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Abstract

We suney five automatedliscosery programsworking in mathematicshy looking in detailatthe discovery processes
they illustrate, summarisingthe successethey’ve had and by focusingon how they estimatethe interestingnessf
conceptsandconjecturesWe thenextractsomecommonnotionsabouttheinterestingnessf conjecturesandconcepts.
We detailhow empiricalevidenceis usedto give plausibility to conjecturesandthe differentwaysin which a concept
or conjecturecanbethoughtof asnovel. We alsodetailhow programsassessiow surprisingandcomplex a conjecture
statemenis, andthedifferentwaysin which the applicability of a conceptor conjecturds used.Finally we notehow a
usercansettasksfor the programto achieve andhow this affectsthe calculationof interestingness.

1 Intr oduction

Therehasbeensomerecentprogressn sureying andex-
tracting generalprinciplesof machinediscovery in sci-
ence,for exampleLangley (1998), Valdés-Ferez(1999).
We aim to add to this by surweying five programsde-
velopedto perform discovery in mathematics. We re-
strict our discussionto programswhosemain objective
is to invent conceptdefinitionsand make conjecturesn
pure mathematics. This leaves out automatedtheorem
provers(whichdiscoverproofs),andprogramswvhichdis-
cover mathematicatesultsin otherdomains suchasthe
very importantBACON programsLangley etal. (1987).
To compareandcontrasthe discovery programswe de-
tail whatthe projectaimswere,how the programworked
andwhat contritutionsthe programsmadeto mathemat-
ics andtheunderstandingf mathematicadliscosery. We
pay particularattentionto the measuregmployedto es-
timatehow interestinga concepir conjecturds.
Deciding whethersomethingis interestingor not is
of centralimportancen automatednathematicatdliscos-
ery, asit helpsdeterminéboththesearctspaceandsearch
strategyy for finding and evaluatingconceptsand conjec-
tures.Best-firstsearchessingassessmentd interesting-
nessareoften neededo effectively traverselarge search
spacesWhenit becomeglearewhatresultsareinterest-
ing, insteadof justignoring or discardingdull concepts
andconjecturesthe searchspacecanbetailoredto avoid
someof themcompletely Estimatinginterestingnesss
difficult becaus®ftenit hasto bedoneimmediatelyafter
aconcepfor conjecturehasbeenintroducedwhereaghe
trueinterestingnesef resultsanddefinitionsin mathem-
atics may only cometo light muchlater Therefore,a

heuristicsearchhasto be carefulnot to throw away ary-
thing which mayturn outto beusefullateron.

In §3, we identify six reasonavhy a conceptor con-
jecturemight be considerednteresting. We detail how
the programsuseempirical evidenceto cut down on the
numberof falseconjecturesnade.We shav how the nov-
elty of aconjecturecanbedeterminedy whetherit, oran
isomorphicconjecture hasbeenseenbefore,or whether
it followsasanobviouscorollaryto apreviousconjecture,
andwe detailthedifferentwaysin whichaconceptanbe
thoughtof asnovel. We notethatbeingsurprisings ade-
sirablepropertyof conjecturegandconceptandwe shav
how programswill avoid making conjecturesvhich are
justinstance®f tautologiesandhow they canassesshe
surprisingnessf a conjectureor concept.We definethe
applicabilityof conceptsandconjecturedo bethe subset
of modelsto which they bearsomerelevance,and shov
that this measurecan be usedin a variety of ways. We
alsodetailhow programscanassessompleity andtailor
their searchstratgiesto find the leastcomplex concepts
andconjecturedirst. Finally, we look at how a usercan
seta programa particulartaskto achieze andhow inter
estingnessanbe measureavith respecto thattask.

By looking in detail at five discovery programsand
extractingsomecommonwaysby which the interesting-
nessof conceptsand conjecturess assessedye will be
ableto suggespossiblevaysfor futureprogramgo meas-
ure interestingness.We will also note that the novelty,
intelligibility andplausibility measuresetoutin Valdés-
Pérez(1999) by which humanscan assesshe outputof
discovery programsaresimilarto thoseby whichthepro-
gramsassestheinterestingnessf their resultsinternally.



2 Machine Discovery Programs

The five programswe discussin detail arethe AM pro-
gram which worked in elementarysetand numberthe-
ory, the GT programwhich worked in graphtheory the
Graffiti programwhichis usedin graphtheory the plane
geometrysystemfrom Bagaiet al, andthe HR program
which works mainly with finite algebras.For clarity, no
otherprogramsarediscussed.

2.1 The AM Program

The AM program,written by DouglasLenat, performed
conceptformationand conjecturemakingin elementary
set theory and elementarynumbertheory as described
in Lenat (1976) and Davis and Lenat (1982). Starting
with 115elementaryconceptsuchassetsandbags,AM
would re-inventsettheoryconceptdik e subsetanddis-
joint setsandnumbertheoryconceptsuchasprimenum-
bersandhighly compositenumbers(with more divisors
thanary smallerinteger). AM would alsospotsomewell
known conjecturessuchasthe fundamentatheoremof
arithmeticand Goldbachs conjecture- that every even
numberis the sumof two primes.

Conceptswvere given a framerepresentationvith 25
facetdo eachframe,andnone,oneor multiple entriesfor
eachfacet.Someof thefacetswere: (i) adefinitionfor the
concepfi(ii) analgorithmfor theconcepf(iii) examplesof
theconcepi(iv) which otherconceptst wasageneralisa-
tion/specialisatiorof, and (v) conjecturesnvolving the
concept.AM repeatedlyperformedthe taskat the top of
an agendeaorderedin termsof the interestingnessf the
tasks.Eachtaskinvolvedperforminganactionon afacet
of a concept. Usually the actionwasto fill in the facet,
for example,find someotherconceptsvhich arespecial-
isationsof theconceptor find someconjecturegboutthe
concept,but the action could alsobe to checkthe facet,
eg. checkthata conjecturavasempiricallytrue.

To performa task,AM would look throughits data-
baseof 242 heuristics,choosethosewhich were appro-
priateto the taskandperformeachof the sub-tasksug-
gestedby the choserheuristics.Somesub-taskgletailed
how to performtheoveralltaskat hand,but they werenot
limited to that. Somesub-tasksvould put new taskson
the agenda(which was how the agendawas increased).
Someof the new taskswereto inventnew conceptsand
whenthesewereaddedto theagendaAM would imme-
diately createthe frame for the new concept. This was
becausé&nowledgepresentat the time of suggestinghe
new concepiwasneededo fill in someof thefacetwof the
conceptAM onlyfilled in informationatthis stagewhich
tooklittle computationsuchasadefinitionandexamples,
andataskwasputontheagenddo fill in eachof theother
facetsof the newly formedconcept.

