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Abstract

We survey five automateddiscovery programsworking in mathematics,by looking in detailat thediscovery processes
they illustrate, summarisingthe successesthey’ve had and by focusingon how they estimatethe interestingnessof
conceptsandconjectures.Wethenextractsomecommonnotionsabouttheinterestingnessof conjecturesandconcepts.
We detailhow empiricalevidenceis usedto give plausibility to conjectures,andthedifferentwaysin which a concept
or conjecturecanbethoughtof asnovel. Wealsodetailhow programsassesshow surprisingandcomplex aconjecture
statementis, andthedifferentwaysin which theapplicabilityof aconceptor conjectureis used.Finally wenotehow a
usercansettasksfor theprogramto achieve andhow thisaffectsthecalculationof interestingness.

1 Intr oduction

Therehasbeensomerecentprogressin surveying andex-
tracting generalprinciplesof machinediscovery in sci-
ence,for exampleLangley (1998),Valdés-Ṕerez(1999).
We aim to add to this by surveying five programsde-
velopedto perform discovery in mathematics. We re-
strict our discussionto programswhosemain objective
is to invent conceptdefinitionsandmake conjecturesin
pure mathematics.This leaves out automatedtheorem
provers(whichdiscoverproofs),andprogramswhichdis-
cover mathematicalresultsin otherdomains,suchasthe
very importantBACON programs,Langley et al. (1987).
To compareandcontrastthediscovery programs,we de-
tail whattheprojectaimswere,how theprogramworked
andwhatcontributionstheprogramsmadeto mathemat-
ics andtheunderstandingof mathematicaldiscovery. We
pay particularattentionto themeasuresemployedto es-
timatehow interestingaconceptor conjectureis.

Deciding whethersomethingis interestingor not is
of centralimportancein automatedmathematicaldiscov-
ery, asit helpsdetermineboththesearchspaceandsearch
strategy for finding andevaluatingconceptsandconjec-
tures.Best-firstsearchesusingassessmentsof interesting-
nessareoftenneededto effectively traverselargesearch
spaces.Whenit becomesclearerwhatresultsareinterest-
ing, insteadof just ignoring or discardingdull concepts
andconjectures,thesearchspacecanbetailoredto avoid
someof themcompletely. Estimatinginterestingnessis
difficult becauseoftenit hasto bedoneimmediatelyafter
a conceptor conjecturehasbeenintroduced,whereasthe
true interestingnessof resultsanddefinitionsin mathem-
atics may only cometo light much later. Therefore,a

heuristicsearchhasto becarefulnot to throw away any-
thingwhichmayturnout to beusefullateron.

In
�
3, we identify six reasonswhy a conceptor con-

jecturemight be consideredinteresting. We detail how
the programsuseempiricalevidenceto cut down on the
numberof falseconjecturesmade.Weshow how thenov-
elty of aconjecturecanbedeterminedby whetherit, or an
isomorphicconjecture,hasbeenseenbefore,or whether
it followsasanobviouscorollarytoapreviousconjecture,
andwedetailthedifferentwaysin whichaconceptcanbe
thoughtof asnovel. Wenotethatbeingsurprisingis ade-
sirablepropertyof conjecturesandconceptsandweshow
how programswill avoid makingconjectureswhich are
just instancesof tautologies,andhow they canassessthe
surprisingnessof a conjectureor concept.We definethe
applicabilityof conceptsandconjecturesto bethesubset
of modelsto which they bearsomerelevance,andshow
that this measurecanbe usedin a variety of ways. We
alsodetailhow programscanassesscomplexity andtailor
their searchstrategiesto find the leastcomplex concepts
andconjecturesfirst. Finally, we look at how a usercan
seta programa particulartaskto achieve andhow inter-
estingnesscanbemeasuredwith respectto thattask.

By looking in detail at five discovery programsand
extractingsomecommonwaysby which the interesting-
nessof conceptsandconjecturesis assessed,we will be
abletosuggestpossiblewaysfor futureprogramstomeas-
ure interestingness.We will also note that the novelty,
intelligibility andplausibilitymeasuressetout in Valdés-
Pérez(1999)by which humanscanassessthe outputof
discoveryprogramsaresimilar to thoseby whichthepro-
gramsassesstheinterestingnessof their resultsinternally.



