are on Gromov’s hyperbolic groups, on automatic groups, and
on Kleinian groups.

I.B, and random walks on groups.

There is a nice introduction to random walks and diffusion on groups in
[Salof-01], starting with a discussion on shuffling cards. A short exposition of
Pélya’s recurrence theorem can be found in [DymMc-72].

I1.21 and VII.38, subgroup growth, and normal subgroup growth.

For further work concerning numbers of subgroups and normal subgroups of
finite index in various groups, see among others [LiSMe-00] and [LarLu].

I1.24, and a strong Schottky Lemma.

The classical Table-Tennis Lemma, or Schottky Lemma, is often used to
show that a pair of isometries g, h of some hyperbolic space have powers g™, h™
which generate a free group. There is a criterion for g, h to generate a free
group in [AlFaN].

On free subgroups of isometry groups, see also [Woess—93] and [Karls].

I1.25, I1.33, and MGbius groups generated by two parabolics which are not free.
Let T', denote the subgroup of SL(2, C) generated by (é i) and (l ?) ,
so that T, is free if |z| > 2 or if z is transcendental.
Grytczuk and Wojtowicz have shown that ', is not free for a set of rational

values z = p/q of the parameters which contains infinitely many accumulation
points [GryWs6-99].

I1.28, and arithmeticity of lattices.

In PSL(2,C), all arithmetic lattices which are generated by two elliptic
elements and which are not co-compact have been determined [MacMa—01].
II.29%, more flowers for the herbarium of free groups.

Margulis has discovered a remarkable example of a free subgroup of the
affine group of R?® acting properly on R® [Margu-83]; an exposition appears in
[Drumm-92].

II.29%, complement on groups with free subgroups.

We reproduce (most of) Problem 12.24 from the Kourovka Notebook.

Given a ring R with identity, the automorphisms of R[[z]] sending z to
z(1+ Y2, ajz’) form a group N(R). We know that N(Z) contains a copy of
the free group F; of rank 2 (...). Does N(Z /pZ) contain a copy of Fy ?
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The answer is “yes”: see [Camin-97]; it could be a challenge to find a table-
tennis proof of this fact. For generalities on these “Nottingham groups” N(R),
see [Camin—00].

I1.41, a misprint.

There is a misprint in the reference to [Bourb-75], which should be to Chap-
ter VIII, § 2, Exercise 10.

I1.41, and dense free subgroups of Lie groups.

The following result [BreGe] answers a question raised by A. Lubotzky and
R. Zimmer: if " is a dense subgroup of a connected semisimple real Lie group
G, then T' contains two elements which generate a dense free subgroup of G.
Also: in a connected non-solvable real Lie group of dimension d, any finitely
generated dense subgroup contains a dense free subgroup of rank 2d.

I1.42, on Tits’ alternative.

Let T" be a subgroup of the group of homeomorphisms of the circle such that
the action of I' on the circle is minimal. Then, either the action is a conjugate
of an isometric action, and therefore I' contains a commutative subgroup of
index at most 2, or I' contains a so-called quasi-Schottky subgroup, which is
in particular a non-abelian free subgroup [Margu—00]. A variation (possibly a
simplification ?) of Margulis’ original ideas appear in Section 5.2 of [Ghys—01].

For a group T of orientation preserving C2-diffeomorphisms of the circle, it
is also known that the existence of an exceptional minimal set implies that T’
has non-abelian free subgroups [Navas].

On Out(F,), see also [BesFe—00].

Tits’ alternative holds for automorphism groups of free soluble groups [Licht—
95] and for linear groups over rings of fractions of polycyclic group rings [Licht—
93], [Licht—99]. It also holds in a strong sense for subgroups of Coxeter groups
[NosVi-02].

If T is a Bieberbach group, either both its automorphism group and its outer
automorphism group are polycyclic, or both contain non-abelian free subgroups.
See [MalSz] for precise criteria to decide which situation holds for a given Bieber-
bach group, in terms of the associated holonomy representation.

IT1.4, and examples of non-uniform tree lattices.

For the existence of such non-uniform lattices on uniform trees, see the work
of L. Carbone [Carbo—01]. For tree lattices in general, see [BasLu—01].

III.6%, and further examples of finitely-genrated groups.

Let A be a commutative ring which is a finitely-generated Z-module. Then
the group A* of invertible elements in A is a finitely-generated abelian group.

There is a proof in Section 4.7 of [Samue—67]; its main ingredient is Dirichlet’s
theorem, according to which the group of units in the ring of integers of a
number field K is a direct product F x Z"*72~1 where F is a finite group and
r1 [respectively 2r;] is the number of real [respectively complex] embeddings of
Kin C.
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More generally, if B is a commutative ring which is reduced (this means that
0 is the only nilpotent element) and finitely generated over Z, then B* is finitely
generated [Samue—66].

I11.18.iv, II1.20, and residual finiteness.

On residual finiteness and topological dynamics: see also [Egoro—00].
A proof that finitely-generated linear groups are residually finite appears as
Proposition II1.7.11 in [LynSc-77].

IT1.21, on Baumslag-Solitar groups which are Hopfian.