Amongthenew concept®AM would suggestvere: (i)
specialisationsgg. a new functionwhich wasa previous
onespecialisedo have equalinputs, (ii) generalisations

(iii) extractedfrom the domain/rangeof a function, eg.
thoseintegersoutputby a function (iv) inversesof func-
tions (v) compositionof two functions. Sometaskson
the agendawereto find conjecturesabouta concept,n-
cluding finding that (a) one conceptwasa specialisation
of another(b) the domain/rang®f a conceptwaslimited
to aparticulartype of objector (c) nointegersof a partic-
ulartypeexisted.

Becausdherecould be asmary as4000taskson the
agendat ary onetime, AM spentalot of its time decid-
ing which it shoulddo first. Whenever a heuristicadded
ataskto theagendaijt would supplyreasonsaccompan-
ied by numericalvalueswhy the action,conceptor facet
of thetaskwasinteresting AM thenemplogyedaformula
involving the numberof reasonsand a weightedsum of
the numericalvaluesto calculatean overall worth for the
task. The weightedsumgave moreemphasido thereas-
onswhy theconceptwasinterestinghanthereasonsvhy
thefacetor actionwereinteresting Whena heuristicwas
working out how interestinga conceptwas, it would col-
late and use anotherset of heuristicsfor the task. The
heuristicswvhich couldmeasuregheinterestingnessf any
conceptwererecordedasheuristics9 to 20 in Davis and
Lenat(1982),andincluded:

[9] A conceptis interestingif thereare someinteresting
conjecturesboutit.

[13] A conceptis dull if, after several attempts,only a
coupleof exampleshave beenfound.

[15] A concepisinterestingf all theexamplessatisfythe
rarely-satisfiegbredicateP.

[20] A conceptis moreinterestingf it hasbeenderived
in morethanoneway.

(Notethatthesehave beenparaphrasettom Lenats ori-
ginals).AM alsohadwaysto assestheinterestingnessf
conceptdormedin a particularway, for examplethe in-
terestingnessf conceptformedby composingwo pre-
vious conceptscould be measurediy heuristics179 to
189,0neof whichwas:

[180] A compositionF' = GoH is interestingf F' hasan
interestingoropertynotpossessely eitherG or H.

AM would also measurethe interestingnessf conjec-
tures,sothatit couldcorrectlyassessasksrelatingto the
conjecturedacetsof concepts.Heuristics65 to 68 seem
to betheonly heuristicswhich do this, for example:

[66] Non-existenceconjecturesreinteresting.

At ary stageduring a sessionthe usercould inter-
rupt AM andtell it thata particularconcepwasinterest-
ing. Lenatsaysin Davis andLenat(1982)thatuserscould
“kick AM in onedirectionor another”,and“the very best
examplesof AM in actionwerebroughtto full fruition
only by a humandeveloper”. Many of AM’s heuristics
weredesignedo keepthefocuson suchchoserconcepts,
by spreadingaroundthe interestthe userhad shavn in
them. For example theseheuristicskeepthe attentionon
conceptandconjectureselatedto interestingconcepts:



[16] A conceptis interestingif it is closelyrelatedto a
very interestingconcept.

[65] A conjectureaboutconceptX is interestingif X is
veryinteresting.

In fact, AM could make alittle interestingnesgo along
way: of the 43 heuristicsdesignedo assessheinterest-
ingnesof aconcept33of theminvolve passingoninter-
estingnesslerivedelsavhere.

Therehasbeenmuchdebateaboutthe AM program.
RitchieandHanna(1984)wereparticularlycritical of the
methodsAM usedandthe accurayg of Lenats descrip-
tion of AM. The maincontritution of Lenatswork is an
inspirationfor haw computersould do mathematicsie.
by creatingconceptsand conjecturesof mary different
typesand using heuristicmethodssuchas analogyand
symmetryto exploreadomain.

2.2 The GT Program

ThGT programby SusarEpsteinperformectoncepform-
ation, conjecturemaking and theoremproving in graph
theory asdescribedn Epstein(1987)andmorefully in
Epstein(1988). Given just the conceptof a graph,GT
would re-inventgraphproperties suchasbeingacyclic,
connectedastaror atree,(asshovnin figure 1 below).
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Figurel: graphpropertiege-inventedby GT

Also, givenasetof userdefinedconceptslescribinggraph
propertiesGT would make conjecturesuchas:

® A graphis atreeiff it is agyclic andconnected.

GT successfullyllustrateda possiblanechanisnfior auto-
mateddiscoveryin mathematicinvolving bothdeductve
andinductive reasoning.This waspossiblebecausecT
representedjraph propertiesin a carefully thoughtout
way developedin Epsteins PhD thesis,Epstein(1983),
which allowed examplegenerationtheoremproving and
concepformation.
Eachgraphpropertywasrepresentedsatriple,
< f,S,0 >, consistingof a setof basecases,S, a con-
structor f, anda setof constraintsfor the constructor
o, which togetherdetailedthe recursve constructionof
graphdromthebasecasesFor example to definethestar
propertyabove, the basecaseswould be just the trivial
graph(with onevertex, no edgesyandthe constructor
would addonevertex andanedgebetweerthenew vertex
andanold vertex, subjectto the singleconstrainthatthe
old vertex mustbe on moreedgeshanary othervertex.
Epsteinwas able to prove that 42 classicallyinteresting
graphtheoryconceptsincluding cycles,Euleriangraphs

andk-colouredgraphscouldberepresente¢h this man-
nerin asoundandcompleteway.

Thisrepresentationouldbeusedo generatexamples
of a concept(Epsteincalledthis ‘doodling’) by starting
with thebasecasesndrepeatediapplyingtheconstructor
subjectto the constraints. Deductionwas possibleby
proving that one graph property subsumedinother[see
Epstein(1988)],or by shawing thatno graphscould have
two particular properties. Conceptformation was pos-
sible by: (a) specialisinga previous conceptby remov-
ing basecasesrestrictingthe constructoyor strengthen-
ing the constraints,(b) generlising a previous concept
by addingbasecasesexpandingthe constructoyor by re-
laxing the constraintspr (c) meging propertiesA andB,
for examplecreatinga new graphpropertywith A’s base
casesand constructoy but the constraintsof both A and
B, [subjectto someconditions].

