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ABSTRACT

Jonathan David Cohen: Appearance-Preserving Simplification of Polygonal Models

(Under the direction of Dinesh Manocha)

Over the last six years, the automatic simplification of polygonal models has become an

important tool for achieving interactive frame rates in the visualization of complex virtual

environments. Initial methods employed clever heuristics, but no real quality metrics; then

measures of quality for these simplified output models began to develop. This dissertation

focuses on the use of error metrics to provide guaranteed error bounds for the simplifications

we create. We guarantee bounds on the total appearance of our simplifications with respect to

the three major appearance attributes: surface position, surface curvature (normal), and

material color.

We present the simplification envelopes and successive mappings algorithms for geomet-

ric simplification, two unique approaches that bound the maximum surface-to-surface

deviation between the input surface and the simplified output surfaces. We also present the

first bound on maximum texture deviation. Using these tools, we develop the first appear-

ance-preserving simplification algorithm. The geometric simplification provides the filtering

of the surface position attribute, bounding the error by means of the surface deviation bound.

The color and curvature information are stored in texture and normal map structures, which

are filtered at run time on a per-pixel basis. The geometry and maps are tied together by the

texture deviation metric, guaranteeing not only that the attributes are sampled properly, but

that they cover the correct pixels on the screen, all to within a user- or application-supplied

tolerance in pixels of deviation.

We have tested these algorithms on polygonal environments composed of thousands of

objects and up to a few million polygons, including the auxiliary machine room of a notional

submarine model, a lion sculpture from the Yuan Ming garden model, a Ford Bronco model,
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a detailed “armadillo” model, and more. The algorithms have proven to be efficient and

effective. We have seen improvements of up to an order of magnitude in the frame rate of

interactive graphics applications, with little or no degradation in image quality.
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1. INTRODUCTION

1.1 Motivation

In 3D computer graphics, polygonal models are often used to represent individual objects

and entire environments. Planar polygons, especially triangles, are used primarily because

they are easy and efficient to render. Their simple geometry has enabled the development of

custom graphics hardware, currently capable of rendering millions or even tens of millions of

triangles per second. In recent years, such hardware has become available even for personal

computers. Due to the availability of such rendering hardware and of software to generate

polygonal models, polygons will continue to play an important role in 3D computer graphics

for many years to come.

However, the simplicity of the triangle is not only its main advantage, but its main disad-

vantage as well. It takes many triangles to represent a smooth surface, and environments of

tens or hundreds of millions of triangles or more are becoming quite common in the fields of

industrial design and scientific visualization. For instance, in 1994, the UNC Department of

Computer Science received a model of a notional submarine from the Electric Boat division

Figure 1: The auxiliary machine room of a notional submarine model: 250,000 triangles
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of General Dynamics, including an auxiliary machine room composed of 250,000 triangles

(see Figure 1) and a torpedo room composed of 800,000 triangles. In 1997, we received from

ABB Engineering a coarsely-tessellated model of an entire coal-fired power plant, composed

of over 13,000,000 triangles. It seems that the remarkable performance increases of 3D

graphics hardware systems cannot yet match the desire and ability to generate detailed and

realistic 3D polygonal models.

1.2 Polygonal Simplification

This imbalance of 3D rendering performance to 3D model size makes it difficult for

graphics applications to achieve interactive frame rates (10-20 frames per second or more).

Interactivity is an important property for applications such as architectural walkthrough,

industrial design, scientific visualization, and virtual reality. To achieve this interactivity in

spite of the enormity of data, it is often necessary to trade fidelity for speed.

We can enable this speed/fidelity tradeoff by creating a multi-resolution representation of

our models. Given such a representation, we can render smaller or less important objects in

the scene at a lower resolution (i.e. using fewer triangles) than the larger or more important

objects, and thus we render fewer triangles overall. Figure 2 shows a widely-used test model:

the Stanford bunny. This model was acquired using a laser range-scanning device; it contains

over 69,000 triangles. When the 2D image of this model has a fairly large area, this may be a

reasonable number of triangles to use for rendering the image. However, if the image is

smaller, like Figure 3 or Figure 4, this number of triangles is probably too large. The right-

most image in each of these figures shows a bunny with fewer triangles. These complexities

are often more appropriate for image of these sizes. Each of these images is typically some

small piece of a much larger image of a complex scene.

For CAD models, such representations could be created as part of the process of building

the original model. Unfortunately, the robust modeling of 3D objects and environments is

already a difficult task, so we would like to explore solutions that do not add extra burdens to

the original modeling process. Also, we would like to create such representations for models

acquired by other means (e.g. laser scanning), models that already exist, and models in the

process of being built.



3

Figure 2: The Stanford bunny model: 69,451 triangles

69,451 triangles 2,204 triangles

Figure 3: Medium-sized bunnies.

69,451 triangles 575 triangles

Figure 4: Small-sized bunnies.
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Simplification is the process of automatically reducing the complexity of a given model.

By creating one or more simpler representations of the input model (generally called levels of

detail), we convert it to a multi-resolution form. This problem of automatic simplification is

rich enough to provide many interesting and useful avenues of research. There are many

issues related to how we represent these multi-resolution models, how we create them, and

how we manage them within an interactive graphics application. This dissertation is con-

cerned primarily with the issues of level-of-detail quality and rendering performance. In

particular, we explore the question of how to preserve the appearance of the input models to

within an intuitive, user-specified tolerance and still achieve a significant increase in render-

ing performance.

1.3 Thesis Statement

By applying 3D Euclidean distance metrics to the process of geometric simplification and

by representing appearance attribute fields in a decoupled form, we can preserve the ap-

pearance of polygonal models to within an intuitive, user-specified tolerance while achieving

significant increases in rendering performance.

1.4 Design Criteria

In this dissertation, we present techniques for automatically generating and employing

simplifications of polygonal models. We have developed these techniques with two major

design criteria in mind.

• Provide guaranteed, measured quality in the output models.

• Pre-compute as much as possible, keeping the real-time graphics application as fast as

possible.

The first criterion is the one that really defines our work. With guaranteed error bounds

available for all our levels of detail, it is possible for a graphics application to automatically

choose which level of detail to render for each object without any user-intervention on a per-

object basis. This is crucial for complex environments containing thousands of objects or

more.
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 The second criterion is based on empirical observation. Several excellent simplification

systems, like those of [Hoppe 1997] and [Luebke and Erikson 1997], now exist that dynami-

cally update the simplification of an object or scene while an interactive graphics application

is running. This becomes more feasible as more processing power becomes available on the

host machine. However, we have chosen to emphasize run-time efficiency. In our view, those

extra CPU cycles available on the host may be required for other application-related pur-

poses, rather than for assisting our level-of-detail management. Our research here explores

the limits of what level of quality preservation is possible using only statically-computed

levels of detail, allowing us to maximize the processing resources of our graphics computer

during interactive applications. This trade-off is discussed further in Section 2.4.3.

1.5 Input Domain

The algorithms we develop operate on manifold triangle meshes, including those with

borders. In the continuous domain, a manifold surface is one that is everywhere homeomor-

phic to an open disc. In the discrete domain of triangle meshes, such a surface has two

topological properties. First, every vertex is adjacent to a set of triangles that form a single,

complete cycle around the vertex. Second, each edge is adjacent to exactly two triangles. For

a manifold mesh with borders, these restrictions are slightly relaxed. A vertex may be sur-

rounded by a single, incomplete cycle (i.e. the beginning need not meet the end). Also, an

edge may be adjacent to either one or two triangles.

A mesh that does not have these properties is said to be non-manifold. Such meshes may

occur in practice by accident or by design. Accidents are possible, for example, during either

the creation of the mesh or during conversions between representation, such as the conver-

sion from a solid to a boundary representation. The correction of such accidents is a subject

of much interest [Barequet and Kumar 1997, Murali and Funkhouser 1997]. They may occur

by design because such a mesh may require fewer triangles to render than a visually-

comparable manifold mesh or because such a mesh may be easier to create in some situa-

tions.

Although our algorithms are designed to operate on strictly manifold meshes, and the cur-

rent implementations reflect this, they may be modified to deal well with meshes that are
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“mostly manifold”. The simplest such modification might just leave the non-manifold

portions of the mesh unchanged from the input surface. A more sophisticated modification

may break the non-manifold mesh into a set of manifold meshes with borders, noting the

adjacency of these meshes. Such a modification fits well into the patch-based approach

described in Chapter 5. We acknowledge, however, that such modifications do not totally

solve the problem of non-manifold meshes. If a significant portion of the input mesh is non-

manifold, such algorithms may be of limited use for reducing complexity.

1.6 Research Summary

We began this research project in the summer of 1995. At that time, there were relatively

few publications on the subject of general polygonal mesh simplification; much of the earlier

work focused on the simplification of convex polyhedra [Das and Joseph 1990] and polyhe-

dral terrains [Agarwal and Suri 1994]. There were several publications on the more general

problem, though. The most well-known of these were [Rossignac and Borrel 1992],

[Schroeder et al. 1992], [Turk 1992], and [Hoppe et al. 1993]. During the course of this

research, the field of automatic simplification has become much more active, and quite a few

interesting techniques have been developed by other researchers. We discuss only the previ-

ous work here; the most relevant of the concurrent work is discussed in Chapter 2.

1.6.1 Previous Work

[Rossignac and Borrel 1992] present a simple, but powerful, scheme based on the clus-

tering of nearby vertices and the removal of any resulting degenerate geometry. This ap-

proach is remarkably flexible, and guarantees that the distance of the resulting geometry from

the original is no greater than the maximum vertex displacement. Unfortunately, this error

bound is quite loose. Also, the resulting geometry is often poorly shaped because no attention

is given to the local topology (connectivity) or curvature of the original geometry.

The approaches of [Schroeder et al. 1992] and [Turk 1992], on the other hand, pay close

attention to these details, preserving the local topology of the original geometry, and allowing

more simplification in regions of lower curvature than in those of higher curvature. These

approaches, which produce fairly nice-looking simplifications, provide no error bounds to

describe the quality of the final output.



7

[Hoppe et al. 1993] pose the simplification problem in an optimization framework. Tak-

ing a topology-preserving approach, the algorithm performs a sequence of mesh-simplifying

operations according to the guidance of an energy function. This function includes terms for

distance error, mesh complexity, and an extra spring force. This optimization process pro-

vides some confidence that the competing concerns of quality and complexity are balanced in

a reasonable fashion. However, the actual metric used for measuring distance is not rigorous;

a number of sample points are recorded on the original surface, and their minimum distances

from the new surface are measured as the simplification progresses. This metric does not

provide a guarantee on the maximum distance, and it is one-sided, with the potential for

points on the simplified surface to be quite far from the original surface.

We also knew of another interesting algorithm, which appeared in [Varshney 1994]. The

algorithm measures error by building a pair of geometric constraint surfaces around the input

surface to some distance tolerance, using these constraints to guarantee a desired error bound.

This approach preserves local topology, and provides a guaranteed error bound on the dis-

tance from the original surface to the simplified surface. Thus, it achieves the quality appear-

ance of [Schroeder et al. 1992], [Turk 1992], and [Hoppe et al. 1993], as well as the guaran-

teed error bounds of [Rossignac and Borrel 1992]. However, the running time of the algo-

rithm grows at least quadratically with the size of the input mesh. We took this algorithm as

an appealing starting point for our endeavor.

1.6.2 Our Approach

The main goal of our research is to automatically generate simplifications that preserve

the appearance of the original models. We define appearance preservation as the proper

sampling of all the appearance attributes that determine the final, shaded colors of a rendered

surface. For current real-time image generation systems, the most common appearance

attributes that vary across a surface are position, curvature, and color. Our implementation

supports these three attributes. Current off-line rendering systems, such as those supporting

the RenderMan shading language [Upstill 1989, Hanrahan and Lawson 1990], allow a myriad

of other appearance attributes to vary across a surface. In the limit, such attributes describe a

bidirectional reflectance distribution function [Foley et al. 1990] over the surface domain.
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Our approach seems general enough to handle a wide variety of such additional attributes as

the need arises.

Figure 5 depicts the components of our system. In the left side of the diagram, we convert

the original mesh representation to a decoupled form; the position attribute is stored at the

polygon vertices, as usual, whereas the color and curvature information is stored in auxiliary

texture and normal map structures. These maps are linked to the polygon mesh using a

parameterization of the mesh, stored as 2D texture coordinates at the polygon vertices.

We then apply the actual simplification process, shown in the right side of the diagram.

We generate the simplified meshes using a surface approximation algorithm that provides

guaranteed bounds on the surface deviation (we develop two such surface approximation

algorithms: the simplification envelopes algorithm and the successive mapping algorithm).

We augment the surface approximation algorithm with a new texture deviation metric, which

guarantees bounds on the texture deviation. Our simplified meshes are thus equipped with

both surface and texture deviation bounds, and are supplemented by texture and normal

maps, which preserve the other attribute data.

Surface
Parameterization

Map
Creation

Surface
Approximation

Texture
Deviation

Metric

Simplification
Representation

ConversionPolygonal
Mesh

Simplified
Meshes

Texture and
Normal Maps

Figure 5: Components of an appearance-preserving simplification system.

When we render the model, we choose an appropriate level of detail to use as the geome-

try, then perform a mip-mapped look-up to find the appropriate values for the color and

normal vector at each pixel covered by the geometry, shading that pixel according to these

attribute values. If we consider this data reduction as a filtering process, the simplification

pre-processing has taken care of the filtering of the surface position attribute, whereas the

run-time mip-mapping properly filters the curvature and color attributes on a per-pixel basis.
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The error bounds we compute during the simplification process are essential for guaran-

teeing the quality of the resulting images. Both the surface and texture deviations are meas-

ured as the maximum 3D distances between corresponding points on the original and simpli-

fied surfaces. When we apply the current viewing parameters to project these 3D distances

into 2D we get an error bound in terms of pixels of deviation. For instance, if the surface and

texture deviations project to 2 pixels of deviation, the shaded pixels in an image of the

simplified model will be no more than 2 pixels from their correct positions in an image of the

original model. This intuitive error bound allows the user or application to automatically

control the levels of detail of all the objects in a complex environment, guaranteeing a

uniform quality, if desired, and accelerating the frame rate accordingly.

1.6.3 Results

We have applied our simplification algorithms to polygonal environments composed of

thousands of objects and up to a few million polygons, including the auxiliary machine room

of a notional submarine model, a lion sculpture from the Yuan Ming garden model, a Ford

Bronco model, a detailed “armadillo” model, and more. The algorithms have proven to be

efficient and effective. We have seen improvements of up to an order of magnitude in the

frame rate of interactive graphics applications, with little or no degradation in image quality.

For example, look at the bunnies in Figure 3 and Figure 4. Although the positions of the

surfaces are preserved quite well, as evidenced by the similarity of the silhouettes of the

bunnies, the shading makes it quite easy to tell which bunnies have been simplified and

which have not (i.e. the appearance has not been totally preserved). Figure 6 shows a view of

a complex “armadillo” model. We have applied our appearance-preserving algorithm to this

model to generate the simplified versions of Figure 7 and Figure 8, in which it is nearly

impossible to distinguish the simplifications from the original. This demonstrates that our

definition of appearance preservation may match our more intuitive notion of what it means

to preserve appearance.



10

Figure 6: �Armadillo� model: 249,924 triangles

249,924 triangles 7,809 triangles

Figure 7: Medium-sized �armadillos�

249,924 triangles 975 triangles

Figure 8: Small-sized �armadillos�
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1.7 Contributions

This dissertation presents three major algorithms: the simplification envelopes and suc-

cessive mapping algorithms for geometric simplification, and an overall appearance-

preserving simplification algorithm. These techniques make a number of contributions to the

field of polygonal mesh simplification:

1. Increased robustness and scalability of the simplification envelopes algorithm

2. Local error metric for surface-to-surface deviation between original and simplified

surfaces

3. Bijective (one-to-one and onto) mappings between original and simplified surfaces

for the edge collapse operation

4. Local error metric for texture deviation, with bijective mappings between original and

simplified surfaces

5. Appearance-preserving simplification algorithm

6. Intuitive, screen-space error metric for surface and texture deviations

We now summarize each of these contributions.

1.7.1 Increased Robustness and Scalability of the Simplification Envelopes Algorithm

The simplification envelopes algorithm, which first appeared in [Varshney 1994], has

several useful properties: it provides a global error metric for surface-to-surface deviation

between original and simplified surfaces, using highly-detailed offset-like surfaces to provide

tight error bounds, it preserves global topology, preventing self-intersections that may result

in large screen-space artifacts for models built with close geometric tolerances, and it scales

well to environments composed of large numbers of objects, automating not only the process

of simplification, but the selection of appropriate viewing distances for simplified objects.

We present new techniques for both the creation of envelope surfaces and the simplifica-

tion of complex meshes using these envelopes. Our new approaches perform only conserva-

tive intersection tests between linear elements (line segments and triangles). Intersections are

reported conservatively (an intersection is reported if the elements come within some small
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tolerance of each other), and actual intersection points are never computed. This approach is

more geometrically robust than the original algorithm of [Varshney 1994]. In addition, we

have improved the asymptotic running time of the overall simplification algorithm to

O(nlogn) for typical input models of n triangles, so it scales well to input meshes of very high

complexity.

1.7.2 Local Error Metric for Surface-to-Surface Deviation, with Bijective Mappings
between Original and Simplified Surfaces

The successive mapping algorithm provides a local error metric for measuring surface

deviation as the simplification process progresses. Although a number of simplification

algorithms now provide local error metrics, most provide bounds on the distance from the

original vertices to points on the simplified surface, rather than the true surface-to-surface

deviation. The tolerance volume simplification algorithm by Guéziec [Guéziec 1995] is a

noteworthy exception. The two-sided Hausdorff metric algorithm by Klein [Klein et al. 1996]

is also an exception, though the one-sided metric he advocates does not provide such an error

bound. However, neither of these other algorithms provides a bijective (one-to-one and onto)

mapping between the original and simplified surfaces, nor do they extend gracefully to deal

with other important attribute fields.

1.7.3 Bijective Mappings between Original and Simplified Surfaces for the Edge
Collapse Operation

Our successive mapping algorithm is the first edge-collapse-based simplification algo-

rithm to provide bijective mappings among the levels of detail. The wavelet-based algorithms

[DeRose et al. 1993] provide bijective mappings for the unsubdivide operation and the

mapping algorithm of [Bajaj and Schikore 1996] provides a bijective mapping for the vertex

remove operation (though it does not provide correct error bounds for this mapping). We use

this mapping in our edge-collapse-based simplification algorithm both to bound the surface

deviation error and to maintain a texture coordinate parameterization of the input surface

through the simplification process. Such a mapping has many potential uses, including

measuring and localizing the deviations of other attribute fields.
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1.7.4 Local Error Metric for Texture Deviation between Original and Simplified
Surfaces

The successive mapping simplification algorithm may be used not only to maintain a

texture coordinate parameterization of the input surface, but also to bound the maximum

texture deviation between the original and simplified surfaces, measuring it as a 3D distance

between corresponding points of the 2D texture domain. Such an error bound is important for

models rendered with generic, re-usable texture maps as well as for models with per-vertex

attributes stored in texture, normal, or other attribute maps. These models have been common

in the off-line rendering community for some time, and models with texture maps have

become quite common in the real-time graphics community as well. As the graphics accel-

eration hardware becomes capable of performing more complex shading operations, models

with these sorts of various maps will likely become increasingly common.

1.7.5 Appearance-preserving Simplification Algorithm

Our appearance-preserving simplification algorithm is the first to preserve the shaded ap-

pearance of the original model in the simplified levels of detail it creates. It guarantees proper

sampling of the surface position, surface curvature, and material color attributes of the

original model, which fully determine the its final appearance in rendered images. To accom-

plish this, the algorithm first decouples the sampling rates of these attributes by storing the

model’s per-vertex color and normal vectors in texture and normal maps, respectively. The

simplification algorithm then filters the model’s surface position attribute, guaranteeing

bounds on both the surface and texture deviations. The color and normal data is filtered on a

per-pixel basis at the time of rendering. The algorithm thus guarantees that the attributes are

sampled properly across the surface and that they are mapped to the correct pixels on the

screen, within a user- or application-specified error tolerance.

1.7.6 Intuitive, Screen-space Error Metric Incorporating both Surface and Texture
Deviations

The approach we take to appearance preservation provides an intuitive, screen-space error

metric. The simplification algorithm measures both the surface deviation and texture devia-

tion as the maximum lengths of displacement vectors in 3D. During an interactive visualiza-

tion application, we use the current viewing parameters to convert these 3D lengths to bounds
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on 2D, screen-space displacements. These 2D bounds are measured in pixels of displace-

ment. They tell the user and the application the maximum pixel length of any apparent shift

in the rendered image due to replacing the original model with a particular level of detail. In a

way, this metric views the results of our simplification algorithm as some form of image

warp, with bounds on the maximum pixel displacement of the warp. This metric has an

intuitive feel, avoiding complicated issues such as determining the effects of further reduction

of the color and normal data on the perceived appearance of the rendered image.

1.8 Organization

 The remainder of the dissertation is organized as follows. Chapter 2 provides a summary

of the techniques used by many surface approximation algorithms, including known bounds

on complexity and optimality, local simplification operations, multi-resolution representa-

tions, methods of measuring error, and representation and preservation of appearance attrib-

utes. It is organized by topic, rather than by researcher or research project. Although it does

not cover the body of simplification literature in its entirety, it covers the topics that are most

relevant to this dissertation and our sub-topics of interest in this field.

Chapter 3 presents the idea of simplification envelopes for generating a hierarchy of level-

of-detail approximations for a given polygonal model. These envelopes are geometric con-

structions that use global information to bound the error of the simplification process. The

approach guarantees that all points of an approximation are within a user-specifiable distance

ε from the original model and that all points of the original model are within a distance ε

from the approximation. Simplification envelopes provide a general framework within which

a large collection of existing simplification algorithms can run. We demonstrate this tech-

nique in conjunction with two simplification algorithms, one local, the other global. The local

algorithm uses the vertex remove operation to provide a fast method for generating approxi-

mations to large input meshes (at least hundreds of thousands of triangles). The global

algorithm provides the opportunity to avoid local “minima” and possibly achieve better

simplifications as a result. Each approximation attempts to minimize the total number of

polygons required to satisfy the above ε constraint. The key advantages of the approach are: it

is a general technique providing guaranteed error bounds for genus-preserving simplification,
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it provides automation of both the simplification process and the selection of appropriate

viewing distances, it prevents self-intersections in the output models, it preserves sharp

features, and it allows variation of approximation distance across different portions of a

model.

In Chapter 4, we present a more incremental, local approach to guaranteeing error

bounds, using mapping functions. We develop a piece-wise linear mapping function for each

simplification operation and use this function to measure deviation of the new surface from

both the previous level of detail and from the original surface. In addition, we use the map-

ping function to compute appropriate texture coordinates if the original map has texture

coordinates at its vertices. Our overall algorithm uses edge collapse operations. We present

rigorous procedures for the generation of local planar projections as well as for the selection

of a new vertex position for the edge collapse operation. Our algorithm is able to compute

tight error bounds on surface deviation and produce an entire continuum of levels of detail

with mappings between them. We demonstrate the effectiveness of our algorithm on several

models: a Ford Bronco consisting of over 300 parts and 70,000 triangles, a textured lion

model consisting of 49 parts and 86,000 triangles, and a textured, wrinkled torus consisting

of 79,000 triangles.

