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ABsTRACT. We study F(n,m), the number of compositions of n in which repetition
of parts is allowed, but exactly m distinct parts are used. We obtain explicit formulas,
recurrence relations, and generating functions for F'(n, m) and for auxiliary functions
related to F'. We also consider the analogous functions for partitions.

INTRODUCTION

One of the problems considered by Wilf in [7] involves the number of different
sizes of parts in a partition of the integer n. This paper investigates the function
F(n,m), which gives the number of compositions of n in which repetition of parts
is allowed, but m distinct parts are used in all. For example, in the table below we
note F'(4,2) = 5, from the five compositions of 4 with 2 distinct parts: 3+1, 1+3,
24141, 14241, and 1+1+2.

The first observation to make about F'(n,m) is that for m = 1 there is a com-
position of n with one distinct part &k if and only if k is a divisor of n. Hence
F(n,1) =d(n), the divisor counting function. We extend this sum over divisors to
the second column in the next section.

On the right hand boundary of the table, we note that the first non-zero entry
in column m is at n = m(m + 1)/2, where F(m(m + 1)/2,m) = m! This is because
there are m! arrangements of the summands in the first integer with m distinct
parts: 1 +2 4 ...+ m.

In order to understand F'(n,m) we provide explicit formulas, recurrences, and
generating functions for functions related to F'. Some of the formulas we derive
have immediate analogues to formulas for partitions, especially those in which the
ordered structure of compositions manifests itself in a general summand involving
a binomial coefficient. We develop the partition formulas in the fourth section.
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Table 1. Compositions of n with m distinct parts, F(n,m),1 <n <16,1 <m <5

n\m 1 2 3 4 5
1 1

2 2

3 2 2

4 3 )

) 2 14

6 4 22 6

7 2 44 18

8 4 68 o6

9 3 107 146

10 4 172 312 24

11 2 261 677 84

12 6 396 13538 288

13 2 606 2666 822

14 4 950 5012 2226

15 4 1414 9542 5304 120
16 5 2238 17531 12514 480

BASIC RECURRENCES

Since F'(n,1) = d(n), it is natural to look for an interpretation of later columns
involving divisors of n. We begin by offering an explicit formula for the case m = 2.

Theorem 1. Forn > 2,

(/3] /i) -1 o
F(n,2) = Z Z Z (.7 + (n ‘ Jk)/d>

j=2 k=1 d|(n—jk) J

k£d< LIk
n/3] /. . n—1
25\ |n/i—1
-—§:( >L—7f—J+§: > (14 (n—k)/d).
=1 \J k=1 d|(n—k)
gl k#d

Proof. Consider a composition of n into two distinct parts. Write one of the parts
as k, where 1 < k <n — 1 and count the number of compositions according to the
number of occurrences of the part k. If k£ occurs exactly once then the remainder
of the composition is just a composition of n — k with one distinct part, say d, with
d # k. For this to be possible we must have d | n — k and then the composition of
n consists of (n — k)/d parts equal to d and one part & which can be inserted in
any of (n — k)/d + 1 places. Thus the number of compositions of n with exactly
two distinct parts in which one of these parts occurs once only is

n—1
n—k n—1
DD INTECUEHIE=E
k=1 d|(n—k)
d#k

The reason for the subtracted term is that compositions into exactly two parts are
counted twice (e.g. for n = 6 and k = 2 we count the compositions 2+ 4 and 4 + 2,
and again when k = 4).
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Next suppose the distinct part k& occurs twice. That leaves a composition of
n — 2k consisting of (n — 2k)/d copies of part d, where k # d, d | (n — 2k), and
d < n — 2k since the case in which either distinct part occurs only once has already
been covered. The number of different orderings of two k’s and (n — 2k)/d d’s is
(2+(”_22k)/d). Since the part d appears at least twice we need n — 2k > d > 2,
whence 1 < k < |[n/2] — 1. Thus compositions with two distinct parts in which one
part occurs twice and the other part occurs two or more times are enumerated by

2l n— 4 | o220 n even
Z Z <2+ 2k)/d> {(2){ 3 J ;

k=1 d|(n—2k) 0 ,n odd.
d#k
d<n—2k

The subtracted term here deals with compositions of n into two distinct parts which
each appear twice (e.g. 6 = 1+ 1+ 2+ 2), which are counted twice in the left sum.
Such compositions are possible only if n is even. In this case we have (;) orderings
of the composition.