For the equivalence between “I', , Hopfian” and “p,q meshed” to hold, the
definition should be

two integers p,q > 1 are meshed if they have precisely the same prime
divisors
and not the definition as it reads in [BauSo—62], or on page 57. I am grateful
to E. Souche who pointed out this correction to me.

IT1.21, on actions of Baumslag-Solitar groups on the line.
For any p,q with p > ¢ > 1, there exists a faithful action of the group
BS(p, q) on the line by orientation preserving real-analytic diffeomorphisms. In

particular, Dif f¢(R) contains Baumslag-Solitar groups which are not residually
finite [FarFr].

IT1.24, on maximal subgroups.

In “familiar” uncountable groups, maximal subgroups cannot be countable.
More precisely, Pettis [Petti-52] has shown that, if G is a second category!
nondiscrete Hausdorff group containing a countable everywhere dense subset,
then any proper subgroup H of G lies in an uncountable proper sugroup Hy of
G; if H is countable, H can be taken to be everywhere dense as well.

In their work on maximal subgroups of infinite index in finitely generated
linear groups (exluding extensions of solvable groups by finite kernels), Margulis
and Soifer have shown that such a group I contains a free (infinitely generated)
subgroup F, which maps onto any finite quotient of I'; they deduce from this
that any maximal subgroup of I' which contains F, is necessarily of infinite
index. Soifer and Venkataramana have shown the following result: if T is an
arithmetic subgroup of a non-compact linear semi-simple group G such that the
associated simply connected algebraic group over Q has the so-called congruence
subgroup property, for example if I' = SL(n,Z) with n > 3, then T contains
a finitely generated free subgroup which maps onto any finite quotient of T"
[SeiVe-00].

I11.24 and VIII.39. The Grigorchuk group has the following property: any
maximal subgroup in it is of finite index [Pervo—00]. The same property holds
for any group commensurable with I’ [GriWi].

IRecall that a topological space X is “second category” (= non-meager) if it is not the
union of countably many subsets whose closures have empty interiors (“ensembles rares”).
Baire’s theorem shows that locally compact spaces and complete metric spaces are second
category, indeed are Baire spaces (= spaces in which countable unions of closed subspaces
with empty interiors have empty interiors).
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IIL.B, an additional problem: does SO(3) act non-trivially on Z ? (Ulam’s
problem).

I do not know which uncountable groups can act faithfully on a countable
set. Of course, the group Sym(N) of all permutations of N is itself uncountable,
and it has received attention at least since [SchUl-33]. Here is a sketch to show
that R, viewed as a discrete group, acts faithfully on N; in other and somehow
biased words, this produces “a continuous flow on a discrete space”. I am most
grateful to Tim Steger for several helpful conversations on this material.

Choose a basis (e;) of R as a vector space over Q which is indexed by the
open interval ]0, 1] of the line. Let C' denote the countable set of pairs (a, b) of
rational numbers such that 0 < a < b < 1. For each (a,b) € C, the map

(f)a,b:RB ZwtetHZthQ

t€(a,b) t€la,b[

is well-defined, Q-linear and onto. Observe that, for any = # 0 in R, there
exists (a,b) € C such that ¢, ;(x) # 0. Now N is in bijection with the disjoint
union |_|(a,b) cc Qa,p of copies of Q indexed by C'. Define an action ¢ of R on this
union which leaves each Q, invariant and for which = € R transforms g € Qq 5
t0 ¢ + ¢qp(z). This ¢ is a faithful action. [Even if it is not important for our
argument, observe that the product over (a,b) € C of the ¢, ; is a Q-linear
bijection from R onto a subspace of the vector space which is a direct product
over C of copies of Q.]

The group R/Z is a direct sum of the torsion group Q/Z, which is countable,
and a group isomorphic to R (a Q-vector space of dimension the power of
the continuum). It follows from the previous construction that there exists an
injective homomorphism from R/Z into Sym(N).

In 1960, Ulam asked if the compact group SO(3) of rotations of the usual
space, viewed as a discrete group, can act on a countable set (see Section V.2
in [Ulam—60]). As far as I know, this is still open. Previous observations are
possibly near what Ulam had in mind when writing his comments in Section
IL7 of [Ulam—60].

I11.38 and III.D, on finite quotients of the modular group.

For more on which finite simple groups are quotients of PSL(2,Z), see the
exposition of [Shale-01].

I11.45, uncountably many finitely-generated groups with pairwise non-isomor-
phic von Neumann algebras.

Let I be a torsion-free Gromov-hyperbolic group which is not cyclic. Building
up on results of Gromov, Ol’shanskii has shown that I' has an uncountable
family (T,),c; of pairwise non-isomorphic quotient groups, all of which are
simple and icc [OI’'s—93]. N. Ozawa [Ozawa] has shown that, for any given
separable factor M of type II;, the set of those ¢+ € I for which the unitary
group U (M) has a subgroup isomorphic to I', is a countable set. In particular,
the set of von Neumann algebras of the groups I', (which are factors of type
I1) contains uncountably many isomorphism classes.
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I11.46, on groups with two generators.

It has been shown that two randomly chosen elements of a finite simple group
G generate G with probability 1 as |G| — oo (work of Dixon, Kantor-Lubotzky,
Liebeck-Shalev, see [Shale-01]).