Chapter 5 builds on the techniques of Chapter 4 to develop a new algorithm for appear-

ance-preserving simplification. Not only does it generate a low-polygon-count approximation

of a model, but it also preserves the appearance. This is accomplished for a particular display

resolution in the sense that we properly sample the surface position, curvature, and color

attributes of the input surface. We convert the input surface to a representation that decouples

the sampling of these three attributes, storing the colors and normals in texture and normal

maps, respectively. Our simplification algorithm employs a new texture deviation metric,

which guarantees that these maps shift by no more than a user-specified number of pixels on

the screen. The simplification process filters the surface position, and the run-time system

filters the colors and normals on a per-pixel basis. We have applied our simplification

technique to several large models achieving significant amounts of simplification with little

or no loss in rendering quality.
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Finally, Chapter 6 closes the dissertation, discussing future work and putting our simplifi-

cation techniques into the context of the general rendering acceleration problem.



2. BACKGROUND

This chapter reviews some fundamental concepts necessary to understand algorithms for

simplification of polygonal models at a high level. These concepts include optimal/near-

optimal solutions for the simplification problem, the use of local simplification operations,

topology preservation, level-of-detail representations for polygonal models, error measures

for surface deviation, and the preservation of appearance attributes. It should be noted that the

research of this dissertation was performed over the period from 1995 through 1998, so some

of the related work discussed here should be considered previous work, whereas some of it is

more properly classified as contemporary to this dissertation. This is not a complete survey of

the field of polygonal model simplification, which has grown to be quite large. For more

information, several survey papers are available [Erikson 1996, Heckbert and Garland 1997].

2.1 Optimality

There are two common formulations of the simplification problem, described in

[Varshney 1994], to which we may seek optimal solutions:

• Min-# Problem: Given some error bound, ε, and an input model, I, compute the mini-

mum complexity approximation, A, such that no point of A is farther than ε distance away

from I and vice versa (the complexity of A is measured in terms of number of vertices or

faces).

• Min- ε Problem: Given some target complexity, n, and an input model, I, compute the

approximation, A, with the minimum error, ε, described above.

In computational geometry, it has been shown that computing the min-# problem is NP-

hard for both convex polytopes [Das and Joseph 1990] and polyhedral terrains [Agarwal and

Suri 1994]. Thus, algorithms to solve these problems have evolved around finding polyno-

mial-time approximations that are close to the optimal.
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Let k0 be the size of a min-# approximation. An algorithm has been given in [Mitchell

and Suri 1992] for computing an ε-approximation of size O(k0 log n) for convex polytopes of

initial complexity n. This has been improved by Clarkson in [Clarkson 1993]; he proposes a

randomized algorithm for computing an approximation of size O(k0 log k0) in expected time

O(k0n
1+δ) for any δ > 0 (the constant of proportionality depends on δ, and tends to +∞ as δ

tends to 0). In [Brönnimann and Goodrich 1994] Brönnimann and Goodrich observed that a

variant of Clarkson's algorithm yields a polynomial-time deterministic algorithm that com-

putes an approximation of size O(k0). Working with polyhedral terrains, [Agarwal and Suri

1994] present a polynomial-time algorithm that computes an ε-approximation of size

O(k0 log k0) to a polyhedral terrain.

Because the surfaces requiring simplification may be quite complex (tens of thousands to

millions of triangles), the simplification algorithms used in practice must be o(n2) (typically

O(n log n)) for the running time to be reasonable. Due to the difficulty of computing near-

optimal solutions for general polygonal meshes and the required efficiency, most of the

algorithms described in the computer graphics literature employ local, greedy heuristics to

achieve what appear to be reasonably good simplifications with no guarantees with respect to

the optimal solution.

2.2 Local Simplification Operations

Simplification is often achieved by performing a series of local operations. Each such op-

eration serves to coarsen the polygonal model by some small amount. A simplification

algorithm generally chooses one of these operation types and applies it repeatedly to its input

surface until the desired complexity is achieved for the output surface.

2.2.1 Vertex Remove

The vertex remove operation involves removing from the surface mesh a single vertex

and all the triangles touching it. This removal process creates a hole that we then fill with a

new set of triangles. Given a vertex with n adjacent triangles, the removal process creates a

hole with n sides. The hole filling problem involves a discrete choice from among a finite

number of possible retriangulations for the hole. The n triangles around the vertex are re-

placed by this new triangulation with n-2 triangles. The Catalan sequence,
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describes the number of unique ways to triangulate a convex, planar polygon with i+2 sides

[Dörrie 1965, Plouffe and Sloan 1995]. This provides an upper bound on the number of non-

self-intersecting triangulations of a hole in 3D. For example, holes with 3 sides have only 1

triangulation, and holes with 4, 5, 6, 7, 8, and 9 sides have up to 2, 5, 14, 42, 132, and 429

triangulations, respectively.

Both [Turk 1992] and [Schroeder et al. 1992] apply the vertex remove approach as part of

their simplification algorithms. Turk uses point repulsion (weighted according to curvature)

to distribute some number of new vertices across the original surface, then applies vertex

remove operations to remove most of the original vertices. Holes are retriangulated using a

planar projection approach. Schroeder also uses vertex remove operations to reduce mesh

complexity, employing a recursive loop splitting algorithm to fill the necessary holes.

2.2.2 Edge Collapse

The edge collapse operation has become popular in the graphics community in the last

several years. The two vertices of an edge are merged into a single vertex. This process

distorts all the neighboring triangles. The triangles that contain both of the vertices (i.e. those

that touch the entire edge) degenerate into 1-dimensional edges and are removed from the

mesh. This typically reduces the mesh complexity by 2 triangles.

Whereas the vertex remove operation amounts to making a discrete choice of triangula-

tions, the edge collapse operation requires us to choose the coordinates of the new vertex

from a continuous domain. Common choices for these new coordinates include the coordi-

Figure 9: Vertex remove operation
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nates of one of the two original vertices, the midpoint of the collapsed edge, arbitrary points

along the collapsed edge, or arbitrary points in the neighborhood of the collapsed edge.

Not only is the choice of new vertex coordinates for the edge collapse a continuous prob-

lem, but the actual edge collapse operation may be performed continuously in time. We can

linearly interpolate the two vertices from their original positions to the final position of the

new vertex. This allows us to create smooth transitions as we change the mesh complexity.

As described in [Hoppe 1996], we can even perform geomorphs, which smoothly transition

between versions of the model with widely varying complexity by performing many of these

interpolations simultaneously.

In terms of the ability to create identical simplifications, the vertex removal and edge

collapse operations are not equivalent. If we collapse an edge to one of its original vertices,

we can create n of the triangulations possible with the vertex remove, but there are still

C(n+2)-n triangulations that the edge collapse cannot create. Of course, if we allow the edge

collapse to choose arbitrary coordinates for its new vertex, it can create infinitely many

simplifications that the vertex remove operation cannot create. For a given input model and

desired output complexity, it is not clear which type of operation can achieve a closer ap-

proximation to the input model.

The edge collapse was used by [Hoppe et al. 1993] as part of a mesh optimization process

that employed the vertex remove and edge swap operations as well (the edge swap is a

discrete operation that takes two triangles sharing an edge and swaps which pair of opposite

vertices are connected by the edge). In [Hoppe 1996], the vertex remove and edge swaps are

discarded, and the edge collapse alone is chosen as the simplification operation, allowing a

simpler system that can take advantage of the features of the edge collapse. Although systems

employing multiple simplification operations might possibly result in better simplifications,

Figure 10: Edge collapse operation
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they are generally more complex and cannot typically take advantage of the inherent features

of any one operation.

2.2.3 Face Collapse

The face collapse operation is similar to the edge collapse operation, except that it is more

coarse-grained. All three vertices of a triangular face are merged into a single vertex. This

causes the original face to degenerate into a point and three adjacent faces to degenerate into

line segments, removing a total of four triangles from the model. The coarser granularity of

this operation may allow the simplification process to proceed more quickly, at the expense

of the fine-grained local control of the edge collapse operation. Thus, the error is likely to

accumulate more quickly for a comparable reduction in complexity. [Hamann 1994, Gieng et

al. 1997] use the face collapse operation in their simplification systems. The new vertex

coordinates are chosen to lie on a local quadratic approximation to the mesh. Naturally, it is

possibly to further generalize these collapse operations to collapse even larger connected

portions of the input model. It may even be possible to reduce storage requirements by

grouping nearby collapse operations with similar error bounds into larger collapse operations.

Thus, the fine-grained control may be traded for reduced storage and other overhead require-

ments in certain regions of the model.

2.2.4 Vertex Cluster

Unlike the preceding simplification operations, the vertex cluster operation relies solely

on the geometry of the input (i.e. the vertex coordinates) rather than the topology (i.e. the

adjacency information) to reduce the complexity. Like the edge and face collapses, several

vertices are merged into a single vertex. However, rather than merging a set of topologically

adjacent vertices, a set of “nearby” vertices are merged [Rossignac and Borrel 1992]. For

instance, one possibility is to merge all vertices that lie within a particular 3D axis-aligned

Figure 11: Face collapse operation
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box. The new, merged vertex may be one of the original vertices that “best represents” the

entire set, or it may be placed arbitrarily to minimize some error bound. An important prop-

erty of this operation is that it can be robustly applied to arbitrary sets of triangles, whereas

all the preceding operations assume that the triangles form a connected, manifold mesh.

The effects of this vertex cluster are similar to those of the collapse operations. Some tri-

angles are distorted, whereas others degenerate to a line segment or a point. In addition, there

may be coincident triangles, line segments, and points originating from non-coincident

geometry. One may choose to render the degenerate triangles as line segments and points, or

one may simply not render them at all. Depending on the particular graphics engine, render-

ing a line or a point may not be much faster than rendering a triangle. This is an important

consideration, because achieving a speed-up is one of the primary motivations for simplifica-

tion.

There is no point in rendering several coincident primitives, so multiple copies are fil-

tered down to a single copy. However, the question of how to render coincident geometry is

complicated by the existence of other surface attributes, such as normals and colors. For

instance, suppose two triangles of wildly different colors become coincident. No matter what

color we render the triangle, it may be noticeably incorrect.

[Rossignac and Borrel 1992] use the vertex clustering operation in their simplification

system to perform very fast simplification on arbitrary polygonal models. They partition the

model space with a uniform grid, and vertices are collapsed within each grid cell. [Luebke

and Erikson 1997] build an octree hierarchy rather than a grid at a single resolution. They

dynamically collapse and split the vertices within an octree cell depending on the current size

of the cell in screen space as well as silhouette criteria.

Figure 12: Vertex Cluster operation
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Figure 13: Generalized edge collapse operation

2.2.5 Generalized Edge Collapse

The generalized edge collapse operation combines the fine-grained control of the edge

collapse operation with the generality of the vertex cluster operation. Like the edge collapse

operation, it involves the merging of two vertices and the removal of degenerate triangles.

However, like the vertex cluster operation, it does not require that the merged vertices be

topologically connected (by a topological edge), nor does it require that topological edges be

manifold.

[Garland and Heckbert 1997] apply the generalized edge collapse in conjunction with er-

ror quadrics to achieve simplification that gives preference to the collapse of topological

edges, but also allows the collapse of virtual edges (arbitrary pairs of vertices). These virtual

edges are chosen somewhat heuristically, based on proximity relationships in the original

mesh.

Figure 14: Unsubdivide operation

2.2.6 Unsubdivide

Subdivision surface representations have also been proposed as a solution to the multi-

resolution problem. In the context of simplification operations, we can think of the

“unsubdivide” operation (the inverse of a subdivision refinement) as our simplification

operation. A common form of subdivision refinement is to split one triangle into four trian-

gles. Thus the unsubdivide operation merges four triangles of a particular configuration into a

single triangle, reducing the triangle count by three triangles.
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[DeRose et al. 1993] shows how to represent a subdivision surface at some finite resolu-

tion as a sequence of wavelet coefficients. The sequence of coefficients is ordered from lower

to higher frequency content, so truncating the sequence at a particular point determines a

particular mesh resolution. [Eck et al. 1995] presents an algorithm to turn an arbitrary topol-

ogy mesh into one with the necessary subdivision connectivity. They construct a base mesh

of minimal resolution and guide its refinement to come within some tolerance of the original

mesh. This new refined subdivision mesh is used in place of the original mesh, and its

resolution is controlled according to the wavelet formulation.

2.3 Topology Preservation

The topological structure of a polygonal surface typically refers to features such as its ge-

nus (number of topological holes, e.g. 0 for a sphere, 1 for a torus or coffee mug) and the

number and arrangement of its borders (chains of edges that are adjacent to a single face

rather than a pair of faces). These features are fully determined by the adjacency graph of the

vertices, edges, and faces of a polygonal mesh. For manifold meshes with no borders (i.e.

closed surfaces), the Euler equation holds:

F E V G− + = −2 , (2)

where F is the number of faces, E is the number of edges, V is the number of vertices, and G

is the genus.

In addition to this combinatorial description of the topological structure, the embedding

of the surface in 3-space impacts its perceived topology in 3D renderings. Generally, we

expect the faces of a surface to intersect only at their shared edges and vertices.

Most of the simplification operations described in section 2.2 (all except the vertex clus-

ter and the generalized edge collapse) preserve the connectivity structure of the mesh. If a

simplification algorithm uses such an operation and also prevents local self-intersections

(intersections within the adjacent neighborhood of the operation), we say the algorithm

preserves local topology. If the algorithm prevents any self-intersections in the entire mesh,

we say it preserves global topology.
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If the simplified surface is to be used for purposes other than rendering (e.g. finite ele-

ment computations), topology preservation may be essential. For rendering applications,

however, it is not always necessary. In fact, it is often possible to construct simplifications

with fewer polygons for a given error bound if topological modifications are allowed.

However, some types of topological modifications may have a dramatic impact on the

appearance of the surface. For instance, many meshes are the surfaces of solid objects. For

example, consider the surface of a thin, hollow cylinder. When the surface is modified by

more than the thickness of the cylinder wall, the interior surface will intersect the outer

surface. This can cause artifacts that cover a large area on the screen. Problems also occur

when polygons with different color attributes become coincident.

Certain types of topological changes are clearly beneficial in reducing complexity, and

have a smaller impact on the rendered image. These include the removal of topological holes

and thin features (such as the antenna of a car). Topological modifications are encouraged in

[Rossignac and Borrel 1992], [Luebke and Erikson 1997], [Garland and Heckbert 1997] and

[Erikson and Manocha 1998] and controlled modifications are performed in [He et al. 1996]

and [El-Sana and Varshney 1997].

2.4 Level-of-Detail Representations

We can classify the possible representations for level-of-detail models into two broad

categories: static and dynamic. Static levels of details are computed totally off-line. They are

fully determined as a pre-process to the visualization program. Dynamic levels of detail are

typically computed partially off-line and partially on-line within the visualization program.

We now discuss these representations in more detail.

2.4.1 Static Levels of Detail

The most straightforward level-of-detail representation for an object is a set of independ-

ent meshes, where each mesh has a different number of triangles. A common heuristic for the

generation of these meshes is that the complexity of each mesh should be reduced by a factor

of two from the previous mesh. Such a heuristic generates a reasonable range of complexi-

ties, and requires only twice as much total memory as the original representation.
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It is common to organize the objects in a virtual environment into a hierarchical scene

graph [van Dam 1988, Rohlf and Helman 1994]. Such a scene graph may have a special type

of node for representing an object with levels of detail. When the graph is traversed, this

level-of-detail node is evaluated to determine which child branch to traverse (each branch

represents one of the levels of detail). In most static level-of-detail schemes, the children of

the level-of-detail nodes are the leaves of the graph. [Erikson and Manocha 1998] presents a

scheme for generating hierarchical levels of detail. This scheme generates level-of-detail

nodes throughout the hierarchy rather than just at the leaves. Each such interior level-of-detail

node involves the merging of objects to generate even simpler geometric representations.

This overcomes one of the previous limitations of static levels of detail  the necessity for

choosing a single scale at which objects are identified and simplified.

The transitions between these levels of detail are typically handled in one of three ways:

discrete, blended, or morphed. The discrete transitions are instantaneous switches; one level

of detail is rendered during one frame, and a different level of detail is rendered during the

following frame. The frame at which this transition occurs is typically determined based on

the distance from the object to the viewpoint. This technique is the most efficient of the three

transition types, but also results in the most noticeable artifacts.

Blended transitions employ alpha-blending to fade between the two levels of detail in

question. For several frames, both levels of detail are rendered (increasing the rendering cost

during these frames), and their colors are blended. The blending coefficients change gradually

to fade from one level of detail to the other. It is possible to blend over a fixed number of

frames when the object reaches a particular distance from the viewpoint, or to fade over a

fixed range of distances [Rohlf and Helman 1994]. If the footprints of the objects on the

screen are not identical, blending artifacts may still occur at the silhouettes.

Morphed transitions involve gradually changing the shape of the surface as the transition

occurs. This requires the use of some correspondence between the two levels of detail. Only

one representation must be rendered for each frame of the transition, but the vertices require

some interpolation each frame. For instance, [Hoppe 1996] describes the geomorph transition

for levels of detail created by a sequence of edge collapses. The simpler level of detail was
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originally generated by collapsing some number of vertices, and we can create a transition by

simultaneously interpolating these vertices from their positions on one level of detail to their

positions on the other level of detail. Thus the number of triangles we render during the

transition is equal to the maximum of the numbers of triangles in the two levels of detail. It is

also possible to morph using a mutual tessellation of the two levels of detail, as in [Turk

1992], but this requires the rendering of more triangles during the transition frames.

2.4.2 Dynamic Levels of Detail

Dynamic levels of detail provide representations that are more carefully tuned to the

viewing parameters of each particular rendered frame. Due to the sheer number of distinct

representations this requires, each representation cannot simply created and stored independ-

ently. The common information among these representations is used to create a single

representation for each simplified object. From this unified representation, a geometric

representation that is tuned to the current viewing parameters is extracted. The coherence of

the viewing parameters enables incremental modifications to the geometry rendered in the

previous frame; this makes the extraction process feasible at interactive frame rates.

[Hoppe 1996] presents a representation called the progressive mesh. This representation

is simply the original object plus an ordered list of the simplification operations performed on

the object. It is generally more convenient to reverse the order of this intuitive representation,

representing the simplest base mesh plus the inverse of each of the simplification operations.

Applying all of these inverse operations to the base mesh will result in the original object

representation. A particular level of detail of this progressive mesh is generated by perform-

ing some number of these operations.

In [Hoppe 1997], the progressive mesh is reorganized into a vertex hierarchy. This hierar-

chy is a tree that captures the dependency of each simplification operation on certain previous

operations. Similar representations include the merge tree of [Xia et al. 1997], the mul-

tiresolution model of [Klein and Krämer 1997], the vertex tree of [Luebke and Erikson 1997],

and the multi-triangulation of [DeFloriani et al. 1997]. Such hierarchies allow selective

refinement of the geometry based on various metrics for screen-space deviation, normal

deviation, color deviation, and other important features such as silhouettes and specular
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highlights. A particular level of detail may be expressed as a cut through these graphs, or a

front of vertex nodes. Each frame, the nodes on the current front are examined, and may

cause the graph to be refined at some of these nodes.

[DeFloriani et al. 1997] discuss the properties of such hierarchies in terms of graph char-

acteristics. Examples of these properties include compression ratio, linear growth, logarith-

mic height, and bounded width. They discuss several different methods of constructing such

hierarchies and test these methods on several benchmarks. For example, one common heuris-

tic for building these hierarchies is to choose simplification operations in a greedy fashion

according to an error metric. Another method is to choose a set of operations with disjoint

areas of influence on the surface and apply this entire set before choosing the next set. The

former method does not guarantee logarithmic height, whereas the latter does. Such height

guarantees can have practical implications in terms of the length of the chain of dependent

operations that must be performed in order to achieve some particular desired refinement.

[DeRose et al. 1993] present a wavelet-based representation for surfaces constructed with

subdivision connectivity. [Eck et al. 1995] make this formulation applicable to arbitrary

triangular meshes by providing a remeshing algorithm to approximate an arbitrary mesh by

one with the necessary subdivision connectivity. Both the remeshing and the filter-

ing/reconstruction of the wavelet representation provide bounded error on the surfaces

generated. [Lee et al. 1998] provide an alternate remeshing algorithm based on a smooth,

global parameterization of the input mesh. Their approach also allows the user to constrain

the parameterization at vertices or along edges of the original mesh to better preserve impor-

tant features of the input.

2.4.3 Comparison

Static levels of detail allow us to perform simplification entirely as a pre-process. The

real-time visualization system performs only minimal work to select which level of detail to

render at any given time. Because the geometry does not change, it may be rendered in

retained mode (i.e. from cached, optimized display lists). Retained-mode rendering should

always be at least as fast as immediate mode rendering, and is much faster on most current

high-end hardware. Perhaps the biggest shortcoming of using static levels of detail is that
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they require that we partition the model into independent “objects” for the purpose of simpli-

fication. If an object is large with respect to the user or the environment, especially if the

viewpoint is often contained inside the object, little or no simplification may be possible.

This may require that such objects be subdivided into smaller objects, but switching the

levels of detail of these objects independently causes visible cracks, which are non-trivial to

deal with.

Dynamic levels of detail perform some of simplification as a pre-process, but defer some

of the work to be computed by the real-time visualization system at run time. This allows us

to provide more fine-tuning of the exact tessellation to be used, and allows us to incorporate

more view-dependent criteria into the determination of this tessellation. The shortcoming of

such dynamic representations is that they require more computation in the visualization

system as well as the use of immediate mode rendering. Also, the memory requirements for

such representations are often somewhat larger than for the static levels of detail.

2.5 Surface Deviation Error Bounds

Measuring the deviation of a polygonal surface as a result of simplification is an impor-

tant component of the simplification process. This surface deviation error gives us an idea of

the quality of a particular simplification. It helps guide the simplification process to produce

levels of detail with low error, determine when it is appropriate to show a particular level of

detail of a given surface, and optimize the levels of detail for an entire scene to achieve a high

overall image quality for the complexity of the models actually rendered.

2.5.1 Distance Metrics

Before discussing the precise metrics and methods used by several researchers for meas-

uring surface deviation, we consider two formulations of the distance between two surfaces.

These are the Hausdorff distance and the mapping distance. The Hausdorff distance is a well-

known concept from topology, used in image processing as well as surface modeling, and the

mapping distance is a commonly used metric for parametric surfaces.
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2.5.1.1 Hausdorff Distance

 The Hausdorff distance is a distance metric between point sets. Given two sets of points,

A and B, the Hausdorff distance is defined as

H( ) max(h( ),h( ))A,B A,B B,A= , (3)

where

h( ) maxminA,B a b
a A b B

= −
∈ ∈

. (4)

Thus the Hausdorff distance measures the farthest distance from a point in one point set

to its closest point in the other point set (notice that h(A,B) ≠ h(B,A)). Because a surface is a

particular type of continuous point set, the Hausdorff distance provides a useful measure of

the distance between two surfaces.

2.5.1.2 Mapping Distance

The biggest shortcoming of the Hausdorff distance metric for measuring the distance

between surfaces is that it makes no use of the point neighborhood information inherent in

the surfaces. The function h(A,B) implicitly assigns to each point of surface A the closest

point of surface B. However, this mapping may have discontinuities. If points i and j are

neighboring points on surface A (i.e. there is a path on the surface of length no greater than ε

that connects them), their corresponding points, i´ and j´, on surface B may not be neighbor-

ing points. In addition, the mapping implied by h(A,B) is not identical to the mapping implied

by h(B,A).

For the purpose of simplification, we would like to establish a continuous mapping be-

tween the surface’s levels of detail. Ideally, the correspondences described by this mapping

should coincide with a viewer’s perception of which points are “the same” on the surfaces.

