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Abstract

Attempts to characterize people’s causal knowledge of
a domain in terms of causal network structures miss a
key level of abstraction: the laws that allow people to
formulate meaningful causal network hypotheses, and
thereby learn and reason about novel causal systems
so effectively. We outline a preliminary framework for
modeling causal laws in terms of generative grammars
for causal networks. We then present an experiment
showing that causal grammars can be learned rapidly
in a novel domain and used to support one-shot infer-
ences about the unobserved causal properties of new
objects. Finally, we give a Bayesian analysis explain-
ing how causal grammars may be induced from the
limited data available in our experiments.

Causal Grammars

Recently there has been substantial progress in under-
standing how people learn causal relations, or causal
networks connecting multiple causes and effects. Here
we construe causal network broadly to include any col-
lection of (domain-specific) causal beliefs that can be
represented as a set of nodes and a set of (directed)
links between nodes. Nodes may represent objects,
properties of or relations between objects, or events.
Links may have different causal semantics depending
on the semantics of the nodes. For instance, the net-
work N0 (Figure 1) might represent some aspects of
a person’s knowledge about several common diseases,
their effects (symptoms), and causes (risky behaviors).

Our thesis here is that attempts to characterize peo-
ple’s causal knowledge of a domain primarily in terms
of such network structures (e.g., Gopnik & Glymour,
2002; Rehder, in press), while revealing in some im-
portant ways, miss a key level of abstraction: the laws
that allow people to formulate meaningful causal net-
work hypotheses, and thereby learn and reason about
novel causal systems so effectively. For instance, in
Figure 1, there appears to be a common domain the-
ory underlying networks N0, N1, and N2, which dis-
tinguishes them from N3, but is not explicitly repre-
sented in any of them. We present a framework for
representing such abstract causal knowledge, which
we call causal grammar. The framework is surely in-
complete and oversimplified; we view it as merely a
first pass at a deep and hard problem. We also de-
scribe an experimental study of how people learn and
use causal grammars, and briefly sketch a theory of
learning based on Bayesian inference.

The networks N1 and N2 differ from N0 in the pre-
cise causal links or disease nodes they posit, but they
express the same essential regularities: three classes
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Figure 1: Causal networks in the disease domain.

of nodes (behaviors B, diseases D, and symptoms S),
with causal links existing only from behaviors to dis-
eases and diseases to symptoms. A causal grammar
provides one possible description of this regularity:

GBDS Node classes: B, D, S
Link rules: B → D, D → S

Like a grammar for a language, GBDS specifies ab-
stract classes of entities (nodes, instead of words) and
rules about the relations (causal relations, instead of
syntactic relations) that may exist between entities of
various types. For instance, the rule D → S asserts
that a causal link may exist from any node in D to
any node in S. A causal grammar defines a system for
generating causal networks, by first choosing a subset
of nodes in each class and then inserting links between
those nodes in conformance with the link rules. GBDS

generates many causal networks beyond N0, N1 and
N2. If node classes may contain infinitely many possi-



ble entities (as seems plausible in the disease domain),
the grammar generates an infinite set of networks.

Networks N3 and N4 illustrate hypotheses inconsis-
tent with (not generated by) GBDS . N3 contains the
same nodes as N0, but the links do not respect the di-
vision of nodes into three classes. For someone whose
beliefs correspond to N3, not only would we say that
he has different beliefs about how particular diseases
work, but we would deny that he possesses the same
abstract concepts of “disease”, “symptom” or “behav-
ior” – at least in the causally relevant sense; he does
not know how diseases in general work. N4 appears
to respect the same node classes as N0, but with dif-
ferent link rules: S → D instead of D → S, and no
links between behaviors and other nodes.

Causal grammars interact with causal networks
through at least three kinds of inferences. Most ba-
sic is the causal “parsing” problem. A parse of the
network N under the grammar G is an assignment of
each node in N to some class in G and each link in
N to some (consistent) link rule in G. Parsing is an
essential (but often implicit) first step before other in-
ferences can occur. For instance, in saying that N4 is
inconsistent with GBDS , we are implicitly parsing the
network in a certain way. Parsing ambiguities may
arise because the entities corresponding to nodes in
a causal network are not generally tagged with class
labels. Just as a word may be used in multiple syn-
tactic contexts (e.g., “drink” can be either a noun or
a verb), so may a causal node arise in multiple classes
(e.g., “overeating” can be either a behavior or a symp-
tom). Even if each node belongs to just one class,
when learning about a new domain we may be uncer-
tain about which nodes belong to which classes. This
uncertainty is one focus of the experiments below.