IV.1 and V1.1, on infinite generating sets and related word lengths.

Consider an integer n > 2, the group I' = SL(n,Z), and the infinite subset
S of I' consisting of those matrices of the form I + kE; ;, with k € Z, i,j €
{1,...,n}, i # j, and E;; the matrix with all entries 0 except one 1 at the
intersection of the ith row and the jth column.

As stated in Item II1.2, the diameter of I with respect to the corresponding
S-word length is finite as soon as n > 3.

IV.3.viii, on stable length: a correction.
The subadditivity
T(v') < 7(y) +7(Y)

holds for commuting elements v,+' € T' (as correctly stated by Gersten and
Short).

For example, if 7,4 are the two standard generators of the infinite dihedral
group, then 7(vy") > 0 and 7(y) = 7(¢') = 0.

IV.24., and values of the indices for subgroups: a question.

Consider the following property of a group I': whenever two subgroups I'1, 'y
of finite indices are abstractly isomorphic, the indices [’ : I'1] and [T : I'9] are
equal.

Finitely generated free groups and fundamental groups of closed surfaces
have this property, by an easy argument using Euler characteristics.

More generally, it would be interesting to know which groups have this pro-
perty and which groups don’t.

IV.25.vii, a quasi-isometry criterion for existence of lattices.

B. Chaluleau and C. Pittet [ChaPi—01] have answered one of the questions
there and have shown:

Let N be a graded simply connected nilpotent real Lie group. If there exists
o finitely-generated group which is quasi-isometric to N, then N has lattices.

IV.25, and examples of quasi-isometries.

(x) Say that a metric space X is quasi-isometrically incompressible if any
quasi-isometric embedding from X into itself is a quasi-isometry. E. Souche
[Souch] has shown that finitely generated nilpotent groups and uniform lattices
in simple connected real Lie groups are quasi-isometrically incompressible, but
that finitely-generated free groups and Baumslag-Solitar groups are not.

(xi) A finitely-generated group cannot be quasi-isometric to an infinite di-
mensional Hilbert space. Indeed, such a space has the following quasi-isometric-
invariant property: for any positive number r, there exists a positive number
R such that a ball of radius R contains infinitely many pairwise disjoint balls
of radius r; and a finitely-generated group does not have this property.
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IV.27, groups which are commensurable up to finite kernels.

Another terminology for commensurable up to finite kernels is weakly com-
mensurable subgroups. See § 5.5 in [GorAn—93]; these authors also point out
the following fact.

If M is a manifold on which some Lie group act transitively, then m (M)
contains a subgroup of finite index which is isomorphic to a discrete subgroup
of a connected Lie group; if M is also compact, then 7 (M) contains a subgroup
of finite index which is isomorphic to a uniform lattice in some connected Lie
group.

IV.29.v and VII.26, and the classification of lattices up to commensurability in
some nilpotent Lie groups.

Y. Semenov has classified Q-forms of some real nilpotent Lie algebras, and
thus the commensurability classes of lattices in the corresponding nilpotent Lie
groups [Semen]. It seems that the following question is open:

does there exist a finite dimensional real nilpotent Lie algebra of which the
number k of Q-forms (up to isomorphism) is such that 1 < k < oo ¢

IV.34 & 35, and commensurability. The following exercise is taken from [Gabor—
02] and is clearly missing just before IV.34.

Ezercise. (i) Show that two groups I'1,I'y are commensurable if and only
if they have commuting free actions on a set X such that both quotients
I\ X, T2\ X are finite.

[Hint for one direction. Let I'; be a subgroup of finite index in T;, j = 1,2,
such that there exists an isomorphism ¢ : I'j} — T, Set A = {(71,72) €
I'i xTy |71 € T1,72 = ¢(n)}. Consider the natural actions of I'y and T's
on (F]_ X Fz)/A

Hint for the other direction. Choose xy € X. Consider the natural action of
I'; on I';\ X and the canonical projection [zg]s of 2o in T\ X. Let T} be the
isotropy subgroup of I'; defined by [zo]2 and set v120 = ¢(71)zo. Check that ¢
is a well-defined group homomorphism Iy — T’y which is injective and whose
image is of finite index in Is.]

(ii) Assume that I';,T's have commuting free actions on X such that both
I\ X, 2\ X are finite, and let T'},T', be as in the previous hints. Check that

[Ty :Ty) _ IT\X|
2T~ FAX]
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IV.36, on commensurability and torsion.

G. Levitt has observed that a group I' with infinitely many torsion conjugacy
classes can have a subgroup of finite index I'g which is torsion-free.

Indeed, let first I'g be the wreath product Z1Z = (®;czZa;) X Z, where the
generator t of Z acts on the direct sum by a shift; this group is torsion-free.
Then let I" be the semi-direct product of I'y with the automorphism ¢ of I'y
of order 2 defined by ¢(a;) = —a; for all i € Z and ¢(t) = t; and let s € T
denote the element of order 2 which implements ¢ on the subgroup I'y. For
v,v' € BiczZa;, the elements sv, sv' are on the one hand of order 2; on the
other hand, they are conjugate in I if and only if there exist € € {£1}, k € Z,
and w € ®ieczZa; such that o' = etfvt=F 4 2w; it follows that the conjugacy
classes in T" of s(a; + - - - + a,,) are pairwise distinct (n > 0).