Given such a continuous mapping

F: A B→

the mapping distance is defined as

D(F) max F( )= −
∈a A

a a . (5)
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Because there are many such mappings, there are many possible mapping distances. The

minimum mapping distance is simply

min
F

D min D(F)=
∈M

, (6)

where M is the set of all such continuous mapping functions. Note that although Dmin and its

associated mapping function may be difficult to compute, all continuous mapping functions

provide an upper bound on Dmin.

2.5.2 Surface Deviation Algorithms

We now classify several simplification algorithms according to how they measure the sur-

face deviation error of their levels of detail.

2.5.2.1 Mesh Optimization

[Hoppe et al. 1993] pose the simplification problem in terms of optimizing an energy

function. This function has terms corresponding to number of triangles, surface deviation

error, and a heuristic spring energy. To quantify surface deviation error, they maintain a set of

point samples from the original surface and their closest distance to the simplified surface.

The sum of squares of these distances is used as the surface deviation component of the

energy function. The spring energy term is required because the surface deviation error is

only measured in one direction: it approximates the closest distance from the original surface

to the simplified surface, but not vice versa. Without this term, small portions of the simpli-

fied surface can deviate quite far from the original surface, as long as all the point samples

are near to some portion of the simplified surface.

2.5.2.2 Vertex Clustering

[Rossignac and Borrel 1993] present a simple and general algorithm for simplification

using vertex clustering. The vertices of each object are clustered using several different sizes

of uniform grid. The surface deviation in this case is a Hausdorff distance and must be less

than or equal to the size of grid cell used in determining the vertex clusters. This is a very

conservative bound, however. A slightly less conservative bound is the maximum distance

from a vertex in the original cluster to the single representative vertex after the cluster is

collapsed. Even this bound is quite conservative in many cases; the actual maximum devia-
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tion from the original surface to the simplified surface may be considerably smaller than the

distance the original vertices travel during the cluster operation.

[Luebke and Erikson 1997] take a similar approach, but their system uses an octree in-

stead of a single-resolution uniform grid. This allows them to take a more dynamic approach,

folding and unfolding octree cells at run-time and freely merging nearby objects. The meas-

ure of surface deviation remains the same, but they allow a more flexible choice of error

tolerances in their run-time system. In particular, they use different tolerances for silhouette

and non-silhouette clusters.

2.5.2.3 Superfaces

[Kalvin and Taylor 1996] present an efficient simplification algorithm based on merging

adjacent triangles to form polygonal patches, simplifying the boundaries of these patches, and

finally retriangulating the patches themselves. This algorithm guarantees a maximum devia-

tion from vertices of the original surface to the simplified surface and from vertices of the

simplified surface to the original surface. Unfortunately, even this bidirectional bound does

not guarantee a maximum deviation between points on the simplified surface and points on

the original surface. For instance, suppose we have two adjacent triangles that share an edge,

forming a non-planar quadrilateral. If we retriangulate this quadrilateral by performing an

edge swap operation, the maximum deviation between these two surfaces is non-zero, even

though their four vertices are unchanged (thus the distance measured from vertex to surface is

zero).

2.5.2.4 Error Tolerance Volumes

[Guéziec 1995] presents a simplification system that measures surface deviation using

error volumes built around the simplified surface. These volumes are defined by spheres,

specified by their radii, centered at each of the simplified surface’s vertices. We can associate

with any point in a triangle a sphere whose radius is a weighted average of the spheres of the

triangle’s vertices. The error volume of an entire triangle is the union of the spheres of all the

points on the triangle, and the error volume of a simplified surface is the union of the error

volumes of its triangles. As edge collapses are performed, not only are the coordinates of the

new vertex computed, but new sphere radii are computed such that the new error volume
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contains the previous error volume. The maximum sphere radius is a bound on the Hausdorff

distance of the simplified surface from the original, and thus provides a bound for surface

deviation in both 3D and 2D (after perspective projection).

2.5.2.5 Error Quadrics

[Ronfard and Rossignac 1996] describe a fast method for approximating surface devia-

tion. They represent surface deviation error for each vertex as a sum of squared distances to a

set of planes. The initial set of planes for each vertex are the planes of its adjacent faces. As

vertices are merged, the sets of planes are unioned. This metric provides a useful and efficient

heuristic for choosing an ordering of edge collapse operations, but it does not provide any

guarantees about the maximum or average deviation of the simplified surface from the

original.

[Garland and Heckbert 1997] present some improvements over [Ronfard and Rossignac

1996]. The error metric is essentially the same, but they show how to approximate a vertex’s

set of planes by a quadric form (represented by a single 4x4 matrix). These matrices are

simply added to propagate the error as vertices are merged. Using this metric, it is possible to

choose an optimal vertex placement that minimizes the error. In addition, they allow the

merging of vertices that are not joined by an edge, allowing increased topological modifica-

tion. [Erikson and Manocha 1998] further improve this technique by automating the process

of choosing which non-edge vertices to collapse and by encouraging such merging to pre-

serve the local surface area.

2.5.2.6 Mapping Error

[Bajaj and Schikore 1996] perform simplification using the vertex remove operation, and

measure surface deviation using local, bijective (one-to-one and onto) mappings in the plane

between points on the surface just before and just after the simplification operation. This

approach provides a fairly tight bound on the maximum deviation over all points on the

surface, not just the vertices (as does [Guéziec 1995]) and provides pointwise mappings

between the original and simplified surfaces. Our successive mapping algorithm, presented in

Chapter 4, is based on this approach, and makes several significant improvements over their

original algorithm.



34

2.5.2.7 Hausdorff Error

[Klein et al. 1996] measure a one-sided Hausdorff distance (with appropriate locality re-

strictions) between the original surface and the simplified surface. By definition, this ap-

proach produces the smallest possible bound on maximum one-sided surface deviation, but

the one-sided formulation does not guarantee a true bound on overall maximum deviation. At

each step of the simplification process, the Hausdorff distance must be measured for each of

the original triangles mapping to the modified portion of the surface. The computation time

for each simplification operation grows as the simplified triangles cover more and more of

the mesh, but of course, there are also fewer and fewer triangles to simplify. [Klein and

Krämer 1997] present an efficient implementation of this algorithm.

2.6 Appearance Attribute Preservation

We now classify several algorithms according to how they preserve the appearance attrib-

utes of their input models.

2.6.1 Scalar Field Deviation

The mapping algorithm presented in [Bajaj and Schikore 1996] allows the preservation of

arbitrary scalar fields across a surface. Such scalar fields are specified at the mesh vertices

and linearly interpolated across the triangles. Their approach computes a bound on the

maximum deviation of the scalar field values between corresponding points on the original

surface and the simplified surface.

2.6.2 Color Preservation

[Hughes et al. 1996] describes a technique for simplifying colored meshes resulting from

global illumination algorithms. They use a logarithmic function to transform the vertex colors

into a more perceptually linear space before applying simplification. They also experiment

with producing mesh elements that are quadratically- or cubically-shaded in addition to the

usual linearly-shaded elements.

[Hoppe 1996] extends the error metric of [Hoppe et al. 1993] to include error terms for

scalar attributes and discontinuities as well as surface deviation. Like the surface deviation,

the scalar attribute deviation is measured as a sum of squared Euclidean distances in the



35

attribute space (e.g. the RGB color cube). The distances are again measured between sampled

points on the original surface and their closest points on the simplified surface. This metric is

useful for prioritizing simplification operations in order of increasing error. However, it does

not provide much information about the true impact of attribute error on the final appearance

of the simplified object on the screen. A better metric should incorporate some degree of area

weighting to indicate how the overall illuminance of the final pixels may be affected.

[Erikson and Manocha 1998] present a method for measuring the maximum attribute de-

viation in Euclidean attribute spaces. Associated with each vertex is an attribute volume for

each attribute being measured. The volume is a disc of the appropriate dimension (i.e. an

interval in 1D, a circle in 2D, a sphere in 3D, etc.). Each attribute volumes is initially a point

in the attribute space (an n-disk with radius zero). As vertex pairs are merged, the volumes

grow to contain the volumes of both vertices.

[Certain et al. 1996] present a method for preserving vertex colors in conjunction with the

wavelet representation for subdivision surfaces [DeRose et al. 1993]. The geometry and color

information are stored as two separate lists of wavelet coefficients. Coefficients may be

added or deleted from either of these lists to adjust the complexity of the surface and its

geometric and color errors. They also use the surface parameterization induced by the subdi-

vision to store colors in texture maps to render as textured triangles for machines that support

texture mapping in hardware.

[Bastos et al. 1997] use texture maps with bicubic filtering to render the complex solu-

tions to radiosity illumination computations. The radiosity computation often dramatically

increases the number of polygons in the input mesh in order to create enough vertices to store

the resulting colors. Storing the colors instead in texture maps removes unnecessary geome-

try, reducing storing requirements and rasterization overhead. Our appearance preservation

approach, presented in Chapter 5, is in some sense a generalization of this “radiosity as

textures” work. Whereas [Bastos et al. 1997] reduces geometry complexity to that of the pre-

radiositized mesh, our approach simplifies complex geometry much farther, quantifying the

distortions caused by the simplification of non-planar, textured surfaces.
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2.6.3 Normal Vector Preservation

[Xia et al. 1997] associate a cone of normal vectors with each vertex during their simpli-

fication preprocess. These cones initially have an angle of zero, and grow to contain the

cones of the two vertices merged in an edge collapse. Their run-time, dynamic simplification

scheme uses this range of normals and the light direction to compute a range of reflectance

vectors. When this range includes the viewing direction, the mesh is refined, adapting the

simplification to the specular highlights. The results of this approach are visually quite

compelling, though they do not allow increased simplification of the highlight area as it gets

smaller on the screen (i.e. as the object gets farther from the viewpoint).

[Klein 1998] maintains similar information about the cone of normal deviation associated

with each vertex. The refinement criterion takes into account the spread of reflected normals

(i.e. the specular exponent, or shininess) in addition to the reflectance vectors themselves.

Also, refinement is performed in the neighborhood of silhouettes with respect to the light

sources as well as specular highlights. Again, this normal deviation metric does not allow

increased simplification in the neighborhood of the highlights and light silhouettes as the

object gets smaller on the screen.



3. A GLOBAL ERROR METRIC FOR SURFACE DEVIATION

We now present the first of the three major simplification algorithms of this dissertation

 a simplification technique that provides a global error bound on surface deviation. The

technique is named for the geometric construct it employs: simplification envelopes. Using

this technique, we create a small number of levels of detail for each input object (typically

log2n levels of detail for an object with an initial complexity of n triangles). For each level of

detail we create, we know a 3D error bound, ε, which is an upper bound on the minimum

Euclidean distance from every point on the original surface to the level of detail and vice

versa. The error bound is global in the sense that we know only a single bound on the mini-

mum distance for the entire object; we have no tighter bound for each particular place on the

object’s surface. In contrast, Chapter 4 presents a local metric, which provides a more local-

ized bound for the points on each triangle of the levels of detail.

This work was performed in collaboration with Amitabh Varshney, Dinesh Manocha,

Greg Turk, Hans Weber, Pankaj Agarwal, Fred Brooks, and Bill Wright. The majority of this

chapter has appeared in the Proceedings of SIGGRAPH 96 [Cohen et al. 1996], and some of

it has appeared in the dissertation of Amitabh Varshney [Varshney 1994]. In particular, the

concept of simplification envelopes, the fundamental prism and edge half-spaces (Section

3.2), the analytical method for computing simplification envelopes (Section 3.3.1), and the

global algorithm for generating a level of detail (Section 3.4.3) were part of Amitabh Varsh-

ney’s dissertation and are thus not new to this dissertation; they are included here for the sake

of completeness.

3.1 Overview

Simplification envelopes is a technique for generating a hierarchy of level-of-detail ap-

proximations for a given polygonal model. Our approach guarantees that all points of an

approximation are within a user-specifiable distance ε from the original model and that all
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points of the original model are within a distance ε from the approximation. Simplification

envelopes provide a general framework within which a large collection of existing simplifi-

cation algorithms can run. We demonstrate this technique in conjunction with two algo-

rithms, one local, the other global. The local algorithm provides a fast method for generating

approximations to large input meshes (at least hundreds of thousands of triangles). The global

algorithm, though not efficient for large models, provides the opportunity to avoid local

“minima” and possibly achieve better simplifications as a result. Each approximation at-

tempts to minimize the total number of polygons required to satisfy the above ε constraint.

Simplification envelopes are a generalization of offset surfaces [Hoffmann 1989]. Given

a polygonal representation of an object, they allow the generation of simpler approximations

that are guaranteed not to deviate from the original by more than a user-specifiable amount as

well as preserving global topology. We surround the original polygonal surface with two

envelopes, then perform simplification within this volume (our implementation employs

vertex remove operations). A sample level-of-detail hierarchy generated by the algorithms we

describe can be seen in Figure 15.

Figure 15: A level-of-detail hierarchy for the rotor from a brake assembly.

Such an approach has several benefits in computer graphics. First, one can very precisely

quantify the amount of approximation that is tolerable under given circumstances. Given a
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user-specified error in number of pixels of deviation of an object's silhouette, it is possible to

choose which level of detail to view from a particular distance to maintain that pixel error

bound. Second, this approach allows one a fine control over which regions of an object

should be approximated more and which ones less. This could be used for selectively pre-

serving those features of an object that are perceptually important. Third, the user-specifiable

tolerance for approximation is the only parameter required to obtain the approximations; fine

tweaking of several parameters dependent upon the object to be approximated is not required.

Thus, this approach is quite useful for automating the process of topology-preserving simpli-

fications of a large number of objects. This property of scalability (i.e. automatically handling

a large number of objects) is important for any simplification algorithm. One of our main

goals is to create a method for simplification that is not only automatic for large data sets, but

tends to preserve the shapes of the original models.

The rest of the chapter is organized in the following manner: we explain our assumptions

and terminology in Section 3.2, describe the envelope and approximation computations in

Sections 3.3 and 3.4, present some useful extensions to and properties of the approximation

algorithms in Section 3.5, develop the use of 3D error bounds to compute screen-space error

bounds in Section 3.6, and explain our implementation and results in Section 3.7.

3.2 2 Terminology and Assumptions

Let us assume that I is a three-dimensional compact and orientable object whose polygo-

nal representation P has been given to us. Our objective is to compute a piecewise-linear

approximation A of P. Given two piecewise linear objects P and Q, we say that P and Q are

ε-approximations of each other iff every point on P is within a distance ε of some point of Q

and every point on Q is within a distance ε of some point of P. Our goal is to outline a

method to generate two envelope surfaces surrounding P and demonstrate how the envelopes

can be used to solve the following polygonal approximation problem. Given a polygonal

representation P of an object and an approximation parameter ε, generate a genus-preserving

ε-approximation A with fewer polygons such that the vertices of A are a subset of the vertices

of P.
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We assume that all polygons in P are triangles and that P is a well-behaved polygonal

model, i.e., every edge has either one or two adjacent triangles, no two triangles interpene-

trate, there are no unintentional “cracks” in the model, no T-junctions, etc.

We also assume that each vertex of P has a single normal vector, which must lie within

90o of the normal of each of its surrounding triangles. For the purpose of generating envelope

surfaces, we compute a this single vertex normal as a combination of the normals of the

surrounding triangles. If this normal does not lie within 90o of the normal of each of its

surrounding triangles, the envelope generation will create local self-intersections. Section

3.7.2.2 describes two methods we have tested for computing these vertex normals. Note that

for the purpose of rendering, each vertex may have either a single normal for smooth shading

or multiple normals in the presence of a visually sharp edge or cusp.

 The three-dimensional ε-offset surface for a parametric surface

f ( , ) (f ( , ), f ( , ), f ( , ))2s t s t s t s t= 1 3 , (7)

whose unit normal to f is

n( , ) (n ( , ),n ( , ), n ( , ))2s t s t s t s t= 1 3 , (8)

is defined as

f ε ε ε ε( , ) (f ( , ), f ( , ), f ( , ))s t s t s t s t= 1 2 3 , (9)

 where

 f ( , ) f ( , ) n ( , )i i is t s t s tε = + ε . (10)

Note that offset surfaces for a polygonal object can self-intersect and may contain non-

linear elements (quadric elements, in particular). We define a simplification envelope P(+ε)

(respectively P(-ε)) for an object I to be a polygonal surface that lies within a distance of ε

from every point p on I in the same (respectively opposite) direction as the normal to I at p.

Thus, the simplification envelopes can be thought of as an approximation to offset surfaces.

Henceforth we shall often refer to “simplification envelopes” by simply “envelopes.”

Let us refer to the triangles of the given polygonal representation P as the fundamental

triangles. Let e=(v1,v2) be an edge of P. If the normals n1, n2 to I at both v1 and v2, respec-
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tively, are identical, then we can construct a plane πe that passes through the edge e and has a

normal that is perpendicular to that of v1. Thus v1, v2 and their normals all lie along πe. Such a

plane defines two half-spaces for edge e, say πe
+ and πe

- (see Figure 16(a)). However, in

general the normals n1 and n2 at the vertices v1 and v2 need not be identical, in which case it

is not clear how to define the two half-spaces for an edge. One choice is to use a bilinear

patch that passes through v1 and v2 and has a tangent n1 at v1 and n2 at v2. Let us call such a

bilinear patch for e the edge half-space βe. Let the two half-spaces for the edge e in this case

be βe
+ and βe

-. This is shown in Figure 16(b).
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Figure 16: Edge Half-spaces

Let the vertices of a fundamental triangle be v1, v2, and v3. Let the coordinates and the

normal of each vertex v be represented as c(v) and n(v), respectively. The coordinates and the

normal of a (+ε)-offset vertex vi
+ for a vertex vi are: c (vi

+) = c(vi) + ε n(vi), and n(vi
+) = n( vi).

The (-ε) -offset vertex can be similarly defined in the opposite direction. These offset vertices

for a fundamental triangle are shown in Figure 17.

Now consider the closed object defined by vi
+ and vi

-, i = 1, 2, 3. It is defined by two tri-

angles, at the top and bottom, and three edge half-spaces. This object contains the funda-

mental triangle (shown shaded in Figure 17) and we will henceforth refer to it as the funda-

mental prism.

3.3 3 Simplification Envelope Computation

In order to preserve the input topology of P, we desire that the simplification envelopes

do not self-intersect. To meet this criterion we reduce our level of approximation at certain
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places. In other words, to guarantee that no intersections amongst the envelopes occur, we

have to be content at certain places with the distance between P and the envelope being

smaller than ε. This is how simplification envelopes differ from offset surfaces.

We construct our envelope such that each of its triangles corresponds to a fundamental

triangle. We offset each vertex of the original surface in the direction of its normal vector to

transform the fundamental triangles into those of the envelope.

ε

ε

b

c

b

c

+

+
Offset Voronoi

Original
surface

edge

Figure 18: Offset Surface

If we offset each vertex vi by the same amount ε, to get the offset vertices vi
+ and vi

-, the

resulting envelopes, P(+ε) and P(-ε), may contain self-intersections because one or more

offset vertices are closer to some non-adjacent fundamental triangle. In other words, if we

define a Voronoi diagram over the fundamental triangles of the model, the condition for the

envelopes to intersect is that there be at least one offset vertex lying in the Voronoi region of

some non-adjacent fundamental triangle. This is shown in Figure 18 by means of a two-
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Figure 17: The Fundamental Prism
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dimensional example. In the figure, the offset vertices b+ and c+ are in the Voronoi regions of

edges other than their own, thus causing self-intersection of the envelope.

Once we make this observation, the solution to avoid self-intersections becomes quite

simple  just do not allow an offset vertex to go beyond the Voronoi regions of its adjacent

fundamental triangles. In other words, determine the positive and negative ε for each vertex vi

such that the vertices vi
+ and vi

- determined with this new ε do not lie in the Voronoi regions

of the non-adjacent fundamental triangles.

Although this works in theory, efficient and robust computation of the three-dimensional

Voronoi diagram of the fundamental triangles is non-trivial. We now present two methods for

computing the reduced ε for each vertex, the first method analytical, and the second numeri-

cal.

3.3.1 .1 Analytical ε Computation

 We adopt a conservative approach for recomputing the ε at each vertex. This approach

underestimates the values for the positive and negative ε. In other words, it guarantees the

envelope surfaces not to intersect, but it does not guarantee that the ε at each vertex is the

largest permissible ε. We discuss this approach for the case of computing the positive ε for

each vertex. Computation of negative ε follows similarly.
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Figure 19: Computation of ∆i

Consider a fundamental triangle t. We define a prism tp for t, which is conceptually the

same as its fundamental prism, but uses a value of 2ε instead of ε for defining the envelope
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vertices. Next, consider all triangles ∆i that do not share a vertex with t. If ∆i intersects tp

above t (the directions above and below t are determined by the direction of the normal to t,

above is in the same direction as the normal to t), we find the point on ∆i that lies within tp

and is closest to t. This point would be either a vertex of ∆i, or the intersection point of one of

its edges with the three sides of the prism tp. Once we find the point of closest approach, we

compute the distance δi of this point from t. This is shown in Figure 19.

Once we have done this for all ∆i, we compute the new value of the positive ε for the tri-

angle t as εnew = ½ mini δi. If the vertices for this triangle t have this value of positive ε, their

positive envelope surface will not self-intersect. Once the εnew(t) values for all the triangles t

have been computed, the εnew(v) for each vertex v is set to be the minimum of the εnew(t)

values for all its adjacent triangles.

We use an octree in our implementation to speed up the identification of triangles ∆i that

intersect a given prism.

3.3.2 .2 Numerical ε Computation

 As an alternative to the analytical approach, we may compute an envelope surface nu-

merically, taking an iterative approach. Our envelope surface is initially identical to the input

model surface. At each iteration, we sequentially attempt to move each envelope vertex a

fraction of the ε distance in the direction of its normal vector (or the opposite direction, for

the inner envelope). This effectively stretches or contracts all the triangles adjacent to the

vertex. We test each of these adjacent triangles for intersection with each other and the rest of

the model. If no such intersections are found, we accept the step, leaving the vertex in this

new position. Otherwise we reject it, moving the vertex back to its previous position. The

iteration terminates when all vertices have either moved ε or can no longer move.

In an attempt to guarantee that each vertex gets to move a reasonable amount of its po-

tential distance, we use an adaptive step size. We encourage a vertex to move at least K (an

arbitrary constant that is scaled with respect to ε and the size of the object) steps by allowing

it to reduce its step size. If a vertex has moved less than K steps and its move is been rejected,

the algorithm divides its step size in half and tries again (with some maximum number of



45

divides allowed on any particular step). Notice that if a vertex moves i steps and is rejected

on the (i+1)st step, we know it has moved at least i/(i+1)% of its potential distance, so

K/(K+1) is a lower bound of sorts  each vertex will move at least K/(K+1)% of its poten-

tial. It is possible, though rare, for a vertex to move less than K steps, if its current position is

already quite close to another triangle.

Each vertex also has its own initial step size. We first choose a global, maximum step

size based on a global property: either some small percentage of the object's bounding box

diagonal length or ε / K, whichever is smaller. Now for each vertex, we calculate a local step

size. This local step size is some percentage of the vertex's shortest incident edge (only those

edges within 90o of the offset direction are considered); this accounts for local geometry that

we may intersect if we do not step carefully. We set the vertex's step size to the minimum of

the global step size and its local step size. This makes it likely that each vertex's step size is

appropriate for a step given the initial mesh configuration.