Second, causal grammars enable efficient learning
and modification of causal networks, by providing cru-
cial constraints on the network hypotheses a learner
will consider. To illustrate, consider a learner in the
disease domain who has acquired grammar GBDS and
currently believes network N0. She then observes a
previously unseen correlation between a known be-
havior b, e.g., “working in factory”, and a known
symptom s, e.g., “chest pain”. Guided by GBDS , she
may infer that a causal chain is likely to go from b to
s through some particular but undetermined disease
node d. Since no such path exists in N0, she infers
that most likely one of the following new structures is
needed: either a link from b to a known cause of s,
e.g., “lung cancer”, or a new link to s from a known
effect of b, e.g., “bronchitis”. If no new link to or
from an existing disease node can be added without
conflicting with other knowledge, GBDS suggests it is
likely that a new, previously unobserved disease node
x exists, and that x is causally linked to both b and
s (as shown in network N2). Other logically simpler
hypotheses, e.g., inserting a single link directly from
b to s, or from s to b, are ruled out by the grammar.

Third, causal grammars may themselves be learned
or modified based on how well these hypotheses fare
– how well they predict the causal networks found

in their domain. In its simplest form, the problem of
acquiring causal grammars is as follows: we encounter
a causal network N generated from some unknown
grammar G∗ in G, a hypothesis space of candidate
grammars, and we must infer the node classes and link
rules of G∗. In practice, we often cannot separate this
problem from that of inferring the network structure
N based on some observed data, guided by our current
hypotheses about G∗. The experiment below poses
both these challenges simultaneously.

Network N5 illustrates one ambiguity in inferring
causal grammars from network structures. N5 (unlike
N3) is consistent with GBDS , but differs from N0, N1,
and N2 in obeying a stronger regularity: every disease
is affected by every behavior and causes every possible
symptom. To capture this regularity, we introduce
rules for both necessary links (denoted ⇒) and possible
links (denoted →). Then N5 may be better explained
as being generated by the grammar G∗

BDS :

G∗

BDS Node classes: B, D, S
Link rules: B⇒D, D⇒S

Later we show how to formalize the preference for
one grammar over another in terms of rational statis-
tical inference. Intuitively, GBDS can generate every
network that G∗

BDS can, plus many more (e.g., N0,
N1, N2, etc.). Thus it would be a great coincidence
if N5 had in fact been generated by GBDS and just
happened also to be consistent with G∗

BDS .

Studies of Acquisition

Our experiments explore the acquisition of a causal
grammar in a virtual world loosely inspired by the
“blicket detector” studies of Gopnik et al. (in press).
In these studies participants are shown a number of
blocks, along with a machine called the “blicket detec-
tor”. The blicket detector “activates” (lights up and
makes noise) if and only if a “blicket” is placed on it.
Some of the blocks are “blickets”, others are not, but
their appearance provides no cues. People observe a
series of trials in which one or more blocks are placed
on the detector and the detector does or does not ac-
tivate. They are then asked which blocks have the
causal power to activate the machine. For instance,
they may observe the detector and three blocks, two
of which are blickets, as in the left network below:

b1 b3

d1

b2 b1 b3

d1

b2

d2

b4 b5

Nodes correspond to objects, and links correspond to
the “activation” relation: x → y means that object x
activates object y. The task for participants is to in-
fer the link structure of such a network given a series
of observations or interventions with the objects. Im-
plicit in this task is a causal grammar that generates
the network above:
GBD Node classes: B (blocks), D (detectors)

Link rules: B → D



Analogous to rule D → S in the disease-symptom
domain, GBD specifies that blocks may activate detec-
tors but are not activated by anything, and detectors
do not activate anything. One particular element d1
of D is called the “blicket detector”; a block b is a
“blicket” if there exists a link from b to d1. But GBD

generalizes beyond the “blicket detector” to generate
an infinite number of possible causal networks, relat-
ing different kinds of blocks and their detectors. For
instance, in the network shown above at right, we have
a second detector d2; we might call d2 the “gazzer de-
tector”, and b2, b4, and b5 “gazzers”.