A. Erschler has shown that a torsion-free group can be quasi-isometric to a
group having torsion of unbounded order [Ersch-b].

The main ingredient of the proof is the construction, for any finitely-gene-
rated group A, of another finitely generated group W (A4), using an iterated
wreath product construction and an HNN-extension. On the one hand, if A, B
are Lipschitz equivalent groups, then W (A), W (B) are Lipschitz equivalent;
on the other hand, if A is torsion-free and if B has torsion, then W (A)
is torsion-free and W (B) has torsion of unbounded order. One example is
provided by A = Z and B =Z & (Z /pZ).

IV.40, and groups quasi-isometric to abelian groups.
Some of Shalom’s ideas are now available in [Shalo].

IV.41, on groups of classes of quasi-isometries.

J. Taback has studied the quasi-isometry groups of PSLy(Z[1/p]), for p
prime. These quasi-isometry groups are all isomorphic to PSL,(Q), even
though the groups are not quasi-isometric for different values of the prime p.
For this and other results, see [Tabac—00].

IV .43, and quasi-isometries of Baumslag-Solitar groups.
For the results of K. Whyte quoted from [Whyte—a], see now [Whyte—01].

IV.46, and Lipschitz equivalence.

Here is a question of B. Bowditch. (Private communication, March 2000.
See also Item 1.A’ in [Gromo-93].) Consider a Penrose tiling of the plane with
two prototiles D and K (dart and kite), more precisely a tiling R? = | | ics T
with each 7Tj given together with an isometry onto either D or K. This defines
a cell decomposition X of the plane, of which the 0-skeleton X(©) is a discrete
subset of the plane.

Is X© Lipschitz equivalent to a lattice in R® ¢

IV.47.vi, on costs and £2-Betti numbers.

For a group T with cost C(T') and /2-Betti numbers /8](-2) ("), we have always

c(r) -1 > () - A7)
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Moreover, for a large class of groups (including all groups for which both terms
are known), the two terms are indeed equal. See [Gabor], in particular Corollary
3.22.

IV.50, geometric properties and weakly geometric properties.

Following [Ersch-b], it can be useful to be more precise in the termino-
logy concerning a property (P) of finitely generated groups. She suggests the
following definitions.

Say (P) is geometric if, for a pair (I'1,T'2) of finitely-generated groups which
are quasi-isometric, I'y has Property (P) if and only if I'y is commensurable to
a group which has Property (P).

Say (P) is weakly geometric if, for a pair (I'y, I'2) of finitely-generated groups
which are quasi-isometric, I'; has Property (P) if and only if 'y is commensu-
rable up to finite kernels to a group which has Property (P).

An example of a property which is weakly geometric and which is not geo-
metric is “being a lattice in Spin(2,5)”; see II11.18.vi, I11.18.x, and IV.42.

V.18, on the group of a remarkable simple closed curve.

It has been shown by Anna Erschler Dyubina that the group of V.18 is
not finitely generated. Finding a proof is proposed as Problem 10835 in the
American Mathematical Monthly [DyuHa—00].

Problem. Let I' be the group defined by the presentation which has an in-
finite sequence by, b1, bs, ... of generators and an infinite sequence b;byb; 1 =
bab1 by o bsbabs L= . of relations. Show that I is not finitely generated.

We would like to add a comment and our solution. The nice solution of S.M.
Gagola has appeared in the Monthly, November 2002.

Comment. In a short paper on wild knots, R.H. Fox discovered A remarkable
simple closed curve (Annals of Math. 50, 1949, pages 264-265) which is almost
unknotted, a fact that Fox thinks “should be obvious to anyone who has ever
dropped a stitch”. The fundamental group I' of the complement of this curve
in 3-space has the presentation described above.

For other fundamental groups of complements of wild knots, see [Myers—00].

Our solution. Observe first that there is a homomorphism I' — Z mapping
br onto 1 for each k > 0; hence by is of infinite order in T for each k& > 0.
Observe also that there is a homomorphism ¢ from I' onto the symmetric group
(z,y | #* = y? = (zy)® = 1) such that o(by;) = z and o (byj+1) = y for all j > 0;
hence bibgy1 # bpr1bg for all & > 0.

For each n > 0, there is a homomorphism ¢,, : ' — T" such that ¢, (bx) =
br+n for all & > 0. Since the first relation of the presentation defining I' can be
written as by = by Lpoby b, 1p, and since the other relations do not involve by, the
group I" has another presentation with generators by and relations by 1 bkbl;-il—l =
brt2bkr1 b,;iQ for k¥ > 1. Similarly, for each n > 0, the group I has a presentation
with generators by and relations bk+1bkb,;+11 = bpt2bkt1 b,:+12 for k > n, so that
¢n is an automorphism of T
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Assume now by contradiction that T is finitely generated, and therefore gen-
erated by bo, by, . .., b,q1 for somen > 0. Using again the relations by by, b,;ll =
bk+2bk+1b;i2, this time for 0 < k < n — 1, we see that ' is generated by
{bn,bns1}. Thus T is also generated by {bo, b1} = ¢! ({bn,bnt1}), as well as
by {b1,b2} = é1 ({bo, b1}).