GT workedby repeatedlycompletingoneof six types
of project: (i) generateexamplesof graphswith certain
properties(ii) seeif onepropertysubsumednotheriii)
seeif two propertieswere equivalent, (iv) seeif a mer
ger betweentwo propertieswould fail, (v) generalisea
conceptand (vi) specialisea concept. Eachprojectwas
placedon anagenddollowing variousrules:

 |f apropertyhasfew exampledn thedatabasehenim-
mediatelygeneratenoreexampledor it by ‘doodling’.

* Two properties P and(@, arebettercandidate$or pro-
jects (ii) or (iii) above if the setof basecasesfor P
and( aresimilar. Two setsaremostsimilarif they are
equallesssimilarif oneis asubsebf theotherandless
similar still if they only have a non-trivial intersection.

® Only performspecialisatioror generalisatiorprojects
with aconcepbeforeconjecture-makingrojectsif the
userhasflaggedthe conceptasa ‘focus’ (seelater).

As an overview, if a conjectureprojectwas at the top
of the agendabeforetrying to prove the conjecture GT
wouldfirst seeif therewasempiricalevidenceagainsthe
conjecture,using the generatedexamplesof the graphs
[notethata conjecturevassuggestednly usingthebase
cases].If the projectwasto checka meiger conjecture,
thenthememgestepwouldtakeplace andonly if nographs
of the memgedtype could be producedwould an attempt
be madeto prove the conjecture. If a generalisatioror
specialisatioprojectwasatthetop of theagendait would
be carriedout and someeffort expendedto generateex-
amplesof thenew concept.

Focus conceptscould be specifiedby usersif they
were particularlyinterestedn them, and, aswell asre-
stricting conceptformation only to the focus concepts,
GT wouldonly make conjecturednvolving thefocuscon-
cepts.GT ratedcertainnewly formedconceptasuninter
estinganddiscardedhem.For example,if aconceptwas
ageneralisatioto afocusconceptbut noexamplegraphs
couldbe producedvhichwerenot examplesof thefocus
concept,the new conceptwas discarded. Also, if only
a few graphscould be generatedvith a nenly formed



property the new conceptwas discarded. By identify-
ing the routine of orderingwhich conjecturego look at
first, attemptingto make and prove the conjecturesand
performingconceptformation only with the mostinter-
esting concepts Epsteins model of discorery was suc-
cessfullyimplementecand producecdtheoriescontaining
differentkindsof conjectureandtheir proofsandconcepts
andgraphsot presenttthe startof the session.

2.3 The Graffiti Program

TheGraffiti program by SiemionFajtlowicz, makescon-
jecturesof a numericalnature,mainly in graphtheory
asdescribedn Fajtlowicz (1988),and more recentlyin
Larson(1999). Given a setof well known, interesting
graphtheoryinvariants,suchasthe diameterindepend-
encenumber rank or chromaticnumber Grafiiti usesa
databasef graphsto empiricallycheckwhetheronesum
of invariantsis lessthananothersumof invariants. If a
conjecturepassesheempiricaltestandFajtlowicz cannot
proveit easily it is recordedn the“writing onthewall”,
someof which is publicly available, Fajtlowicz (1999),
and Fajtlowicz forwardsit to interestedgraphtheorists.
Thesetypesof conjectureare of substantialinterestto
graphtheoristsbecauséda) they often provide a signific-
ant challengeto resole and (b) calculatinginvariantsis
often computationallyexpensve, so ary boundson their
valuesareuseful. As anexample,the 18th conjecturen
thewriting onthewall stateghat,for ary graph,G,

chromaticnumber(@) + radiusG) <
maxdegree(@) + frequeny_of_max degree(&)

The empirical checkis time consuming,so Graffiti
employstwo techniquesgalledthe beggle anddalmation
heuristics,to discardcertaintrivial or weak conjectures
beforetheempiricaltest:

The beayle heuristicdiscardamary trivially obviousthe-
orems,ncludingthoseof theformi(G) < i(G) + 1. Note
thatinvariantswhich area previousinvariantwith thead-
dition of aconstantireusedto make strongeiconjectures.
The beagleheuristicusesa semantidree of conceptdo
measurénow closetheleft handandright handtermsare
in a conjectureandrejectsthosewherethe sidesarese-
manticallyvery similar.

Thedalmationheuristiccheckghataconjecturesayssome-
thing morethanthosemadeby Graffiti previously. To use
the dalmationtestfor a conjectureof the form p(G) <
¢(@), Grafiti first collatesall conjecturest hasevermade
of the form p(G) < r;(@). Then,to passthe dalma-
tion test,theremustbe a graph,Go, in Grafiti' s database
which for all ther;, ¢(Go) < ri(Go). This meansthat,
for at leastone graph,¢(G) givesa strongerboundfor
p(G) thanary invariantsuggestedby a previous conjec-
ture,sothe presentonjecturedoesindeedsaysomething
new aboutGrafiti’ sgraphs.

Anotherefficiengy improvingtechniqueemployedby Graf-
fiti isto restrictthedatabasef graphgo only thosewhich

have at onestagebeenidentifiedasa counter@ampleto
oneof Graffiti’ s conjecturesA third efficiengy technique
is to remove by handary previousconjecturesvhich are
subsumedby a new conjecture.For example,Fajtlowicz
would move the old conjecturei(G) < j(G) + k(G) to
asecondarylatabasef theconjecture(G) < j(G) was
made.However, if thelatter conjecturevassubsequently
disproved,theformerconjectureavould berestored.

As Fajtlowicz addsconceptdo Graffiti’ sdatabasehe
writing onthewall reflectsthe new input, eg. conjectures
73 to 90 involve the coordinatef a graph. Fajtlowicz
canalsodirectGrafiiti’ s searctby specifyinga particular
typeof graphheis interestedn. For example,conjectures
43to 62 areaboutregulargraphs.To enablethis kind of
direction,Fajtlowicz informs Grafiiti of the classification
of its graphs,into, say regular and non-regular graphs.
Then,if Grafiiti basedts conjecturesn only the empir
ical evidencesuppliedby the regular graphsthe conjec-
tureswill only be aboutthosegraphs. To stop Graffiti
re-makingall of its previous conjecturesthe echo heur
istic usessemantidnformationaboutwhich graphtypes
areasubsebdf which othersandrejectsconjecturegbout
the chosentype of graphif thereis a supersetf graphs
for whichthe conjecturds alsotrue.