This approach to computing an envelope surface is robust, simple to implement, and fair

to all the vertices (discouraging some vertices from making large displacements at the

expense of other vertices). It tends to maximize the minimum offset distance amongst the

envelope vertices. It works fairly well in practice, though there may still be some room for

improvement in generating maximal offsets for thin objects. Figure 20 shows internal and

external envelopes computed for three values of ε using this approach.

As in the analytical approach, a simple octree data structure makes these intersection tests

reasonably efficient, especially for models with evenly sized triangles.

3.4 4 Generation of Approximation

Generating a surface approximation typically involves starting with the input surface and

iteratively making modifications to ultimately reduce its complexity. We use a vertex remove

operation (as described in Section 2.2.1), but other simplification operations are also possible

in the simplification envelopes framework. The vertex remove operation may be broken into

two main stages: hole creation, and hole filling. We first create a hole by removing some

connected set of triangles from the surface mesh. Then we fill the hole with a smaller set of

triangles, resulting in some reduction of the mesh complexity.
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We demonstrate the generality of the simplification envelope approach by designing two

algorithms. The hole filling stages of these algorithms are quite similar, but their hole crea-

tion stages are quite different. The first algorithm makes only local choices, creating rela-

tively small holes, whereas the second algorithm uses global information about the surface to

create maximally-sized holes. These design choices produce algorithms with very different

properties.

We begin by describing the envelope validity test used to determine whether a candidate

triangle is valid for inclusion in the approximation surface. We then proceed to the two

example simplification algorithms and a description of their relative merits.

Inner Envelopes εε Outer Envelopes

Figure 20: Simplification envelopes for various εε, measured as a percentage of bounding box diagonal
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3.4.1 .1 Validity Test

A candidate triangle is one that we are considering for inclusion in an approximation to

the input surface. Valid candidate triangles must lie between the two envelopes. Because we

construct candidate triangles from the vertices of the original model, we know its vertices lie

between the two envelopes. Therefore, it is sufficient to test the candidate triangle for inter-

sections with the two envelope surfaces. We can perform such tests efficiently using a space-

partitioning data structure such as an octree.

A valid candidate triangle must also not cause a self-intersection in our surface. There-

fore, it must not intersect any triangle of the current approximation surface.

3.4.2 .2 Local Algorithm

To handle large models efficiently within the framework of simplification envelopes we

construct a vertex-removal-based local algorithm. This algorithm draws heavily on the work

of [Schroeder et al. 1992], [Turk 1992], and [Hoppe et al. 1993]. Its main contributions are

the use of envelopes to provide global error bounds as well as topology preservation and non-

self-intersection. We have also explored the use of a more exhaustive hole-filling approach

than any previous work.

The local algorithm begins by placing all vertices in a queue for removal processing. For

each vertex in the queue, we attempt to remove it by creating a hole (removing the vertex’s

adjacent triangles) and attempting to fill it. If we can successfully fill the hole, the mesh

modification is accepted, the vertex is removed from the queue, and its neighbors are placed

back in the queue (if they have been previously removed). If we cannot fill the hole, the

vertex is removed from the queue and the mesh remains unchanged. This process terminates

when the global error bounds eventually prevent the removal of any more vertices. Once the

vertex queue is empty we have our simplified mesh.

For a given vertex, we first create a hole by removing all adjacent triangles. We begin the

hole-filling process by generating all possible triangles formed by combinations of the

vertices on the hole boundary. The number of triangles is cubic with respect to the number of

triangles on the boundary ( n(n-1)(n-2) ), but n is typically quite small. This is not strictly

necessary, but it allows us to use a greedy strategy to favor triangles with nice aspect ratios.
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We fill the hole by choosing a triangle, testing its validity, and recursively filling the three (or

fewer) smaller holes created by adding that triangle into the hole (see Figure 21). If a hole

cannot be filled at any level of the recursion, the entire hole filling attempt is considered a

failure. Note that this is a single-pass hole filling strategy; we do not backtrack or undo

selection of a triangle chosen for filling a hole. Thus, this approach does not guarantee that if

a triangulation of a hole exists we will find it. However, it is quite fast and works very well in

practice.

A

B C

Figure 21: Adding a triangle into a hole creates up the three smaller holes.

We have compared the above approach with an exhaustive approach in which we tried all

possible hole-filling triangulations. For simplifications resulting in the removal of hundreds

of vertices or more (like highly oversampled laser-scanned models), the exhaustive pass

yielded only a small improvement over the single-pass heuristic. This sort of confirmation

reassures us that the single-pass heuristic works well in practice for large models. As the

simplification reduces the model to very small number of triangles, we may wish to incorpo-

rate such an exhaustive search to get every reduction possible.

3.4.3 .3 Global Algorithm

This algorithm extends the algorithm presented in [Clarkson 1993] to non-convex sur-

faces. Our major contribution is the use of simplification envelopes to bound the error on a

non-convex polygonal surface and the use of fundamental prisms to provide a generalized

projection mechanism for testing for regions of multiple covering (overlaps). We present only

a sketch of the algorithm here; see [Varshney 1994] for the full details.

We begin by generating all possible candidate triangles for our approximation surface.

These triangles are all 3-tuples of the input vertices that do not intersect either of the enve-

lopes. We may reduce this number somewhat by constructing these triangles from a set of

candidate edges, which are all 2-tuples of the input vertices that do not intersect the enve-
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lopes. Next we determine how many vertices each triangle covers. We rank the candidate

triangles in order of decreasing covering.

We then choose from this list of candidate triangles in a greedy fashion. For each triangle

we choose, we create a large hole in the current approximation surface, removing all triangles

that overlap this candidate triangle. Now we begin the recursive hole-filling process by

placing this candidate triangle into the hole and filling all the sub-holes with other triangles,

if possible. One further restriction in this process is that the candidate triangle we are testing

should not overlap any of the candidate triangles we have previously accepted.

envelope curve

envelope curve

original curve

approximating curve

Figure 22: Curve at local minimum of approximation.

3.4.4 .4 Algorithm Comparison

The local simplification algorithm is fast and robust enough to be applied to large models.

The global strategy is theoretically elegant. Although the global algorithm works well for

small models, its complexity rises at least quadratically, making it prohibitive for larger

models. We can think of the simplification problem as an optimization problem as well. A

purely local algorithm may get trapped in a local “minimum” of simplification, whereas an

ideal global algorithm would avoid all such minima.

Figure 22 shows a two-dimensional example of a curve for which a local vertex removal

algorithm might fail, but an algorithm that globally searches the solution space will succeed

in finding a valid approximation. Removing any one of the four interior vertices would cause

a new edge to penetrate an envelope curve. But if we remove all four of the interior vertices

simultaneously, the resulting edge is perfectly acceptable.
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This observation motivates a wide range of algorithms of which our local and global ex-

amples are the two extremes. We can easily imagine an algorithm that chooses nearby groups

of vertices to remove simultaneously rather than sequentially. This could potentially lead to

increased speed and simplification performance. However, choosing such sets of vertices

remains a challenging problem.

3.5 5 Additional Features

Envelope surfaces used in conjunction with simplification algorithms are powerful, gen-

eral-purpose tools. As we will now describe, they implicitly preserve sharp edges and can be

extended to deal with bordered surfaces and perform adaptive approximations.

3.5.1 .1 Preserving Sharp Edges

One of the important properties in any approximation scheme is the way it preserves any

sharp edges or normal discontinuities present in the input model. Simplification envelopes

deal gracefully with sharp edges (those with a small angle between their adjacent faces).

When the ε tolerance is small, there is not enough room to simplify across these sharp edges,

so they are automatically preserved. As the tolerance is increased, it will eventually be

possible to simplify across the edges (which should no longer be visible from the appropriate

distance). Notice that it is not necessary to explicitly recognize these sharp edges.

Across certain edges, some models may contain artificial normal discontinuities that are

not inherent to the local geometry. Both the global and local simplification algorithms may be

modified to preserve such discontinuities by adding constraints to maintain these chains of

edges throughout the simplification process. This type of constraint has been demonstrated

effectively in [Hoppe 1996].

3.5.2 .2 Bordered Surfaces

A bordered surface is one containing points that are homeomorphic to a half-disc. For

polygonal models, this corresponds to edges that are adjacent to a single face rather than two

faces. Depending on the context, we may naturally think of this as the boundary of some

plane-like piece of a surface, or a hole in an otherwise closed surface.
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The algorithms described in Section 3.4 are sufficient for closed triangle meshes, but they

will not guarantee our global error bound for meshes with borders. Although the envelopes

constrain our error with respect to the normal direction of the surface, bordered surfaces

require some additional constraints to hold the approximation border close to the original

border. Without such constraints, the border of the approximation surface may “creep in,”

possibly shrinking the surface out of existence.

In many cases, the complexity of a surface's border curves may become a limiting factor

in how much we can simplify the surface, so it is unacceptable to forgo simplifying these

borders.

OriginalOriginal

BorderedBordered

SurfaceSurface

Border TubesBorder Tubes
SimplifiedSimplified

BorderedBordered

SurfaceSurface

Figure 23: Simplifying a bordered surface using border tubes.

We construct a set of border tubes, as shown in Figure 23, to constrain the error in devia-

tion of the border curves. Each border is actually a cyclic polyline. Intuitively speaking, a

border tube is a smooth, non-self-intersecting surface around one of these polylines. Remov-

ing a border vertex causes a pair of border edges to be replaced by a single border edge. If

this new border edge does not intersect the relevant border tube, we may safely attempt to

remove the border vertex.

To construct a tube we define a plane passing through each vertex of the polyline. We

choose a coordinate system on this plane and use that to define a circular set of vertices (in

practice, we use 6 vertices). We connect these vertices for consecutive planes to construct our

tube. Our initial tubes have a very narrow radius to minimize the likelihood of self-
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intersections. We then expand these narrow tubes using the same technique we used previ-

ously to construct our simplification envelopes.

The difficult task is to define a coordinate system at each polyline vertex that encourages

smooth, non-self-intersecting tubes. The most obvious approach might be to use the idea of

Frenet frames [O'Neill 1966, Koenderink 1989] from differential geometry to define a set of

coordinate systems for the polyline vertices. However, Frenet frames are defined for locally

smooth curves. For a jagged polyline, a tube so constructed often has many self-intersections.

Instead, we use a projection method to minimize the twist between consecutive frames.

Like the Frenet frame method, we place the plane at each vertex so that the normal to the

plane approximates the tangent to the polyline. This is called the normal plane.

At the first vertex, we choose an arbitrary orthogonal pair of axes for our coordinate sys-

tem in the normal plane. For subsequent vertices, we project the coordinate system from the

previous normal plane onto the current normal frame. We then orthogonalize this projected

coordinate system in the plane. For the normal plane of the final polyline vertex, we average

the projected coordinate systems of the previous normal plane and the initial normal plane to

minimize any twist in the final tube segment.

3.5.3 .3 Adaptive Approximation

For certain classes of objects it is desirable to perform an adaptive approximation. For

instance, consider large terrain datasets, models of spaceships, or submarines. One would like

to have more detail near the observer and less detail further away. A possible solution could

be to subdivide the model into various spatial cells and use a different ε-approximation for

each cell. However, problems would arise at the boundaries of such cells where the ε-

approximation for one cell, say at a value ε1 need not necessarily be continuous with the ε-

approximation for the neighboring cell, say at a different value ε2.

Since all candidate triangles generated are constrained to lie within the two envelopes,

manipulation of these envelopes provides one way to smoothly control the level of approxi-

mation. Thus, one could specify the ε at a given vertex to be a function of its distance from

the observer --- the larger the distance, the greater is the ε.
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As another possibility, consider the case where certain features of a model are very im-

portant and are not to be approximated beyond a certain level. Such features might have

human perception as a basis for their definition or they might have mathematical descriptions

such as regions of high curvature. In either case, a user can vary the ε associated with a region

to increase or decrease the level of approximation. The bunny in Figure 24 illustrates such an

approximation.

Figure 24: An adaptive simplification of the bunny model that favors the face, while simplifying its hind

quarters.

3.6 Computing Screen-space Deviation

Given a level of detail, created with a bound on maximum 3D surface deviation, ε, meas-

ured in absolute coordinates, and a set of viewing parameters, we now describe how to

compute a bound on the maximum screen space deviation, p, measured in units of pixels.

Figure 25 depicts a particular view of a level of detail within a rendering application. In this

figure, θ is the total field of view, d is distance in the viewing direction from the eye point to

the level of detail (or its bounding volume), and r is the resolution of the screen in pixels. w is

simply the width of the viewing frustum at distance d. Notice that we generate a conservative

bound by placing an error vector of the maximum size as close to the viewer as possible, and

aligning this error vector perpendicular to the viewing vector. We see from the diagram,

using the properties of similar triangles, that
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ε
w

p
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= , (11)

which we then solve for p:
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= =

ε ε
θ2 tan

(12)

Given this formulation, it is easy to compute this bound, p, on the screen-space deviation

of a given level of detail at a given viewing distance. It is also possible to quickly choose

which level of detail (from a hierarchy) to render to minimize the number of triangles while

meeting a tolerance bound, t ≥ p, on the maximum allowable screen-space error. Solving

Equation (12) for ε yields:

ε
θ θ

= ≤p
d

r
t

d

r

2 2tan tan
(13)

The application chooses to render the level of detail whose ε is as large as possible, while still

small enough to satisfy the inequality; this is the level of detail with the smallest number of

triangles for the error tolerance.

w
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θ

LOD

eye

viewing
plane

p

Figure 25: Viewing a level of detail.
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3.7 7 Implementation and Results

We have implemented both algorithms and tried out the local algorithm on several thou-

sand objects. We will first discuss some of the implementation issues and then present some

results.

3.7.1 .1 Implementation Issues

The first important implementation issue is what sort of input model to accept. We chose

to accept only manifold triangle meshes (or bordered manifolds). This means that each edge

is adjacent to two (one in the case of a border) triangles and that each vertex is surrounded by

a single ring of triangles.

We also do not accept other forms of degenerate meshes. Many mesh degeneracies are

not apparent on casual inspection, so we have implemented an automatic degeneracy detec-

tion program. This program detects non-manifold vertices, non-manifold edges, sliver

triangles, coincident triangles, T-junctions, and intersecting triangles in a proposed input

mesh. Note that correcting these degeneracies is more difficult than detecting them [Barequet

and Kumar 1997, Murali and Funkhouser 1997].

Robustness issues are important for implementations of any geometric algorithms. For

instance, the analytical method for envelope computation involves the use of bilinear patches

and the computation of intersection points. The computation of intersection points, even for

linear elements, is difficult to perform robustly. The numerical method for envelope compu-

tation is much more robust because it involves only linear elements. Furthermore, it requires

an intersection test but not the calculation of intersection points. We perform all such inter-

section tests in a conservative manner, using fuzzy intersection tests that may report intersec-

tions even for some close but non-intersecting elements.

Another important issue is the use of a space-partitioning scheme to speed up intersection

tests. We chose to use an octree because of its simplicity. Our current octree implementation

deals only with the bounding boxes of the elements stored. This works well for models with

triangles that are evenly sized and shaped. For CAD models, which may contain long, skinny,

non-axis-aligned triangles, a simple octree does not always provide enough of a speed-up,

and it may be necessary to choose a more appropriate space-partitioning scheme.
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3.7.2 .2 Results

We have simplified a total of 2,636 objects from the auxiliary machine room (AMR) of a

submarine data set, pictured in Figure 26, to test and validate our algorithm. We reproduce

the timings and simplifications achieved by our implementation for the AMR and a few other

models in Table 1. These simplifications were performed on a Hewlett-Packard 735/125 with

80 MB of main memory. Images of these simplifications appear in Figure 27 and Figure 28.

For the sake of comparison with timings in the following chapters and with other work, we

have also timed a few of the simplifications on an SGI MIPS R10000 processor (see Table 2).

It is interesting to compare the results on the bunny and phone models with those of [DeRose

et al. 1993, Eck et al. 1995]. For the same error bound, we are able to obtain much improved

solutions.

Bunny Phone Rotor AMR
ε % # Tris Time ε % # Tris Time ε % # Tris Time ε % # Tris Time

0 69,451 N/A 0 165,936 N/A 0 4,735 N/A 0 436,402 N/A
1/64 44,621 9 1/64 43,537 31 1/8 2,146 3 1 195,466 171
1/32 23,581 10 1/32 12,364 35 1/4 1,514 2 3 143,728 61
1/16 10,793 11 1/16 4,891 38 3/4 1,266 2 7 110,090 61
1/8 4,838 11 1/8 2,201 32 1 3/4 850 1 15 87,476 68
1/4 2,204 11 1/4 1,032 35 3 3/4 716 1 31 75,434 84
1/2 1,004 11 1/2 544 33 7 3/4 688 1
1 575 11 1 412 30 15 3/4 674 1

Table 1: Simplification ε's as a percentage of bounding box diagonal and run times in minutes on HP
735/125 MHz.

Model Number of Triangles ε % Time (Mins:Secs)
Bunny 69,451 1/8 5:38
Phone 165,936 1/8 15:40
Rotor 4,735 1/8 2:04

Table 2: A few simplification timings run on a SGI MIPS R10000 processor.

We have automated the process that sets the ε value for each object by assigning it to be a

percentage of the diagonal of its bounding box. We obtained the reductions presented in

Table 1 for the AMR, Figure 27, and Figure 28 by using these normalized tolerances. One of

the advantages of the setting ε to a percent of the object size is that it provides an a way to

automate the selection of switching distances used to transition between the various repre-

sentations. To eliminate visual artifacts, we switch to a more faithful representation of an

object when ε projects to more than some user-specified number of pixels on the screen. This
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is a function of the ε for that approximation, the output display resolution, and the corre-

sponding maximum tolerable visible error in pixels, as described in Section 3.6.

Figure 26: Looking down into the auxiliary machine room (AMR) of a submarine model. This model

contains nearly 3,000 objects, for a total of over half a million triangles. We have simplified over 2,600 of

these objects, for a total of over 430,000 triangles.

Figure 27: A battery from the AMR. All parts but the red are simplified representations. At full resolu-

tion, this array requires 87,000 triangles. At this distance, allowing 4 pixels of error in screen space, we

have reduced it to 45,000 triangles.
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(a) bunny model: 69,451 triangles (e) phone model: 165,936 triangle (i) rotor model: 4,736 triangles

(b) e = 1/16 %; 10,793 triangles (f) e = 1/32 %; 12,364 triangles (j) e = 1/8 %; 2,146 triangles

(c) e = 1/4 %; 2,204 triangles (g) e = 1/16 %; 4,891 triangles (k) e = 3/4 %; 1,266 triangles

(d) e = 1 %; 575 triangles (h) e = 1 %; 412 triangles (l) e = 3 3/4 %; 716 triangles

Figure 28: Level-of-detail hierarchies for three models. The approximation distance, εε, is taken as a

percentage of the bounding box diagonal.
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3.7.2.1 Cascaded vs. Non-cascaded Simplification

For the rotor and AMR models in the above results, we sometimes performed cascaded

simplifications: the i th level of detail was obtained by simplifying the i-1th level of detail. This

causes the total ε to be the sum of all previous ε's, so choosing ε's of 1, 2, 4, and 8 percent

results in total ε's of 1, 3, 7, and 15 percent for the AMR. There are two advantages to this

scheme:

(a)  It allows one to proceed incrementally, taking advantage of the work done in previous

simplifications.

(b)   It builds a hierarchy of detail in which the vertices at the i th level of detail are a sub-

set of the vertices at the i-1th level of detail.

For any given model, it may be difficult to decide whether to perform these cascaded

simplifications, where the starting point for each new simplification is the previously-

computed level of detail. Table 3 demonstrates this dilemma for the rotor model. The non-

cascaded column presents the number of triangles in the levels of detail resulting from a non-

cascaded approach, where each simplification is performed on the original model. The later

columns perform some number of non-cascaded simplifications, then begin cascading each

new simplification from the previous one. Once the cascading begins, the incremental ε

tolerances must be added to compute the total tolerance, as described above. The column

labeled “Cascaded After 1/4 %” was used to report the simplifications of the rotor in Table 1.

ε % Non-
Cascaded

Cascaded
After 1/8 %

Cascaded
After 1/4 %

Cascaded
After 1/2 %

Cascaded
After 1 %

Cascaded
After 2 %

Cascaded
After 4 %

0 4,735
1/8 2,146
1/4 1,514 1,766
1/2 1,266 1,252 1,266
1 1,084 892 850 866
2 1,026 760 716 772 874
4 1,006 720 688 726 810 848
8 1,006 706 674 722 794 808 846

Table 3: Experimenting with cascading on the rotor model and the resulting number of triangles.

One possible avenue of research we have not explored is allowing the paths of the verti-

ces to change during the envelope construction, as the vertex normals change. Currently, each

vertex is offset along the straight path of its original normal. Allowing the path to change as
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the local envelope geometry changes may avoid some intersections and allow a greater

volume within the envelopes. This might provide an interesting compromise between non-

cascaded and cascaded simplifications.

3.7.2.2 Methods of Normal Vector Computation

The computation of normal vectors for vertices is a common task in computer graphics.

Vertex normals are used for performing lighting calculations that smoothly shade adjacent

triangles. These normals are typically computed using a average of the normals of the sur-

rounding triangles. It may be an unweighted average, or it may be weighted by triangle area

or angular span about the vertex. Regardless of the weighting heuristic, there is no guarantee

that the computed vertex normal will be within 90o of the normals of the adjacent faces.

When this criterion is not met, shading artifacts may be apparent.

In the case of this use of normals for lighting calculations, several workarounds are possi-

ble, such as using multiple normals at a vertex and allowing a shading discontinuity. How-

ever, the use of normals for envelope construction does not allow such a workaround. In-

stead, we use a linear programming technique described in Section 4.3.1. This technique

guarantees that we find a valid vertex normal if one exists. This improvement in our normal

vector computation is useful, because the vertices with invalid normals cannot be offset

during the envelope construction, limiting the simplification process.

Table 4 demonstrates the difference between using an averaging heuristic for vertex nor-

mal computation and using linear programming to find valid normals for as many vertices as

possible. The bunny model has first been simplified from the original using a tolerance of

ε = 0.5 %, and then simplifications are cascaded from that point on. The linear programming

technique allows us to achieve a coarse model with half as many triangles as the averaging

technique.

3.8 8 Conclusions

In this chapter, we have presented the notion of simplification envelopes and how they

can be used for generation of multiresolution hierarchies for polygonal objects. Our approach

guarantees non-self-intersecting approximations and allows the user to do adaptive approxi-

mations by simply editing the simplification envelopes (either manually or automatically) in



61

the regions of interest. It allows for a global error tolerance, preservation of the input genus of

the object, and preservation of sharp edges. Our approach requires only one user-specifiable

parameter, allowing it to work on large collections of objects with no manual intervention if

so desired. It is rotationally and translationally invariant, and can elegantly handle holes and

bordered surfaces through the use of cylindrical tubes. Simplification envelopes are general

enough to permit both simplification algorithms with good theoretical properties such as our

global algorithm, as well as fast, practical, and robust implementations like our local algo-

rithm.

Average Normal Vector Linear Programming Normal Vector
ε Invalid Normals Triangles Invalid Normals Triangles

0.5 1,004 1,004
1 41 536 3 489
2 45 364 5 275
4 57 297 6 185
8 57 279 4 148
16 59 267 4 136
32 58 264 5 130

Table 4: Comparison of simplification using average normal vectors for offset computation vs. using linear
programming to achieve fewer invalid normals. The bunny model is simplified using cascaded simplifications
after ε=1/2 %.