For each k > 0, let T's41 the group abstractly defined by k + 2 generators
bo,...,bk+1 and k relations blbobl_1 =...= bk+1bkb,;i1. The same argument
as above shows that fk+1 has another presentation with 2 generators by, byt1
and no relation, hence that fk+1 is free of rank two. As by, b; do not commute
in Tj11, they generate a subgroup of T'y41 which is free of rank two. As this
holds for any k£ > 0, it follows that the group I', generated by by and by, is itself
free of rank two.

As T is free on {by,bs}, there is a homomorphism ¢ : ' — Z such that
¥(b1) = 0 and ¥ (b2) = 1, which is onto. On the other hand, as I" is generated
by by and by, and as ¥ (by) = (by *babiby 1by) = 0 = ¢(by), we have (') = {0}.
This is a contradiction and ends the proof. O

The group I has other straightforward non-finitenes properties. (i) It is not
Hopfian, since it is isomorphic to its quotient by the relation by = 1. (ii) It
maps onto the Baumslag-Solitar group (t,z | tzt~! = 2?) by byp, — 2t~ ! and
b2n+1 — tL.

V.20, and lattices in Lie groups.

Information on lattices in complex Lie groups can be found in [Winke—98].

V.21, and finiteness homological properties of SL(n,F,[T]).

The finiteness result according to which SL(n,IF,[T]) is of type (F,—_2) and
not of type (F,_1) for ¢ > 2”2 is due independently to H. Abels (as recorded
in V.21) and P. Abramenko [Abram—96].

V.22, on commensurability and groups of automorphisms.

G. Levitt has drawn my attention to the fact that, given a group I and a
subgroup T’y of finite index, there can exist an infinity of automorphisms of T’
which coincide with the identity on T'g.

Indeed, let T" be the infinite dihedral group and let T'y be its infinite cyclic
subgroup of index 2. Then the conjugations of I' by elements of 'y are pairwise
distinct.

V.22, on large groups of automorphisms.

The automorphism group of a finitely-generated group is clearly countable.
The automorphism group of a countable group need not be; an easy example is
provided by an infinite direct sum of copies of any countable group not reduced
to one element.

Here is another example, inspired from Ulam and using the notation of the
addendum to IIL.B above. For each (a,b) € C, let ¢qp : R — Q be the
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homomorphism defined there and let Qﬁ,b be a copy of Q. The mapping

R — Aut (Q,) = GL:(Q
Yap (1 %,b(m))

is a homomorphism of groups. Define I to be the direct sum, over (a,b) € C, of
the groups @}, ;; then the direct sum of the homomorphisms ¢, 5 is an injection
of R into Aut(T).

V.26, and some groups of Richard Thompson.

There are three groups, acting respectively on an interval, the circle, and
the Cantor set, denoted by F, T, and V in [CanFP-96], and which appear in
many different contexts. For T in the context of Teichmiiller theory, see several
articles by R.C. Penner, including [Penne-97]; for the isomorphism of Penner’s
group with T, see [Imber—97]. One interesting byproduct of this circle of ideas is
that T can be generated by two elements a, 3 satisfying a* = 8% = 1, and other
relations, such that the subgroup of T generated by o2, 3 is the free product
Z]2Z) % (Z |3Z) = PSLy(Z); see [LocSc—97].

V.31, and efficiency.

A. Cevik gives in [Cevik—-00] a sufficient condition for the efficiency of wreath
products of efficient finite groups.

VI.9, an example of spherical growth series which is not monotonic.

On page 161, the last display, the coefficient of 22 should be 8 not 6. This
was pointed out to me by N.J.A. Sloane. Several growth series which appear in
the the book appear also in his database of integer sequences: see

http://www.research.att.com/ njas/sequences/
on the web.

VI.19, on groups with the size of spheres not tending to infinity.

Groups in which the size of spheres does not tend to infinity are virtually
cyclic (communicated by Anna Erschler Dyubina). More precisely:

Proposition. If ¢(T, S; k) < C for infinitely many values of k, then T is vir-
tually cyclic.

Proof. Consider an arbitrary infinite finitely generated group, and let ® be its
inverse growth function, as in VIL.32. First, it follows from the definition and
from the obvious inequality 3(4k) > 28(k) that ®(26(k)) < 4k. Then, it follows
from the first result quoted in VII.32 that, for an appropriate constant K, we
have

o(n) 1 1 1

Bn—1) = BS[3(2Bm—1) = BSAmn—1) > Kn’

whence
B(n—1) < Ko(n)n

for alln > 1.
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Assume now that o(n;) < C for some constant C' and a strictly increasing
infinite sequence (n;);,. Thus 8(n; —1) < KCn; for any j > 1. By the strong
form of Gromov’s theorem (VII.29) on groups of polynomial growth, which is
elementary for linear growth and which is due to Van den Dries and Wilkie
[VADW-84b], this implies that I' is a group of linear growth and therefore a
virtually cyclic group. O

VI.20, and the growth of braid groups for Artin generators.
For any integer n > 2, Artin’s braid group on n strings has presentation

Bn == <01;---70n—1

0i0i410; = 054100541 (1 <i<n—2)
0i05 = 0,0 (1Si,jsn—1, |z—g|22)

[Magnu-73] and is obviously a quotient of the locally free group of depth 1 with
n — 1 generators

[Versh—-90], [Versh—00], [VeNeB-00]. The value of the exponential growth rate of
B,, for the generators g; is still unknown; however, Vershik and his co-authors
have obtained partial results by comparing B, with LF,,, more precisely by
using the fact that LF,, appears both as a group of which B,, is a quotient and
as a subgroup of B, the image of the injective homomorphism which maps f;
onto o? for i € {1,...,n —1}.