In termsof addingto mathematicaknowledge,the
Graffiti programhasbeenextremelysuccessfullts con-
jectureshave attractedthe attentionof scoresof math-
ematicians,including mary luminariesfrom the world
of graphtheory Thereare over 60 graphtheory papers
which investigateGrafiti’ s conjectures. While Grafiti
owes someof its succesdo the fact that the inequality
conjecturest makesareof adifficult andimportanttype,
this shouldnot detractfrom the simplicity andapplicabil-
ity of themethodsandheuristicst uses.

2.4 Bagaietal's System

Theprogramdevelopedby Rajiv Bagaietal, describedn
Bagaiet al. (1993),workedin planegeometryandcon-
structedidealiseddiagramsand proved conjectureghat
certaindiagramscould not be drawvn. Eachconceptwas
a situationin planegeometryinvolving pointsandlines
andrelationsbetweerthepointsandlines,suchasa point
beingon aline or two linesbeingparallel. For example,
a parallelogramand its diagonals,asin figure 2 below
[taken from Bagaiet al. (1993)], could be describedby
statingthattherewerefour ingredientpoints,A, B, C' and
D, six lines(onebetweereachpair of distinctpoints)and
two relations,namelythatlines AB andC' D wereparal-
lel andthatlines AC and BD wereparallel

A B Ingr edient points:

A,B,C.D

Relationships:
parallel(line(A,B),line(C,D))
c D parallel(line(A,C),line(B,D))

Figure2: aparallelogramanddiagonalsandits representation



Startingwith an empty situation, constructiondike
the parallelogramwere madeby addingnew ingredient
points and new relationsto a previous situation. Each
time a new relationwas added,a conjecturewas made
thattheresultingsituationwasinconsistentie. thatit was
notpossibleto drav anexampleof thesituation.To prove
the conjecture the situationwasturnedinto a collection
of polynomialsandinequalitieswhich werepassedo an
efficient theoremprover, Chou (1984). If the theorem
prover could not find complex solutionsto the polyno-
mial thenthe situationwasindeedinconsistentHowever,
if thetheorenproverdid find complec solutionsthis said
nothing aboutthe consisteng of the situation, and the
conjecturevasdiscardedo preserethesoundnessf the
theoriesproduced.

Many methodswereemployedto reducethe number
of timesthe systenmusedthetheorenprover. Firstly, only
consistensituationswverebuilt upon,asasituationwhich
was an extensionof an inconsistentsituationwould it-
self be inconsistent. By also restrictingto only adding
onerelationat a time, if the situationproducedwasin-
consistentthe additionalrelation must have causedthe
inconsisteng. Thisenabledetterpresentationf thethe-
orems,eg. if the conditionthatlines AD and BC' were
parallelwas addedto the parallelogransituationabove,
this would causeaninconsistensituation. As theincon-
sisteny was causedby the new relation, insteadof just
statingthat a parallelogramwith paralleldiagonalscan-
notbedrawn, the systemcould saythat:

Givena parallelogramthe diagonalscannotbe parallel.

Anotherway to reducethe time spentusingthe the-
oremprover wasto avoid proving theinconsisteng of a
situationwhich wasisomorphicto a previousone. Two
situationsvereisomorphidf apermutatiorof theingredi-
entpointsof thefirst producedhe second.To getaround
this problem wheneerasituationwashbuilt, all of its iso-
morphicsituationswerealsobuilt, sothatthey could be
recognisedf re-constructedby a differentroutelateron.
Also, to cut down on the occurrence®f later theorems
which implied earliertheoremsa breadthfirst searchwas
usedwherea step could only be the addition of either
a singleingredientpoint or a single new relation. This
meantthat the most generalsituationswere constructed
beforethemorespecificonesandthereforethe mostgen-
eral versionsof theoremswere producedfirst. Not only
couldtheprogramre-discaverwell known resultssuchas
Euclid’s 5th postulate,it also providesa very clearand
concisetheoryfor theautomatigoroductionof a subsebf
planegeometryconceptsaanda setof theoremsaboutthe
non-eistenceof modelsfor certainconcepts.

2.5 TheHR Program

The HR programby Colton et al, asdescribedn Bundy
etal. (1998)andmorerecentlyin ColtonandBundy(1999),
wasoriginally developedo performconcepformationin

grouptheory Startingwith justafew definitions,HR can
re-invent classicallyinterestingconceptssuchas centres
of groups,Abelian and Cyclic groupsandordersof ele-
ments. HR works directly with the modelsof concepts
(storedas data-tables)and constructsnen conceptsby
taking the data-tableof old conceptsand manipulating
themusingoneof tenproductionrulesto producea new
data-table. From information abouthow a conceptwas
constructedHR cangeneratea definitionfor the concept
wheneeroneis needed.

HR encountersa combinatorialexplosion becausea
single conceptcan often be transformednto around20
new ones,andary pair of conceptcanbe combinednto
athird. A heuristicsearchis usedwhich chooseghe best
conceptto usein eachconceptformationstep. HR hasa
variety of waysto measureonceptanda weightedsum
of measuress takento indicatean overall level of inter
estingnesdor the concept. The weightsare set by the
useranddepencdn whattypesof conceptghey arelook-
ing for. Oneway to useHR is to supplya ‘gold stand-
ard’ catgyorisationof the groupsin the databaseandask
HR to find afunction, the outputof which will cateyorise
thegroupscorrectly(groupswith the sameoutputareput
in the samecategory). HR canthenmeasurenow close
eachconcepigetsto this catgyorisation by evaluatingthe
proportionof pairsof groupsthata conceptorrectlycat-
egorises. This approachcan be effective, for example,
giventheisomorphicclassificatiorof thegroupsupto or-
dersix, HR foundthis functionwhich correctlyclassifies
them: f(G) = |{(a,b,c) € G} :axb=c & bxc=a}|.