Tenenbaum & Griffiths (2003) argue that possession
of some abstract theory of detectors, akin to grammar
GBD, is necessary to explain people’s ability to iden-
tify blickets (i.e., acquire the causal network shown
above at left) from very few observations. However, no
experiments attempt to probe directly whether peo-
ple in fact have this grammar, or whether they could
discover such an abstract system of node classes and
link rules if they did not already possess it. Our ex-
periments here begin to probe these questions, using
simple grammars such as the following:

G0 Classes: A
Rules: A → A

G3 Classes: B, D
Rules: B ⇒ D

G1 Classes: B, D
Rules: B → D

G4 Classes: B, D
Rules: B ⇔ D

G2 Classes: B, D
Rules: B ↔ D

Nodes correspond to objects (square blocks on a com-
puter screen) which are perceptually identical except
for a capital-letter label on their face, randomly as-
signed for reference. A link x → y means that when
object x touches object y, y will “light up” (turn red).
As in the “blicket” domain, activation is an enduring
causal power; x → y implies that y always lights up
when the two touch. The rule B ⇒ D implies that
every b ∈ B activates every d ∈ D. The weaker rule
B → D implies that any particular b may or may not
have the power to activate any particular d. The rules
B ↔ D and B ⇔ D generate (possible or necessary)
bidirectional links: when x touches y, either both ob-
jects light up or neither does. The one-class grammar
G0 specifies that any object may activate any other.

In our experiments, participants manipulate a set
of objects on-screen whose causal network structure
is generated from one of the above grammars. They
“pick up” objects with the mouse and touch them to-
gether, observing what lights up as in this screen shot:
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Figure 2: Causal networks generated by grammar G3

after (a) phase 0 and (b) phase 3 of the experiment.

The experiments comprised multiple phases, during
each of which three new objects are added to the on-
screen environment. As new objects are added, partic-
ipants make predictions about how these objects will
interact with old objects, allowing us to assess whether
they have acquired the correct causal grammar. We
also ask them to describe how the objects work, first
after seeing just three objects and again after seeing
a much larger number (around 20).

Crucially, participants are never told about the ex-
istence of distinct classes of objects or causal laws de-
fined over those classes. Because there are no static
perceptual cues to an object’s class membership, the
learner faces a “chicken-and-egg” problem: the causal
grammar must be discovered (the acquisition prob-
lem) simultaneously with inferring which objects be-
long to which classes (the parsing problem). A real-
world analog would be discovering the existence of two
classes of magnetic poles (“north” and “south”) and
the law that poles in different classes attract and those
in the same class repel (cf. G4), simultaneously with
inferring which magnets are of which type.

We focus here on one experiment where participants
learned the grammar G3, in which every object in B
activates every object in D. As with the law of mag-
netic poles, this grammar supports very rapid causal
inferences: a learner can identify the class of an ob-
ject just by checking how it interacts with one known
B and one known D, and then confidently predict its
interactions with every other known object.

Participants. Eleven naive participants were
drawn from the general MIT community.

Procedure. The experiment began with phase 0.
Three objects appeared in a “staging area”, and par-
ticipants were instructed to “Play around with the
objects and see what lights up.” The causal network
describing the first three objects is shown in Figure
2a. Before proceeding, participants were asked, “De-
scribe how you think the objects work”, and typed
in a response. Six more phases (1-6) followed, each
introducing three additional objects and testing par-
ticipants’ knowledge of the grammar by asking them
about the causal properties of a novel object both be-
fore and after they had seen it interact with other
objects. Each phase had four parts (A through D):

A. Pre-test. Three additional objects were added
to the staging area. One new object x served as
the “probe”. On odd and even numbered phases,
the probe was of class D and B respectively. (The
other two new objects did not come into play until
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Prediction Results

(Ideal) Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6
Question Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post
Probe x ∈ B

