
Link�oping Electronic Articles in
Computer and Information Science

Vol� �������� nr ��

Link�oping University Electronic Press
Link	oping
 Sweden

http���www�ep�liu�se�ea�cis����������

Automated Theory Formation

Applied to Four Learning Tasks

Simon Colton

Published on December ��� ���� by
Link�oping University Electronic Press

��� �� Link�oping� Sweden

Link�oping Electronic Articles in

Computer and Information Science

ISSN ����	
���
Series editor� Erik Sandewall

c����� Simon Colton
Typeset by the author using LATEX

Formatted using �etendu style

Recommended citation�

�Author�� �Title�� Link�oping Electronic Articles in
Computer and Information Science� Vol� ������� nr ���
http���www�ep�liu�se�ea�cis����������� December ��� �����

This URL will also contain a link to the author�s home page�

The publishers will keep this article on	line on the Internet
or its possible replacement network in the future�

for a period of �� years from the date of publication�
barring exceptional circumstances as described separately�

The on	line availability of the article implies
a permanent permission for anyone to read the article on	line�

to print out single copies of it� and to use it unchanged
for any non	commercial research and educational purpose�

including making copies for classroom use�
This permission can not be revoked by subsequent

transfers of copyright� All other uses of the article are
conditional on the consent of the copyright owner�

The publication of the article on the date stated above
included also the production of a limited number of copies

on paper� which were archived in Swedish university libraries
like all other written works published in Sweden�

The publisher has taken technical and administrative measures
to assure that the on	line version of the article will be
permanently accessible using the URL stated above�

unchanged� and permanently equal to the archived printed copies
at least until the expiration of the publication period�

For additional information about the Link�oping University
Electronic Press and its procedures for publication and for

assurance of document integrity� please refer to
its WWW home page� http���www�ep�liu�se�

or by conventional mail to the address stated above�

Abstract

Automated theory formation involves� amongst other things� the

production of examples� concepts and statements relating the

concepts� The HR program ��� has been developed to form theo�

ries in mathematical domains� by calculating examples� inventing

concepts� making conjectures� and settling conjectures using the

Otter theorem prover ���� and MACE model generator ��	��

In addition to providing a plausible model for automated the�

ory formation in pure mathematics� HR has been applied to other

problems in Arti
cial Intelligence� We discuss HR�s application

to inducing de
nitions from examples� scienti
c discovery� prob�

lem solving and puzzle generation� For each problem� we look

at how a theory formation approach can be applied and men�

tion some initial results from the application of HR� Our aim

is not to describe the applications in great detail� but rather to

provide an overview of how HR is used for these problems� This

will facilitate a comparison of the problems and discussion of the

e�ectiveness of theory formation for these tasks�

Our second aim is to compare HR with the Progol machine

learning program ���� We do this
rst by looking at the con�

cept formation these programs perform� Also� by suggesting how

Progol could be used for the applications mentioned above� we

compare the programs in terms of how they can be applied�

Author�s address

Division of Informatics

University of Edinburgh

Edinburgh EH� �HN
United Kingdom

E�mail� simonco�dai�ed�ac�uk

�

� Introduction

A theory often discusses objects of a particular nature� For example� in
pure mathematics� number theory is about integers� whereas graph the�
ory concerns graphs and group theory concerns groups� Similarly� in non�
mathematical domains there are objects of interest around which a theory
forms� for example acids in chemistry� sub�atomic particles in physics and
so on� Theories typically contain �i� examples of the objects of interest� �ii�
concepts which discuss the nature of those examples and �iii� statements
highlighting relationships between concepts� For example� in �nite group
theory� there are �� groups up to isomorphism with � or fewer elements�
There are also many concepts describing these groups� for example cyclic
groups are a particular type of group and the centre of a group is a subset of
elements of the group� Group theory also contains many statements relating
two or more concepts� for instance if a group is cyclic� then the centre of
the group will contain all the elements� i�e� it will be Abelian� Similarly� in
chemistry� there are examples of acids� such as hydrochloric and there are
specialisations of the concept of acids� for instance organic and inorganic
acids� There are also statements about acids� such as	 adding an acid to a
base will produce a salt and water�

In mathematics� the statements are often proved via a sequence of logical
inferences� The statements are usually called conjectures until they are
proved� when they become theorems� Theories will contain proofs� disproofs
and counterexamples as well as open conjectures for which the truth is
unknown� In non�mathematical domains it is often possible to formalise
the statements and appeal to mathematical proofs� However� sometimes
the plausibility of a statement has to be demonstrated with experiments
and explained via more theory formation� For instance� experiments where
acids and bases are mixed add plausibility to the above statement� because
a salt solution is usually observed� To explain this phenomena� chemists
may provide a reaction mechanism to show how the bonds in the chemicals
break and re�form during the reaction�

Given this initial synopsis of what theories contain� automated theory
formation should be able to at least �nd examples of the objects of in�
terest� invent new concepts and make plausible statements relating those
concepts� In mathematics� theory formation should also involve proving
and disproving conjectures� There have been many automatic approaches
to these individual tasks� For instance� the Progol program
��� can invent
new concepts and the MECHEM program
�� can �nd reaction pathways
in chemistry� Similarly in mathematics� the Mathematica program�
�� can
perform calculations and symbolic manipulations� the AGX and Gra�ti
programs
���
��� can make conjectures� the Otter program
��� can prove
conjectures and the MACE program
��� can �nd counterexamples�

There have only been a few attempts to automate theory formation as
a whole� The AM program
�� was the �rst to explore mathematical do�
mains using concept formation and conjecture making� The GT program