If the userhasno particulartaskin mind, they can
ask HR to explore the domain. HR has certain meas-
ureswhichindicatedesirablepropertiesof aconceptand
userscanstressomeof thesdf they wish. Theparsimony
measuref a concepts inverselyproportionalto the size
of the data-tabldor the concept.The datain atablecor
respondingo a particulargroupcanbe usedto describe
that group, and so a small table is advantageouss this
meangmoreparsimoniousiescriptions.HR canalsoas-
sesgthe novelty of a conceptwhich is inverselypropor
tional to the numberof timesthe cateyorisationproduced
by a concepthasbeenseenalready (with more unusual
catgyorisationsbeingmoreinteresting).Finally, HR can
measurehe compleity of a conceptwhich is inversely
proportionalto the numberof old conceptsappearingn
its constructiorpath. Thisgivesaroughindicationof how
complicatedhe definitionof a conceptwill be,andmore
concisedefinitionsaredesirable.

HR canmake conjectureshy spottingthat the data-
table of a newly formedconceptis exactly the sameas
a previous concept,and conjecturingthat the concepts
are equivalent. Whenthis happensgdefinitionsfor each
conceptaregeneratedndusedto write the conjecturen
away acceptabléo the OTTER theorenyprover, McCune
(1990),which HR asksto prove the conjecture.For ex-
ample,whenHR inventsthe conceptof elementsgq, for
whichaxa = a, it spotsthatthenew data-tablésthesame



astheoneit hasfor theusergivenconceptof theidentity
elementandthefollowing conjecturds generated:

Va,(a =id <= ax*a=a).

This is brokeninto Va, (¢ = id — a *a = a) and
Va,(a * a = a — a = id), which areboth passedo
andeasilyprovedby thetheoremnprover, OTTER. Before
passinga conjectureto OTTER, HR usessomesimple
deductvetechniqueso checkwhethertheconjecturdol-
lows easilyfrom thosealreadyproved.

HR hasa setof ‘sleepingconcepts’suchasthetrivial
group,andwhena conceptis conjecturedo be the same
asthesetheconjectures flaggedsothattheusercanpay
specialattentionto it (or chooseto ignoreit). If thein-
terestingnessf conjecturesindproofscanbe estimated,
thentheaveragenterestingnessf thetheorems concept
appearsn canbetakenasanew measurdor theinterest-
ingnessof the conceptitself. Conjecturesare assessed
in two ways. Firstly, the surprisingnes®f a conjecture
measurelow differentthetwo (possibly)equivalentcon-
ceptsare,by evaluatingthe proportionof conceptswhich
appeatrin the constructionpath of one but not both of
the concepts. This givessomeindicationof how differ-
entlooking the definitionsof the equivalentconceptsare
goingto be. Secondlyif a conjecturds proved, OTTER
will provide a proof lengthmeasuren its output,which
givessomeindicationof thedifficulty of the proof.

If the equivalenceof two definitionsis proved, HR
useghisfacttore-assestheconceptsnvolved,andkeeps
only theleastcomple definitionfor the concept.If OT-
TER cannofproveaconjectureHR passe# totheMACE
modelgeneratarMcCune(1994),whichis asledto find
a single counter@ampleto the conjecture. If MACE is
successfulthe countergampleis addedo HR’'s database
andall previousconceptandmeasuresrere-calculated,
giving HR a betterideaof the theoryit is exploring. All
future conjectureswill be basedon the additional data
providedby thenew group.HR’stheoryformationis gen-
eral enoughto apply to ary finite algebraand HR can
bootstrapthe process thatis, it can startwith just the
axioms of the algebra,and end with a theory contain-
ing models,definitions,openconjecturestheoremsand
proofs. Theconcepformationis generaknougho apply
to differentdomainsjncludinggraphandnumbertheory

IndeedHR’s biggestsuccessofarhascomein num-
bertheory whereit inventedthe conceptof refactorable
numbersthefirst examplesof which are:

1,2,8,9,12,18, 24, 36, 40, 56, 60, 72, 80, 84, 88, 96, . . .

Thesearedefinedasthoseintegerswherethe numberof
divisorsisitself adivisor. Thisconceptvasnovel because
it wasmissingfrom andsubsequentlgddedo theonline-
eng/clopediaof integersequencesSloane(1998),which
containover45,000integersequencedRefactorablesre
alsointerestingbecausehereare mary provableproper
ties aboutthem, for example, all odd refactorablesare
squarenumbers. Resultsaboutrefactorableshave been
publishedn the mathematicaliterature,Colton (1999).

3 Assessinghe Inter estingness
of Conjecturesand Concepts

We cannotdiscussmeasure®f interestingnessvithout
addressingnow the measuresareused.For example,one
programmight saythatthe conceptof evenprimesis in-
terestingbecause conjecturecanbe madethat 2 is the
only one, whereasanotherprogrammight say that they
are dull becauseonly one example of them is known.
Herethe samemeasureéhasbeenused(see§3.4 below),
but differentconclusiondave beendravn. Thereforewe
have to clearly separatehe measuregor interestingness
from their uses. One commonuseof interestingness
to improve the efficiency of the programs.To save time
checkingandproving conjecturesgertainconjecturesre
discardedeforeevencheckingthemempirically, andthe
reasorto performanempiricalcheckis, of courseto cut
down onthetime spenttrying to prove falseconjectures.

Anothercommonuseof interestingnests to improve
the appealof the outputfor the user It is not possible
to avoid all uninterestingconceptsor conjecturesvhen
constructingatheoryandinterestingnesseasuresanbe
usedto filter the outputdependingon the users needs.
Also, measuref interestingnessan guide the search
sothatthe programcanmake informedprogressnto the
spaceand find interestingconceptsthat it might take a
longertime to find with an exhaustve search. A more
specificuseof interestingnessneasuress to predictin
adwancehow difficult aconjecturés goingto beto prove,
which, in all but sometrivial circumstancets noteasyto
do. Finally, interestingnesmeasuresanbe usedto steer
theconcepformationtowardsa particularconceptwhich
performsauserdefinedtask.Having identifiedsomeuses
for interestingnessye candetailcertaingenerameasures
andlook athow eachoneis used.