4. A LOCAL ERROR METRIC FOR SURFACE DEVIATION

The simplification envelopes error metric for surface deviation presented in Chapter 3 is

global in the sense that we compute only a single error measure for each level of detail we

create. The simplification envelopes algorithm may seen as a “pay up front” method, because

we devote considerable effort to constructing a pair of envelope surfaces, then perform our

simplification operations rather quickly, verifying only that the resulting surface is still

contained between the envelopes.

In this chapter, we present a more local approach, called the successive mapping algo-

rithm, employing more of a “pay as you go” paradigm. We will still incur some initialization

overhead as we prioritize a set of edge collapse operations on our surface, but then we will

perform the majority of the work as we simplify the surface. This work consists of measuring

the local error in the neighborhood of each edge collapse.

The algorithm computes a piece-wise linear mapping between the original surface and the

simplified surface. It uses the edge collapse operation due to its simplicity, local control, and

suitability for generating smooth transitions between levels of detail. We also present rigor-

ous and complete algorithms for collapsing an edge to a vertex such that there are no local

self-intersections and a bijective (one-to-one and onto) mapping is guaranteed. The algorithm

keeps track of both incremental surface deviation from the current level of detail and total

deviation from the original surface.

The output of the algorithm a sequence of edge collapse operations, each with its own

error bound describing the error in the neighborhood of the operation. This progressive mesh

[Hoppe 1996], as described in Section 2.4.2, may be used as part of a dynamic simplification

system, though our current system only renders from static levels detail (see Sections 2.4.1

and 4.6.2).
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This research was performed in collaboration with Dinesh Manocha and Marc Olano.

Much of this work appeared in the Proceedings of IEEE Visualization ’97 [Cohen et al.

1997]. The initial algorithm concept is based on work by Schikore and Bajaj [Bajaj and

Schikore 1996]. The key differences between our work and theirs is discussed in Section 4.8.

The rest of the chapter is organized as follows. We give an overview of our algorithm in

Section 4.1. In Section 4.2 we provide the details of the mathematical underpinnings of our

projection-based mapping algorithms. Section 4.2 discusses the creation of local mappings

for the purpose of collapsing edges. Using these mappings, we bound and minimize surface

deviation error in Section 4.4. Section 4.5 describes how to compute new texture coordinates

for the new mesh vertices. The implementation is discussed in Section 4.6 and its perform-

ance in Section 4.7. In Section 4.8 we compare our approach to some other algorithms, and

we conclude the chapter with Section 4.9.

4.1 Overview

Our simplification approach may be seen as a high-level algorithm that controls the sim-

plification process with a lower-level cost function based on local mappings. Next we de-

scribe this high-level control algorithm and the idea of using local mappings for cost evalua-

tion.

4.1.1 High-level Algorithm

At a broad level, our simplification algorithm is a generic greedy algorithm. Our simplifi-

cation operation is the edge collapse. We initialize the algorithm by measuring the cost of all

possible edge collapses, then we perform the edge collapses in order of increasing cost. The

cost function represents local error bounds on surface deviation and other attributes. After

performing each edge collapse, we locally re-compute the cost functions of all edges whose

neighborhoods were affected by the collapse. This process continues until none of the re-

maining edges can be collapsed.

The output of our algorithm is the original model plus an ordered list of edge collapses

and their associated cost functions. This progressive mesh [Hoppe 1996] represents an entire
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continuum of levels of detail for the surface. Section 4.6.2 discusses how we use these levels

of detail to render the model with the desired quality or speed-up.

4.1.2 Local Mappings

The edge collapse operation we perform to simplify the surface contracts an edge (the

collapsed edge, e) to a single, new vertex (the generated vertex, vgen). Most of the earlier

algorithms position the generated vertex to one of the end vertices or mid-point of the col-

lapse edge. These choices for the generated vertex position are reasonable heuristics, and may

reduce storage overhead. However, these choices may not minimize the surface deviation or

other attribute error bound and can result in a local self-intersection. We choose a vertex

position in two dimensions to avoid self-intersections and optimize in the third dimension to

minimize error. This optimization of the generated vertex position and measurement of the

error are the keys to simplifying the surface without introducing significant error.

Figure 29: The natural mapping primarily maps triangles to triangles. The two grey triangles map to
edges, and the collapsed edge maps to the generated vertex

For each edge collapse, we consider only the neighborhood of the surface that is modified

by the operation (i.e. those faces, edges and vertices adjacent to the collapsed edge). There is

a natural mapping between the neighborhood of the collapsed edge and the neighborhood of

the generated vertex (see Figure 29). Most of the triangles incident to the collapsed edge are

stretched into corresponding triangles incident to the generated vertex. However, the two

triangles that share the collapsed edge are themselves collapsed to edges. These natural

correspondences are one form of mapping.

This natural mapping has two weaknesses.

1. The degeneracy of the triangles mapping to edges prevents us from mapping points of

the simplified surface back to unique points on the original surface. This also implies
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that if we have any sort of attribute field across the surface, a portion of it disappears

as a result of the operation.

2. The error implied by this mapping may be larger than necessary.

 We measure the surface deviation error of the edge collapse operation as the distances

between corresponding points of our mapping. Using the natural mapping, the maximum

distance between any pair of corresponding points is defined as:

E v v v vgen gen= max(distance( , ),distance( , )1 2 , (14)

where v1 and v2 are the vertices of e.

If we place the generated vertex at the midpoint of the collapsed edge, this distance error

will be half the length of the edge. If we place the vertex at any other location, the error will

be even greater.

We can create mappings that are free of degeneracies and often imply less error than the

natural mapping. For simplicity, and to guarantee no self-intersections, we perform our

mappings using orthogonal projections of our local neighborhood to the plane. We refer to

them as successive mappings.

4.2 Projection Theorems

The simplification algorithm we will present depends on our ability to efficiently com-

pute orthogonal projections that provide bijective mappings between small portions of

triangle meshes. With this in mind, we present the mathematical properties of the mapping

used in designing the projection algorithm.

(a) (c)(b)

Figure 30: Polygons in the plane. (a) A simple polygon (with an empty kernel). (b) A star-shaped polygon
with its kernel shaded. (c) A non-simple polygon with its kernel shaded.

Definition 1  A simple polygon is a planar polygon in which edges only intersect at their two

endpoints (vertices) and each vertex is adjacent to exactly two edges (see Figure 30(a)).
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Definition 2  The kernel of a simple polygon is the intersection of the inward-facing half-

spaces bounded by its edges (see Figure 30(b)). For a non-simple polygon (see Figure 30(c)),

the kernel is the intersection of a consistently-oriented set of half-spaces bounded by its

edges (i.e. if we traverse the edges in a topological order, the half-spaces must be either all

to our right or all to our left).

Definition 3  A star-shaped polygon is a simple polygon with a non-empty kernel (see Figure

30(b)).

By construction, any point in the kernel of a star-shaped polygon has an unobstructed line

of sight to the polygon's entire boundary.

Definition 4  A complete vertex neighborhood, Nv, is a set of triangles that forms a complete

cycle around a vertex, v.

The triangles of Nv are ordered: ∆0, ∆1, ..., ∆n-1, ∆0. Each pair of consecutive triangles in

this ordering, (∆i, ∆i+1), is adjacent, sharing a single edge, ei; one of the vertices of ei is v.

θ0
θ5

θ4

θ3 θ2

θ1

θ9

θ8

θ7

θ6

θ0
θ5

θ4

θ3 θ2

θ1

θ9

θ8

θ7

θ6

(a) (b)

Figure 31: Projections of a vertex neighborhood, visualized in polar coordinates. (a) No angular intervals
overlap, so the boundary is star-shaped, and the projection is a bijection. (b) Several angular intervals
overlap, so the boundary is not star-shaped, and the projection is not a bijection.

Definition 5  The angle space of an orthogonal projection of a complete vertex neighbor-

hood, Nv, is the θ-coordinate space, [0,2π], constructed by converting the projected neigh-

borhood to polar coordinates, (r,θ), with v at the origin (see Figure 31(a))).



67

Definition 6  The angular interval covered by the orthogonal projection of triangle, ∆i, from

a complete vertex neighborhood, Nv, is the interval [θi,θ(i+1) mod n], where θi is the θ-

coordinate of edge ei.

Definition 7  The angle space of an orthogonal projection of a complete vertex neighbor-

hood is multiply-covered if each angle, θ ∈ [0,2π], is covered by the projections of at least

two triangles from Nv. It is k-covered if each angle is covered the projections of exactly k

such triangles. A k-covered angle space is exactly multiply-covered if k > 1.

Lemma 1  The orthogonal projection of a complete vertex neighborhood, Nv, onto the plane,

�, provides a bijective mapping between Nv and a polygonal subset of � iff the angular

intervals of the projected triangles of Nv do not overlap.

Proof.  Consider the projection of Nv in polar coordinates, with v at the origin, and e0 at

θ=0 (see Figure 31). Each triangle, ∆i, spans an angular interval in θ, bounded by ei on one

side and e(i+1) mod n on the other. If the intervals of the triangles do not overlap , then the

triangles cannot overlap, and the projection must be a bijection. If the intervals do overlap,

the triangles themselves must overlap (near the origin, which they both contain), and the

projection cannot be a bijection (see Figure 31(b)). �

Corollary 1   The orthogonal projection of a complete vertex neighborhood, Nv, onto the

plane, �, provides a bijective mapping between Nv and a polygonal subset of � iff the angle

space of the projection of Nv is 1-covered.

Proof.  Lemma 1 shows that for a bijective mapping, the angle space cannot be multiply-

covered. Because the triangles of Nv form a complete cycle around v, the angle space must be

fully covered. Thus, each angle must be covered exactly once. �

Lemma 2  The orthogonal projection of Nv onto the plane, �, provides a bijective mapping

between Nv and a polygonal subset of � iff the projection of Nv’s boundary forms a star-

shaped polygon in �, with v in its kernel.

Proof.  If the projection provides a bijective mapping, the angular intervals of the trian-

gles do not overlap, and the boundary forms a simple polygon, with the origin in the interior.

The entire boundary of the polygon is visible from the origin. This is by definition a star-
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shaped polygon, with the origin, v, in its kernel. In the case where one or more interval pairs

overlap, portions of the boundary are typically occluded from the origin's point of view. Thus

v cannot be in the kernel of a star-shaped polygon. Note that if the angle space is exactly

multiply-covered, and the boundaries of these coverings are totally coincident, the entire

boundary also seems to be visible from the origin. However, such a polygon is not technically

simple, thus the projection of Nv is not technically star-shaped. �

Definition 8  A fold in an orthogonal projection of a triangle mesh is an edge with two

adjacent triangle whose projections lie to the same side of the projected edge. A degenerate

fold is an edge with at least one triangle with a degenerate projection, lying entirely on the

projected edge.

∆1
∆2

∆1
(∆2)

∆1

∆1

∆2

∆2

(a)

(c)

(b)

e

e e

e

Figure 32: Three projections of a pair of edge-adjacent triangles. (a) The projected edge is not a fold,
because the normals of both triangles are within 90o of the direction of projection. (b) The projected edge
is a degenerate fold, because the normal of ∆2 is perpendicular to the direction of projection. (c) The
projected edge is a fold because the normal of ∆2 is more than 90o from the direction of projection.

Lemma 3  An orthogonal projection of a consistently-oriented triangle mesh is fold-free iff

the triangle normals either all lie less than 90o or all lie greater than 90o from a vector in the

direction of projection.

Proof.  We are given that the triangle mesh is orientable, with consistently oriented trian-

gles and consistent normal vectors. The orientation of a projected triangle depends only on

the relationship of its normal vector to the direction of projection (see Figure 32). When these

two vectors are less than 90o apart, the projected triangle will have one orientation, whereas if
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they are greater than 90o apart, the projected triangle will have the opposite orientation. At

exactly 90o, the projected triangle degenerates into a line segment.

At a fold, the two triangles adjacent to the folded edge have opposite orientations in the

plane, whereas at a non-folded edge, they have the same orientation. If all the triangle nor-

mals lie within the same hemisphere, either less than or greater than 90o from the direction of

projection, all the projected triangles will be consistently oriented, implying that none of the

edges are folded.

If the normals do not all lie in one of these two hemispheres, the projected triangles may

be divided into three groups according to their orientations in the plane (one group is for

degenerate projections). Because the triangle mesh is fully connected, there must exist some

edge that is adjacent to two triangles from different groups; this edge is a fold (or degenerate

fold). �

Lemma 4  The orthogonal projection of Nv onto � provides a bijective mapping iff the

projection is fold-free and its angle space is not exactly multiply-covered.

Proof.  Again, consider the projection of Nv in polar coordinates. When a fold occurs, the

angular intervals of these triangles overlap. Thus a projection with a fold does not provide a

bijective mapping. On the other hand, if the projection is fold-free, every edge around v has

its triangles laid out to either side. Because the final triangle of Nv connects to the initial

triangle, this fold-free projection provides a k-covering of the angle space. If k=1, the projec-

tion provides a bijective mapping (from Corollary 1). If k>1, the projection is exactly multi-

ply-covered, implying that angular intervals overlap, and the projection does not provide a

bijective mapping. �

Lemma 5  The orthogonal projection of Nv onto � provides a bijective mapping iff the

projected triangles are consistently oriented and the angle-space of the projection is not

exactly multiply-covered.

Proof.  We must show that the consistent orientation criterion is equivalent to the fold-

free criterion of Lemma 4. The projection of each of the edges, e0...en, is either a fold or not a

fold. The two triangles adjacent to each non-folded edge are consistently oriented, whereas
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those adjacent to each folded edge are inconsistently oriented (or degenerate). If none of the

edges are folded, all adjacent pairs of triangles are consistently oriented, implying that all of

Nv is consistently oriented. If any of the edges are folded, Nv is not consistently oriented. �

Theorem 1  The following statements about the orthogonal projection of a complete vertex

neighborhood, Nv, onto the plane, �, are equivalent:

• The projection provides a bijective mapping between Nv and a polygonal subset of P.

• The angular intervals of the projected triangles of Nv do not overlap.

• The angle space of the projection of Nv is 1-covered.

• The projection of Nv's boundary forms a star-shaped polygon in P, with the vertex, v,

in its kernel.

• The normals of the triangles of Nv all lie within the same hemisphere about the line of

projection and the angle space of the projection is not exactly multiply-covered.

• The projection of Nv is fold-free and its angle space is not exactly multiply-covered.

• The projected triangles of Nv are consistently oriented in P and the angle space of the

projection is not exactly multiply-covered.

Proof.  This equivalence list is a direct consequence of Lemmas 1, 2, 3, 4, and 5 and Cor-

ollary 1. �

Nv1 ∩ Nv2

Nv1 − (Nv1 ∩ Nv2)

Nv2 − (Nv1 ∩ Nv2)
v1

v2

e

Ne = Nv1 ∪ Nv2 ∪

∪
Nv1

Nv2

Figure 33: The edge neighborhood is the union of two vertex neighborhoods. If we remove the two
triangles of their intersection, we get two independent polygons in the plane.

Definition 9  A complete edge neighborhood, Ne, is a set of triangles that forms a complete

cycle around an edge, e (see Figure 33).
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If v1 and v2 are the vertices of e, we can also write:

N N Ne v v= ∪
1 2

(15)

Lemma 6  Given an edge, e, and its vertices, v1 and v2, the orthogonal projection of Ne onto

the plane, �, is fold-free iff the projections of Nv1
 and Nv2

onto � are fold-free.

Proof.  The set of triangle edges in Ne is the union of the edges fromNv1
andNv2

. If nei-

therNv1
norNv2

contains a folded edge, then Ne cannot contain a folded edge. Similarly, if

eitherNv1
or Nv2

contains a folded edge, Ne will contain that folded edge as well. Also note

that the projections ofNv1
andNv2

must have the same orientation, because they have two

triangles and one interior edge (e) in common. �

Lemma 7  The orthogonal projection of Ne onto ��provides a bijective mapping between Ne

and a polygonal subset of � iff the projections of its vertices, v1 and v2, provide bijective

mappings between their neighborhoods and the plane, and the projection of the boundary of

Ne is a simple polygon in �.

Proof.  The projection provides a bijective mapping betweenNv1
and a star-shaped subset

of �, and between Nv2
 and a star-shaped subset of �. The only way for Ne to not have a

bijective mapping with a polygon in the plane is if the projections of Nv1
 and Nv2

overlap,

covering some points in the plane more than once.

Let ′Nv1
 and ′Nv2

 be the neighborhoods Nv1
andNv2

 with the two common triangles re-

moved, as shown in Figure 33:

′ = − ∩ ′ = − ∩N N N N N N N Nv v v v v v v v1 1 1 2 2 2 1 2
( ); ( ); (16)

The projections of ′Nv1
 and ′Nv2

 are two polygons in �. If the projections of Nv1
andNv2

are each bijections, and these two polygons do not overlap, then the projection of Ne is a

bijection. If the two polygons do overlap, the projection is not a bijection, because multiple

points on Ne are projecting to the same point in �. Given that the projections of Nv1
andNv2
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are fold-free, the only way for the two polygons to overlap is for their boundaries to intersect.

This intersection implies that the projection of Ne is a non-simple polygon.

So we have shown that if the projections of Nv1
 and Nv2

 provide bijective mappings

with polygons in � and the projection of Ne’s boundary is a simple polygon in �, then the

projection provides a bijective mapping between Ne and this simple polygon in �. Also, if the

projection covers a non-simple polygon, there can be no bijective mapping. �

Theorem 2  The orthogonal projection of Ne onto � provides a bijective mapping between Ne

and a polygonal subset of � iff the projection of Ne is fold-free, the projections of the neigh-

borhoods of its vertices, v1 and v2, are not exactly multiply covered, and the projection of its

boundary is a simple polygon in �.

Proof.  Given Lemma 7, we only need to show that the projections of Nv1
 and Nv2

 pro-

vide bijective mappings iff the projection of Ne is fold-free, and the projections of Nv1
 and

Nv2
 are not exactly multiply-covered. This is a direct consequence of Lemmas 4 and 6.�

Definition 10  An edge collapse operation applied to edge e, with vertices v1 and v2, merges

v1 and v2 into a single, generated vertex, vgen. In the process, any triangles adjacent to e

become degenerate and are deleted.

Lemma 8  Given an edge, e, which is collapsed to a vertex, vgen, an orthogonal projection of

Ne is a simple polygon iff the same orthogonal projection of Nvgen
 is a simple polygon.

Proof.  The collapse of e to vgen does not move affect the vertices on the boundary of Ne,

so Ne and Nvgen
 have the same boundary. Thus the projection of the boundary of Ne is simple

iff the projection of the boundary of Nvgen
 is simple. �

Lemma 9  A planar polygon with a non-empty kernel is simple iff it is star-shaped.

Proof.  A star-shaped polygon is defined as a simple polygon with a non-empty kernel.

Thus if a polygon with a non-empty kernel is simple, it is star-shaped by definition. If a

polygon with a non-empty kernel is not simple, it cannot be star-shaped. �
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 Lemma 10  Given an edge, e, which is collapsed to a vertex, vgen, inside the kernel of e, an

orthogonal projection of Ne is simple iff the same projection of Nvgen
 is star-shaped.

Proof.  Recall from Lemma 8 that Ne and Nvgen
 have the same projected boundary. We

have been given that this projected boundary is a planar polygon with a non-empty kernel.

From Lemma 9, we know that this polygon is simple iff it is star-shaped. Thus the projection

of the boundary of Ne is a simple polygon iff the projection of the boundary of Nvgen
 is a star-

shaped polygon. �

(a) (b)

Ne NVgen

e

vgen

Figure 34: A fold-free projection of an edge neighborhood, Ne, that is not a bijection. (a) The projection
of Ne has a non-empty kernel. (b) The projection of Nvgen

 has a 2-covered angle space. This can be

detected by noting that the sum of the angular intervals of the triangles of Nvgen
 sum to 4π.

Theorem 3  Given an edge, e, which is collapsed to a vertex, vgen in the kernel of e, an

orthogonal projection of Ne onto � provides a bijective mapping between Ne and a polygonal

subset of � iff the projection of Ne is fold-free and the projected triangles of Nvgen
 are

consistently oriented and do not multiply-cover the angle space.

Proof.  Theorem 2 shows that the projection of Ne is a bijection iff it is fold-free and sim-

ple. Lemma 10 shows that it is simple iff the projection of Nvgen
 is star-shaped. Theorem 1

shows that the projection of Nvgen
 is star-shaped iff its projected triangles are consistently

oriented and do not multiply-cover the angle space. Figure 34 depicts an example of a fold-

free edge projection that is not a bijection and collapses to a multiply-covered vertex neigh-

borhood. �
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Edge Collapse in the Plane

Theorems 1 and 3 lead us to an efficient algorithm for performing an edge collapse op-

eration in the plane.

First, we find a fold-free projection for the edge, e. We can use linear programming with

the normals of Ne as constraints to find a direction that guarantees such a fold-free projection,

if one exists for this edge. We do not yet know if the projection is a bijection, but rather than

check to see if the projection forms a simple polygon, we defer this test until later.

Second, we find a point inside the kernel of the projection of Ne. Again, we can use linear

programming to find such a point, if one exists for this projection.

Third, we collapse e’s vertices, v1 and v2 to this point, vgen, in the kernel. We do not know

yet if the overall polygon is star-shaped, because even a non-simple polygon may have a non-

empty kernel. If the polygon is not simple, neither the projection of Ne nor the projection of

Nvgen
 provides a bijective mapping with a polygon in �.

Finally, we verify that projections of Nv1
, Nv2

, and Nvgen
 are all bijections. For Nv1

 and

Nv2
, we verify that they are not exactly multiply-covered by adding up the spans of the

angular intervals of their triangles. These spans should sum to 2π (within some floating point

tolerance). For Nvgen
, we check not only the sum of the angular spans, but also the orienta-

tions of the projected triangles. If the spans sum to 2π and the orientations are consistent,

Nvgen
 has a bijective mapping, and its boundary is star-shaped. These are all simple, O(n)

tests, with small constant factors. They guarantee that we have a bijective mapping between

Ne and the plane, and also between Nvgen
 and the plane; this also provides a bijective map-

ping between Ne and Nvgen
.

All the steps of the preceding algorithm run in O(n) time (though we will later need to

find O(n2) edge-edge intersections, which we will use in the error calculation and 3D vertex

placement). This algorithm for performing an edge-collapse in the plane is described in more

detail in Section 4.3.
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4.3 Successive Mapping

In this section we present an algorithm to compute the mappings we use to compute error

bounds and to guide the simplification process. We present efficient and complete algorithms

for computing a planar projection, finding a generated vertex in the plane, and creating a

mapping in the plane. These algorithms employ well-known techniques from computational

geometry and are efficient in practice. The basis for these algorithms are proven in Section

4.2.

4.3.1 Computing a Planar Projection

Given a set of triangles in 3D, we present an efficient algorithm to compute a planar pro-

jection that is fold-free. Such a fold-free projection contains no pair of edge-adjacent triangles

that overlap in the plane. This fold-free characteristic is a necessary, but not sufficient,

condition for a projection to provide a bijective mapping between the set of triangles and a

portion of the plane. In practice, most fold-free projections provide such a bijective mapping.

We later perform an additional test to verify that our fold-free projection is indeed a bijection

(see Section 4.3.3).

The projection we seek should be a bijection to guarantee that the operations we perform

in the plane are meaningful. For example, suppose we project a connected set of triangles

onto a plane and then re-triangulate the polygon described by their boundary. The resulting

set of triangles will contain no self-intersections, as long as the projection is a bijection.