In general, suppose the part k occurs j times and the other part d occurs j or
more times. In the same manner as above we require d | (n — jk), k # d, and
d < (n—jk)/(j —1). There are (j"'(";jk)/d) ordered arrangements of j k’s and
(n — jk)/d d’s, and n — jk > jd > j implies k < |n/j] — 1. In the case that j | n
there are (233 ) compositions with exactly j k’s and 7 d’s that are counted twice for
given values of k£ and d. The number of different possibilities for k£ and d is given
by the number of solutions to n/j = k + d which just interchange k and d, this
number being |[(n/j —1)/2].

Finally, summing all these cases over j yields the formula. Since jk + jd < n,
j<n/(k+d) <n/(l+2)=n/3 which provides the limit for the outer sum.

In the next theorem and in later theorems we will use the auxiliary function
F(n,m,j) to represent the number of compositions of n into m distinct parts,
using exactly j parts altogether.

Theorem 2. Forj > 2 andn > j,

F(n7 27j) =

L§J Ln/zw:l <ﬁ>—{(()j) L(ZJ__n_ )/2J, z'f2|j'andj|2n

otherwise.
(G- T)I(n kr)

k#(n—kr)/(G—r)

Proof. We proceed as in the proof of the formula for F(n,2) by counting the com-
positions according to the number of occurrences of one part k. If k occurs exactly
once then n— k must be given as a sum of j —1 equal numbers, each (n—k)/(j—1),
provided this is a positive integer. Thus we require j—1 | n—k, k # (n—k)/(j—1),
and there are j possible arrangements of the parts. In the case that j = 2 we need
to subtract off compositions into two parts which are counted twice. Thus com-
positions with two distinct parts, j parts in all, and one part occurring once are
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enumerated by
i|—1 .
Ln% J_{QL"T_lJ ,j.=2
P 0 ,J > 2.
(G-Dl(n—Fk)
k#(n—k)/(G—1)
In general suppose part k£ occurs r times so that n — rk must be a sum of j — r
equal numbers. Thus we require j —r | n — kr and k # (n — kr)/(j — r). There are
i ) ways of arranging the sequences of » summands of size k and j —r summands of
size (n—kr)/(j —r). As in the earlier proof we require n—rk > rso k < |n/r|—1.
To ensure the other distinct part occurs at least r times we need j —r > r so
r < j/2 in the outer sum. Compositions are counted twice and must be subtracted
off in the event that both distinct parts occur the same number j/2 of times. This

is possible only if 2 | j and then $(k + d) = n implies that j | 2n.

We note that from the relation valid for n > 2,

n—1

F(n,2) =Y F(n,2,j),

i=1

we can recover F(n,2) as a threefold sum using the formula for F(n,2,j) from
Theorem 2.

Perhaps these formulas can be extended to later columns, but the number of
special cases to consider becomes forbidding. Another family of results enumer-
ates the compositions by first considering possible values of the summands in the
composition.

Lemma 3. Denote by F*(n,m,j) the number of compositions of n with exactly m
distinct parts, j parts in all, and at least one part being a 1. Then

(1) F(n,m, j) = F(n—j,m,j)+ F*(n,m,j).

Proof. Divide the compositions counted by F'(n,m,j) into two classes: those with
at least one part a 1 and those having no 1’s. Compositions in the first class are
enumerated by F*(n,m,j). For compositions in the second class, subtract 1 from
each of the j parts, to obtain a composition of n —j into m distinct parts, still with
J parts in all.

As an application of this lemma, we can fix m and 7 and consider the sequence
of values {F'(n,m,j)}, n > 1. Even though the sequence may fail to be monotone,
each subsequence consisting of every jth term from an arbitrary starting point wll
be monotone.

Lemma 4.
(2) F(n,m,j):F(n—j,m,j)-l—Z <Z>F(n—j,m—1,j—k),
k

where Y. " indicates a sum over those k for which a composition of n into m distinct
parts, j parts in all, can have exactly k 1’s.