3.1 Empirical Plausibility of Conjectures

A conjectureis likely to be uninterestingif the empir
ical evidencea programhasprovides countergamples.
This doesnot meanthat falseconjecturesn generalare
uninterestingasthe productionof countergamplesis a
worthwhilepursuit. However, if acountergampleis found
in the dataa programhas,the conjecturecannotprovide
this worthwhile pursuit. Only the systemdevelopedby
Bagaiet al makes conjecturesvhich have not beenfirst
verified by someempiricalevidence.In this case the ef-
ficiengy and power of the theoremprover andthe nature
of the idealisedgeometricaldomainmake it unproduct-
ive to look for countergamples. The AM programis
the only one which doesnt immediatelydiscarda con-
jectureprovedfalseby empiricalevidence. In this case,
an attemptis madeto alter the conjectureto male it fit
the data. One way to do this is to exclude what AM
calls ‘boundary’ integers,sofor example,the conjecture
that‘all primesareodd’ becomeshe conjecturethat ‘all
primesexcept2 areodd’.



HR and Graffiiti useall of their dataat once. HR
usesits datato spot (ie. suggest)a conjecture,so by
thetime a conjecturehasbeenmade the empiricalcheck
hasbeencompletelyperformed.Similarly, oncea conjec-
turehasbeensuggestetly othermeango Graffiti, all the
empirical evidenceis usedto discardit. Note however,
thatbothof theseprogramskeepthe amountof empirical
datadown to a minimumbecausehey only storemodels
which have beengeneratedas countergamplesto pre-
vious conjectures.GT emplgys a more efficient system
becausea conjectureis suggestedy the small amount
of empiricalevidencein the setof basecasesandonly
thoseconjecturepassinghis testarechecledagainsall
the examplesfor the concepts.Similarly, AM will make
aconjecturebasedn alittle empiricalevidence thentry
to generatenoremodelsto disprove theconjecture.

3.2 Novelty

Becausef theredundang ofteninherentin searchesor
conceptandconjecturesit isimportantto beableto spot
whena repetitionhasoccurred,andeachprogrameither
tailors its searchto reducerepetitions,or canspotthem
whenthey occur Here,the programsare measuringhe
novelty of a conceptor conjecturestatementandreject-
ing thosewhich have beenseenalready The Graffiti pro-
gram goesto the length of storing conjecturedetween
sessions.Anotherissueof novelty in programssearch-
ing for conjectureds whethera theoremfollows as an
obvious corollary to a strongertheorem,in which case,
the wealer resultdoesnot sayarything particularlynew.
Graffiti works hardto shav thata new conjecturesays
somethingmorethanall the previous ones,by checking
thatthereis atleastonegraphfor which theinequalityin
the conjectureis strongerthanall the previous ones(the
dalmationheuristic),andby checkingthatthe conjecture
is notimplied by previousones(theechoheuristic).Spot-
ting the implication of oneconjectureby anotheris also
usedin Graffiti to improve efficiency: if alaterconjecture
turnsout to be strongerthana previous one, the earlier
oneis removed, hencesaving Grafiti time laterwhenit
looksthroughits old conjectures.

The HR programdealswith the implication of one
conjectureby previous onesby extracting and attempt-
ing to prove all strongerconjectureshanthe oneit is
considering.For example,if interestedn the conjecture
P & R — @, HR will first usesomesimpledeductve
techniquedo seeif it follows asa corollary to the res-
ults it hasalreadyproved. If not, it will ask OTTER to
prove P — @, andR — @ andif eitherturnsoutto
be true, the wealer, original conjectureis discardedand
the strongerconjectureas kept. The mostefficientway to
dealwith oneconjectureémplying anotheiis to tailor the
searchto producethe mostgeneralconjecturedirst, so
thereis lesschancethat later conjectureswill imply the
earlierones. This techniqueis usedin the systemfrom
Bagaiet al, but they point outin Bagaiet al. (1993)that

it is still possibleto producea later conjecturevhichim-
pliesanearlierone.

A conceptaneasilybeshavn to benovel with empir
ical evidence.For example,if a function producesome
outputfor a giveninput thatno otherfunction produces,
it mustbe novel. Given only a limited amountof data
thoughi,it is moredifficult to tell thattwo conceptsarein-
deedthe same.Bagaiet al's system(which hasno data
availableatall) tacklesthis by generatingll possibleiso-
morphicconceptsvhene/er a new concepts introduced,
sothatif anisomorphicconcepto thenew oneis reached
by anotherroute,the systemwill spotthis. HR’s conjec-
ture makingabilitiesrely on thefactthata proofis often
neededo tell thattwo conceptdefinitionsarein factequi-
valent,and,like AM, HR assessesonceptasmoreinter-
estingif they werederivedin two or moredifferentways.
If a conceptisn't the sameasonealreadyin the theory
it is possibleto assessiow muchit differsfrom the oth-
ers,usingcertainpropertief it. AM, for example,gave
extra interestingnes® newly formedconceptsie. those
with the specialpropertyof beingrecentlyinvented.The
HR programassessethe novelty of a conceptin terms
of the novelty of the categyorisationof groupsit gives. It
is importantto make the distinctionbetweeroneconcept
having two propertiegeg. two definitions),which is of-
teninterestingandtwo conceptsharingthe sameprop-
erty (eg. a cateyorisation),which oftendetractdrom the
interestingnessf both.

3.3 Surprisingness

As portrayedn Fajtlowicz (1999) ,whenasledwhatmakes
a goodconjecturethe mathematicialohnConway said
without any hesitation:“it shouldbe outrageous”.This
is goodadvice,andin somecasesanassessmertf how
surprisinga conjectureis can be automated. The least
surprisingconjecturesarethosewhich arejust instances
of tautologiesFor example givenobjectsof ary type, A,
andpredicate®f ary naturep andgq, the conjecture
VA, not(not(p(4))) < p(4)

is always going to be true, and conjecturefinding pro-
gramsshouldavoid makingtheseandsimilar conjectures.

To avoid makingtautologiesof a particulartype, GT
did not make subsumptiorconjecturesf oneof the con-
ceptswasa specialisatiorof the other The HR program
avoids certaintautologiesby forbidding certainseriesof
conceptformationsteps,eg. not allowing two negation
stepsin successionGraffiti usesa semantidreeto meas-
ure how differentinvariants; andj arein the conjecture:
V graphs, i(G) < j(G), andthe beagleheuristicdis-
cardsmary tautologyconjecturesvhichinvolveverysim-
ilar conceptssuchasi(G) < i(G) + 1. WhereasGrafiti
usests measurdor surprisingnesenly to discardconjec-
tures,whentheHR programmakesaaconjecturghattwo
conceptefinitionsareequialent,it hassemantiénform-
ationaboutthoseconceptssocantell how differentthey
are, giving an indication of how surprisingthe conjec-



tureis. HR usesthe heuristicthat conceptsappearingn
surprisingconjecturesare more interesting,which helps
drive abestfirst search While HR andGraffiti canestim-
atethe surprisingnessf conjecturespnly AM measured
the surprisingnessf a concept:it gave extra interesting-
nessto conceptsvhich possessedninterestingproperty
not possessedy its parents(seeheuristic180in Davis
andLenat(1982),for example).