2 Machine Discovery Programs

The five programswe discussin detail arethe AM pro-
gram which worked in elementaryset and numberthe-
ory, the GT programwhich worked in graphtheory, the
Graffiti programwhich is usedin graphtheory, theplane
geometrysystemfrom Bagaiet al, andthe HR program
which works mainly with finite algebras.For clarity, no
otherprogramsarediscussed.

2.1 The AM Program

The AM program,written by DouglasLenat,performed
conceptformationandconjecturemakingin elementary
set theory and elementarynumbertheory, as described
in Lenat (1976) and Davis and Lenat (1982). Starting
with 115elementaryconceptssuchassetsandbags,AM
would re-inventsettheoryconceptslike subsetsanddis-
joint sets,andnumbertheoryconceptssuchasprimenum-
bersandhighly compositenumbers(with moredivisors
thanany smallerinteger).AM wouldalsospotsomewell
known conjectures,suchas the fundamentaltheoremof
arithmeticand Goldbach’s conjecture- that every even
numberis thesumof two primes.

Conceptsweregiven a framerepresentationwith 25
facetsto eachframe,andnone,oneor multipleentriesfor
eachfacet.Someof thefacetswere:(i) adefinitionfor the
concept(ii) analgorithmfor theconcept(iii) examplesof
theconcept(iv) whichotherconceptsit wasa generalisa-
tion/specialisationof, and (v) conjecturesinvolving the
concept.AM repeatedlyperformedthetaskat thetop of
an agendaorderedin termsof the interestingnessof the
tasks.Eachtaskinvolvedperforminganactionon a facet
of a concept.Usually the actionwasto fill in the facet,
for example,find someotherconceptswhicharespecial-
isationsof theconceptor find someconjecturesaboutthe
concept,but the actioncould alsobe to checkthe facet,
eg. checkthataconjecturewasempiricallytrue.

To performa task,AM would look throughits data-
baseof 242 heuristics,choosethosewhich wereappro-
priateto the taskandperformeachof thesub-taskssug-
gestedby thechosenheuristics.Somesub-tasksdetailed
how to performtheoverall taskathand,but they werenot
limited to that. Somesub-taskswould put new taskson
the agenda(which washow the agendawas increased).
Someof thenew taskswereto inventnew conceptsand
whenthesewereaddedto theagenda,AM would imme-
diately createthe framefor the new concept. This was
becauseknowledgepresentat the time of suggestingthe
new conceptwasneededto fill in someof thefacetsof the
concept.AM onlyfilled in informationatthisstagewhich
tooklittle computation,suchasadefinitionandexamples,
andataskwasputontheagendato fill in eachof theother
facetsof thenewly formedconcept.

Amongthenew conceptsAM wouldsuggestwere:(i)
specialisations,eg. a new functionwhich wasa previous
onespecialisedto have equalinputs,(ii) generalisations

(iii) extractedfrom the domain/rangeof a function, eg.
thoseintegersoutputby a function(iv) inversesof func-
tions (v) compositionsof two functions. Sometaskson
the agendawereto find conjecturesabouta concept,in-
cludingfinding that (a) oneconceptwasa specialisation
of another(b) thedomain/rangeof a conceptwaslimited
to aparticulartypeof objector (c) no integersof apartic-
ular typeexisted.

Becausetherecouldbeasmany as4000taskson the
agendaat any onetime,AM spenta lot of its timedecid-
ing which it shoulddo first. Whenever a heuristicadded
a taskto theagenda,it would supplyreasonsaccompan-
ied by numericalvalueswhy theaction,conceptor facet
of thetaskwasinteresting.AM thenemployeda formula
involving the numberof reasonsanda weightedsumof
thenumericalvaluesto calculateanoverallworth for the
task.Theweightedsumgave moreemphasisto thereas-
onswhy theconceptwasinterestingthanthereasonswhy
thefacetor actionwereinteresting.Whenaheuristicwas
working out how interestinga conceptwas,it would col-
late and useanotherset of heuristicsfor the task. The
heuristicswhichcouldmeasuretheinterestingnessof any
conceptwererecordedasheuristics9 to 20 in Davis and
Lenat(1982),andincluded:

[9] A conceptis interestingif therearesomeinteresting
conjecturesaboutit.

[13] A conceptis dull if, after several attempts,only a
coupleof exampleshavebeenfound.

[15] A conceptis interestingif all theexamplessatisfythe
rarely-satisfiedpredicateP.

[20] A conceptis moreinterestingif it hasbeenderived
in morethanoneway.