Proof. Consider a composition counted by F*(n,m,j) in (1). Decrease each part
by 1. Then n is reduced to n — j, m is reduced to m — 1, and j is reduced by the
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number of 1’s that were in the original composition. Summing over appropriate k
provides

Fenmd) =3 (1) Fn = jom— 1.7 - 1),

k

Surprisingly, the restriction on k imposed by >_" is more complicated for m = 2
than for larger values of m. For k ones to be summands in a composition of n into
j parts for m = 2, n must have a representation of the formn=%k-1+ (j — k) -d
for d > 2. Hence we must have j — k | n — k. We offer a brief table for m = 2 that
makes the pattern clear in this case.

Table 2. Summands k form =2 1inY ",3<n<17,2<5<9

n\j 2 3 4 5 6 7 8 9
31

4 1 2

5 1 1,2 3

6 1 2 2,3 4

7 1 1,2 1,3 3,4 5

8 1 2 2,3 2,4 4,5 6

9 1 1,2 3 1,34 3,5 5,6 7

0 1 2 1,23 4 2,4,5 4,6 6,7 8
11 1 1,2 3 2,34 1,5 3,56 5,7 7,8
2 1 2 23 4 3,4,5 2,6  4,6,7 6,8
13 1 1,2 1,3 1,3,4 5 1,4,5,6 3,7 57,8
4 1 2 2.3 2,4 2,4,5 6 2,5,6,7 4,8
15 1 1,2 3 3,4 35 3,56 1,7 3,6,7,8
6 1 2 1,23 4 1,4,5 4,6  4,6,7 2,8
17 1 1,2 3 1,2,3,4 5 2,56 57 1,7,8

For m > 3, eventually ¥* is an unrestricted sum.
Proposition 5. Let m > 3. Then forn > w +2(j—m), >r = Z?;(lm_l) :

Proof. Let n = 1%12%  n denote the partition n = a1 + a22 + ... + a,n,
where a; is the number of occurrences ¢ in the partition of n. Consider ng =
m(m +1)/2 4 2(5 — m). Then for any value of k, 1 < k < j — (m — 1), we have
the partition 1¥2°3%...(m — 1)*(m — 1 + k)!, where b = j — m — k + 2, which
is a partition of (k — D)1+ (m —1)ym/2+ (m+k—-1)+2(j —m—(k—1)) =
m(m + 1)/2 4+ 2(j — m) = ng into m distinct parts, namely 1,2,...,m — 1 and
m + k — 1, with total number of parts kK + m — 2 + b = j as required. Note
b=j—-m+2—-k>j—m+2—(j—m+1)>1so the part 2 does occur at least
once. If n > ng, say n = ng + r for r > 1, then the corresponding partition with &
Us,1<k<j—m+1,isn=1%3 (m—-1)'...(m—1+k+r)’. We note that
ng is the smallest value of n for which >, " = ZQ;TH, since if k¥ = 1 the smallest
number with m different parts and j parts in allis 1+24+3+...4+m+2(j —m) = nyg.
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Corollary 6.

=Yy Y ()= 2 vy ()

) ) n=a+b jla k|b
j—k|n—1j 1<a,b<n k#j

1 ,79—k|n—3y
Proof. Observe that F(n—j,1,j — k) = { J | ) J . Hence (2) gives
0 ,otherwise

(3) F(n,2,j) = Z*<i>+F(n—2j,2,j): > <i>+F(n—2j,2,j).

. k . - k -
j—kln—j Jj—kln—j

The last equality is justified by the remark before Table 2, where the condition on
k imposed in X* is j — k | n — k. Since n — k = (n — j) + (j — k), this condition
already holds by the constrain j — k | n — j. Now (2) can be applied again to the
last term, and iterated for all first arguments n — [k as long as [j < n. This gives

the limits 1 <[ < L"T_lJ The first formula in the lemma then follows by writing

F(n,2) = Z?z_ll F(n,2,7). Now make the change of variables a = jl, b = n — a,

k = j — k, and note (Jik) = (%)

Corollary 6 is in the spirit of the sum over divisors of Theorems 1 and 2, but it
admits a generalization to later columns.

Theorem 7.

@) Fam= > >3 3. ¥ (":1) (":2)...<j"?‘1>.

: : : . Jm
n=ai1+az2+...+am ji|ay q2|a? ?3|a_3 _jm|am_
ai 70 J1#72 Jo#J3 Jm—1FJm

Proof. The outer summation is over compositions of n into m parts. First we build
from compositions of n into m parts certain partitions of n into m distinct parts,
then permute the parts of the partitions to obtain all possible compositions of n
into m distinct parts.