Many other simplification algorithms, such as those by Turk [Turk 1992], also use such

projections for vertex removal. However, they simply choose a likely direction, such as the

average of the normal vectors of the triangles of interest. To test the validity of the resulting

projection, these earlier algorithms project all the triangles onto the plane and check for self-

intersections. This process can be relatively expensive and does not provide a robust method

for finding a bijective projecting plane.

We improve on earlier brute-force approaches in two ways. First, we present a simple,

linear-time algorithm for testing the validity of a given direction, ensuring that it produces a

fold-free projection. Second, we present a slightly more complex, but still expected linear-

time, algorithm that will find a valid direction if one exists, or report that no such direction
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exists for the given set of triangles. We defer until Section 4.3.3 a final, linear-time test to

guarantee that our fold-free projection provides a bijective mapping.

4.3.1.1 Validity Test for Planar Projection

In this section, we briefly describe the algorithm that checks whether a given set of trian-

gles has a fold-free planar projection. Assume that we can calculate a consistent set of normal

vectors for the set of triangles in question (if we cannot, the local surface is non-orientable

and cannot be mapped onto a plane in a bijective fashion). If the angle between a given

direction of projection and the normal vector of each of the triangles is less than 90o, then the

direction of projection is valid, and defines a fold-free mapping from the 3D triangles to a set

of triangles in the plane of projection (any plane perpendicular to the direction of projection).

Note that for a given direction of projection and a given set of triangles, this test involves

only a single dot product and a sign test for each triangle in the set. The correctness of this

test is demonstrated in Section 4.2.

Direction of Projection

Bad
Normals

Not one-to-one on this interval
Figure 35: A 2D example of an invalid projection due to folding.

To develop some intuition, we examine a 2D version of our problem, shown in Figure 35.

We would like to determine if the projection of the curve onto the line is fold-free. Without

loss of generality, assume the direction of projection is the y-axis. Each point on the curve

projects to its x-coordinate on the line. If we traverse the curve from its left-most endpoint,

we will project onto a previously projected location if and only if we reverse our direction

along the x-axis. This can only occur when the y-component of the curve's normal vector

goes from a positive value to a negative value. This is equivalent to our statement that the

invalid normal will be more than 90o from the direction of projection.
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4.3.1.2 Finding a Valid Direction

The validity test in the previous section provides a quick method of testing the validity of

a likely direction as a fold-free projection. Unfortunately, the wider the spread of the normal

vectors of our set of triangles, the less likely we are to find a valid direction by using any sort

of heuristic. It is possible, in fact, to compute the set of all valid directions of projection for a

given set of triangles. However, to achieve greater efficiency and to reduce the complexity of

the software system, we choose to find only a single valid direction, which is typically all we

require.

n2n1
n1

n2

(a) (b)

Figure 36: A 2D example of the valid projection space. (a) Two line segments and their normals. (b) The
2D Gaussian circle, the planes corresponding to each segment, and the space of valid projection direc-
tions (shaded in grey).

The Gaussian sphere [Carmo 1976] is the unit sphere on which each point corresponds to

a unit normal vector with the same coordinates. Given a triangle, we define a plane through

the origin with the same normal as the triangle. For a direction of projection to be valid with

respect to this triangle, its point on the Gaussian sphere must lie on the correct side of this

plane (i.e. within the correct hemisphere). If we consider two triangles simultaneously

(shown in 2D in Figure 36) the direction of projection must lie on the correct side of each of

the two planes determined by the normal vectors of the triangles. This is equivalent to saying

that the valid directions lie within the intersection of half-spaces defined by these two planes.

Thus, the valid directions of projection for a set of N triangles lie within the intersection of N

half-spaces.

This intersection of half-spaces forms a convex polyhedron. This polyhedron is a cone,

with its apex at the origin and an unbounded base (shown as a shaded, triangular region in

Figure 36). We can force this polyhedron to be bounded by adding more half-spaces (we use

the six faces of a cube containing the origin). By finding a point on the interior of this cone
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and normalizing its coordinates, we shall construct a unit vector in a valid direction of

projection.

Rather than explicitly calculating the boundary of the cone, we simply find a few corners

(vertices) and average them to find a point that is strictly inside. By construction, the origin is

definitely such a corner, so we just need to find three more unique corners to calculate an

interior point. We can find each of these corners by solving a 3D linear programming prob-

lem. Linear programming allows us to find a point that maximizes a linear objective function

subject to a collection of linear constraints [Kolman and Beck 1980]. The equations of the

half-spaces serve as our linear constraints. We maximize in the direction of a vector to find

the corner of our cone that lies the farthest in that direction.

As stated above, the origin is our first corner. To find the second corner, we try maxi-

mizing in the positive-x direction. If the resulting point is the origin, we instead maximize in

the negative-x direction. To find the third corner, we maximize in a direction orthogonal to

the line containing the first two corners. If the resulting point is one of the first two corners,

we maximize in the opposite direction. Finally, we maximize in a direction orthogonal to the

plane containing the first three corners. Once again, we may need to maximize in the opposite

direction instead. Note that it is possible to reduce the worst-case number of optimizations

from six to four by using the triangle normals to guide the selection of optimization vectors.

We used Seidel's linear time randomized algorithm [Seidel 1990] to solve each linear

programming problem. A public domain implementation of this algorithm by Hohmeyer is

available. It is very fast in practice.

4.3.2 Placing the Vertex in the Plane

In the previous section, we presented an algorithm to compute a valid plane. The edge

collapse, which we use as our simplification operation, merges the two vertices of a particular

edge into a single vertex. The topology of the resulting mesh is completely determined, but

we are free to choose the position of the vertex, which will determine the geometry of the

resulting mesh.

When we project the triangles neighboring the given edge onto a valid plane of projec-

tion, we get a triangulated polygon with two interior vertices, as shown in Figure 37. The
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edge collapse will reduce this edge to a single vertex. There will be edges connecting this

generated vertex to each of the vertices of the polygon. We would like the set of triangles

around the generated vertex to have a bijective mapping with our chosen plane of projection,

and thus to have a one-to- one mapping with the original edge neighborhood as well.

In this section, we present linear time algorithms both to test a candidate vertex position

for validity, and to find a valid vertex position, if one exists.

4.3.2.1 Validity Test for Vertex Position

The edge collapse operation leaves the boundary of the polygon in the plane unchanged.

For the neighborhood of the generated vertex to have a bijective mapping with the plane, its

edges must lie entirely within the polygon, ensuring that no edge crossings occur.

(a) (b)

Figure 38: (a) An invalid 2D vertex position. (b) The kernel of a polygon is the set of valid positions for a
single, interior vertex to be placed. It is the intersection of a set of inward half-spaces.

This 2D visibility problem has been well-studied in the computational geometry literature

[O'Rourke 1994]. The generated vertex must have an unobstructed line of sight to each of the

surrounding polygon vertices (unlike the vertex shown in Figure 38(a)). This condition holds

if and only if the generated vertex lies within the polygon's kernel, shown in Figure 38(b).

This kernel is the intersection of inward-facing half-planes defined by the polygon's edges.

v1

v2

edge

Figure 37: The neighborhood of an edge as projected into 2D
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Given a candidate position for the generated vertex in 2D, we test its validity by plugging

it into the implicit-form equation of each of the lines containing the polygon's edges. If the

position is on the interior with respect to each line, the position is valid; otherwise it is

invalid.

4.3.2.2 Finding a Valid Position

The validity test described above is useful if we wish to test out a likely candidate for the

generated vertex position, such as the midpoint of the edge being collapsed. If such a heuris-

tic choice succeeds, we can avoid the work necessary to compute a valid position directly.

Given the kernel definition for valid points, it is straightforward to find a valid vertex po-

sition using 2D linear programming. Each of the lines provides one of the constraints for the

linear programming problem. Using the same methods as in Section 4.3.1.2, we can find a

point in the kernel with no more than four calls to the linear programming routine. The first

and second corners are found by maximizing in the positive- and negative-x directions. The

final corner is found using a vector orthogonal to the first two corners.

4.3.3 Guaranteeing a Bijective Projection

Although rare in practice, it is possible in theory for us to find both a fold-free projection

and a vertex position within the planar polygon's kernel, yet still have a projection that is not

a bijection. Figure 34 shows an example of such a projection.

As proved in Section 4.2, we can verify that both the neighborhoods of the generated

vertex and the collapsed edge have bijective projections with the plane with a simple, linear-

time test. Given our edge, e, its two vertices, v1 and v2, and the generated vertex, vgen, these

projections are bijections if and only if the orientations of the triangles surrounding vgen are

consistent and the triangles surrounding v1, v2, and vgen each cover angular ranges in the plane

that sum to 2π.

We can verify the orientations of vgen’s triangles by performing a single cross product for

each triangle. If the signed areas of all the triangles have the same sign, they are consistently

oriented, and the projections are bijections. We verify the angular sums of triangles sur-

rounding v1, v2, and vgen using a vector normalization, dot product, and arccosine operation
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for each triangle to compute its angular range. Each floating point sum will be within some

small tolerance of an integer multiple of 2π, with 1 being the valid multiplier.

4.3.4 Creating a Mapping in the Plane

After mapping the edge neighborhood to a valid plane and choosing a valid position for

the generated vertex, we define a mapping between the edge neighborhood and the generated

vertex neighborhood. We shall map to each other the pairs of 3D points that project to

identical points on the plane. These correspondences are shown in Figure 39(a) by superim-

posing these two sets of triangles in the plane.

Collapsed
Edge

Generated
Vertex

(a) (b)

Figure 39: (a) Edge neighborhood and generated vertex neighborhood superimposed. (b) A mapping in
the plane, composed of 25 polygonal cells (each cell contains a dot). Each cell maps between a pair of
planar elements in 3D.

We can represent the mapping by a set of map cells, shown in Figure 39(b). Each cell is a

convex polygon in the plane and maps a piece of a triangle from the edge neighborhood to a

similar piece of a triangle from the generated vertex neighborhood. The mapping represented

by each cell is linear.

The vertices of the polygonal cells fall into four categories: vertices of the overall poly-

gon in the plane, vertices of the collapsed edge, the generated vertex itself, and edge-edge

intersection points. We already know the locations of the first three categories of cell vertices,

but we must calculate the edge-edge intersection points explicitly. Each such point is the

intersection of an edge adjacent to the collapsed edge with an edge adjacent to the generated

vertex. The number of such points can be quadratic (in the worst case) in the number of

neighborhood edges. If we choose to construct the actual cells, we may do so by sorting the

intersection points along each neighborhood edge and then walking the boundary of each cell.

However, this is not necessary for computing the surface deviation.
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4.4 Measuring Surface Deviation Error

Up to this point, we have projected the collapsed edge neighborhood onto a plane, col-

lapsed the edge to the generated vertex in this plane, and computed a mapping in the plane

between these two local meshes. The generated vertex has not yet been placed in 3D. We will

choose its 3D position to minimize the error in surface deviation.

Mi-1
Mi

P

edge collapse

Fi-1 Fi
-1

Xi-1 Xi

x

Figure 40: Each point, x, in the plane of projection corresponds to two 3D points, Xi-1 and Xi on meshes

MMi-1 and MMi, respectively.

Given the overlay in the plane of the collapsed edge neighborhood, Mi-1, and the gener-

ated vertex neighborhood, Mi, we define the incremental surface deviation  between them:

E x F x F xi i i i, ( ) ( ) ( )−
−

−
−= −1

1
1
1 (17)

The function, Fi(X):Mi → P, maps points on the 3D mesh, Mi, to points, x, in the plane.

Fi-1(X):Mi-1 → P acts similarly for the points on Mi-1. Ei,i-1 measures the distance between the

pair of 3D points corresponding to each point, x, in the planar overlay (shown in Figure 40).

Within each of our polygonal mapping cells in the plane, the incremental deviation func-

tion is linear, so the maximum incremental deviation for each cell occurs at one of its bound-

ary points. Thus, we bound the incremental deviation using only the deviation at the cell

vertices, V:

E E x E vi i
x

i i
v V

i i k
k

, , ,( ) max ( ) max ( )− ∈ − ∈ −= =1 1 1P
P

(18)
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4.4.1 Distance Functions of the Cell Vertices

To preserve our bijective mapping, it is necessary that all the points of the generated ver-

tex neighborhood, including the generated vertex itself, project back into 3D along the

direction of projection (the normal to the plane of projection). This restricts the 3D position

of the generated vertex to the line parallel to the direction of projection and passing through

the generated vertex's 2D position in the plane. We choose the vertex's position along this

line such that it minimizes the incremental surface deviation.

We parameterize the position of the generated vertex along its line of projection by a sin-

gle parameter, t. As t varies, the distance between the corresponding cell vertices in 3D varies

linearly. Notice that these distances will always be along the direction of projection, because

the distance between corresponding cell vertices is zero in the other two dimensions (those of

the plane of projection). The distance function for each cell vertex, vk, has the form (see

Figure 41):

E v m t bi i k k k, ( )− = +1 , (19)

where mk and bk are the slope and y-intercept of the signed distance function for vk as t varies.

4.4.2 Minimizing the Incremental Surface Deviation

Given the distance function, we would like to choose the parameter t that minimizes the

maximum distance between any pair of mapped points. This point is the minimum of the so-

called upper envelope, shown in Figure 41. For a set of k functions, we define the upper

envelope function as follows:

{ }U t f t f t f t i j i j k i ji i j( ) ( ) | ( ) ( ) , , ;= > ∀ ≤ ≤ ≠1 (20)

For linear functions with no boundary conditions, this function is convex. We convert the

distance function for each cell vertex to two linear functions, then use linear programming to

find the t value at which the minimum occurs. We use this value of t to calculate the 3D

position for the generated vertex that minimizes the maximum incremental surface deviation.
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t

minimum

upper
envelope

E(v1) E(v4)

E(v3)

E(v2)

tmin

Figure 41: The minimum of the upper envelope corresponds to the vertex position that minimizes the
incremental surface deviation.

4.4.3 Bounding Total Surface Deviation

Although it is straightforward to measure the incremental surface deviation and choose

the position of the generated vertex to minimize it, this is not the error we eventually store

with the edge collapse. To know how much error the simplification process has created, we

need to measure the total surface deviation of the mesh �i:

S X E F X X F F Xi i i i( ) ( ( )) ( ( )),= = − −
0 0

1 (21)

Unfortunately, our projection formulation of the mapping functions provides only Fi-1
-1

and Fi
-1 when we are performing edge collapse i; it is more difficult to construct F0

-1, and the

complexity of this mapping to the original surface will retain the complexity of the original

surface.

We approximate Ei,0 by using a set of axis-aligned boxes (other possible choices for these

approximation volumes include triangle-aligned prisms and spheres). This provides a con-

venient representation of a bound on Si(X) that we can update from one simplified mesh to

the next without having to refer to the original mesh. Each triangle, ∆k, in �
�
 has its own axis-

aligned box, bi,k such that at every point on the triangle, the Minkowski sum of the 3D point

with the box gives a region that contains the corresponding point on the original surface.

∀ ∈ ∈ ⊕−X F F X X bk i i k∆ , ( ( )) ,0
1 (22)
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(b)
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Figure 42: 2D illustration of the box approximation to total surface deviation. (a) A curve has been
simplified to two segments, each with an associated box to bound the deviation. (b) As we simplify one
more step, the approximation is propagated to the newly created segment.

Figure 42(a) shows an original surface (curve) and a simplification of it, consisting of two

thick lines. Each line has an associated box. As the box slides over the line it is applied to

each point along the way; the corresponding point on the original mesh is contained within

the translated box. One such correspondence is shown halfway along the left line.

From (21) and (22), we produce ~
( )S Xi , a bound on the total surface deviation, Si(X). This

is the surface deviation error reported with each edge collapse.

~
( ) max ( )

,

S X X X S Xi
X X b

i
i k

= − ′ ≥
′∈ ⊕

(23)

~
( )S Xi  is the distance from X to the farthest corner of the box at X. This will always bound

the distance from X to F0
-1(Fi(X)). The maximum deviation over an edge collapse neighbor-

hood is the maximum ~ ( )S Xi  for any cell vertex.

The boxes, bi,k, are the only information we keep about the position of the original mesh

as we simplify. We create a new set of boxes, bi+1,k, for mesh �i+1 using an incremental

computation (described in Figure 43). Figure 42(b) shows the propagation from �i to �i+1.

The two lines from Figure 42(a) have now been simplified to a single line. The new box,

bi+1,0, is constant as it slides across the new line. The size and offset is chosen so that, at

every point of application, bi+1,0 contains the box bi,0 or bi,1, as appropriate.
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If X is a point on �i in triangle k, and Y is the corresponding point on �i+1, the contain-

ment property of (22) holds:

F F Y X b Y bi i k i k0
1

1 1
−

+ + ′∈ ⊕ ⊆ ⊕( ( )) , , (24)

For example, all three dots in Figure 42(b) correspond to each other. The dot on original

surface, �0 is contained in a small box, X ⊕ bi,0, which is contained in the larger box, Y ⊕

bi+1,0.

Because each mapping cell in the overlay between �i and �i+1 is linear, we compute the

sizes of the boxes, bi+1,k´, by considering only the box correspondences at cell vertices. In

Figure 42(b), there are three places we must consider. If bi+1,0 contains bi,0 and/or bi,1 at all

three places, it will contain them everywhere.

Together, the propagation rules, which are simple to implement, and the box-based ap-

proximation to the total surface deviation, provide the tools we need to efficiently provide a

surface deviation for the simplification process.

4.4.4 Accommodating Bordered Surfaces

Bordered surface are those containing edges adjacent to only a single triangle, as opposed

to two triangles. Such surfaces are quite common in practice. Borders create some complica-

tions for the creation of a mapping in the plane. The problem is that the total shape of the

neighborhood projected into the plane changes as a result of the edge collapse.

Bajaj and Schikore [Bajaj and Schikore 1996], who employ a vertex-removal approach,

deal with this problem by mapping the removed vertex to a length-parameterized position

PropagateError() :
foreach cell vertex, v

foreach triangle, ∆i -1 , in �i -1  touching v
foreach triangle, ∆i , in �i  touching v

PropagateBox(v, ∆i -1 , ∆i )
PropagateBox( v, ∆i -1 , ∆i )
Xi -1  = Fi -1

-1 ( v), Xi  = Fi
-1 ( v)

Expand ∆i ’s box so that when applied at Xi , it contains
∆i -1 ’s box applied at Xi -1

 Figure 43: Pseudo-code to propagate the total deviation from mesh ��i-1 to ��i.
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along the border. This solution can be employed for the edge-collapse operation as well. In

their case, a single vertex maps to a point on an edge. In ours, three vertices map to points on

a chain of edges.

4.5 Computing Texture Coordinates

The use of texture maps has become common over the last several years, as the hardware

support for texture mapping has increased. Texture maps provide visual richness to com-

puter-rendered models without adding more polygons to the scene.

Texture mapping requires 2D texture coordinates at every vertex of the model. These co-

ordinates provide a parameterization of the texture map over the surface.

As we collapse an edge, we must compute texture coordinates for the generated vertex.

These coordinates should reflect the original parameterization of the texture over the surface.

We use linear interpolation to find texture coordinates for the corresponding point on the old

surface, and assign these coordinates to the generated vertex.

This approach works well in many cases, as demonstrated in Section 4.7. However, there

can still be some sliding of the texture across the surface. We have extended our mapping

approach to also measure and bound the deviation of the texture coordinates (see Chapter 5).

In this approach, the texture coordinates produce a new set of pointwise correspondences

between simplifications, and the deviation measured using these correspondences measures

the deviation of the texture. This extension allows us to make guarantees about the complete

appearance of the simplified meshes we create and render.

As we add more error measures to our system, it becomes necessary to decide how to

weight these errors to determine the overall cost of an edge collapse. Each type of error at an

edge mandates a particular viewing distance based on a user-specified screen-space tolerance

(e.g. number of allowable pixels of surface or texture deviation). We conservatively choose

the farthest of these. At run-time, the user can still adjust an overall screen-space tolerance,

but the relationships between the types of error are fixed at the time of the simplification pre-

process.
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4.6 System Implementation

We divide our software system into two major components: the simplification pre-

process, which performs the automatic simplification described previously in this chapter,

and the interactive visualization application, which employs the resulting levels of detail to

perform high-speed, high-quality rendering.

4.6.1 Simplification Pre-Process

All the algorithms described in this chapter have been implemented and applied to vari-

ous models. Although the simplification process itself is only a pre-process with respect to

the graphics application, we would still like it to be as efficient as possible. The most time-

consuming part of our implementation is the re-computation of edge costs as the surface is

simplified, as described in Section 4.1.1. To reduce this computation time, we allow our

approach to be slightly less greedy by performing a lazy evaluation of edge costs as the

simplification proceeds.

Rather than recompute all the local edge costs after a collapse, we simply set a dirty flag

for these edges. When we pick the next edge to collapse off the priority queue, which check

to see if the edge is dirty. If so, we re-compute it's cost, place it back in the queue, and pick

again. We repeat this until the lowest cost edge in the queue is clean. This clean edge has a

lower cost than the known costs of all the other edges, be they clean or dirty. If the recent

edge collapses cause an edge's cost to increase significantly, we will find out about it before

actually choosing to collapse it. The potentially negative effect is that if the cost of dirty edge

has decreased, we may not find out about it immediately, so we will not collapse the edge

until later in the simplification process.

This lazy evaluation of edge costs significantly speeds up the algorithm without much

effect on the error growth of the progressive mesh. Table 5 shows the number of edge cost

evaluations and running times for simplifications of the bunny and torus models with the

complete and lazy evaluation schemes. Figure 44 shows the effect of lazy evaluation on error

growth for these models. The lazy evaluation has a minimal effect on error. In fact in some

cases, the error of the simplification using the lazy evaluation is actually smaller. This is not
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Figure 44: Error growth for simplification of two models: (top) bunny model (bottom) wrinkled torus
model. The nearly coincident curves indicate that the error for the lazy cost evaluation method grows no
faster than error for the complete cost evaluation method over the course of a complete simplification.
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surprising, because a strictly greedy choice of edge collapses does not guarantee optimal error

growth.

Given that the lazy evaluation is so successful at speeding up the simplification process

with little impact on the error growth, we still have room to be more aggressive in speeding

up the process. For instance, it may be possible to include a cost estimation method in our

prioritization scheme. If we have a way to quickly estimate the cost of an edge collapse, we

can use these estimates in our prioritization. Of course, we must still record the guaranteed

error bound when we finally perform a collapse operation. If our guaranteed bound is too far

off from our initial estimate, we may choose to put the edge back on the queue, prioritized by

its true cost.

Model Method # Evaluations # Collapses #E / #C CPU Time % Speedup
Bunny complete 1,372,122 34,819 39.4 5:01 N/A

lazy 436,817 34,819 12.5 1:56 61.5

Torus compete 1,494,625 39,982 37.4 5:27 N/A
lazy 589,839 39,987 14.8 2:44 49.8

Table 5: Effect of lazy cost evaluation on simplification speed. The lazy method reduces the number of
edge cost evaluations performed per edge collapse operation performed, speeding up the simplification
process. Time is in minutes and seconds on a 195 MHz MIPS R10000 processor.

4.6.2 Interactive Visualization Application

More important than the speed of the simplification itself is the speed at which our

graphics application runs. The simplification algorithm outputs a list of edge collapses and

associated error bounds. Although it is possible to use this output to create view-dependent

simplifications on the fly in the visualization application (as described by Hoppe [Hoppe

1997]), such a system is fairly complex, requiring computational resources to adapt the

simplifications and immediate-mode rendering of the final triangles.

Our application is written to be simple and efficient. We first sample the progressive

mesh to generate a static set of levels of detail. These are chosen to have triangle counts that

decrease by a factor of two from level to level. This limits the total memory usage to twice

the size of the input model.