(Notethatthesehave beenparaphrasedfrom Lenat’s ori-
ginals).AM alsohadwaysto assesstheinterestingnessof
conceptsformedin a particularway, for examplethe in-
terestingnessof conceptsformedby composingtwo pre-
vious conceptscould be measuredby heuristics179 to
189,oneof whichwas:

[180] A composition�������	� is interestingif � hasan
interestingpropertynotpossessedby either � or � .

AM would also measurethe interestingnessof conjec-
tures,sothatit couldcorrectlyassesstasksrelatingto the
conjecturesfacetsof concepts.Heuristics65 to 68 seem
to betheonly heuristicswhichdo this, for example:

[66] Non-existenceconjecturesareinteresting.
At any stageduring a session,the usercould inter-

rupt AM andtell it thata particularconceptwasinterest-
ing. Lenatsaysin Davis andLenat(1982)thatuserscould
“kick AM in onedirectionor another”,and“the verybest
examplesof AM in actionwerebroughtto full fruition
only by a humandeveloper”. Many of AM’ s heuristics
weredesignedto keepthefocusonsuchchosenconcepts,
by spreadingaroundthe interestthe userhad shown in
them.For example,theseheuristicskeeptheattentionon
conceptsandconjecturesrelatedto interestingconcepts:



[16] A conceptis interestingif it is closely relatedto a
very interestingconcept.

[65] A conjectureaboutconceptX is interestingif X is
very interesting.

In fact,AM couldmake a little interestingnessgo a long
way: of the43 heuristicsdesignedto assessthe interest-
ingnessof aconcept,33of theminvolvepassingon inter-
estingnessderivedelsewhere.

TherehasbeenmuchdebateabouttheAM program.
RitchieandHanna(1984)wereparticularlycritical of the
methodsAM usedand the accuracy of Lenat’s descrip-
tion of AM. Themaincontributionof Lenat’s work is an
inspirationfor how computerscoulddo mathematics,ie.
by creatingconceptsand conjecturesof many different
typesand using heuristicmethodssuchas analogyand
symmetryto explorea domain.

2.2 The GT Program

ThGTprogrambySusanEpsteinperformedconceptform-
ation, conjecturemakingand theoremproving in graph
theory, asdescribedin Epstein(1987)andmorefully in
Epstein(1988). Given just the conceptof a graph,GT
would re-inventgraphproperties,suchasbeingacyclic,
connected,astaror a tree,(asshown in figure1 below).
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Figure1: graphpropertiesre-inventedby GT

Also,givenasetof user-definedconceptsdescribinggraph
properties,GT wouldmakeconjecturessuchas:K

A graphis a treeiff it is acyclic andconnected.

GTsuccessfullyillustratedapossiblemechanismfor auto-
mateddiscoveryin mathematicsinvolving bothdeductive
andinductive reasoning.This waspossiblebecauseGT
representedgraphpropertiesin a carefully thoughtout
way developedin Epstein’s PhD thesis,Epstein(1983),
which allowedexamplegeneration,theoremproving and
conceptformation.

Eachgraphpropertywasrepresentedasa triple,LNMPORQSORTVU , consistingof a setof basecases,Q , a con-
structor, M , and a set of constraintsfor the constructor,T , which togetherdetailedthe recursive constructionof
graphsfromthebasecases.Forexample,todefinethestar
propertyabove, the basecaseswould be just the trivial
graph(with onevertex, noedges)andtheconstructor
wouldaddonevertex andanedgebetweenthenew vertex
andanold vertex, subjectto thesingleconstraintthatthe
old vertex mustbeon moreedgesthanany othervertex.
Epsteinwasable to prove that 42 classicallyinteresting
graphtheoryconcepts,includingcycles,Euleriangraphs

and W -colouredgraphs,couldberepresentedin this man-
nerin a soundandcompleteway.

Thisrepresentationcouldbeusedtogenerateexamples
of a concept(Epsteincalled this ‘doodling’) by starting
with thebasecasesandrepeatedlyapplyingtheconstructor,
subjectto the constraints. Deductionwas possibleby
proving that one graphpropertysubsumedanother[see
Epstein(1988)],or by showing thatnographscouldhave
two particularproperties. Conceptformation was pos-
sible by: (a) specialisinga previous conceptby remov-
ing basecases,restrictingtheconstructor, or strengthen-
ing the constraints,(b) generalising a previous concept
by addingbasecases,expandingtheconstructor, or by re-
laxing theconstraints,or (c) mergingpropertiesA andB,
for examplecreatinga new graphpropertywith A’s base
casesandconstructor, but the constraintsof both A and
B, [subjectto someconditions].