Begin by representing the summands in a composition of n as a rectangular
array of dots, one row for each summand. This resembles the Ferrars graph of a
partition, except the lengths of the rows do not have to be monotone decreasing.
Now attempt to transform this graph into the Ferrars graph of a partition of n
with m distinct parts by replacing some of the rows of a; dots with rectangles of
width a;/j; dots and height j; for j; a divisor of a;. The rows of the rectangle
represent the size of the new parts, a;/7j;, that replace the old a;, and the number
of parts goes from 1 part of size a; in the composition to j; parts of size a;/j; in
the partition.

For a particular composition n = ay + as + ... a,,, we obtain a partition of n
into m distinct parts exactly when there is a sequence of divisors j; of a; with
J1 > j2 > J3 > ...> Jm. Furthermore this process is reversible, with any partition
of n into m distinct parts yielding a composition of n into m parts when the parts of
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the same size in the partition are combined into one summand in the composition,
and with the two partitions yielding the same composition only when rectangular
blocks of different dimensions representing successive rows in the two partitions
contain the same number of dots.

The inner summations in (4) generate all sequences of divisors {j;} that yield
partitions of n into m distinct parts (the conditions that j; # j;4+1 are sufficient,
since if j; > j;+1 one of the binomial coefficients is zero). With j; parts of size
ai/ji, 1 < i < m, the total number of compositions of n that can be formed by
rearranging the summands is given by the multinomial coefficient

( J1 > _ (j1> (]é) (jm—l)
J1— 72,02 = J3y-+ s Jm—=1— Jm>Jm J2/) \Js Jm

COMPOSITIONS WITH A FIXED PART

In [7], Wilf outlines a general technique to obtain mean values for the number of
distinct part sizes in a combinatorial structure. The success of his method depends
on the multiplicativity of the generating function for the total number of structures
of size n. Many common combinatorial structures have such generating functions,
so that in addition to partitions his results apply equally well to permutations [7],
partitions of sets [4], and polynomials over finite fields [3]. Part of the interest
concerning the number of part sizes in a composition stems from the fact that the
familiar generating function for compositions is not of the above type. Below we use
a different technique based on a simple counting argument to obtain a generating
function for the mean value.

Suppose we wish to guarantee that a particular part [ (perhaps repeated) occurs
in a composition of n. Denote by C;(n) the number of compositions of n in which
at least one [ occurs. It will also be necessary to keep track of Cj(n, j), the number
of compositions of n into j parts in all, in which at least one part is [. This notation
extends the more standard use of C'(n) to represent the total number of composi-
tions of n, which is 271, and C(n, j) to represent the number of compositions with
exactly j parts, (?:11)

For a composition 7 of n, let 6(7) be the number of distinct parts of 7, and let

1 ,risapart ofm

x(r,m) = {

0 , otherwise.

Then

S mEmm) =30 =33 xtm) =3 S xm =Y )

T I>1 I>1 = 1>1

Thus the numbers in row ¥ in the table below represent ) ;- ; C;(n). They are of
special interest because of the above connection with the average number of distinct
parts in a composition of n.

Table 3. Compositions of n into parts in which at least one part is an I, Cy(n),
1<n<12,1<1<6
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2 6 7 8 9 10 11 12
13 27 56 115 235 478 969 1959
20 43 91 191 398 824 1697
25 55 120 258 550 1163
5 12 27 61 135 295 639
2 Y 12 28 63 141 311
1 2 Y 12 28 64 143

—_
— =D
N W W
N O

S~
@cnq;oom»—ng
N OO
—_

—_

Y 1 2 6 13 30 66 144 308 655 1380 2891 6024

There is a general recurrence satisfied by the rows of Table 3, which we will
recover from the generating functions established in the next theorem.

Theorem 8.

0 l I+1
t t—tl+t
5) Ci(n)t" = — )
(5) z_:l ) 1—2t 1—2t+ ¢ — ¢t

Proof. Write C}(n) to be the number of compositions of n with no part equal to [,
and C}(n,m) to be the number of such compositions with m parts in all. Thus

(6) C(n) = Cf(n) = Ci(n).

Observe that the generating function for C}(n,m) is

oo
t
D Crnym)t = (t+ 12+t T ) = (1— —thm,

Now account for all possible numbers of parts m via
00 00 m I 4l41
t t—1t t
Y Crnptr =Y [— -t) = i :
1—t 1—2t 4t — ¢+t

The last step is to recall that the generating function for arbitrary compositions is
5. Thus the generating function for the table entries in row [ follows from (6).