�� automated more mathematical activities by enabling example generation
and theorem proving as well as concept formation and conjecture making�
The HR program
�� performs automated theory formation in domains of
pure mathematics� Using all of its functionality� HR can start with just the
axioms of a �nite algebra such as group theory� It will then �nd examples�
invent concepts� make conjectures� prove theorems and �nd counterexam�
ples to false conjectures� HR can also work in number theory and graph
theory and we intend to use HR in more mathematical domains�

�

As well as providing a plausiblemodel for theory formation� HR has been
applied to other problems in Arti�cial Intelligence� In x� we discuss four
such problems� namely the induction of de�nitions from examples� scienti�c
discovery� problem solving and puzzle generation� We do not aim to give a
complete description of the application of HR to these problems but rather
to give an overview of our approach using HR� We also suggest how the
Inductive Logic Programming �ILP� program Progol
��� could be used for
these tasks and we compare HR and Progol in terms of their application�
However� we begin in x by comparing HR and Progol in terms of the
concepts they form�

� The HR and Progol Programs

��� The HR Program

The HR program
��� named after mathematicians Hardy and Ramanujan�
is designed to form theories in domains of mathematics such as group theory�
graph theory and number theory� HR starts with background information
such as the axioms of a �nite algebra� or some concepts in number theory
such as the divisors of integers� multiplication and addition� Each concept
is supplied with a de�nition and the user can also supply a �nite set of
examples� although this is not necessary in algebraic domains� as examples
can be generated from the axioms� HR uses one of seven general production
rules to base a new concept on either one old concept �in which case we say
the production rule is unary� or two old concepts �a binary production rule��
This produces a set of concepts which form the core of the theory�

Each production rule generates a de�nition and a set of examples for the
new concept and table � describes the action of each production rule� For
example� starting with the concept of divisors of integers in number theory�
�gure � shows how HR constructs the concept of prime numbers� This
concept is produced using the size production rule to count the number of
subobjects �divisors� followed by the split rule to instantiate this number to
� This extracts those numbers with exactly two divisors � prime numbers�
For a more detailed description of the production rules� see
���

Rule Action of Production Rule

Compose Composes predicates by conjunction
Exists Introduces existential quanti�cation
Forall Introduces universal quanti�cation
Match Equates variables in predicates
Negate Finds compliments to predicates �negating the property�
Size Counts the number of subobjects satisfying a predicate
Split Instantiates variables

Table �� The action of HRs seven production rules

It is important to note that a concept has �i� a set of examples� �ii� a
de�nition� �iii� a categorisation over the examples HR has available and �iv�
a set of conjectures involving the concept� For instance� if HR is working
with the integers � to �� in number theory� then the concept of prime
numbers will have these examples	 f� �� �� �g and the de�nition given in
�gure �� We call this a specialisation concept because it produces a binary

�

2. [I1,d1] : d1|I1

4. [I1,M] : M = |{d1 : d1|I1}|

size<1>

5. [I1] : 2 = |{d1 : d1|I1}|

split<2=2>

Figure �� Construction of the concept of prime numbers

categorisation of the integers which specialises the concept of integer into
prime and non�prime integers thus	

�� �� �� �� �� ����
� �� �� ��

In the theory HR produces� there will also be a set of conjectures about
prime numbers� for example that prime numbers are never perfect squares�
While producing concepts� HR makes these conjectures using empirical ev�
idence� In particular� if it notices that the examples of a new concept are
exactly the same as an old concept �for the data available�� it will conjecture
that the de�nitions of the two concepts are logically equivalent � producing
an �if and only if� conjecture� Similarly� if it notices that the examples of
one concept are all examples of another concept� it will make an implica�
tion conjecture� If it cannot �nd any examples for a concept� it will make
a non�existence conjecture �i�e� that there are no examples whatsoever��
In �nite algebras� HR invokes the Otter theorem prover
��� to prove the
conjectures it makes� Whenever Otter is unsuccessful� HR uses the MACE
model generator
��� to �nd a counterexample to disprove the conjecture�
In this way� HR forms a theory which contains concepts� examples� open
conjectures� theorems and proofs�

To improve the quality of the theories� HR uses heuristic measures to
estimate the worth of concepts and performs a best �rst search by using
the more interesting concepts as the basis for new concepts before the less
interesting ones� The user sets weights for a weighted sum of all the mea�
sures which is taken as an estimate of the worth of each concept� The
measures include intrinsic properties of the concept such as the number of
examples it has� as well as relational measures such as the novelty of the
categorisation it produces� as discussed in
��� The quantity and quality of
conjectures that a concept appears in is also assessed� with concepts ap�
pearing in interesting conjectures assessed as more interesting than those
appearing in dull conjectures� The worth of a theorem is assessed by the
length of the proof produced by Otter� with longer proofs indicating a more
interesting conjecture statement� HR therefore completes a cycle of math�
ematical activity where concept formation drives conjecture making and
theorem proving which in turn improves concept formation� HR improves
on previous theory formation programs such as AM
�� and GT
�� by in�
corporating theorem proving �AM could not prove theorems� and by being
able to work in many domains �GT could only work in graph theory��

�

� Mode Declarations

�� modeh���square��intgr���

�� modeb���multiply��intgr��intgr��intgr���

� Background Knowledge

intgr���	intgr�
�	intgr���	intgr���	intgr��	

intgr���	intgr���	intgr���	intgr���	intgr����	

multiply�A�B�C� �� intgr�B�� intgr�C�� A is B�C	

� Positive Examples

square���	square���	square���	

� Negative Examples

�� square�
�	 �� square���	 �� square��	

�� square���	 �� square���	 �� square���	 �� square����	

Figure �� Input to Progol for learning the concept of square numbers

��� The Progol Program

Inductive Logic Programming �ILP� is a general purpose machine learn�
ing technique
���� Concepts are represented as �rst order logic programs�
which has many advantages� including that they can be interpreted by an
underlying logic programming language� The Progol program
��� uses ILP
with an underlying Prolog interpreter� Progol is usually employed to pro�
duce a logic program which de�nes a set of given positive examples but
not the given negative examples� The de�nitions are based on background
predicates supplied by the user�

As an example� Progol can learn the concept of square numbers� given
the background knowledge and positive and negative examples in �gure �
Progol produces this answer	

square�A� �� multiply�A�B�B�	

This is a Prolog program which will identify a square number as being the
multiplication of some number with itself� The mode declarations at the
top of the input in �gure determine the format for the logic program
to be learned� with � indicating the use of a known variable� � indicating
the introduction of a new variable and � indicating possible instantiation�
Progol searches for concepts using the U�Learnability framework
���� In
this framework� there is a prior probability distribution over the space of
concepts� with the probability being the likelihood that the concept is the
required one�

The construction of new concepts is achieved by inverting deductive
rules of inference to produce inductive rules� One rule of deduction which
is inverted is the resolution rule
��� In its simplest form� this states that
if we know	

A� B and B � C

then we can deduce that	
A� C

The �rst two ways to invert resolution involve inverting a single resolution
step� In e�ect� this amounts to asking the question	 �given the observed

�

clauses
logic programs� in the data� what two clauses could have been re�
solved together to give this observation�� The absorption and identi�cation
inductive rules of inference are obtained in this way	

Absorption� q � A p� A�B

q � A p� q� B

Identi�cation� p� A�B p� A� q

q � B p� A� q

The absorption rule can be read as	 �Given that I observe q � A and
p � A�B� one hypothesis I can make is that this is because q � A and
p � q� B are true and have been resolved to produce the observations� By
interpreting this hypothesis as a logic program� the feasibility of it being
true can be checked against the data�

Two more induction rules are derived from inverting resolution steps	

Intra�Construction� p� A�B p� A�C

q � B p� A� q q � C

Inter�Construction� p� A�B q � A�C

p� r� B r � A q � r� C

With intra�construction� the hypothesis produced states that clauses
q � B and p � A� q are true and were resolved to give the observed
p � A�B and clauses p � A� q and q � C were resolved to give the
observed p � A�C� A new predicate symbol� q� has been introduced and
likewise the predicate r is introduced in the inter�construction rule� This
phenomena is called predicate invention and is often necessary to enable
ILP programs to learn the correct de�nition for a concept� For example�
when constructing a logic program for �insertion sort�� intra�construction is
required to introduce an �insert� predicate
����

��� Concept Formation in HR and Progol

There is a striking similarity between the concepts Progol and HR can form�
We highlight this using examples from number theory� Firstly� in Progol�
concepts are formed which have de�nitions with conjunctions of predicates
and the predicates may have variables repeated within them and between
them� This produces concepts that HR can form with its compose� match
and exists production rules� For example� given the background concepts of
integers and multiplication� HR produces this de�nition for square numbers	

n� 	 � a �a� a � n�

and Progol produces this de�nition	

square�A� �� multiply�A�B�B�	

Secondly� in Progol� the user can set mode declarations describing where
background predicates can appear in the invented predicates� Mode dec�
larations also specify whether variables become instantiated and whether
negation of predicates is allowed� The ability to instantiate variables cor�
responds exactly with HR�s split production rule� and the ability to negate
predicates corresponds with the negate rule� Also� a combination of negated

�

and existentially quanti�ed predicates corresponds to concepts produced by
HR�s forall production rule� For example� HR de�nes even numbers as	

n� 	 jn

Similarly� given the background predicate of divisors and allowed to instan�
tiate variables� Progol produces this de�nition	

even�N� �� divisor�N�
�	

Finally� we found that if we supply two additional predicates as back�
ground knowledge from set theory� namely the standard Prolog predicates
of setof and length� Progol can cover concepts produced by the size pro�
duction rule� For example� HR de�nes the � function �number of divisors
of an integer� in this way	

n� t� 	 t � jfa 	 ajngj

and Progol produces this equivalent de�nition	

tau�N�T� �� setof�M�divisor�N�M��L��

length�L�T�	

Therefore� for each of HR�s production rules� Progol can produce con�
cepts of a similar nature� Interestingly� to cover all the production rules
requires three di�erent aspects of Progol�s functionality� yet only one pro�
duction rule corresponds to additional background knowledge� Progol has
greater coverage of concepts than HR� In particular� Progol can de�ne con�
cepts recursively by specifying a base case and a step case� HR cannot yet
produce such concepts� although we plan to implement another production
rule to enable this�

� Applications of Theory Formation

��� Inducing De�nitions from Examples

The problem of inducing a de�nition for a concept given some positive ex�
amples of the concept and possibly some negative examples is well known
in machine learning� and we have explored the possibility of using HR in
this fashion� We have used HR to learn de�nitions for integer sequences�
as discussed in
�� and have also applied HR to Michalski�style train prob�
lems
��� where the program is asked to �nd a reason why a certain subset
of trains are going east� based on certain characteristics of the train� for
example the shape of the carriages�

A naive way to use theory formation for learning tasks is to supply HR
with background knowledge and ask it to form a theory� stopping when
it has found a concept which matches the data supplied� To focus theory
formation� we adapted HR�s heuristic search to favour building on concepts
which achieved a categorisation closer to the one achieved by the target
concept� We found that this approach often failed to learn integer sequences
because there was no discernible gradient for the measures HR uses� and so
hill climbing was not possible �see
�� for further details��

Instead of the heuristic search� we used a �unary �rst� search enhanced
with a look ahead mechanism� A unary �rst search is a combination of a
depth �rst and breadth �rst search	 the unary production rules are used

�

exhaustively for each new concept before returning to the binary production
rules with old concepts� In this way� each new concept receives some prelim�
inary development� but is not combined with previous concepts until later�
As an example of the look�ahead mechanism� given the sequence � �� �� �
�prime numbers� we have enabled HR to notice that� when it forms the con�
cept of number of divisors� these numbers all have two divisors� a fact which
is true of none of the other integers in HR�s dataset� Each production rule
has an algorithm for noticing a pattern which is true only for the positive
examples� and when this happens a suitable theory formation step involving
that production rule is added to the top of the agenda� Execution of the
step produces a concept which �ts the data� The pattern�spotting mech�
anism is faster than actually performing a theory formation step because
there are overheads involved in performing a theory formation step and for
the majority of the time� it is possible to quickly tell that there is no patter�

The look ahead mechanism has been successful with both problems
about trains and integer sequences� and we supply some results in
��� It is
particularly e�ective when the concept to be learned is a combination of two
old concepts� e�g� the concept of odd prime numbers� which combines the
concepts of odd numbers and prime numbers� Depth �rst� breadth �rst and
unary �rst searches do not �nd this concept quickly without the look ahead
mechanism� However� with the look ahead mechanism� odd numbers are
invented and as soon as prime numbers are introduced� HR notices that the
positive examples are both odd and prime �and the negative examples are
not�� HR then combines these concepts and reaches the solution much faster
� the time taken to learn the concept reduces from ��� to just � seconds�
For more information on HR�s application to learning tasks� please see
���

The Progol program has been speci�cally designed to perform such in�
duction tasks and has had much success� No further description of how it
operates is required�

��� Scienti�c Discovery

In less than an hour� HR can produce more than ��� concepts in number
theory� Hence there is the possibility of HR producing new and interesting
concepts� but it is di�cult to tell in general whether a concept is either
new or interesting� In number theory� however� there is an Encyclopedia
of Integer Sequences
� which contains around ������ sequences collected
over �� years by Neil Sloane� with contributions from many mathematicians�
If a concept HR produces in number theory can be interpreted as an integer
sequence which is missing from the Encyclopedia� this gives some indication
� but by no means a guarantee � that the concept may be novel�

We have also used the Encyclopedia to give some indication as to
whether the new integer sequences HR produces are interesting� To do
this for a chosen sequence S� we have enabled HR to �nd sequences in the
Encyclopedia which are empirically related to S� with the relations inter�
preted as conjectures about S� As a trivial example� given the sequence of
prime numbers� HR makes the conjecture that they are never square num�
bers� It does this by noticing that none of the prime numbers it has are in
the Encyclopedia entry for square numbers� As well as �nding disjoint se�
quences� HR is able to �nd subsequences and supersequences of the chosen
sequences�

Due to the large number of sequences in the Encyclopedia� many se�
quences related to the chosen one are output and we implemented pruning
techniques to discard dull results� For example� it is desirable that a se�

�

quence conjectured to be disjoint with the chosen sequence has its terms
distributed over roughly the same part of the number line as the chosen
sequence� If so� the two sequences occupy roughly the same part of the
number line yet do not share any terms � which increases the possibility of
the conjecture being true and�or interesting� Therefore� HR discards con�
jectures about disjoint sequences if the overlap of their ranges falls below a
minimum speci�ed by the user�

By �nding conjectures relating the sequence HR has invented to the
sequences already in the Encyclopedia� HR provides some evidence that the
sequence is of interest� This �invent and investigate� approach has success�
fully led to � sequences invented by HR being added to the Encyclopedia�
all supplied with interesting conjectures� A good example of this is the se�
quence of integers where the number of divisors is prime� which HR invented
�in as much as it was produced by HR and not present in the Encyclopedia��
When asked to �nd subsequences of this sequence� the �rst answer produced
was the sequence of integers where the sum of divisors is prime �submitted
to the Encyclopedia by someone else�� Interpreted as a conjecture� this re�
sult states that� given an integer� n� if the sum of divisors of n is prime�
then the number of divisors of n will also be prime� We have subsequently
proved this result� and while we do not know for certain whether it is new� it
certainly adds interest to the sequence HR invented� For more information
on the application of HR to the invention of integer sequences� see
� or
���

While HR has produced many new sequences using the invent and inves�
tigate approach� it has also produced a new sequence by �nding a de�nition
for a given sequence� That is� we determined that the Encyclopedia of In�
teger Sequences contained a sequence starting a� b� c� d for all a� b� c� d such
that � � a � b � c � d � �� with two exceptions� There was no sequence
starting �� �� �� � and no sequence starting �� �� �� �� We set HR the task of
inventing sequences starting with these terms� In the latter case� within
seconds� HR identi�ed that the concept of prime numbers � �tted the
examples and this sequence is now in the Encyclopedia� While HR found
a solution for the �rst sequence� the de�nition was fairly complicated �see