GT workedby repeatedlycompletingoneof six types
of project: (i) generateexamplesof graphswith certain
properties,(ii) seeif onepropertysubsumedanother(iii)
seeif two propertieswereequivalent, (iv) seeif a mer-
ger betweentwo propertieswould fail, (v) generalisea
conceptand(vi) specialisea concept.Eachprojectwas
placedonanagendafollowing variousrules:K

If apropertyhasfew examplesin thedatabase,thenim-
mediatelygeneratemoreexamplesfor it by ‘doodling’.K
Two properties,X and Y , arebettercandidatesfor pro-
jects (ii) or (iii) above if the set of basecasesfor X
and Y aresimilar. Two setsaremostsimilar if they are
equal,lesssimilarif oneis asubsetof theotherandless
similarstill if they only havea non-trivial intersection.K
Only performspecialisationor generalisationprojects
with aconceptbeforeconjecture-makingprojectsif the
userhasflaggedtheconceptasa ‘focus’ (seelater).

As an overview, if a conjectureproject was at the top
of theagenda,beforetrying to prove the conjecture,GT
wouldfirst seeif therewasempiricalevidenceagainstthe
conjecture,using the generatedexamplesof the graphs
[notethata conjecturewassuggestedonly usingthebase
cases].If the projectwasto checka mergerconjecture,
thenthemergestepwouldtakeplace,andonly if nographs
of the mergedtypecouldbe producedwould an attempt
be madeto prove the conjecture. If a generalisationor
specialisationprojectwasatthetopof theagenda,it would
be carriedout andsomeeffort expendedto generateex-
amplesof thenew concept.

Focus conceptscould be specifiedby usersif they
wereparticularly interestedin them,and,aswell as re-
stricting conceptformation only to the focus concepts,
GT wouldonly makeconjecturesinvolving thefocuscon-
cepts.GT ratedcertainnewly formedconceptsasuninter-
estinganddiscardedthem.For example,if aconceptwas
ageneralisationtoafocusconcept,butnoexamplegraphs
couldbeproducedwhichwerenotexamplesof thefocus
concept,the new conceptwas discarded. Also, if only
a few graphscould be generatedwith a newly formed



property, the new conceptwas discarded. By identify-
ing the routineof orderingwhich conjecturesto look at
first, attemptingto make andprove the conjectures,and
performingconceptformationonly with the most inter-
estingconcepts,Epstein’s model of discovery was suc-
cessfullyimplementedandproducedtheoriescontaining
differentkindsof conjectureandtheirproofsandconcepts
andgraphsnotpresentat thestartof thesession.

2.3 The Graffiti Program

TheGraffiti program,by SiemionFajtlowicz, makescon-
jecturesof a numericalnature,mainly in graphtheory,
asdescribedin Fajtlowicz (1988),andmore recentlyin
Larson(1999). Given a set of well known, interesting
graphtheoryinvariants,suchasthe diameter, independ-
encenumber, rank or chromaticnumber, Graffiti usesa
databaseof graphsto empiricallycheckwhetheronesum
of invariantsis lessthananothersumof invariants. If a
conjecturepassestheempiricaltestandFajtlowicz cannot
prove it easily, it is recordedin the“writing on thewall”,
someof which is publicly available, Fajtlowicz (1999),
and Fajtlowicz forwardsit to interestedgraphtheorists.
Thesetypesof conjectureare of substantialinterestto
graphtheoristsbecause(a) they oftenprovide a signific-
ant challengeto resolve and(b) calculatinginvariantsis
oftencomputationallyexpensive, soany boundson their
valuesareuseful. As anexample,the18thconjecturein
thewriting on thewall statesthat,for any graph,� ,

chromaticnumber(� ) + radius(� ) Z
max degree(� ) + frequency of max degree(� )

The empirical check is time consuming,so Graffiti
employs two techniques,calledthebeagleanddalmation
heuristics,to discardcertaintrivial or weakconjectures
beforetheempiricaltest:

Thebeagle heuristicdiscardsmany trivially obviousthe-
orems,includingthoseof theform i [\�^]_Z i [`�^]badcfe Note
thatinvariantswhichareapreviousinvariantwith thead-
dition of aconstantareusedto makestrongerconjectures.
The beagleheuristicusesa semantictreeof conceptsto
measurehow closetheleft handandright handtermsare
in a conjecture,andrejectsthosewherethesidesarese-
manticallyverysimilar.