We next load these levels of detail into our visualization application, which stores them

as display lists (often referred to as retained mode). On machines with high-performance
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graphics acceleration, such display lists are retained in a cache on the accelerator and do not

need to be sent by the CPU to the accelerator every frame. On an SGI Onyx with InfiniteRe-

ality graphics, we have seen a speedup of 2-3 times, just due to the use of display lists.

Our interactive application is written on top of SGI's Iris Performer library [Rohlf and

Helman 1994], which provides a software pipeline designed to achieve high graphics per-

formance. The geometry of our model, which may be composed of many individual objects at

several levels of detail, is stored in a scene graph. One of the scene graph structures, the

LODNode, is used to store the levels of detail of an object. This LODNode also stores a list

of switching distances, which indicate at what viewing distance each level of detail should be

used (the viewing distance is the 3D distance from the eye point to the center of the object's

bounding sphere). We compute these switching distances based on the 3D surface deviation

error we have measured for each level of detail.

The rendering of the levels of detail in this system involves minimal overhead. When a

frame is rendered, the viewing distance for each object is computed and this distance is

compared to the list of switching distances to determine which level of detail to render.

The application allows the user to set a 2D error tolerance, which is used to scale the

switching distances. When the error tolerance is set to 1.0, the 3D error for the rendered

levels of detail will project to no more than a single pixel on the screen. Setting it to 2.0

allows two pixels of error, etc. This screen-space surface deviation amounts to the number of

pixels the objects' silhouettes may be off from a rendering of the original level of detail.

4.7 Results

We have applied our simplification algorithm to four distinct objects: a bunny rabbit, a

wrinkled torus, a lion, and a Ford Bronco, with a total of 390 parts. Table 6 shows the total

input complexity of each of these objects as well as the time needed to generate a progressive

mesh representation. All simplifications were performed on an SGI MIPS R10000 processor.

Figure 45 graphs the complexity of each object vs. the number of pixels of screen-space

error for a particular viewpoint. Each set of data was measured with the object centered in the

foreground of a 1000x1000-pixel viewport, with a 45o field-of-view, like the Bronco in Plates

2 and 3. This was the easiest way for us to measure the screen-space error, because the lion
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and bronco models each have multiple parts that independently switch levels of detail.

Conveniently, this function of complexity vs. error at a fixed distance is proportional to the

function of complexity vs. viewing distance with a fixed error. The latter is typically the

function of interest.

Figure 46 shows the typical way of viewing levels of detail  with a fixed error bound

and levels of detail changing as a function of distance. Figure 47 is a snapshot from our

“circling Broncos” video. We achieve a speedup nearly proportional to the reduction in

triangles. Figure 48 shows close-ups of the Bronco model at full and reduced resolutions.

Figure 49 and Figure 50 show the application of our algorithm to the texture-mapped lion

and wrinkled torus models. If you know how to free-fuse stereo image pairs, you can fuse the

tori or any of the adjacent pairs of textured lion. Because the tori are rendered at an appropri-

ate distance for switching between the two levels of detail, the images are nearly indistin-

guishable, and fuse to a sharp, clear image. The lions, however, are not rendered at their

appropriate viewing distances, so certain discrepancies will appear as fuzzy areas. Each of the

lion's 49 parts is individually colored in the wire-frame rendering to indicate which of its

levels of detail is currently being rendered.

Model Parts Original Triangles CPU Time (Min:Sec)
Bunny 1 69,451 1:56
Torus 1 79,202 2:44
Lion 49 86,844 1:56

Bronco 339 74,308 1:29

Table 6: Simplifications performed. CPU time indicates time to generate a progressive mesh of edge
collapses until no more simplification is possible.
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Figure 45: Complexity vs. screen-space error for several simplified models.
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Triangle counts: 41,855  27,970  20,922  12,939  8,385  4,766

Figure 46: The Ford Bronco model at 6 levels of detail, all at 2 pixels of screen-space error (0.17mm)

(a) Full resolution: 594,000 triangles

(b) 4 pixels (0.34 mm) of screen-space error: 94,000 triangles

Figure 47: 8 circling Bronco models
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(a) Full Resolution: 74,000 triangles

(b) 2 pixels (0.17 mm) of error: 42,000 triangles

 (c) 6 pixels (0.51 mm) of error: 29,000 triangles

(d) 26 pixels (2.2 mm) of error: 9,000 triangles

Figure 48: Close-ups of the Ford Bronco model at several resolutions.
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39,600 triangles 19,800 triangles

19,800 triangles 9.900 triangles

Figure 49: Two transitional distances for the wrinkled torus model at 1 pixel (0.085 mm) of error.
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Figure 50: 6 levels of detail for the lion (colors indicate levels of detail of individual parts)
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4.7.1 Applications of the Projection Algorithm

We have also applied the technique of finding a bijective planar projection to the simpli-

fication envelopes algorithm (Chapter 3). The simplification envelopes method requires the

calculation of a vertex normal at each vertex that may be used as a direction to offset the

vertex. The criterion for being able to move a vertex without creating a local self-intersection

is the same as the criterion for being able to project to a plane. The original algorithm used a

heuristic based on averaging the face normals.

By applying the projection algorithm based on linear programming (presented in Section

4.3.1) to the computation of the offset directions, we were able to perform more drastic

simplifications. Because we found valid offset directions where previous heuristics failed, the

envelopes were displaced more, allowing more room for simplification between the enve-

lopes. These results are detailed in Section 3.7.2.2.

4.8 Comparison to Previous Work

Although concrete comparisons are difficult to make without careful implementations of

all the related approaches readily available, we compare some of the features of our algorithm

with those of a few others. The efficient and complete algorithms for computing the planar

projection and placing the generated vertex after edge collapse should improve the perform-

ance of many earlier algorithms that use vertex removals or edge collapses.

We have directly compared our implementation with that of the simplification envelopes

approach (Chapter 3). We generated levels of detail of the Stanford bunny model (70,000

triangles) using the simplification envelopes method, then generated levels of detail with the

same number of triangles using the successive mapping approach. Visually, the models were

comparable. The error bounds for the simplification envelopes method were smaller by about

a factor of two for a given number of triangles, because the error bounds for the two methods

measure different things. Simplification envelopes only bounds the surface deviation in the

direction normal to the original surface, whereas the mapping approach prevents the surface

from sliding around as well. Also, simplification envelopes created local creases in the

bunnies, resulting in some shading artifacts. The successive mapping approach discourages

such creases by its use of planar projections. At the same time, the performance of the
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simplification envelopes approach (in terms of complexity vs. error) has been improved by

our new projection algorithm.

Hoppe's progressive mesh [Hoppe 1996] implementation is more complete than ours in

its handling of colors, textures, and discontinuities. However, this technique provides no

guaranteed error bounds, so there is no simple way to automatically choose switching dis-

tances that guarantee some visual quality.

The multi-resolution analysis approach to simplification [DeRose et al. 1993, Eck et al.

1995, Lee et al. 1998] does, in fact, provide strict error bounds as well as a mapping between

surfaces. However, the requirements of its subdivision topology and the coarse granularity of

its simplification operation do not provide the local control of the edge collapse. In particular,

it does not deal well with sharp edges. Hoppe [Hoppe 1996] had previously compared his

progressive meshes with the multi-resolution analysis meshes. For a given number of trian-

gles, his progressive meshes provide much higher visual quality. However, recent advances

[Lee et al. 1998] have improved the quality of the multi-resolution analysis meshes by

allowing the specification of constraints (e.g. along sharp edges).

Guéziec’s tolerance volume approach [Guéziec 1995] also uses edge collapses with local

error bounds. Unlike the boxes used by the successive mapping approach, Guéziec’s error

volume can grow as the simplified surface fluctuates closer to and farther away from the

original surface. This is due to the fact that it uses spheres that always remain centered at the

vertices, and the newer spheres must always contain the older spheres. The boxes used by our

successive mapping approach are not centered on the surface and do not grow as a result of

such fluctuations. Also, the tolerance volume approach does not generate mappings between

the surfaces for use with other attributes. However, the tolerance volume approach allows the

spheres for each triangle’s vertices to be different sizes. It is unclear how this greater flexibil-

ity compares with our single box size per triangle or which approach can achieve tighter

bounds over the course of an entire simplification.

We have made several significant improvements over the simplification algorithm pre-

sented by Bajaj and Schikore [Schikore and Bajaj 1995, Bajaj and Schikore 1996]. First, we

have replaced their projection heuristic with a robust algorithm for finding a valid direction



99

of projection. Second, we have generalized their approach to handle operations with a more

complex projected footprint, such as the edge collapse, which includes two interior vertices

rather than a single interior vertex. Finally, we have presented an error propagation algorithm

that correctly bounds the error in the surface deviation. Their approach represented error as

infinite slabs surrounding each triangle. Because there is no information about the extent of

these slabs, it is impossible to correctly propagate the error from a slab with one orientation

to a new slab with a different orientation.

4.9 Conclusions

In this chapter, we have developed a new simplification algorithm that provides a local

error metric for each edge collapse operation, generating a progressive mesh with guaranteed

bounds at each increment. The main features of our approach are:

1. Successive Mapping: This mapping between the levels of detail is a useful tool. We

use the mapping here in several ways: to measure the distance between the levels of

detail before an edge collapse, to choose a location for the generated vertex that

minimizes this distance, to accumulate an upper bound on the distance between the

new level of detail and the original surface, and to map surface attributes to the sim-

plified surface.

2. Tight Error Bounds:  Our approach can measure and minimize the error for surface

deviation and is extendible to other attributes. These error bounds give guarantees on

the shape of the simplified object and screen-space deviation.

3. Generality: The algorithm for collapsing an edge into a vertex is rather general and

does not restrict the vertex to lie on the original edge. Furthermore, portions of our

approach can be easily combined with other algorithms, such as the simplification en-

velopes algorithm of Chapter 3.

4. Surface Attributes: Given an original surface with texture coordinates, our algorithm

uses the successive mapping to compute appropriate texture coordinates for the sim-

plified mesh. We can even provide guarantees on the final shaded appearance of the

simplified mesh by maintaining colors and normals in texture and normal maps and
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bounding the deviation of texture coordinates (see Chapter 5). Our approach can also

be used to bound the error of any associated scalar fields [Schikore and Bajaj 1995].

5. Continuum of Levels of Details: The algorithm incrementally produces an entire

spectrum of levels-of-details as opposed to a few discrete levels; the algorithm incre-

mentally stores the error bounds for each level. Thus, the simplified model can be

stored as a progressive mesh [Hoppe 1996] if desired.

The algorithm has been successfully applied to a number of models. These models consist

of hundreds of parts and tens of thousands of polygons, including a Ford Bronco with 300

parts, a textured lion model and a textured wrinkled torus.

This new algorithm has several advantages over the simplification envelopes algorithm of

Chapter 3:

• It generates an entire progressive mesh with error bounds, rather than a small number

of levels of detail.

• It provides bijective mappings between levels of detail, useful for supporting textures

and other attributes that vary across the surface.

• It allows geometric surface features of various scales to be simplified away without

the limiting constraints of envelope surfaces.

• It tends to discourage unsightly creases in the levels of detail it creates.

The simplification envelopes algorithm also has a few advantages over this successive

mapping algorithm:

• It produces smaller error bounds; if maximum surface deviation is all you want to

measure, without any regard for pointwise correspondences, the simplification enve-

lopes bounds may be advantageous for fast rendering with smaller guaranteed bounds.

• It does not depend on the existence of planar projections for the simplification opera-

tions it performs.
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• It prevents self-intersections (however, the octree-based algorithm for preventing self-

intersections could also be built into the successive mapping implementation, though

it currently has not been).

In Chapter 5, we will build on the successive mapping approach developed in this chapter

to guarantee screen-space bounds on the deviation of texture coordinates. This new capability

provides the final tool we need make guarantees about the shaded appearance of our levels of

detail when they are rendered by our graphics application.



5. PRESERVATION OF APPEARANCE ATTRIBUTES

In this chapter we present our third major algorithm: the appearance-preserving simplifi-

cation algorithm. Our main goal for simplification is to generate a low-polygon-count ap-

proximation that maintains the high fidelity of the original model. This involves preserving

the model’s main features and overall appearance. Typically, there are three appearance

attributes that contribute to the overall, shaded appearance of a polygonal surface:

1. Surface position, represented by the coordinates of the polygon vertices.

2. Surface curvature, represented by a field of normal vectors across the polygons.

3. Surface color, also represented as a field across the polygons.

The number of samples necessary to represent a surface accurately depends on the nature

of the model and its area in screen pixels (which is related to its distance from the viewpoint).

For a simplification algorithm to preserve the appearance of the input surface, it must guar-

antee adequate sampling of these three attributes. If it does, we say that it has preserved the

appearance with respect to the display resolution.

The majority of work in the field of simplification has focused on surface approximation

algorithms, such as those presented in Chapters 3 and 4. These algorithms bound the error in

surface position only. Such bounds can be used to guarantee a maximum deviation of the

object’s silhouette in units of pixels on the screen. Although this guarantees that the object

will cover the correct pixels on the screen, it says nothing about the final colors of these

pixels.

Of the few simplification algorithms that deal with the remaining two attributes, most

provide some threshold on a maximum or average deviation of these attribute values across

the model. Although such measures do guarantee adequate sampling of all three attributes,

they do not generally allow increased simplification as the object becomes smaller on the



103

screen. These threshold metrics do not incorporate information about the object’s distance

from the viewpoint or its area on the screen. As a result of these metrics and of the way we

typically represent these appearance attributes, simplification algorithms have been quite

restricted in their ability to simplify a surface while preserving its appearance.

In this chapter, we present a new algorithm for appearance-preserving simplification. We

convert our input surface to a decoupled representation. Surface position is represented in the

typical way, by a set of triangles with 3D coordinates stored at the vertices. Surface colors

and normals are stored in texture and normal maps, respectively. These colors and normals

are mapped to the surface with the aid of a surface parameterization, represented as 2D

texture coordinates at the triangle vertices.

The surface position is filtered using a standard surface approximation algorithm that

makes local, complexity-reducing simplification operations (e.g. edge collapse, vertex

removal, etc.). The color and normal attributes are filtered by the run-time system at the pixel

level, using standard mip-mapping techniques [Williams 1983].

Because the colors and normals are now decoupled from the surface position, we employ

a new texture deviation metric, which effectively bounds the deviation of a mapped attribute

value’s position from its correct position on the original surface. We thus guarantee that each

attribute is appropriately sampled and mapped to screen-space. The deviation metric neces-

sarily constrains the simplification algorithm somewhat, but it is much less restrictive than

retaining sufficient tessellation to accurately represent colors and normals in a standard, per-

vertex representation. The preservation of colors using texture maps is possible on all current

graphics systems that supports real-time texture maps. The preservation of normals using

normal maps is possible on prototype machines today, and there are indications that hardware

support for real-time normal maps will become more widespread in the next several years.

One of the nice properties of this approach is that the user-specified error tolerance, ε, is

both simple and intuitive; it is a screen-space deviation in pixel units. A particular point on

the surface, with some color and some normal, may appear to shift by at most ε pixels on the

screen.
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We have applied our algorithm to several large models. Figure 51 clearly shows the im-

proved quality of our appearance-preserving simplification technique over a standard surface

approximation algorithm with per-vertex normals. By merely controlling the switching

distances properly, we can discretely switch between a few statically-generated levels of

detail (sampled from a progressive mesh representation) with no perceptible artifacts. Over-

all, we are able to achieve a significant speedup in rendering large models with little or no

loss in rendering quality. This research was performed in collaboration with Marc Olano and

Dinesh Manocha, and has been published in the Proceedings of SIGGRAPH 98  [Cohen et al.

1998].

Figure 51: Bumpy Torus Model. Left: 44,252 triangles full resolution mesh. Middle and Right: 5,531

triangles, 0.25 mm maximum image deviation. Middle: per-vertex normals. Right: normal maps

The rest of the chapter is organized as follows. In Section 5.1, we review some back-

ground material in the area of map-based representations. Section 5.2 presents an overview of

our appearance-preserving simplification algorithm. Sections 5.3 through 5.5 describe the

components of this algorithm, followed by a discussion of our particular implementation and

results in Section 5.6. Finally, we conclude in Section 5.7.

5.1 Background on Map-based Representations

Texture mapping is a common technique for defining color on a surface. It is just one in-

stance of mapping, a general technique for defining attributes on a surface. Other forms of

mapping use the same texture coordinate parameterization, but with maps that contain

something other than surface color. Displacement maps [Cook 1984] contain perturbations of

the surface position. They are typically used to add surface detail to a simple model. Bump

maps [Blinn 1978] are similar, but instead give perturbations of the surface normal. They can

make a smooth surface appear bumpy, but will not change the surface’s silhouette. Normal

maps [Fournier 1992] can also make a smooth surface appear bumpy, but contain the actual

normal instead of just a perturbation of the normal.
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Texture mapping is available in most current graphics systems, including workstations

and PCs. We expect to see bump mapping and similar surface shading techniques on graphics

systems in the near future [Peercy et al. 1997]. In fact, many of these mapping techniques are

already possible using the procedural shading capabilities of PixelFlow [Olano and Lastra

1998].

Several researchers have explored the possibility of replacing geometric information with

texture. Kajiya first introduced the "hierarchy of scale" of geometric models, mapping, and

lighting [Kajiya 1985]. Cabral et. al. [Cabral et al. 1987] addressed the transition between

bump mapping and lighting effects. Westin et. al. [Westin et al. 1992] generated BRDFs from

a Monte-Carlo ray tracing of an idealized piece of surface. Becker and Max [Becker and Max

1993] handle transitions from geometric detail in the form of displacement maps to shading

in the form of bump maps. Fournier [Fournier 1992] generates maps with normal and shading

information directly from surface geometry. Krishnamurthy and Levoy [Krishnamurthy and

Levoy 1996] fit complex, scanned surfaces with a set of smooth B-spline patches, then store

some of the lost geometric information in a displacement map or bump map. Many algo-

rithms first capture the geometric complexity of a scene in an image-based representation by

rendering several different views and then render the scene using texture maps [Maciel and

Shirley 1995, Aliaga 1996, Shade et al. 1996, Darsa et al. 1997].

5.2 Overview

We now present an overview of our appearance-preserving simplification algorithm.

Figure 52 presents a breakdown of the algorithm into its components. The input to the

algorithm is the polygonal surface, �0, to be simplified. The surface may come from one of a

wide variety of sources, and thus may have a variety of characteristics. The types of possible

input models include:

• CAD models, with per-vertex normals and a single color

• Radiositized models, with per-vertex colors and no normals

• Scientific visualization models, with per-vertex normals and per-vertex colors

• Textured models, with texture-mapped colors, with or without per-vertex normals
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Figure 52: Components of an appearance-preserving simplification system.

To store the colors and normals in maps, we need a parameterization of the surface,

F0(X): M0→P, where P is a 2D texture domain (texture plane), as shown in Figure 53. If the

input model is already textured, such a parameterization comes with the model. Otherwise,

we create one and store it in the form of per-vertex texture coordinates. Using this parame-

terization, per-vertex colors and normals are then stored in texture and normal maps.

Mi-1
Mi

P

edge collapse

Fi-1 Fi
-1

Vgen

vgen

Figure 53: A look at the ith edge collapse. Computing Vgen determines the shape of the new mesh, MMi.

Computing vgen determines the new mapping Fi, to the texture plane,  PP.

The original surface and its texture coordinates are then fed to the surface simplification

algorithm. This algorithm is responsible for choosing which simplification operations to

perform and in what order. It calls our texture deviation component to measure the deviation

of the texture coordinates caused by each proposed operation. It uses the resulting error

bound to help make its choices of operations, and stores the bound with each operation in its

progressive mesh output.

We can use the resulting progressive mesh with error bounds to create a static set of lev-

els of detail with error bounds, or we can use the progressive mesh directly with a view-
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dependent simplification system at run-time. Either way, the error bound allows the run-time

system to choose or adjust the tessellation of the models to meet a user-specified tolerance. It

is also possible for the user to choose a desired polygon count and have the run-time system

increase or decrease the error bound to meet that target.

5.3 Representation Conversion

Before we apply the actual simplification component of our algorithm, we perform a rep-

resentation conversion (as shown in Figure 52). The representation we choose for our surface

has a significant impact on the amount of simplification we can perform for a given level of

visual fidelity. To convert to a form that decouples the sampling rates of the colors and

normals from the sampling rate of the surface, we first parameterize the surface, then store

the color and normal information in separate maps.

5.3.1 Surface Parameterization

To store a surface's color or normal attributes in a map, the surface must first have a 2D

parameterization. This function, F0(X): �0→�, maps points, X, on the input surface, �0, to

points, x,∗ on the texture plane, ��(see Figure 53). The surface is typically decomposed into

several polygonal patches, each with its own parameterization. The creation of such parame-

terizations has been an active area of research and is fundamental for shape transformation,

multi-resolution analysis, approximation of meshes by NURBS, and texture mapping.

Though we do not present a new algorithm for such parameterization here, it is useful to

consider the desirable properties of such a parameterization for our algorithm. They are:

1. Number of patches: The parameterization should use as few patches as possible. The

triangles of the simplified surface must each lie in a single patch, so the number of

patches places a bound on the minimum mesh complexity.

2. Vertex distribution : The vertices should be as evenly distributed in the texture plane

as possible. If the parameterization causes too much area compression, we will re-

                                                
∗ Capital letters (e.g. X) refer to points in 3D, while lowercase letters

(e.g. x) refer to points in 2D.
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quire a greater map resolution to capture all of our original per-vertex data.

3. Bijective mapping: The mapping from the surface to the texture plane should be a

bijection. If the surface has folds in the texture plane, parts of the texture will be in-

correctly stored and mapped back to the surface

Our particular application of the parameterization makes us somewhat less concerned

with preserving aspect ratios than some other applications are. For instance, many applica-

tions apply F-1(x) to map a pre-synthesized texture map to an arbitrary surface. In that case,

distortions in the parameterization cause the texture to look distorted when applied to the

surface. However, in our application, the color or normal data originates on the surface itself.

Any distortion created by applying F(X) to map this data onto � is reversed when we apply

F-1(x) to map it back to �.

Algorithms for computing such parameterizations have been studied in the computer

graphics and graph drawing literature.

Computer Graphics: In the recent computer graphics literature, [Kent et al. 1992, Mail-

lot et al. 1993, Eck et al. 1995] use a spring system with various energy terms to distribute the

vertices of a polygonal patch in the plane. [Maillot et al. 1993, Eck et al. 1995, Krishna-

murthy and Levoy 1996, Pedersen 1996] provide methods for subdividing surfaces into

separate patches based on automatic criteria or user-guidance. This body of research ad-

dresses the above properties one and two, but unfortunately, parameterizations based on

spring-system algorithms do not generally guarantee a bijective mapping.

Graph Drawing:  The field of graph drawing addresses the issue of bijective mappings

more rigorously. Relevant topics include straight-line drawings on a grid [Fraysseix et al.

1990] and convex straight-line drawings [Chiba et al. 1985]. Di Battista et al. [Di Battista et

al. 1994] present a survey of the field. These techniques produce guaranteed bijective map-

pings, but the necessary grids for a graph with V vertices are worst case (and typically) O(V)

width and height, and the vertices are generally unevenly spaced.

To break a surface into polygonal patches, we currently apply an automatic subdivision

algorithm like that presented in [Eck et al. 1995]. Their application requires a patch network
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with more constraints than ours. We can generally subdivide the surface into fewer patches.