For example, if w2, wL¥ denote respectively the exponential growth rates of
B,,, LF, for the generators discussed here, then

lim Wit =7 and V7 < wB < 7 for n large enough.

n— 00 n o=

VI.B, early papers on growth of groups, and Dye’s theorem on orbit equivalence
for groups of polynomial growth.

Growth occurs in a paper by Margulis [Margu—67] published one year before
those of Milnor ([Miln—68a], [Miln—68b]), where Margulis shows that if a com-
pact three-dimensional manifold admits an Anosov flow, then its fundamental
group has exponential growth. For a generalization to higher dimensions, see
[PlaTh-T72].

Also, between the mid fifties and 1968, some mathematicians in France were
aware of the notion of growth of groups. Besides Dixmier (quoted on page 187),
Avez had learned this from Arnold in 1965 [Avez—T76].

We should also mention the following results of H. Dye. On the one hand,
consider the compact abelian group H;’io C;, where each C; is a copy of the
group {0,1} of order 2, with its normalised Haar measure p. Let T : G — G
be the adding machine, defined by

T(IL'(),.’L’l,SCQ,...) = (0,0,...,1,.’L‘j+1,$j+2,...)
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where j is the smallest index such that z; =0, and
T(1,1,1,1,..)) = (0,0,0,0,...).

Then T defines an ergodic action of Z by measure preserving transformations of
the probability space (G, u). On the other hand, consider any finitely generated
group I acting by measure preserving transformations on a standard Borel space
furnished with a non-atomic probability measure, the action being ergodic.

One of Dye’s theorems is that, if I' is of polynomial growth, then the ac-
tion of I is orbit-equivalent to the odometer action of Z [Dye—63]; if ' =~ Z,
this is already in [Dye-59]. See [Weiss—81] for an exposition, and [OrnWe-80],
[CoFeW-81] for related results; in particular, Dye’s theorem carries over to
amenable countable groups.

VI.40, and the functions which are growth functions of semigroups.

Let M be a monoid generated by a finite set S and let (k) = B(M, S; k)
denote the corresponding growth function (see VI.12). It is obvious that if 3(k)
is unbounded, then k < §(k); moreover,

k< B(k) and k = B(k) imply  k? < B(k)

as has been shown? by V.V. Beljaev (reported in [Trofi-80]).

Let f,g : N — N be two functions such that k> < f(k) and g(k) < 2*.
Then there exists a monoid M generated by a finite set S such that the sets

{k e N[B(M,S;k) < f(k)}  and  {k e N[B(M,S;k) > g(k)}

are both infinite.

VI.40, and the growth functions of Riemannian manifolds.

For further work after the paper of Grimaldi and Pansu quoted in VI.40, see
[GriPa—01] and its bibliography.
VI.42, and growth of groups with respect to weights.

Growth with respect to generating sets and given weights are older than
suggested by the references of Chapters VI and VII. In particular, in [PlaTh—-76],
Plante and Thurston define the growth of a countable group (not necessarily of
finite type) with respect to a generating set (not necessarily finite) and a proper
weight on it.

V1.42-43 and VII.35, on relative length functions and relative growth.

In the last line of page 176, read “relative length function” instead of “rela-
tive growth function”. For relative growth of subgroups of solvable and linear
groups, see [Osin—00).

VI1.45, on word and Riemannian metrics.
See also [LubMR~00].

2This has been shown independently by several other mathematicians.
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VI.56, on asymptotics of subadditive functions.

The correct conclusion of (i) should be that the sequence ($)k>1 either

converges to infy>1 % or diverges properly to —oo. (Since sequences appearing

in the book are bounded below, the second case does not occur.)

VI1.64, and groups of intermediate growth which are not residually finite.

Anna Erschler has shown that there exist uncountably many groups of in-
termediate growth which are commensurable up to finite kernel with the first
Grigorchuk group, but which are not residually finite. She has also shown that
there exist groups of intermediate growth which are not commensurable up to
finite kernels with any residually finite group. See [Ersch-b].

VII.2, and a version of the Table-Tennis Lemma due to Margulis.

Proposition. Let I' be a group acting on a set X and let a,b € T'. Assume
that there exists a non-empty subset U of X such that b(U)NU = § and
ab(U)Ua?b(U) C U. Then the semi-group generated in T’ by ab and a®b is free;
in particular, it is of exponential growth if I is finitely generated.

Proof. Inside Uy = U, the sets U; = ab(U) and Us = a?b(U) are disjoint, since
ab(U) N a2b(U) = a(b(U) ﬂUl) c a(b(U) mU) = 0.