���� and so we have not submitted it to the Encyclopedia�

In general� Progol has also been used to perform scienti�c discovery
tasks by identifying a de�nition for a concept for which the categorisation
of the examples into positives and negatives was already known� For in�
stance� when applied to data from experiments involving the inhibition of
E� Coli Dihydrofolate Reductase
���� the positive examples of the concept
were pairs of drugs d� and d�� where d� was known to be more e�ective at
the inhibition task than d�� The task was then to learn a de�nition for this
concept� in e�ect to �nd a rule describing why d� was less e�ective� Within
the rule derived for the concept� there may be new concepts� but the em�
phasis is on �nding a de�nition for a known concept� To our knowledge�
Progol has not been used in a way similar to HR above� where an entirely
new concept and�or statement was identi�ed and shown to be interesting�

��� Creative Problem Solving

In his book on mathematical problem solving
�� Paul Zeitz suggests a
�plug�and�chug� method� whereby calculations are performed and the re�
sults analysed to see if a pattern emerges which might provide insight into
the problem� Zeitz supplies the following problem � taken from a ����s
Hungarian mathematics contest � as an example where this approach leads
to the solution	

�

Show that the product of four consecutive integers is never a square number�

Following the plug and chug method� Zeitz calculates examples of the
product of four consecutive integers	

�� � �� � � � and � �� �� � � ��

The sequence of calculations continues	 �� ��� ���� ��� and a eureka
moment occurs with the realisation that these are all one less than a square�
Zeitz then makes the conjecture that all such numbers are one less than a
square and hence not square numbers� Zeitz states that	

�Getting to the conjecture was the crux move� At this point
the problem metamorphosed into an exercise��

To �nish the problem� it is necessary to show that the product of four
consecutive integers can be written as a square minus �	

n�n� ���n� ��n� �� � �n� � �n� ��� � ��

We have applied HR to plug�and�chug problems of this nature� by get�
ting it to make suggestions which might lead to a eureka moment for the
user� To do this� HR is given a set of numbers which are related to the
problem and asked to suggest properties of the numbers in the hope that
one of the suggestions will provide an insight� To do this� for every new con�
cept HR introduces� if all the given numbers have the property prescribed
by the concept� then the de�nition is output� For example� when used for
the Hungarian contest problem above� HR is given the numbers �� ���
��� and ���� As it forms a theory� it invents types of number and when
the numbers �� ��� ��� and ��� all satisfy the de�nition of a particular
number type� the de�nition is output� Of course� some suggestions do not
provide insight �for example that they are all even numbers�� However�
HR eventually invents the concept of squares�minus�one and so �nds the
conjecture which metamorphosed the problem�

The application of HR to problem solving is very recent and we are still
experimenting and compiling a corpus of problems where the plug�and�chug
approach would help� We hope to attach this functionality to a computer
algebra system such as Maple or Mathematica� For more information on
the application of HR to problem solving� see
���

We have not applied Progol to this type of problem� so we can only
speculate on how to do this� The problem here is not to learn a de�nition for
a given concept� but rather to learn a property of a given concept� In machine
learning terminology� the given concept can be thought of as a cluster and
this problem is to �nd a larger cluster containing the given one� With HR�
we chose to do this by �nding new concepts which were generalisations of
the given concept� One way to do this with Progol would be to include
some negative examples along with the positive examples and attempt to
learn a de�nition for this concept� which would be a generalisation of the
one given� Deciding which negative examples to include would possibly be
problematic and systematically choosing them may be too time consuming�

��� Puzzle Generation

Theorem proving has attracted much more attention than conjecture mak�
ing in automated mathematics and similarly� the problem of �nding solu�
tions to puzzles
�� has been much more researched than the question of

��

generating interesting puzzles� We are interested here in one particular type
of puzzle� namely odd one out puzzles� Such puzzles ask the problem solver
�assumed to be a human from here on� to choose one object out of a set
of similar objects and give a reason for the choice� The reason must be
in terms of a property which the others share but which is not true of the
object they have chosen� hence it is the odd one out�

We formalise the problem of generating odd one out puzzles in the fol�
lowing way	 a puzzle is a set of n objects taken from a �possibly in�nite�
set of examples supplied by the user and a specialisation concept which
categorises them into n� � positive examples and � negative example� The
negative example is the odd one out in the solution and the concept pro�
ducing the categorisation provides the reason why it is the odd one out�
We will concentrate here on the case where n � �� For example� given the
integers � to �� then the concept of even numbers and the set of integers
f� ��� ��� �g forms a puzzle because � �� and � are even� but �� is not�

To add to our speci�cation of the problem� we note that the solution
to the puzzle must be satisfying to human solvers� There are many ways
in which a solution could be unsatisfying� but we concentrate on only one
here	 if there is another solution of similar or lesser complexity than the so�
lution given� this will be unsatisfying� As an example� consider the following
puzzle	

Which number is the odd one out�
� � �� ��

There are at least two simple solutions to this puzzle	

� � is the odd one out� because the others are even� yet � is odd

� �� is the odd one out� as the others are square numbers but �� is not

The �rst solution is perhaps most likely to be given as the answer because
even numbers are more easily recognised than square numbers� However�
this does not detract from the fact that the solutions are of similar complex�
ity and if the solver gave one solution but the �correct� one was the other� the
solver would probably be dissatis�ed with the puzzle� Hence an additional
criteria for puzzles is that they have no other solution of similar or lesser
complexity� We can use HR to increase the likelihood that a puzzle satis�es
this criteria� but we do not claim to rule out other solutions completely� and
any puzzle HR produces may be unsatisfying� However� the same is true of
human generated odd one out puzzles�

The application of HR to puzzle generation is still in its early stages�
The domain we have used so far has a �nite number of examples which
we call �pgrams�� a shortening of �puzzle diagrams�� In �gure �� we give
four example pgrams� Each pgram has either a circle� square or triangle in
each of the four corners� so there are �� � �� pgrams in total� The initial
concepts HR starts with in this domain only describe which shapes are in
which positions� HR is not yet given more complicated concepts such as
diagonals or rotation and re�ection of one pgram to produce another�

To produce puzzles� we start HR with just one pgram and use it to per�
form concept formation with all the production rules other than compose�
which enables it to exhaust the search� HR introduces counterexamples
to false conjectures� and because there are only �� pgrams in total� HR
searches all of them for a counterexample� The search is exhausted after �

��

Figure �� Four pgrams

Which is the odd one out�

1 2 3 4

Figure �� Puzzle generated by HR

seconds by which stage �� pgrams have been introduced as counterexam�
ples and HR has de�ned � specialisations of pgrams� HR then takes each
specialisation concept S in turn and attempts to embed it into a puzzle� To
do this� HR searches for � positive and one negative example of S� These
have to be chosen in such as way that none of the other �� specialisations
provide a rival solution� A rival solution is one for which the odd one out
di�ers to the negative example chosen for S� Choosing examples for S for
which there is no rival solution increases the chance that the puzzle will be
satisfying� but does not guarantee it�

We are still experimenting with di�erent strategies for producing puzzles
and more work needs to be done to increase the yield� Using the above
approach� only � distinct puzzles were found� including the one in �gure ��
This puzzle embeds the concept of having exactly one triangle� hence the
odd one out is number �� and this puzzle is easy to solve� More importantly�
however� the rival solutions to the puzzle seem to be more contrived� For
instance� number � could be considered the odd one out because it has two
circles on its bottom�left to top�right diagonal� whereas the others have both
a circle and a triangle� HR did not start with the concept of diagonals or
invent the concept itself� so it did not notice this rival solution� With the
rival solutions being more contrived� it seems likely that� while it is easy to
solve� the solution to this puzzle will be satisfying to most people� although
we need to con�rm this with further experimentation�

Again� we can only speculate on the use of Progol for this application�
The learning task we set HR was to produce a set of specialisation concepts
which had good coverage of the simple concepts in a domain� so that rival
solutions can be checked� By giving Progol many di�erent binary categori�
sations of the pgrams� it could learn de�nitions for many concepts� keeping
those which are below some pre�de�ned complexity limit� However� there
are far too many ways to categorise the �� pgrams� so either some selection
of the categorisations would be required� or a smaller number of pgrams
could be used� For example� there are around ������ di�erent ways to cate�
gorise �� pgrams into positive and negative examples� and it may be possible
to learn de�nitions for this set�

Perhaps a more feasible alternative use of Progol for this task would
be the following� Firstly� choose � pgrams from the set of �� and choose

��

one of these to be a negative example� with the other three being positive
examples� Then attempt to learn a concept with this categorisation of the
examples and record the complexity of any de�nition produced� If this is
achieved� a legal puzzle will have been generated and it will be necessary
to check for rival solutions� One way to do this would be to re�categorise
the four examples� choosing a new negative example and attempt to �nd
a new de�nition� If only de�nitions with much larger complexity than the
�rst one could be found� the puzzle will have no simple rival solution� This
approach appears to be as plausible as our approach with HR� although we
need to experiment to check this� However� the problem with this approach
might the small number of examples	 only three positive and four negative
examples� With such a small number of examples� Progol may not be able
to learn a de�nition which achieves any compression�

� A Comparison of the Four Applications

By highlighting some commonalities between the four applications described
above� we can draw some conclusions about the application of theory for�
mation in general�

Our �rst observation is that with all four applications� part of the goal
is to learn a concept which has certain properties� This is clear with the
application to inducing a de�nition from examples� where the goal is to �nd
a concept which achieves a given categorisation of the examples supplied�
With scienti�c discovery � in the way that HR performs it � the goal is to
�nd a concept for which even the categorisation is not known� The concept
must have the property of being interesting� With the application to creative
problem solving� the aim is to �nd a concept which is a generalisation of the
given concept� With the application to puzzle generation� the aim is to �nd
a concept for which examples can be found for a puzzle� for which there is
no simple rival solution� To check that there are no rivals� HR also needs
to generate a large set of concepts from which a rival might be found�

Hence we can conclude that three main applications of theory formation
are �i� to �nd something about a given concept �i�e� a de�nition� or a
property�� �ii� to �nd an entirely new concept with a particular property
and �iii� to �nd a set of concepts which cover all de�nitions of a particular
form� With the exception of the generation of novel integer sequences�
concept formation has been the main aspect of theory formation required
for the problem� However� as we discuss in x�� we also hope to apply
the conjecture making aspects of theory formation to areas of Arti�cial
Intelligence� in particular constraint satisfaction problems and automated
theorem proving�

The role of the user di�ers between each task� The user takes no part
in the puzzle generation or the application to induction of de�nitions �other
than supplying the positive and negative examples and perhaps making
some adjustments to the settings�� However� in the application to creative
problem solving� the user must interpret the property HR suggests and
determine whether it provides insight to the problem at hand� Similarly�
with the discovery of integer sequences� the user must interpret the relations
HR �nds as conjectures and attempt to prove or disprove them� In this case�
the user also has to choose one of HR�s new sequences to investigate�

For each application� HR performed a di�erent search for concepts and
was enhanced with an additional module to complete the task after theory
formation� For the induction of de�nitions� a unary��rst search was used