During this process, which grows Voronoi-like patches, we simply require that each patch not

expand far enough to touch itself. To produce the parameterization for each patch, we employ

a spring system with uniform weights. A side-by-side comparison of various choices of

weights in [Eck et al. 1995] shows that uniform weights produce more evenly-distributed

vertices than some other choices. For parameterizations used only with one particular map, it

is also possible to allow more area compression where data values are similar. Although this

technique will generally create reasonable parameterizations, it would be better if there were

a way to also guarantee that F(X) is a bijection, as in the graph drawing literature.

5.3.2 Creating Texture and Normal Maps

Given a polygonal surface patch, M0, and its 2D parameterization, F, it is straightforward

to store per-vertex colors and normals into the appropriate maps using standard rendering

software. To create a map, scan convert each triangle of M0, replacing each of its vertex

coordinates, Vj, with F(Vj), the texture coordinates of the vertex. For a texture map, apply the

Gouraud method for linearly interpolating the colors across the triangles. For a normal map,

interpolate the per-vertex normals across the triangles instead (as shown in Figure 54).

Figure 54: A patch from the leg of an �armadillo� model and its associated normal map.

The most important question in creating these maps is what the maximum resolution of

the map images should be. To capture all the information from the original mesh, each

vertex's data should be stored in a unique texel. We can guarantee this conservatively by

choosing 1/d x 1/d for our map resolution, where d is the minimum distance between vertex

texture coordinates:

d F V F V
i j i j

i j= −
∈ ≠

min ( ) ( )
, ,V V M 0

(25)
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If the vertices of the polygonal surface patch happen to be a uniform sampling of the tex-

ture space (e.g. if the polygonal surface patch was generated from a parametric curved surface

patch), then the issues of scan conversion and resolution are simplified considerably. Each

vertex color (or normal) is simply stored in an element of a 2D array of the appropriate

dimensions, and the array itself is the map image.

It is possible to trade off accuracy of the map data for run-time texturing resources by

scaling down the initial maps to a lower resolution. In fact, it may be possible to tune the

parameterization to work with the particular attribute values of a given model. For instance,

the parameterization should ideally place topologically adjacent vertices with similar attribute

values closer together in the texture space than adjacent vertices with more dissimilar values.

Using such a scheme, we can minimize the filtering error that occurs at each level of the mip-

map, and thus also reduce the negative effects of discarding some of the higher-resolution

map levels when desired.

5.4 Simplification Algorithm

Once we have decomposed the surface into one or more parameterized polygonal patches

with associated maps, we begin the actual simplification process. Many simplification

algorithms perform a series of edge collapses or other local simplification operations to

gradually reduce the complexity of the input surface. The order in which these operations are

performed has a large impact on the quality of the resulting surface, so simplification algo-

rithms typically choose the operations in order of increasing error according to some metric.

This metric may be local or global in nature, and for surface approximation algorithms, it

provides some bound or estimate on the error in surface position. The operations to be

performed are typically maintained in a priority queue, which is continually updated as the

simplification progresses. This basic design is applied by many of the current simplification

algorithms, including [Guéziec 1995, Hoppe 1996, Cohen et al. 1997, Garland and Heckbert

1997] and the successive mapping algorithm of Chapter 4.

To incorporate our appearance-preservation approach into such an algorithm, the original

algorithm is modified to use our texture deviation metric in addition to its usual error metric.

When an edge is collapsed, the error metric of the particular surface approximation algorithm
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is used to compute a value for Vgen, the surface position of the new vertex (see Figure 53).

Our texture deviation metric is then applied to compute a value for vgen, the texture coordi-

nates of the new vertex.

For the purpose of computing an edge’s priority, there are several ways to combine the

error metrics of surface approximation along with the texture deviation metric, and the

appropriate choice depends on the algorithm in question. Several possibilities for such a total

error metric include a weighted combination of the two error metrics, the maximum or

minimum of the error metrics, or one of the two error metrics taken alone. For instance, when

integrating with Garland and Heckbert’s algorithm [Garland and Heckbert 1997], it would be

desirable to take a weighted combination in order to retain the precedence their system

accords the topology-preserving collapses over the topology-modifying collapses. Similarly, a

weighted combination may be desirable for an integration with Hoppe’s system [Hoppe

1996], which already optimizes error terms corresponding to various mesh attributes.

To integrate with the successive mapping simplification algorithm of Chapter 4, we use

the error calculated by the orthogonal projection mapping to compute Vgen, compute a heuris-

tic guess for vgen based on this projection mapping, then compute the final value for vgen and

measure the texture deviation. As we discuss in Section 5.6.2, the resulting texture deviation

error may be taken alone as the reported error for the edge collapse.

The interactive display system later uses the error reported by any or all of the metrics to

determine appropriate distances from the viewpoint either for switching between static levels

of detail or for collapsing/splitting the edges dynamically to produce adaptive, view-

dependent tessellations. If the system intends to guarantee that certain tolerances are met, the

maximum of the error metrics is often an appropriate choice.

5.5 Texture Deviation Metric

A key element of our approach to appearance-preservation is the measurement of the

texture coordinate deviation caused by the simplification process. We provide a bound on

this deviation, to be used by the simplification algorithm to prioritize the potential edge

collapses and by the run-time visualization system to choose appropriate levels of detail

based on the current viewpoint.
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Figure 55: Lion model. Figure 56: Texture coordinate deviation and correction on the

lion�s tail. Left: 1,740 triangles full resolution. Middle and Right:

0.25 mm maximum image deviation. Middle: 108 triangles, no

texture deviation metric. Right: 434 triangles with texture metric.

The lion’s tail in Figure 56 (one part of the lion model of Figure 50 and Figure 55) dem-

onstrates the need to measure texture coordinate deviation. The center figure is simplified by

a surface approximation algorithm without using a texture deviation metric. The distortions

are visible in the areas marked by red circles. The right tail is simplified using our texture

deviation metric and does not have visible distortions. The image-space deviation bound now

applies to the texture as well as to the surface.

For a given point, X, on simplified mesh Mi, this deviation is the distance in 3D from X

to the point on the input surface with the same texture coordinates:

T X X F F Xi i( ) ( ( ))= − −
0

1 (26)

This texture deviation function looks remarkably similar to the total surface deviation

function, Si(X) defined by (21) on page 84. In fact, they are just the same; they are both

measures of 3D distances between pairs of corresponding points, with one point on Mi and

the other point on M0. The only difference is the choice of the mapping function, F. In

Chapter 4, we used orthogonal projections of each edge neighborhood to define F. Here, F is

the texture-coordinate parameterization, represented by the texture coordinates at each vertex.

One implication of this similarity is that the texture deviation metric can actually serve as

a surface deviation metric as well. It does measure how far the surface has moved according

to some mapping. Another implication is that the algorithms for computing a bound on the
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total texture deviation will be the same as those for computing the total surface deviation.

Replacing the orthogonal projection mapping with the texture coordinate mapping implies

that all our 2D computations will be performed in the texture plane rather than the plane of

projection.

We define the texture coordinate deviation of a whole triangle to be the maximum devia-

tion of all the points in the triangle, and similarly for the whole surface:

T T X T T Xi
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(27)

To compute the texture coordinate deviation incurred by an edge collapse operation, our

algorithm takes as input the set of triangles before the edge collapse and Vgen, the 3D coordi-

nates of the new vertex generated by the collapse operation. The algorithm outputs vgen, the

2D texture coordinates for this generated vertex, and a bound on Ti(∆) for each of the trian-

gles after the collapse.

5.5.1 Computing New Texture Coordinates

Computing the new texture coordinates, vgen, is equivalent to the process of placing the

vertex in the plane of projection, described in Section 4.3.2. For vgen to be valid, it must lie in

the kernel of our polygon in the texture plane (see Figure 38 on page 79). Meeting this

criterion ensures that the set of triangles after the edge collapse covers exactly the same

portion of the texture plane as the set of triangles before the collapse.

Given a candidate point in the texture plane, we efficiently test the kernel criterion with a

series of dot products to see if it lies on the inward side of each polygon edge. We first test

some heuristic choices for the texture coordinates – the midpoint of the original edge in the

texture plane or one of the edge vertices. In our case, we use the corresponding point pro-

vided by the projection mapping. If the heuristic choices fail we compute a point inside the

kernel by averaging three corners, found using the same linear programming techniques

presented in Section 4.3.2.

5.5.2 Patch Borders and Continuity

Unlike an interior edge collapse, an edge collapse on a patch border can change the cov-
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erage in the texture plane, either by cutting off some of texture space or by extending into a

portion of texture space for which we have no map data. Since neither of these is acceptable,

we add additional constraints on the choice of vgen at patch borders.

We assume that the area of texture space for which we have map data is rectangular

(though the method works for any map that covers a polygonal area in texture space), and that

the edges of the patch are also the edges of the map. If the entire edge to be collapsed lies on

a border of the map, we restrict vgen to lie on the edge. If one of the vertices of the edge lies

on a corner of the map, we further restrict vgen to lie at that vertex. If only one vertex is on the

border, we restrict vgen to lie at that vertex. If one vertex of the edge lies on one border of the

map and the other vertex lies on a different border, we do not allow the edge collapse.

The surface parameterization component typically breaks the input model into several

connected patches. To preserve geometric and texture continuity across the boundary be-

tween them, we add further restrictions on the simplifications that are performed along the

border. The shared border edges must be simplified on both patches, with matching choices

of Vgen and vgen.

5.5.3 Measuring Texture Deviation

Texture deviation is a measure of the parametric distortion caused by the simplification

process. We measure this deviation using the same method we use to measure surface

deviation in Chapter 4, except we now measure the deviation using our mapping in the

texture plane, rather than in the plane of an orthogonal projection.

We first complete our mapping (as in Section 4.3.4) by computing the vertices of the

mapping cells (see Figure 39 on page 81). The maximum incremental texture deviation for

each mapping cell must occur at one of its vertices. We then propagate this incremental

texture deviation (as in Section 0) using a set of axis-aligned boxes, one for each triangle.

These boxes accumulate our bound on the total texture deviation (see Figure 42 on page 85).

Because our current system ultimately uses only this bound on total texture deviation as

its measure of error for an edge collapse, it is not necessary in the context of this appearance-

preserving system to perform error propagation for the surface deviation  only for the

texture deviation. In this system, the projection mapping algorithm is used strictly to choose
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the optimized 3D position for Vgen and to provide the heuristic choose for the new texture

coordinates, vgen. The optimization of Vgen requires only the incremental surface deviation at

the cell vertices.

5.6 Implementation and Results

In this section we present some details of our implementation of the various components

of our appearance-preserving simplification algorithm. These include methods for represen-

tation conversion, simplification and, finally, interactive display.

5.6.1 Representation Conversion

We have applied our technique to several large models, including those listed in Table 7.

The bumpy torus model (Figure 51) was created from a parametric equation to demonstrate

the need for greater sampling of the normals than of the surface position. The lion model

(Figure 55) was designed from NURBS patches as part of a much larger garden environment,

and we chose to decorate it with a marble texture (and a checkerboard texture to make texture

deviation more apparent in static images). Neither of these models required the computation

of a parameterization. The “armadillo” (Figure 58) was constructed by merging several laser-

scanned meshes into a single, dense polygon mesh. It was decomposed into polygonal

patches and parameterized using the algorithm presented in [Krishnamurthy and Levoy

1996], which eventually converts the patches into a NURBS representation with associated

displacement maps.

Because all these models were not only parameterized, but available in piecewise-rational

parametric representations, we generated polygonal patches by uniformly sampling these

representations in the parameter space. We chose the original tessellation of the models to be

high enough to capture all the detail available in their smooth representations. Due to the

uniform sampling, we were able to use the simpler method of map creation (described in

Section 5.3.2), avoiding the need for a scan-conversion process.

5.6.2 Simplification

We integrated our texture deviation metric with the successive mapping algorithm for

surface approximation (Chapter 4). The error metric for that algorithm is a 3D surface
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deviation. We used this deviation only in the computation of Vgen. Our total error metric for

prioritizing edges and choosing switching distances is just the texture deviation. This is

sensible because the texture deviation metric is also a measure of surface deviation, whose

particular mapping is the parameterization. Thus, if the successive mapping metric is less

than the texture deviation metric, we must apply the texture deviation metric, because it is the

minimum bound we know that guarantees the bound on our texture deviation. On the other

hand, if the successive mapping metric is greater than the texture deviation metric, the texture

deviation bound is still sufficient to guarantee a bound on both the surface deviation and the

texture.

To achieve a simple and efficient run-time system, we apply a post-process to convert the

progressive mesh output to a static set of levels of detail, reducing the mesh complexity by a

factor of two at each level.

Our implementation can either treat each patch as an independent object or treat a con-

nected set of patches as one object. If we simplify the patches independently, we have the

freedom to switch their levels of detail independently, but we will see cracks between the

patches when they are rendered at a sufficiently large error tolerance. Simplifying the patches

together allows us to prevent cracks by switching the levels of detail simultaneously.

Table 7 gives the computation time to simplify several models, as well as the resolution

of each map image. Figure 57 and Figure 58 show results on the “armadillo” model. It should

be noted that the latter figure is not intended to imply equal computational costs for rendering

models with per-vertex normals and normal maps. Simplification using the normal map

representation provides measurable quality and reduced triangle overhead, with an additional

overhead dependent on the screen resolution.

5.6.3 Interactive Display System

We have implemented two interactive display systems: one on top of SGI’s IRIS Per-

former library, and one on top of a custom library running on a PixelFlow system. The SGI

system supports color preservation using texture maps, and the PixelFlow system supports

color and normal preservation using texture and normal maps, respectively. Both systems

apply a bound on the distance from the viewpoint to the object to convert the texture devia-
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tion error in 3D to a number of pixels on the screen (as described in Section 3.6), and allow

the user to specify a tolerance for the number of pixels of deviation. The tolerance is ulti-

mately used to choose the primitives to render from among the statically generated set of

levels of detail.

Our custom shading function on the PixelFlow implementation performs a mip-mapped

look-up of the normal and applies a Phong lighting model to compute the output color of

each pixel. The current implementation looks up normals with 8 bits per component, which

seems sufficient in practice (using the reformulation of the Phong lighting equation described

in [Lyon 1993]).

Model Patches Input Triangles Time Map Resolution

Torus 1 44,252 4.4 512x128
Lion 49 86,844 7.4 N/A

“Armadillo” 102 2,040,000 190 128x128

Table 7: Several models used to test appearance-preserving simplification. Simplification time is in

minutes on a MIPS R10000 processor.

5.7 Conclusions

In this chapter we have demonstrated an appearance-preserving simplification system,

which provides proper sampling of appearance attributes. Our current implementation

demonstrates the feasibility and desirability of our approach to appearance-preserving simpli-

fication. It produces high-fidelity images using a small number of high-quality triangles. In

addition, it provides an intuitive error metric based on the notion of screen-space displace-

ment of essentially correctly-shaded pixels. This approach allows us to maintain the render-

ing quality we desire while managing the geometry required to achieve this quality.

Figure 57: Levels of detail of the �armadillo� model shown with 1.0 mm maximum image deviation.

Triangle counts are: 7,809, 3,905, 1,951, 975, 488
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Figure 58: Close-up of several levels of detail of the �armadillo� model. Top: normal maps Bottom: per-

vertex normals



6. CONCLUSION

6.1 Contributions

This dissertation presents three major simplification algorithms:

1. Simplification Envelopes

2. Successive Mappings

3. Appearance-Preserving Simplification

Together, they make a number of contributions to the field of polygonal mesh simplifica-

tion (see Section 1.7 for more detail):

• Increased robustness and scalability of the simplification envelopes algorithm

• Local error metric for surface-to-surface deviation between original and simplified

surfaces

• Bijective mappings between original and simplified surfaces for the edge collapse op-

eration

• Local error metric for texture deviation, with bijective mappings between original and

simplified surfaces

• Appearance-preserving simplification algorithm

• Intuitive, screen-space error metric for surface and texture deviations

6.2 Future Extensions

We now describe some possible extensions to this dissertation research. These extensions

are organized by category: minimizing error, bijective mappings, non-manifold meshes,

parameterization, and appearance preservation.
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6.2.1 Minimizing Error

It seems clear that there is much more we could do algorithmically to reduce the error in

our simplified models. This can be accomplished by reducing the actual error, tightening the

bounds on our measurement of the actual error, or both. One of the shortcomings of greedy

simplification algorithms with no bound on their output size compared to the optimal solu-

tion is that we have little idea of how much better we could be doing. Reducing our reported

error may very well increase the time it takes to perform the simplification. If we are ap-

proaching the point of diminishing returns, this may be of purely academic interest. On the

other hand, there may still be significant room for improvement, and we may find the error

reduction to be of great practical use.

The minimization of surface deviation for the successive mapping algorithm currently

uses only one degree of freedom for its optimization of the 3D vertex position. Moving in the

other two dimensions can change the mapping, making the optimization process more

complex. In addition, we currently minimize the incremental surface deviation, not the total

surface deviation. Finally, we accumulate our total error from the original surface using axis-

aligned boxes. If we could measure and minimize the total error directly from the original

surface, we could avoid some unnecessary error accumulation.

For the appearance-preserving simplification algorithm, the minimization of texture de-

viation is even more heuristic. The orthogonal projection mapping is used to compute the

corresponding texture coordinates for the generated vertex. These texture coordinates are not

currently optimized to minimize the texture deviation. Such an optimization would be similar

to optimizing the remaining two dimensions of the 3D vertex in the successive mapping

algorithm; it would change the mapping in the texture plane, making the optimization process

more complex.

For the simplification of complex models, the heuristic nature of the current minimization

is offset somewhat by the priority queue mechanism. There are many edge collapse opera-

tions to choose from to determine the next simplification step, so it may not matter too much

if each operation is not optimized as well as possible. However, as the model becomes more

coarse, the minimization of error becomes more important, and simplification with small
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error growth becomes more difficult. The need for better error minimization depends, to

some extent, on what level of simplification the graphics applications require.

6.2.2 Bijective Mappings

The mappings we generate using the successive mappings approach are not the best map-

pings possible. Given any choice 3D position for the generated vertex, it should be possible

to optimize the mapping so it minimizes the maximum deviation. Adjusting the mapping

affects the distance function by changing the correspondences. In fact, we could even con-

struct our mappings directly on the 3D surface, rather than relying on planar projections at all.

Such a mapping might be initialized to be the natural mapping, then allow an optimization

process to minimize the error by adding, removing, or adjusting the piece-wise linear map-

ping cells on the two surfaces. A similar process might even be used to generate mappings

between levels of detail create by the simplification envelopes approach.

6.2.3 Non-manifold Meshes

These simplification algorithms, like most topology-preserving simplification algorithms,

apply most readily to manifold meshes. However, non-manifold meshes are of great impor-

tance for practical applications. Many meshes are not manifold, and we can even convert

meshes with all sorts of arbitrary polygon intersections into non-manifold meshes, with all

the intersections identified.

Our appearance-preserving simplification algorithm has the makings of an approach to

simplifying non-manifold meshes. The non-manifold meshes may be decomposed into

several manifold meshes and their adjacency information, much like the meshes in the

appearance-preserving algorithm are decomposed into adjacent patches with their individual

parameterizations. This sort of approach may work well for meshes that are “mostly mani-

fold,” with a few non-manifold regions. If the mesh is “mostly non-manifold,” there will be

too many patches, and we must develop new ways to achieve some degree of coherence

across the surface.

There is considerable overlap of the handling of non-manifold meshes with the handling

of topological modifications. In this area, there is a great need to explore ways of modifying
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topology while preserving the surface appearance. This may include a characterization of

which types of topological modifications can have the most impact on the appearance of a

surface.

6.2.4 Parameterization

Most algorithms for polygonal surface parameterization today optimize the parameteriza-

tion to minimize distortions between the parameter space and the surface. This is important

for applying prefabricated, general-purpose textures to a variety of objects. Our application of

the parameterization is different, however, because the data originates at the vertices of the

polygonal surface; any distortion in mapping the data to the texture domain is reversed when

the data is reapplied to the surface during rendering.

In our case, it is more important to optimize the parameterization for the minimization of

filtering error and storage consumption. Using the actual data to be stored in a map, we

should be able to optimize the parameterization to further these goals. Topologically adjacent

data values with similar values should be stored more closely together in the parameter space

than those with dissimilar values. This will help minimize the error that occurs at each level

of the mip-map pyramid structure. For applications willing to tolerate some additional error,

it may be possible to discard one or more of the highest resolution mip-map levels, reducing

storage and possibly rendering bandwidth.

6.2.5 Appearance Preservation

Our appearance-preserving algorithm takes a clear and consistent approach to preserving

appearance attributes that vary across a given polygonal surface. However, the algorithm

depends on the commercial availability of graphics acceleration hardware that provides:

a) Sufficient bandwidth to render all the necessary appearance attribute maps at the de-

sired screen resolution

b) Computing resources and flexibility to light and shade polygonal primitives according

to attribute map values (in either single- or multi-pass fashion)
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Even for those platforms with these capabilities, it is important for us to manage the

bandwidth required for complex scenes by ensuring that only the smallest necessary mip-map

levels are transmitted within the graphics engine.

For less capable graphics platforms, it will be necessary to develop other algorithms for

preserving appearance, using the more traditionally accelerated rendering techniques. Though

most graphics accelerators today have support for texture mapping, they may not have the

necessary bandwidth to transmit enough unique texture data to cover the screen at the desired

resolution (many gaming applications cover most of the screen area with generic, repeatable

texture patterns applied to the polygons). Thus, we may need to rely only on the capability of

handling per-vertex or per-polygon colors and normals. The metrics we use to measure the

effects of simplification on these colors and normals must take into account not only the

changes in these values, but the value changes times the area on the screen, and the resulting

changes in final, lit colors times the area on the screen. Such metrics will allow us to make

some guarantees as to the quality of the appearance of the resulting images.

6.3 Simplification in Context

Polygonal simplification is one of many techniques used to accelerate the rendering of

complex scenes. Other techniques include back-face culling, view-frustum culling, occlusion

culling, cell-and-portal culling, and image replacement. The various culling techniques

attempt to remove hidden geometry, whereas polygonal simplification and image replacement

(replacing some amount of complex geometry with an image) attempt to reduce the com-

plexity of the visible geometry.

An ambitious goal for an interactive 3D graphics algorithm is to have a rendering com-

plexity that is output sensitive. That is to say, the rendering algorithm should ideally take an

amount of time that is proportional only to the screen resolution, but not to the scene com-

plexity, to generate an image. Also, the rendered image should have as high a quality as that

produced with a reasonable non-output-sensitive algorithm. Polygonal simplification is not

likely to become a powerful enough tool to achieve this goal on its own. Even if we incorpo-

rate topological changes and object merging into our simplification scheme, as in [Luebke

and Erikson 1997], it will be difficult to achieve both our complexity and quality goals.
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The combination of simplification techniques and image replacement techniques seems a

promising approach to achieving our high-quality, interactive rendering goals. A prototype

system that takes just such an approach is demonstrated in [Aliaga et al. 1998]. Pre-computed

images are used to replace far geometry, whereas simplification is used to reduce the com-

plexity of nearby geometry. Each technique is thus applied to its area of greatest strength 

geometric primitives up close and images far away.

Among its other contributions, this dissertation presents an algorithm for appearance-

preserving simplification, using rendering primitives that provide a high ratio of quality to

rendering complexity (especially reducing transformation complexity). The representation is

a hybrid of sorts, itself employing both geometry and mapped images. We hope that our

approaches to appearance preservation and simplification in general, which provide guaran-

teed error bounds with the simplified models, will be useful components of the interactive

rendering algorithms of the future.
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