Thedalmationheuristicchecksthataconjecturesayssome-
thingmorethanthosemadeby Graffiti previously. To use
the dalmationtest for a conjectureof the form gh[\�^]iZj [\�^] , Graffiti first collatesall conjecturesit hasevermade
of the form gh[`�^]kZmlonp[\�^] . Then, to passthe dalma-
tion test,theremustbea graph,�rq , in Graffiti’ sdatabase
which for all the lsn , j [`�rq	]tZulsnv[`�rqw] . This meansthat,
for at leastonegraph, j [\�^] givesa strongerboundforgx[`�^] thanany invariantsuggestedby a previousconjec-
ture,sothepresentconjecturedoesindeedsaysomething
new aboutGraffiti’ sgraphs.

Anotherefficiency improvingtechniqueemployedbyGraf-
fiti is to restrictthedatabaseof graphsto only thosewhich

have at onestagebeenidentifiedasa counterexampleto
oneof Graffiti’ s conjectures.A third efficiency technique
is to removeby handany previousconjectureswhich are
subsumedby a new conjecture.For example,Fajtlowicz
would move the old conjectureyz[`�^]{Z}|~[\�^]�aVW�[\�^] to
a secondarydatabase,if theconjectureyz[`�^]�Zk|~[\�^] was
made.However, if thelatterconjecturewassubsequently
disproved,theformerconjecturewouldberestored.

As Fajtlowicz addsconceptsto Graffiti’ sdatabase,the
writing on thewall reflectsthenew input,eg. conjectures
73 to 90 involve the coordinatesof a graph. Fajtlowicz
canalsodirectGraffiti’ s searchby specifyinga particular
typeof graphheis interestedin. For example,conjectures
43 to 62 areaboutregulargraphs.To enablethis kind of
direction,Fajtlowicz informsGraffiti of theclassification
of its graphs,into, say, regular and non-regular graphs.
Then,if Graffiti basesits conjectureson only theempir-
ical evidencesuppliedby theregulargraphs,theconjec-
tureswill only be aboutthosegraphs. To stop Graffiti
re-makingall of its previousconjectures,the echo heur-
istic usessemanticinformationaboutwhich graphtypes
areasubsetof whichothers,andrejectsconjecturesabout
the chosentype of graphif thereis a supersetof graphs
for which theconjectureis alsotrue.

In termsof addingto mathematicalknowledge,the
Graffiti programhasbeenextremelysuccessful.Its con-
jectureshave attractedthe attentionof scoresof math-
ematicians,including many luminariesfrom the world
of graphtheory. Thereareover 60 graphtheorypapers
which investigateGraffiti’ s conjectures. While Graffiti
owes someof its successto the fact that the inequality
conjecturesit makesareof a difficult andimportanttype,
thisshouldnotdetractfrom thesimplicity andapplicabil-
ity of themethodsandheuristicsit uses.

2.4 Bagaiet al’s System

Theprogramdevelopedby Rajiv Bagaietal, describedin
Bagaiet al. (1993),worked in planegeometryandcon-
structedidealiseddiagramsand proved conjecturesthat
certaindiagramscould not bedrawn. Eachconceptwas
a situationin planegeometryinvolving pointsandlines
andrelationsbetweenthepointsandlines,suchasapoint
beingon a line or two linesbeingparallel. For example,
a parallelogramand its diagonals,as in figure 2 below
[taken from Bagaiet al. (1993)], could be describedby
statingthattherewerefour ingredientpoints,� Op��Ov� and�

, six lines(onebetweeneachpairof distinctpoints)and
two relations,namelythat lines � � and � � wereparal-
lel andthatlines � � and � � wereparallel

C

B

D

A Ingr edientpoints:
A,B,C,D
Relationships:
parallel(line(A,B),line(C,D))
parallel(line(A,C),line(B,D))

Figure2: aparallelogramanddiagonals,andits representation



Startingwith an empty situation, constructionslike
the parallelogramweremadeby addingnew ingredient
points and new relationsto a previous situation. Each
time a new relation was added,a conjecturewas made
thattheresultingsituationwasinconsistent,ie. thatit was
notpossibleto draw anexampleof thesituation.To prove
the conjecture,thesituationwasturnedinto a collection
of polynomialsandinequalitieswhich werepassedto an
efficient theoremprover, Chou (1984). If the theorem
prover could not find complex solutionsto the polyno-
mial thenthesituationwasindeedinconsistent.However,
if thetheoremproverdid find complex solutions,thissaid
nothing about the consistency of the situation,and the
conjecturewasdiscardedto preservethesoundnessof the
theoriesproduced.