��

and we implemented the lookahead mechanism� For the scienti�c discov�
ery application� a heuristic search� based on the novelty heuristic �see
���
was employed and the ability to data mine the Encyclopedia was added�
For the problem solving application� a di�erent heuristic search was used
and the ability to notice generalisations of the given concept was added�
For the puzzle generation� an exhaustive breadth �rst search was employed
and the abilities to choose examples for the puzzle and check for rival so�
lutions were implemented� Hence� while theory formation can provide the
initial information for an application and varying the search should improve
performance� further processing is required to complete the task�

��� A Further Comparison of Progol and HR

While HR and Progol can form similar concepts� they di�er in how they
can be applied to each problem� When learning de�nitions for concepts�
Progol generates possible answers� then builds new answers from the ones
which achieve most compression �rst� On the other hand� HR does not use
the given concept to choose which concepts to build on� until the answer
has e�ectively been found and the lookahead mechanism enables it to take
a shortcut to the answer� Without tweaking Progol� it appears that if there
are few positive examples of a concept� Progol will not consider complicated
de�nitions for them� as this achieves no compression� This may be a draw�
back for learning mathematical concepts� where the de�nitions are often
fairly complicated� yet the examples scarce� In contrast� HR will carry on
regardless of the complexity of concepts being formed� until an answer is
found� or until it runs out of memory� etc� On the other hand� Inductive
Logic Programming is a much more powerful technique than HR�s looka�
head mechanism� because this mechanism does not drive the search until
the search is nearly over�

HR�s application to scienti�c discovery was slightly di�erent to Progol�
Progol was used to �nd possibly complicated de�nitions for scienti�c con�
cepts� where a categorisation into positive and negative examples was known
beforehand� These de�nitions were� in some cases� interpreted as rules and
used to explain the phenomena di�erentiating the positive and negative ex�
amples� Progol has had much success with this approach in many areas�
in particular chemistry� biology and medicine� HR�s approach to discov�
ery was more exploratory� because we used it to identify concepts new to
us� We did not supply HR with any information about the concepts we
hoping it would �nd �such as a categorisation into positive and negatives�
other than the fundamental concepts in the domain� e�g� divisors� Because
there are so many concepts in a domain� HR had to identify which were
interesting during its search so that it could use a heuristic search to reach
more interesting concepts� More than this� after HR had found a concept
which was missing from the Encyclopedia of Integer Sequences� it mined
the Encyclopedia to �nd interesting conjectures to add further interest to
the concept� In contrast� for Progol� there was no need to �nd reasons why
the de�nitions were interesting� because the fact that one had been found
at all to explain the observed phenomena was interesting in itself�

It is more di�cult to comment on the problem solving and puzzle gener�
ation applications� because we have yet to study how Progol would be best
applied to these problems� We have mainly suggested how Progol could be
used in terms of applying its de�nition induction techniques to the problem
at hand and we have not looked at any clustering ability Prolog may have�
which may be a more suitable approach� Problem solving may be problem�

��

atic for Progol� because it involves �nding a de�nition not for the concept
supplied� but for a generalisation of that concept� We have suggested a
macro use of Progol� where negative examples are moved to the positives
and a de�nition sought� which would produce a generalisation� However�
this may turn out to be computationally expensive because there are many
choices for the positives and negatives� Similarly with puzzle generation�
we suggested that Progol try to learn de�nitions for given sets of examples
and then show that no rival solution occurs�

For both the problem solving and puzzle generation applications� we
have used HR to �nd a concept �rst� with the examples found afterwards�
In contrast� our suggested use of Progol has been the opposite � to �nd the
examples �rst� then �nd a de�nition which �ts them� Until we perform more
experiments with Progol� we cannot determine which approach is better for
the two problems� However� in the case of puzzle generation� it is unlikely
that a human writing a puzzle would start by writing down four examples�
then try to �nd a concept embedded within them� However� we may �nd
that a constraint based approach is more e�ective for puzzle generation�

� Conclusions and Future Applications

Progol is generally used to induce a de�nition from a set of positive and neg�
ative examples� e�g� a de�nition for a subset of trains which are eastbound
which distinguishes them from the westbound trains� This is a reactive pro�
cess � a concept is immediately sought which de�nes the examples� It is
possible to imagine another scenario�
�� whereby the program is given the
same set of �� trains and predicates describing them� but is allowed� say an
hour� to prepare for an east�west question of the above nature� One e�ec�
tive way for a program to spend its time would be to invent many concepts
related to trains� in particular� ways of classifying trains into a positive and
a negative class� This is a more pro�active machine learning task� where the
emphasis is on studying the trains rather than trying to learn a particular
feature of them�

We gave the task to study trains as described above to HR� and in one
hour it produced ��� specialisation concepts� There are only ��� ways to
split �� objects into two classes�� so if the user chose any subset of trains
at random� there would be a one in four chance that HR could supply a
reason why those trains were eastbound �and the others were not�� We
have performed similar pro�active learning tasks in number theory� using an
agency of theory formation programs
���

We have shown that theory formation can be applied to di�erent learn�
ing tasks and highlighted the task involved� the additional functionality
implemented in HR and the role of the user� While we make no claims that
theory formation is the best way to approach these problems� we hope to
have shown that it can be a useful tool for tasks involving learning� We have
also compared HR to Progol both in terms of the concepts they form and
their application �or proposed application� to the problems described� We
have shown that Progol covers all the concepts that HR can form� but� even
though HR was developed speci�cally in mathematical domains� only one
of its production rules corresponds to additional background information
in Progol� We have also suggested that for tasks such as puzzle genera�
tion� where it is necessary to �nd a set of concepts rather than just one
and problem solving� where it is necessary to �nd a concept for which the