3.4 Applicability

Theapplicabilityof a predicatecanbe definedasthe pro-
portion of modelsin a programs databasevhich satisfy
the predicate. Also, the applicability of function canbe
definedasthe proportionof modelsin a programs data-
basewhich arein the domainof thefunction. This meas-
ure is somavhat analogoudo the empirical plausibility
of conjectureshut canitself be extendedo cover conjec-
tures: the applicability of a conjecturecanbe definedas
the proportionof modelsin a programs databasavhich
satisfy the conjectures preconditions. Thesemeasures
areusedin avariety of waysasfollows.

In AM andGT, if a newly formed concepthad low
applicability (ie. few examples),a taskwas put on the
agendao generatessomemore modelsthatit appliedto.
If a concertedeffort to generateexamplesstill resulted
in a low applicability GT would discardthe conceptas
uninterestingand AM would give it a low interesting-
nessscore.In thespecialkcasewvheretheapplicabilitywas
zero, (ie. no exampleswere found), both GT and AM
would make the conjecturghatnoneexist. The HR pro-
grammakessimilar non-eistenceconjecturesandother
conjecturesaboutthe applicability of a concept,for ex-
ample,thatit is restrictedto the trivial group. In Bagai
et al's system,the whole point wasto prove that certain
conceptdhave nomodels(ie. situationsareinconsistent),
which is equivalentto shaving thatthe applicability of a
conceptis zero. Sowe seethatconceptswith little or no
applicability are often thoughtof asdull, but the conjec-
turethatthisis trueis interesting.

Furthermorein GT, if ageneralisatiostepproduced
a conceptwith no greaterapplicability than the one it
generalisedpr if a specialisatiorstep produceda new
conceptwith a greaterapplicability thanthe oneit was
supposedo specialisethenew conceptvasdiscardedin
Graffiti, if theuserhasspecifiedaninterestin a particular
setof graphs(ie. thosewith a particularquality), thenif
aconjecturds outputwhichis applicableto a supersebf
thatset,it is discardedisbeingtoogeneraltheechoheur
istic). Also, in HR, the parsimoly measurereferscon-
ceptswith small data-tablesandhencesmall applicabil-
ity. This givesan emphasido specialisatioprocedures
and canbe usefulin controlling the search.Finally, the
AM programusedrarely satisfiedoredicates* thosewith
low applicability- to assesstherconceptsFor example,
heuristic15 from Davis andLenat(1982)gave morein-
terestingnesto functionswhoseoutputalways satisfied

one of the rarely satisfiedpredicategshat AM hadcome
across. We seethat applicabilityis a commonmeasure,
but how it is usedis alwaysdeterminedy the context of
thediscorerytaskbeingattempted.

3.5 Comprehensibility and Complexity

As programsareintendedto produceoutputunderstand-
ableby theuser morecomprehensibleonceptsandcon-
jecturesare usually more interesting. The GT and Ba-
gai et al programsconstructedonceptincrementallyso
thatthe mostcomprehensibleneswereintroducedfirst.
TheHR programemploysthecompleity measuravhich
prefersconceptswith smallerconstructionpaths(which
roughlyrelateso how long their definitionwill be). HR’s
bestfirst searchis not guaranteedo producethe least
comple conceptdirst, so,if two conceptsare provedto
be equivalent,the leastcomplec definition of the two is
kept. Also in HR, conceptscanbe usedto describethe
groupsin thetheory andthe parsimory measurerefers
conceptgiving shorter moreconcisedescriptions.

The comprehensibilityof a conceptgivesone,albeit
shallaw, indicationof the compleity of thatconceptand
usuallylesscomple, morecomprehensibleonceptsare
desirable. An alternatie way to assesghe compleity
of a conceptis to evaluatehow muchinformationthere
is aboutit. AM countshow mary conjectureghereare
involving a conceptandusesthis asa measuref thein-
terestingnessf the concept. The HR programgoesone
stagefurther and assessenot only the conjecturesbut
alsothe proofsof them,andusesthis to measurahe in-
terestingnessf theconceptsnvolvedin theconjectures.

The novelty andsurprisingnesseasuresften prune
easyto prove conjecturespecausdautologies,conjec-
tureswhich follow as an obvious corollary to previous
theoremsandthosewhich areunsurprisinthave agreater
likelihood of beingeasyto prove. Remaing thesecon-
jectureswill possiblyincreasethe averagedifficulty to
prove the conjecturegemaining. However, this is sep-
aratefrom theissueof how difficult a conjecturds to un-
derstand Preferringconjecturesboutlesscomple con-
ceptswill increasethe overall comprehensibilityof the
theory andchoosinga simpleformatfor conjecturesan
alsohelp. For example,asnotedin Valdés-Ferez(1999),
it is easyto understandvhat Grafiti’ s inequalityconjec-
turesare saying. Further the programfrom Bagaiet al
presentsts theoremsiot asunsatisfiabilityresults but as
relationswhich cannotccuronceasituationhasbeenset
up, whichis amoreunderstandabformat.

3.6 Achieving Particular Tasks

Therearewaysby which the usercanexplicitly express
interestin particularconcept®r conjecturesThisis clear
in the AM programwhich wasdesignedasaninteractive
programwherethe usercaninterruptthe sessionat ary
time andexpressaninterestin a particularconceptAM’ s



heuristicswere setup to pay particularattentionto this
concept,andthe limited numberof conceptsAM could
producein a sessionwere heavily biasedby the users
choice. Herewe seethat the userwantsAM’ s concepts
and conjecturedo performa particulartask, namelyto
discussthe conceptchosenby the user This is taken a
stagefurtherin the GT and Graffiti programswherethe
usercanspecifya ‘focus’ concept,andonly conjectures
involving the chosenconceptwill be produced.In GT's
case,this also meantthat specialisation®r generalisa-
tionsof only thefocusconceptvould beattempted.