More generally, for each n > 0, let J,, denote the set of sequences of length n
with elements in {1,2}; for each j = (ji,...,jn) € Jn, define a subset U; =
a’tba’?b...a/"b(U) of U. For any n > 1 and j' € J,_1, observe that the sets
Uq,jry and Ugs, jy are disjoint, since -

U(1,l") ﬂU(z,l'/) = a(b(Ul’/) ﬁU(l,l-/)) C a(b(U)ﬂU) =0,

and that both are inside Uj. Thus, for two sequences j,j' € Up—, Jn, either
the corresponding subsets Uj, U;: are disjoint, or one is strictly contained in the
other; in other words, their inclusion order is that of the infinite rooted 2-ary
tree (see Item VIIIL.1). The proposition follows. O

This version of the Table-Tennis Lemma was communicated by G.A. Mar-
gulis to the authors of [EsMo0O-02], see VII.19 below.

VII.13, on tight growth of free groups and hyperbolic groups.

It is easy to show that, for any normal subgroup N # 1 of F} and the
canonical image S, of Sy in I'/N, the corresponding exponential growth rates
satisfy the strict inequality w(Fy/N,S,) < 2k — 1. G. Arzhantseva and I.G.
Lysenok have shown the following generalization, which answers a question of
[GrHa-97]. Let T' be a non-elementary hyperbolic group, S a finite generating
set and N an infinite normal subgroup of I'; denote by S the canonical image
of S in the quotient group I'/N; then w(I'/N, S) < w(T', S) [ArjLy].
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VII.19, on uniformly exponential growth of solvable groups.

D. Osin has shown that any solvable group of exponential growth has uni-
formly exponential growth [Osin—a], thus solving Problem VII.19.B (see page
297); this has also been shown independently and shortly afterwards by J.
Wilson (unpublished). More generally, Osin has shown that any elementary
amenable group of exponential growth has uniformly exponential growth [Osin-
b].

Also, D. Osin has shown that the uniform Kazhdan constant of an infinite
Gromov hyperbolic groups is zero [Osin—]

John Wilson has discovered examples of groups which answer the main pro-
blem of Item VII.19 [Wilso]. More precisely, there exist groups which are
isomorphic to their permutational wreath product with the alternating group
on 31 letters. Let I' &~ I"'t A3; be any group of this kind; on the one hand, there
exists a sequence (S, = {Zn,yn}),>; Of generating sets of I', with z2 =y =1
for all n > 1, such that the limit of the corresponding exponential growth rates
is 1, in formula lim,,_,, w([', S,) = 1; on the other hand, for an appropriate
choice of T', there exist non-abelian free subgroups in T', so that in particular T’
is of exponential growth.

VII.19, on uniformly exponential growth of linear groups.

It is a theorem of A. Eskin, S. Mozes and Hee Oh that, given an integer N > 1
and a field K of characteristic 0, a finitely generated subgroup of GL(N, K) is of
uniformly exponential growth if and only if it is not virtually nilpotent, namely
if and only if it is of exponential growth (result of [EsMoO], announced in
[EsMo0-02]).

In particular, this solves Research Problem VII.19.C (see page 297).

For other progress on uniformly exponential growth, see [BucHa-00], [GrHa-
0la], and [GrHa-01b]. For an exposition on uniformly exponential growth, see
[Harpe)].

If constants measuring exponential growth often have uniform bounds in
terms of the generating sets, other constants exhibit the opposite behaviour.
For example, T. Gelander and A. Zuk have shown that, in many cases, Kazhdan
constants depend in a crucial way on the chosen generating set [GelZu-02].

VII.29, group growth, and Gromov’s theorem.

There is a brief survey on group growth and Gromov’s theorem by D.L.
Johnson [Johns—00].

Concerning polynomial growth for locally compact groups, V. Losert has
published a second part to [Loser—87]: see [Loser—01].

VII.29, and growth of double coset classes.

Consider a Hecke pair (G, H), namely a group G and a subgroup H such that
all orbits of the natural action of H on G/H are finite, or equivalently such that,
for each g € G, the indices of H N gHg™ ! in both H and gHg™! are finite. It
is a natural counting problem to estimate for each g € G the cardinality of the
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H-orbit of gH in G/H, or equivalently the number of one-sided classes g; H in
the double class HgH.

The specific case of the pair (SL(2,Z[1/p]), SL(2,Z)), p a prime, appears in
[BeCuH-02].
VIIL.34, and the growth of Fglner sequences.

A question related to our Problem VII.34.A appears as Problem 14.27 in the
Kourovka Notebook [Kouro-95], and has been answered in [Barda-01].

VIIL.38, and the growth of normal subgroups of finite index.
See [LarLu].

VII.39, growth of conjugacy classes, and growth of pseudogroups.

For growth of conjugacy classes in hyperbolic groups, see [CooKn-02] and
[CooKn-b].

Growth of pseudogroups appears in connection with foliations in [Plant-75].
VII.40, and growth of infinitely generated groups.

See [PlaTh-76], and the above comment on Item VI.42.

VII.61, on the set of exponential growth rates.

Part of the problem was solved by Anna Erschler Dyubina, who has shown
that the set Qo of exponential growth rates of 2-generated groups has the power
of the continuum (see [Ersch—-02], [Ersch-a]).