�See sequence A������ in the Encyclopedia of Integer Sequences �����

��

categorisation is not known� theory formation may be more applicable than
the de�nition�inducing functionality that Progol mainly employs� However�
we have not tested Progol in these areas and we do not comment in general
on whether Progol could be employed to generate puzzles or solve problems
of the type discussed above�

In future� we hope to apply HR to constraint satisfaction problems
�CSPs�� by automatically generating new constraints for a particular CSP�
Each conjecture HR makes can� in principal� be turned into a new constraint
for the CSP� However� certain conjectures will be less e�ective than others
because they produce less propagation of constraints� and we will enable HR
to decide which conjectures to add as constraints� We also hope to apply HR
to automated theorem proving� whereby the user supplies a conjecture and
requires a proof� We intend to test whether some initial theory formation
before a proof attempt can decrease the time taken to prove a theorem� The
theory produced would supply lemmas about the concepts in the conjecture
statement which could be useful for the proof� As with CSPs� it will be
necessary for HR to determine whether or not a lemma would be useful for a
particular theorem� By applying HR to di�erent problems� we hope to show
that exploratory theory formation of the type HR undertakes embodies an
important intelligent activity which has many uses in Arti�cial Intelligence�

Acknowledgments

I would like to thank Alan Bundy and Toby Walsh for continued detailed in�
put to the HR project� I would also like to thank Stephen Muggleton� Chris
Bryant and Richard Greaves for their in�depth discussions about Progol� HR
and chemistry� Thanks also to Herbert Simon for enthusiastic discussions
about the prospects for automated puzzle generation and problem solving�

References

�� G Caporossi and P Hansen� Finding relations in polynomial time� In
Proceedings of the ��th International Joint Conference on Arti�cial
Intelligence� �����

� S Colton� Refactorable numbers � a machine invention� Journal of
Integer Sequences� � �����

�� S Colton� Assessing exploratory theory formation programs� In Pro	
ceedings of the AAAI	���� workshop on new research directions in ma	
chine learning� ����

�� S Colton� Automated plugging and chugging� In M Kerber and
M Kohlhase� editors� Proceedings of the Eighth Symposium on the In	
tegration of Symbolic Computation and Mechanized Reasoning� ����

�� S Colton� A Bundy� and T Walsh� HR	 Automatic concept formation
in pure mathematics� In Proceedings of the ��th International Joint
Conference on Arti�cial Intelligence� �����

�� S Colton� A Bundy� and T Walsh� Agent based cooperative theory
formation in pure mathematics� In Proceedings of the AISB	�� Sym	
posium on Creative � Cultural Aspects and Applications of AI � Cog	
nitive Science� ����

��

�� S Colton� A Bundy� and T Walsh� Automatic identi�cation of mathe�
matical concepts� In Machine Learning� Proceedings of the ��th Inter	
national Conference� ����

�� S Colton� A Bundy� and T Walsh� Automatic invention of integer
sequences� In Proceedings of the Seventeenth National Conference on
Arti�cial Intelligence� ����

�� S Epstein� On the discovery of mathematical theorems� In Proceedings
of the International Joint Conference on Arti�cial Intellignce� �����

��� S Fajtlowicz� On conjectures of Gra�ti� Discrete Mathematics ���
�	�������� �����

��� R King� S Muggleton� and M Sternberg� Drug design by machine
learning	 The use of inductive logic programming to model the
structure�activity relationships of trimethoprim analogues binding to
dihydrofolate reductase� Proc� of the National Academy of Sciences�
�����	���������

�� D Lenat� AM	 Discovery in mathematics as heuristic search� In D Lenat
and R Davis� editors� Knowledge	Based Systems in Arti�cial Intelli	
gence� McGraw�Hill Advanced Computer Science Series� ����

��� W McCune� The OTTER user�s guide� Technical Report ANL������
Argonne National Laboratories� �����

��� WMcCune� A Davis�Putnam program and its application to �nite �rst�
order model search� Technical Report ANL�MCS�TM����� Argonne
National Laboratories� �����

��� R Michalski and J Larson� Inductive inference of VL decision rules�
In Proceedings of the Workshop in Pattern	Directed Inference Systems
Published in SIGART Newsletter ACM� No� ���� �����

��� S Muggleton� Inductive Logic Programming� New Generation Com	
puting� ����	������� �����

��� S Muggleton� Inverse entailment and Progol� New Generation Com	
puting� ��	������ �����

��� S Muggleton and L De Raedt� Inductive Logic Programming	 Theory
and methods� Logic Programming� ������	������� �����

��� S Muggleton and D Page� A learnability model for universal represen�
tations� JACM� submitted �����

�� J Robinson� A machine�oriented logic based on the resolution principle�
Journal of the ACM� ����	����� �����

�� H Simon and A Newell� Heuristic problem solving	 The next advance
in operations research� Operations Research� ����� �����

� N Sloane� The Online Encyclopedia of Integer Sequences�
http���www�research�att�com��njas �sequences� ����

�� R Vald�es�P�erez� Machine discovery in chemistry	 New results� Arti�cial
Intelligence� ��	������� �����

�� S Wolfram� The Mathematica Book� Fourth Edition� Wolfram Me�
dia�Cambridge University Press� �����

�� P Zeitz� The Art and Craft of Problem Solving� John Wiley and Sons�
�����

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