(1) x − b: Will x light up? 5 0 5.1 3.3 5.7 2.0 4.5 0.3
(2) x − b: Will b light up? 0 0 3.3 2.7 1.5 1.3 2.4 1.2
(3) x − d: Will x light up? 0 0 5.5 3.5 2.9 1.6 2.4 0.5
(4) x − d: Will d light up? 5 10 4.7 7.3 4.9 8.3 5.1 8.7
Probe x ∈ D

(1) x − b: Will x light up? 5 10 4.2 7.6 4.4 7.9 5.2 8.8
(2) x − b: Will b light up? 0 0 4.7 4.3 3.6 1.9 1.2 0.6
(3) x − d: Will x light up? 0 0 3.2 6.7 3.1 2.3 2.8 1.2
(4) x − d: Will d light up? 5 0 5.5 4.8 6.5 2.8 4.9 1.9

Figure 3: (a) Sequence of objects introduced in the experiment. The class of each object is identified by a letter
“b” or “d”, but participants saw only arbitrary capital-letter labels giving no class information. For each phase,
the probe object (x) is shaded; solid lines connect pairs queried in parts A and C of that phase; and a dashed
line connects the pair observed to interact in part B. (b) Predictions under the grammar G3, and participants’
mean judgments for pre- and post-interaction questions at each phase, on a 0-10 scale.

part D below.) Participants then received four “pre-
interaction” questions, asking about how the novel
probe x would interact with two old objects, b (in
class B) and d (in class D), which they already had
experience with. These test interactions correspond
to solid lines in the schematic below:

y b

d x

Old objects Novel probe

The wording of the 4 questions was as follows:

Consider what will happen when x and b touch.
(1) Will x light up?
(2) Will b light up?

Consider what will happen when x and d touch.
(3) Will x light up?
(4) Will d light up?

(Symbols x, b, and d were replaced by the arbitrary
letter labels participants could see on-screen.) Par-
ticipants responded to each question on a scale from
0 (definitely not) to 10 (definitely). A “successful
learner” – a participant who has successfully learned
the correct grammar (in this case, G3) and the class
type of each familiar object – should be uncertain
about questions (1) and (4) (because the class of x
is unknown) but should always answer “definitely no”
for questions (2) and (3) (because no b ever lights up
and nothing ever lights up when it touches a d).

B. Single interaction. Participants were now in-
structed to touch the novel probe x to a different fa-

miliar object y (connected to x with a dashed line in
above schematic) – a single interaction that should al-
low successful learners to uniquely classify x as a B
or D. The target y was always of the opposite type
as x, to ensure that in principle x could be uniquely
classified from this one interaction.

C. Post-test. Participants answered the same four
questions as in the “pre-test” (corresponding to solid
lines in above schematic), to assess what they had
learned about the causal properties of the probe from
the single interaction. Successful learners should now
be able to answer all four questions definitively – given
causal grammar G3, they may “parse” the observed
interaction of x with the target y and infer the class
of x to be B or D; this inference allows them to infer
what x can do with other objects. Learners with G3

can make strong inferences from just a single observa-
tion; learners without G3 cannot.

D. Play. Participants were instructed to “Play
around with the objects”, and proceeded to the next
phase at their own pace. By moving objects around,
participants could arrange them spatially according
to their causal properties. Almost every partici-
pant spontaneously discovered some spatial mnemonic
(e.g., lining up objects in two rows, one for each class,
as in the screen shot above).

Figure 3a shows the class identities of all objects,
ordered by phase in which they appeared; the probe
in each phase is shaded. After phase 6, participants
were again asked to describe how the objects worked.

Results. Figure 3b presents the mean responses
to all four questions from each phase of the experi-
ment, both before (“Pre”) and after (“Post”) the sin-