VIIL.7, and the adding machine.

The adding machine on the infinite 2-ary tree 7(?) can be economically (and
recursively, compare VIIL9) defined as the element 7 € Aut(7(?) such that

T =a(l, 7).

Observe that 7 # 1 since 7 exchanges 0 and 1, and that 7 is of infinite order
since
= a(l,7)a(1,7) = (1,1)(1,7) = (7,7).

The simple and clever Proposition 20 of [Sidki-00] shows that an element g €
Aut(T®@) is conjugate to 7 if and only if it acts transitively on the set of 2*
vertices of the level L(¥) for each k > 0.

Later, Sidki has shown that a solvable subgroup K of Aut(7 () which con-
tains an element such as 7 above is an extension of a torsion-free metabelian
group by a finite 2-group. If furthermore K is nilpotent then it is torsion-free
abelian [Sidki].

VIIL.10.ii on automata and finitely generated groups.

This connexion is a very active subject of research; see among others [GriNS—
00], [GriZu-a], [GriZu-b], and [Sidki-00].
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VIIL.31, a result of John Wilson.

At the end of this item, the “recent result” which is quoted was in fact
essentially in John Wilson’s Ph.D. thesis of 1971, as well as in [Wilso-72].
(“Essentially” in the sense that he did not use the words “branch groups”.)

For these, [Grigo] contains comments and a sketchy proof, whereas details
can be found in [Wilso].

VIIL.32 and VIIL.71, and elements of small lengths and large orders in the
Grigorchuk group.

Proposition. For any n € N, there exists v € I' such that

¥ £1 and  L(y) < 2"

Proof (following a sketch of L. Bartholdi). Let K = (abab)l be the normal
subgroup of T' of index 16 defined in VIII.30; recall that K is generated by

t = (ab)?, v = (bada)®, w = (abad)’

and that ¢! (K x K) is a subgroup of K (the index is 4 by Exercise VIIL.81, but
we do not use this here). Let o be the endomorphism of I' defined in VIIL.57.
Since o(a) = aca, o(b) = d, o(d) = ¢, and o(c) = b, we have Yo(a) = (d,a),
Yo(b) = (1,b), vo(c) = (a,c), Yo(d) = (a,d). It follows that vo(x) = (1,z) for
z € {t,v,w}, and therefore for all z € K.

Define inductively a sequence (z;),~, by o = abab and z;11 = ao(x;). Since

Y (ao(zi)ao(zi)) = (i, i),

the order of x;11 is twice that of ;. As xg is of order 8 by Proposition VIII.16,
it follows that the order of z; is 2¢+3 for all ¢ > 0.
On the other hand, denote by wy the word abab representing xzg; for each
1 > 0, let w;y; the word obtained from w; by
- substitution of aca, d, b, ¢ in place of a, b, ¢, d respectively,
- deletion of a if it appears as the first letter and addition of a as a prefix
letter otherwise,
so that w;y1 represents x;.1. Thus wy = cadacad and, for each j > 0,
- wa;41 is a word of length 24 (w2;) —1 which begins with ¢ and ends with
a letter from {b,c,d},
- Wajt2 is a word of length 2¢ (wy;41) which begins with a and ends with
a letter from {b,¢c,d};
in particular, £(z;) < £(w;) < 212 for all i > 0. The proposition follows (with
T = Tp_o forn>2). O

VIIL.67, and power series with finitely many different coefficients.

Here is a result of Szegd: a power series with finitely many different coeffi-
cients that converges inside the unit disk is either a rational function, or has
the unit circle as natural boundary [Szegt—22].
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VIIL.88, complement on commensurability of finitely-generated subgroups.

It is a remarkable result of Grigorchuk and Wilson that any infinite finitely-
generated subgroup of the Grigorchuk group I is commensurable to I' [GriWi].
In other words, I" has exactly two commensurability classes of finitely-generated
subgroups: itself and {1}.

Here are a few examples of other groups for which all commensurability
classes of finitely-generated subgroups are known; in case of torsion-free groups,
we do not list the class of {1}.

(i) Free abelian groups Z", with ZJ for j € {1,...,n}.

1 Z Z
(iii) The Heisenberg group | 0 1 Z |, with Z, Z?2 and the group itself.
0 0 1

(iii) Non-abelian free groups F,, with Z and F.

(iv) Virtually free groups, for example PSL(2,Z), with finite subgroups, Z
and FQ.

(v) The fundamental group T'y of a closed surface of genus g > 2, with Z,
F5 and the group itself.

(vi) Olshanskii’s “monsters” (see the reference in II1.5, as well as [AdyLy-
92]), in which any proper subgroup is cyclic.

VIIL.87, on complex linear representations of the Grigorchuk group.

For each k > 0, let I'y denote as in VIII.35 the finite quotient of the Gri-
gorchuk group which acts naturally on the level L(k) of the binary tree. Choose
some point in L(k) and denote by Py the corresponding isotropy subgroup of
Tx. Then (T, Py) is a Gelfand pair, and the natural linear representation of
T, on the space CE(F) splits as a direct sum of k + 1 pairwise inequivalent
irreducible representations, of dimensions 1,1,2,4,...,2k~! [BeHaG].
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