Corollary 9. Forl>1,n>1+ 2,

Ci(n) =2C1(n—1)—=Ci(n—1) +Cy(n—1—1) 42772,

Proof. From the generating function for C}"(n) above we obtain

oo
b=ttt =1 -2 )Y CF(n)t
n=0

ziq*( —220* t”+1+ZC’* )t — ZC* )t
n=0

:iol*( —2ZCln—1t"+ZCln—l an—l—n
n=0

n=Il+1
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Equating coefficients of t" for n > [ + 2 gives
(7) Ci(n)=2C(n—1)—-Cf(n—=0)+C}(n—1-1).
The last step is to note
Cy(n) =2""1 — Cf (n)
=2""1 —(2Cf(n—1)—-Cf(n—1)+Cf(n—1-1))
=2(2"7? = Cf(n—1)) = (2" = Cf (n— 1))
+ @22 - Cf(n—1—1)) +2"t2
=20 (n—1) = Cy(n—1) + Cy(n —1—1) + 2172,

The first row therefore satisfies the recurrence
C’l(n) = C’l(n — 1) + C’l(n — 2) —+ 2n—37

valid for n > 3. From this we observe that Cy(n) = 2"~! — F,,_1, where F,,_; is
the n — 1th Fibonacci number.
A combinatorial proof of (7) is of independent interest. Write

C} (n) = # {compositions of n with no part {}

n
= Z #{compositions of n with no part [ and first part k}

k=1
k#L
=> Ci(n—k)

k=1

k#L
Similarly

Ci(n—1)= ZC’ln—l—k
k;él

Thus

Ci(n) =Cr(n—1) +ch*(n— k)
i
=C/(n—-1) Z Cf(n—1-j7)

J+17él
=2Cf(n—-1)-Cf{(n—-0)+Cj(n—1-1)

Corollary 10. The generating function for the last row of Table 3, labelled %2, is
t2 o0 tl

8 1 .

(®) ( +1—2t>;1—2t+tl—tl+1

Proof. Write the summands in

o0

Z t t—th it
—~\1-2t 12+t —tH!

over a common denominator and then remove the common factor.
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Hwang and Yeh have derived from the generating function (8) the asymptotic
mean value

anzl mF'(n, m)
2n—1

3
= log,n — 2 + é — w(logy n) + O(n"*logn),

where w(u) is a periodic function of small amplitude. This result and others are
contained in [2].

It is interesting to observe that the first [ (nonzero) terms of row [ in Table 3 are
also the first [ terms of every subsequent row of the table. Thus there is a sequence
beginning 1,2,5,12,28, ... which we will call an envelope for the rows of the table.
We account for this series in the next result.

Corollary 11. The envelope 1,2,5,12,28,64,144,... of Table 3 has generating
functi 1—t\2
unction .
1—2t

Proof. In the generating function in Corollary 10 the significance of the #' factor is
only that row [ is offset. For the envelope, we first consider 1/(1 — 2t + ¢! — ¢!*1).
Note (by long division) that the series expansion of this function of ¢ matches the
series expansion of 1/(1 — 2t) for [ terms. Thus the first [ terms of

t2 1
1+
1—2t) 1—2t+ ¢ —ti+1

are provided by the simpler function
£ 1 1—t\?
1+ =
1-2t)1-2t 1—2t

From the generating function we deduce that the nth entry of the envelope
sequence (numbered from n = 0) equals 2"~2(n + 3) for n > 1.

By studying the generating function of Corollary 10 we can provide a family of
“nested recurrences” for the numbers 3.

Theorem 12. Denote by S(n) and D;(n) sequences defined for n > 1 by the
initial conditions S(1) = 1,5(2) = 2, and for any i D;(1) = D;(2) = 1, and by the
recurrences

S(n)=28(n—1)—Di(n—1)+Di(n—2) + (2" 3 +2""* 4+ .. ) +1

1,if2|n—1

Di1(n) =2D1(n—1) — Da(n—1) + Da(n —2) + (2" 73 +2" 75+ .. ) + ,
0, otherwise

1,if3|n—-1
Da(n) =2D3(n—1) — D3(n — 1) + D3(n —2) + (2" 73 + 2770 4+ . ) + | ]
0, otherwise
1,if4|n—-1

D3(n) =2D3(n—1) — Dg(n— 1)+ Da(n —2) + (2" 3 + 2" 7"+ .. ) + ,
0, otherwise
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Then S(n) is the nth entry of row X of Table 3. The sums of powers of 2 include
terms as long as the exponents remain non-negative.