gle interaction that participants saw between probe
x and target y. Also shown are the ideal predictions
for a learner who has acquired the correct grammar
G3 and correctly classified all familiar objects. To
assess whether, by the end of the experiment, par-
ticipants had acquired the abstract knowledge nec-
essary to make one-shot causal inferences, we ana-
lyzed the differences in their mean pre- and post-
interaction predictions from the final phases (5 and
6). In phase 5, given the observation that the probe d8
lights up when touching b7, successful learners should
infer that d8 is in class D, and thus increase their
confidence that (1) d8 will light up when touched to
b8, and (2) d7 will not light up when touched to d8.
Mean judgments for these two predictions (respec-
tively) changed from 5.2 and 4.9, pre-interaction, to
8.8 and 1.9, post-interaction – both significant differ-
ences in the predicted directions (p = 0.0002, p = .016
respectively). In phase 6, given the observation that
d8 lights up when touching the probe b10, success-
ful learners should infer that b10 is in class B, and
thus increase their confidence that (1) b10 will not
light up when touched to b9, and (2) d9 will light
up when touched to b10. Mean judgments for these
two predictions (respectively) changed from 4.5 and
5.1, pre-interaction, to 0.3 and 8.7, post-interaction
– both highly significant differences in the predicted
directions (p < 0.0001, p = .0007 respectively).

To assess the course of learning, Figure 4a plots a
measure of accuracy versus the number n of objects
observed over the six phases. Accuracy was measured
in terms of the p-value of the correlation between the
ideal predictions (first two columns of Figure 3b) and
participants’ mean judgments, for both pre- and post-
test questions; lower values are better. After the first
phase (n = 3), the correlation is poor (just above
the threshold for significance, p < 0.05, dashed line).
Accuracy improves rapidly until reaching a plateau
below p < 0.0001 on the fourth phase (n = 12).

There were dramatic differences in participants’ ver-
bal descriptions of how the objects work after phase 0
and after phase 6. Descriptions after phase 0 over-
whelmingly referenced the particular object labels,
e.g., “When F and Z touch, F lights up”, with no
references to any “group” or “class”. In contrast, af-
ter phase 6, 9 of 11 participants explicitly used the
term “group”, “class”, or “lighter-uppers” in their
descriptions. A typical description was as follows:
“XFWIKTAON all light up when touching objects
ELHBQRMSDY, but if one box from the first group
touches another from the first group then there is no
light up. If two boxes from the second group touch
[each] other then also there is no light up.”

Discussion. Participants clearly learned some-
thing like G3, but given the deterministic flavor of this
grammar, it may not be clear why anything more than
conventional causal network machinery is needed to
describe what people learn or how they learn it. Why
not just appeal to standard Bayes net learning algo-
rithms (as in Gopnik et al., in press) to infer a simple
deterministic causal network BD → DL, defined over

the variables BD = “an object b ∈ B touches an ob-
ject d ∈ D” and DL = “the d object lights up”? This
way of thinking locates all of the interesting learning
in constructing the variables BD and DL; the trouble
is that standard Bayes net learning algorithms take
the contents of variables as given, and learn only the
links between variables. Thus they offer no account
of how people discover the existence of the two classes
B and D, without which the causal law could not be
formulated. More generally, finding satisfying ways to
ground the learning of abstract causal knowledge in
perceptible relations and attributes (e.g., “touching”,
“lighting up”) is a critical goal for future work.

Bayesian analyses of learning

Participants rapidly acquired a causal grammar from
experience, even without any static perceptual cues
to objects’ class identities, and then used that knowl-
edge to predict the full behavior of a novel object after
observing just a single interaction. Most laboratory
studies of learning abstract causal knowledge (e.g.,
Anderson, 1990) have not addressed the problem of
simultaneously learning causal laws and the concepts
over which those laws are defined, yet much causal
knowledge can only be learned in this “chicken-and-
egg” fashion. Abstract causal concepts such as “dis-
ease” and “symptom” are defined only relationally –
diseases are the conditions that cause symptoms – and
thus these concepts cannot be understood outside of
the causal theory in which they are embedded. How-
ever, the theory itself cannot be expressed without ref-
erence to these concepts, raising the problem of how
either a causal theory or the concepts that comprise
it are ever acquired. Learners in our experiment thus
face a small-scale version of the problem of concep-
tual change that takes center stage in “theory theory”
accounts of cognitive development (Carey, 1985).

This section sketches a formal analysis of the causal
grammar acquisition problem, as posed in our experi-
ments. Learning causal grammars poses an inductive
challenge similar to the problem of learning grammars
for natural language, in that many grammars are typ-
ically consistent with the observed evidence. In our
experiment, any network consistent with G3 is also
consistent with G1, G0, and numerous grammars with
more node classes or link rules. Yet, participants’ ver-
bal descriptions and patterns of inference strongly sug-
gest that they acquired the true grammar G3.