IntheGraffiti programall theprovedconjecturegjive
a boundfor an invariant (which may save computation
time), sowe seethatthe searchspacehasbeendesigned
with ataskin mind. More explicit tasksaresetfor other
programs. By giving a ‘gold standard'classificationof
groupsto HR, usersareexpressinganinterestin concepts
which achieve that cateyorisation. By giving concepts
andconjecturegarticulartasksto achiese,aprogramcan
measurehow closeeachcomesto completingthe tasks
andusethis to estimatanterestingnessyhich will hope-
fully drive the best-firstsearchtowardssomethingvhich
achievesthetask.

4 Conclusions

Assessinghe interestingnessf a conceptor conjecture
automaticallyis difficult because programhasto try to
predicthow muchusefulmathematicsvill resultfrom an
investigationof the conceptor the attemptsto prove the
conjecture. Fermats last theorem,for example, could
easily have beenrelegatedto the appendixof a number
theorytext if it hadnot beenso difficult to prove. Also,
asin discovery of ary kind, it is oftennecessaryo have
expertknowledgeto decidewhetheraninventionhasary
far reachingimplicationsor applications as pointedout
in Langley (1998).

By comparingandcontrastindgive machinediscosery
programsall of whichareforcedto guidetheir searcho-
wardsmoreinterestingoutputandmale instantdecisions
aboutthepossibleinterestingnessf conjecturegandcon-
cepts,we have extractedsomepossiblewaysa program
canmeasuraheinterestingnessf the conceptsandcon-
jecturesit makes. The empirical plausibility of conjec-
tures, novelty and comprehensibilitymeasuresre ana-
logousto qualitiesdescribedn Valdées-Ferez(1999)to as-
sesgheoutputfrom machinediscovery programsThere-
fore, we seethatautomatedttemptgo estimateanterest-
ingnessoften checkthe internal plausibility, novelty and
intelligibility of atheoryin the waysa humanmight es-
timatethequality of atheoryexternally.

4.1 The Interestingnesf Conjectures

In summaryit is oftena goodideato prescribea defin-
ite taskfor aconceptor conjecturdo achiese,anddesign

measuresf interestingnesaroundthis. If thisis notpos-
sible, andan estimateof the interestingnessf a conjec-
ture is going to be made,someof the following points
couldbetakeninto consideration:

® Theconjectureshouldbe empiricallytrue.

This canbe achiezedby only makingconjecturedacked
up by all availabledata,suggesting conjectureby some
othermeansandthenusingall thedatato discardthecon-
jectureif necessaryor alteringa conjectureso that ary

datawhich disprovesit is nolongerapplicable.

® Theconjectureshouldbe novel w.r.t. previousones.

This canbeachiezedby understandingndcheckinghow
two conjectureganbeequalor isomorphidn thedomain
of interest. Also, conjectureswhich areimplied by pre-
vious, strongerconjecturesshouldeitherbe avoided by
tailoring the searctspacepr rejectedwvhenfound.

® Theconjectureshouldbe surprisingin someway.

Thiscanbeachievedby avoidingor discardingvell known
tautologiesandby usinginformationaboutthe concepts
discussedn the conjectureto estimatehow unlikely the

suggestedelationbetweerthemis.

® Theconjectureshoulddiscusssomenon-trivial models.

This canbeachieredby discardingary conjecturesvhere
the only modelssatisfyingthe preconditionsarea trivial,
or uninterestingset. Note thatin certaincircumstances,
thiskind of highly specialisedonjectureanayactuallybe
of interestto theuser

® The conjectureshould be understandableput non-
trivial to prove.

This can be achieved by assessinghe numberand di-
versityof conceptsnvolvedin aconjectureandremoving
overly complicatedconjecturespr by fixing the search
strateyy to outputthe simplestconjecturedirst. Making
conjecturesn awell known formatwill helpunderstand-
ability. If theconjecturenasbeenproved,the proofcould
be usedto estimatehow difficult thetheoremwas.

4.2 The Interestingnessof Concepts

If anestimateof theinterestingnessf a conceptis going
to be made,someof the following pointscould be taken
into consideration:

® Theconcepsshouldhave models.

This canbeachiezedby checkingavailabledatafor mod-
els which satisfy a predicateor arein the domainof a
function. If no modelsexist, an effort shouldbe madeto
generatesome.lt maybenecessaryo provethatnomod-
elsexist, anddiscardthe concepftbut keepthetheorem).

® Theconceptshouldbenovel w.r.t. previousones.

To achieve this, the searchshouldensurethatno two ob-
viously isomorphicdefinitions can be made,and avoid
pathswhich will ultimately lead to the sameconcepts.



Then, if the modelsof one conceptare the sameas an-
other, the conceptsarepossiblyequivalent,which should
leadto a proof of this fact. If a conceptis indeedse-
manticallydifferentto all the others,thenthe novelty of

variouspropertiesuchastheway it catggorisesnodels)
couldbeassessed.

® Thereshouldbe somepossiblytrue conjecturesmade
abouttheconcept.

By the qualificationof possiblytrue conjecturesywe note

thatwhile falseconjecturesaboutthe natureof a concept

areusuallyof no interest,anunsettledconjecturecanof-

tenbemoreinterestinghana provedtheorem.

* Theconceptshouldbeunderstandable.

This canbeachiezedby designinghe searcho construct
conceptawith the simplestdefinitionsfirst, andby keep-
ing the simplestdefinition whenit hasbeenproved that

two conceptareequivalent.

® Theconceptshouldhave a surprisingproperty

A surprisingpropertymaybe somethinghatisn’t true of
the parentconcepts.

Building on the techniquedor automateddiscovery
thathave beendevelopedn artificial intelligenceandcog-
nitive science andlearningfrom the resultsof programs
developedin mathematicsaneffort canbe madeto write
more programswhich act as collaboratorswith working
mathematiciansThe productionof intelligently sugges-
tedconjecturesndconceptplaysanintegralandimport-
ant partin developinga mathematicatheory and auto-
matingtheseprocesseis aworthy areafor researchHow
programsestimateheinterestingnessf theconceptsand
conjectureshey produceis centralto building intelligent
discovery programsandwe hopethat the notionsof in-
terestingnesderivedherewill be of somehelp.
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