Proof. The proof will be by induction on k£, the subscript of D. Summing the
entries in column n, we apply the recurrence of Corollary 9 summand by summand
to obtain

S(n)=2S(n—-1) —iC’l(n—l) +§:C’l(n—l— 1) +nz_:2l.
1=1 1=1 =1

We denote Y ;2 Ci(n—1) by Dy(n), where D is chosen mnemonically to represent
a sum over a diagonal. The diagonal sum D;(n) steps through Table 3, repeatedly
moving down one entry and to the left one entry from entry Cy(n) in the first row.
There is an extra summand of 1 because Cy,(n) = 1 did not arise from a recurrence
but from an initial condition. This explains the first recurrence.

Now consider the recurrence appropriate for Dyy1. Recurrence (8) applies to the
summands of Dy, as well, which arose by stepping down one entry and to the left &
entries from entry C7(n) in the first row. Recurrence (8) applied to the summands
of Dy gives a shallower diagonal, stepping down one entry and to the left £ + 1
entries, with an extra summand of 1 arising for k+1 | n —1 because in every k+ 1st
shallow diagonal the initial condition C|,,/x+1)|(n) = 1 gives a term that does not
arise in any recurrence.

The partition A\;1+A22+. ..+ A,n = n (with \; occurrences of i) can be ordered
in (A1 + A2+ ...+ A)/(A1A2! L AL ways. If we count compositions of n with j
parts by taking ordered arrangements over partitions of n with j parts we get the
well known identity

| o Al A
] ]_ VR I W S . /\1.)\2. e /\n-
ArtHde+ A =]
Similarly we can count compositions of n with j parts of m different sizes by taking
ordered arrangements of partitions of n into j parts with m different sizes. The

result is expressed in the following proposition.

Proposition 13.

L J!
F(n,m, j) = > bl
)\1 1+)\22++)\nn=n

ArtHde+ A =]
#{i:X;>0}=m
As this proposition shows, there is a close connection between partition identities
and composition identities. Now we go the other way, and note some results for
partitions analogous to the composition results we have derived.

PARTITIONS WITH m DISTINCT PARTS

Since partitions may be regarded as compositions with decreasing part size, and
compositions may be generated from partitions by permuting the parts, it is not
surprising that many of the formulas generated above have analogues for partition
counting functions. We begin by recasting Table 1 as a table about partitions.
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Table 4. Partitions of n with m distinct parts, G(n,m), 1 <n <16,1 <m <5

n\m 1 2 3 45
1 1

2 2

3 2 1

4 3 2

5 2 5

6 4 6 1

7 2 11 2

8 4 13 )

9 3 17 10

10 4 22 16 1

11 2 27 25 2

12 6 29 37 5

13 2 37 52 10

14 4 44 67 20

15 4 44 97 30 1
16 5 95 117 52 2

The first column of Table 4 is again d(n), the divisor counting function. The sums
over divisors of the first two theorems have the following versions for partitions,
obtained by counting partitions according to occurrences of the distinct part that
occurs least often.

Theorem 14. Forn > 2,

n—1

[n/3] [n/j]-1 Ln/3] n/j—1
-> > ¥ -y MY Y
j=2 k=1 d|(n—jk) j=1 k=1d|(n—k)
k#d< L=k gln k#d

Theorem 15. For j > 2 andn > j,

Li/2] |n/r|—1 o ' . '
G(n,2,5) = Z Z 1 L(j )/2J, if2)j andj | 2n
0, otherwise.
(G- r)|(n kr)

k#(n—Fkr)/(5—r)

Formula (4) in Theorem 7 has a version for partitions whose proof is immediate:
From a composition of n into m parts one seeks the Ferrars graph of a partition
into m distinct parts by replacing summands a; with groups of j; summands each
of size a;/j;. All that is different is that, when an acceptable Ferrars graph is found,
the partition counts once, instead of having its parts permuted to generate a family
of compositions. What results is

Theorem 16.