Participants did not show evidence of having ac-
quired the grammar when first tested after encounter-
ing just three objects, but appeared to converge on it
only after seeing around 12 objects. This progression
suggests a kind of statistical inference. Figure 2 shows
how the grammar G3 implies a structural regularity in
the causal network – fully connected bipartite struc-
ture – that appears highly non-generic after seeing 12
objects (Figure 2b), but not at all remarkable after
seeing just three (Figure 2a). We conjecture that peo-
ple may learn causal grammars in part by detecting
these patterns of suspicious coincidence that emerge
as more objects are encountered.
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We can formalize this proposal in a Bayesian frame-
work. The learner has a hypothesis space G of candi-
date causal grammars. Each grammar Gi ∈ G assigns
some likelihood P (N |Gi) to the observed causal net-
work N , and receives some prior probability P (Gi), re-
flecting how cognitively natural that grammar is. The
posterior probability of a hypothesis, P (Gi|N), is then
proportional to the product of P (Gi) and P (N |Gi)
(Bayes’ rule). Many factors could contribute to the
prior P (Gi), including both domain-specific knowl-
edge and domain-general preferences for simpler gram-
mars, with fewer nodes classes and link rules. Here we
ignore details of the prior and just consider the relative
likelihoods P (N |Gi) of the three simplest grammars
consistent with the networks in our experiment: G0,
with one node class and one link rule, and G1 and G3,
each with two node classes and one link rule.

If we make the simplifying assumption that each
network consistent with a grammar Gi is equally likely
to be generated by it, the likelihoods P (N |Gi) fol-
low the size principle (Tenenbaum & Griffiths, 2001):
P (N |Gi) = 1/size(Gi), for any network N consistent
with Gi. The expression size(Gi) denotes the num-
ber of networks consistent with grammar Gi. The
more expressive the grammar – the larger size(Gi) –
the lower the likelihood that Gi would generate any
particular network N . In our experiment, these like-
lihoods are not very informative when only a few ob-
jects have been encountered, because the number of
causal networks generated by the correct grammar G3

is not much less than the number generated by alter-
natives such as G1 or G0. For instance, with three
nodes, we have size(G3) = 7, size(G1) = 13, and
size(G0) = 64. Hence, after seeing only three objects
generated from G3, a Bayesian learner does not yet
have strong evidence in favor of the correct grammar.

As the number of objects observed increases, the ev-
idence for G3 mounts quickly, because the size of the
set of networks consistent with G3 grows much more

slowly than for competing hypotheses. On n nodes,
G0 generates all 2n(n−1) possible directed networks,
and G1 generates on the order of 2n(n−1)/2.5 networks
(approximately, for n ≤ 10; more precisely, equal to
one less than twice sequence A047864 in Sloane, 2003).
In contrast, G3 generates only the 2n − 1 fully con-
nected bipartite directed graphs, which means that
G3 becomes exponentially more likely to have gener-
ated the observed data as n increases. At the point
where participants’ learning asymptotes (n = 12), the
likelihood P (N |G3) is more than 1010 times greater
than P (N |G0) or P (N |G1) (Figure 4b).

This Bayesian analysis offers one explanation for
how people can infer the correct causal grammar in
our experiment, and why they are likely to discover it
by the end of our experiment but not after the first
phase. We have also extended this approach to study-
ing the learnability of other grammars (G0, . . . , G4)
shown above, as well as more complex forms of ab-
stract causal knowledge (Tenenbaum & Niyogi, in
preparation). People appear to learn G4 (B ⇔ D)
rather easily, G1 (B → D) with some difficulty, and
G2 (B ↔ D) only with great difficulty or not at all.
This difficulty ordering is consistent with Bayesian
analyses like those above, taking into account the sizes
and complexities of alternative grammar hypotheses.

These initial results are promising, but only begin
to touch on the questions of how people represent, ac-
quire, and use abstract causal knowledge. We have not
investigated or attempted to explain in detail the time
course of acquisition. We have also made no attempt
to map out systematically the space of cognitively nat-
ural causal grammars, or the mechanisms involved in
searching this space during learning. These questions
loom large for future research.
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