G(n,m) = Z Z Z Z Z

n=ai+az2+...+am ji|ay j2|a? j3|a?, 'jm|am.
ai#0 J1>J2 J2>73 Jm—1>Jm

In structure Table 4 resembles Table 1, but it has an envelope for its columns
reminiscent of the envelope for the rows of Table 3.
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Theorem 17. The first m + 1 non-zero entries in column m of Table 4 are the
first m + 1 non-zero entries of all subsequent columns. The envelope,

1,2,5,10,20, 36,...,
has generating function
oo
[Ja-)2
i=1

Proof. The first non-zero entry in column m occurs at the smallest n for which it
is possible to have m distinct summands in a partition of n, which is at T, the
mth triangular number. The farthest term in the envelope occurring in column m
counts partitions of T}, + m = T},+1 — 1 into m distinct parts.

Consider the triangle of dots that is the Ferrars graph of the partition 1+ 2 +
...+ m, and let 1 < a < m be given. Any partition of a can be represented as a
Ferrars graph on its own, and appended to the triangular Ferrars graph by either
of two different methods. One method is to adjoin dots representing the successive
summands in the partition row by row to the rows of the triangular Ferrars graph,
top to bottom. This results in a partition of T}, + a into m parts in all, all of them
distinct. Another method is to adjoin dots representing the successive summands
in the partition column by column to the columns of the triangular Ferrars graph,
left to right. This results in a partition of 7T}, + a in which the largest part is m, in
which there are more than m parts in all, but in which there are only m distinct
parts.

For any representation of m = a + b, any of the p(a) partitions of a may be
appended to the triangular Ferrars graph of 1 + 2 + ... 4 m by the first method,
and any of the p(b) partitions of b may be appended by the second method. This
results in a Ferrars graph for a partition of 7}, + m into exactly m distinct parts.
Furthermore the process is reversible. Thus in the Ferrars graph of any partition
of T}, + m into m distinct parts, it is possible to strip off the first m dots in the
first row, the first m — 1 dots in the second, ..., the first dot in the mth row. This
leaves m dots, in clusters of dots in the upper right and/or lower left, that can be
interpreted as partitions of a (upper right) and b (lower left).

Overall the number of partitions of T}, + m into m distinct parts is thus given
by > —atp P(@)p(b). This sum allows a or b to be 0. This is the coefficient of ¢™ in
the series expansion of (1+p(1)t+p(2)t2+...)%, and hence the generating function
is the square of the generating function for unrestricted partitions:

oo

[Ja-t)2

=1

Figure 1. The Ferrars graph construction of Theorem 16 for m =7, a = 4 =
24141, andb=3=1+1+41, yielding the partition of T7 +7=35=94+7+6+
44+3+3+4+2+1 with 7 distinct parts.

BEFORE
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The combinatorial approach of Theorem 17 also explains the values of the next
term beyond the first m + 1 terms of the envelope, G(m(m + 1)/2 + m + 1,m),
because in this case when the partitions of a and b consist of all 1’s, the appended
partitions span the ¢ 4 1st diagonal to give a Ferrars graph of the partition of 7}, 41
into m + 1 distinct parts. Excluding these m + 2 cases gives the correct value of
Gim(m+1)/24+m+1,m).

Given the simplicity of the generating function, it is not surprising that the
envelope has arisen in many enumeration problems. See, for example, [1, p. 90] in
connection with partitions into parts of two kinds.

In analogy with Lemma 3 we have

Lemma 18. Denote by G(n,m,j) the number of partitions of n with exactly m
distinct parts and j parts in all, and by G*(n,m,j) the number of compositions of
n with exactly m distinct parts, j parts in all, and at least one part being a 1. Then

G(n,m,j)=G(n—j,m,j)+ G*(n,m,j).
The parallel development continues.
Proposition 19.

G(n,m,j) = Gln—jom,j) + > Gln—j,m—1,j— k),
k

where Y." indicates a sum over those k for which a partition of n into m distinct
parts, j parts in all, can have exactly k 1’s.

The same results about the summands of ¥* earlier, in Proposition 5 and the
preceding remarks, apply here as well.
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Corollary 20.

J
G(n,2,7) Z Z 1.
=1 k
(G—R)[(n—1j)

In conclusion we mention that the mean value for the number of distinct parts
in a partition of n was obtained by Wilf [7]. He showed that

> 1mGnm ZP e V6

p(n) T

as n — Q.
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