Many methodswereemployedto reducethenumber
of timesthesystemusedthetheoremprover. Firstly, only
consistentsituationswerebuilt upon,asasituationwhich
was an extensionof an inconsistentsituationwould it-
self be inconsistent. By also restrictingto only adding
onerelationat a time, if the situationproducedwas in-
consistent,the additionalrelation musthave causedthe
inconsistency. Thisenabledbetterpresentationof thethe-
orems,eg. if the conditionthat lines � � and �{� were
parallelwasaddedto the parallelogramsituationabove,
this would causean inconsistentsituation.As theincon-
sistency wascausedby the new relation, insteadof just
statingthat a parallelogramwith paralleldiagonalscan-
notbedrawn, thesystemcouldsaythat:

Givena parallelogram,thediagonalscannotbeparallel.

Anotherway to reducethe time spentusingthe the-
oremprover wasto avoid proving the inconsistency of a
situationwhich wasisomorphicto a previousone. Two
situationswereisomorphicif apermutationof theingredi-
entpointsof thefirst producedthesecond.To getaround
thisproblem,wheneverasituationwasbuilt, all of its iso-
morphicsituationswerealsobuilt, so that they could be
recognisedif re-constructedby a differentroutelateron.
Also, to cut down on the occurrencesof later theorems
which impliedearliertheoremsa breadthfirst searchwas
usedwherea stepcould only be the addition of either
a single ingredientpoint or a singlenew relation. This
meantthat the mostgeneralsituationswereconstructed
beforethemorespecificonesandthereforethemostgen-
eral versionsof theoremswereproducedfirst. Not only
couldtheprogramre-discoverwell known resultssuchas
Euclid’s 5th postulate,it alsoprovidesa very clearand
concisetheoryfor theautomaticproductionof asubsetof
planegeometryconceptsanda setof theoremsaboutthe
non-existenceof modelsfor certainconcepts.

2.5 The HR Program

TheHR programby Coltonet al, asdescribedin Bundy
etal. (1998)andmorerecentlyin ColtonandBundy(1999),
wasoriginally developedto performconceptformationin

grouptheory. Startingwith justa few definitions,HR can
re-inventclassicallyinterestingconceptssuchascentres
of groups,Abelian andCyclic groupsandordersof ele-
ments. HR works directly with the modelsof concepts
(storedas data-tables),and constructsnew conceptsby
taking the data-tablesof old conceptsandmanipulating
themusingoneof tenproductionrulesto producea new
data-table.From informationabouthow a conceptwas
constructed,HR cangeneratea definitionfor theconcept
wheneveroneis needed.

HR encountersa combinatorialexplosionbecausea
singleconceptcanoften be transformedinto around20
new ones,andany pair of conceptscanbecombinedinto
a third. A heuristicsearchis usedwhichchoosesthebest
conceptto usein eachconceptformationstep.HR hasa
varietyof waysto measureconceptsanda weightedsum
of measuresis taken to indicateanoverall level of inter-
estingnessfor the concept. The weightsare set by the
useranddependonwhattypesof conceptsthey arelook-
ing for. Oneway to useHR is to supplya ‘gold stand-
ard’ categorisationof thegroupsin thedatabase,andask
HR to find a function,theoutputof whichwill categorise
thegroupscorrectly(groupswith thesameoutputareput
in the samecategory). HR canthenmeasurehow close
eachconceptgetsto thiscategorisation,by evaluatingthe
proportionof pairsof groupsthata conceptcorrectlycat-
egorises. This approachcan be effective, for example,
giventheisomorphicclassificationof thegroupsupto or-
dersix, HR foundthis functionwhichcorrectlyclassifies
them: M [`�^]������b[`� Ov�wOp� ]������r�f��� � � �r��� � � ���~����e

If the userhasno particulartask in mind, they can
ask HR to explore the domain. HR hascertainmeas-
ureswhich indicatedesirablepropertiesof aconcept,and
userscanstresssomeof theseif they wish. Theparsimony
measureof a conceptis inverselyproportionalto thesize
of thedata-tablefor theconcept.Thedatain a tablecor-
respondingto a particulargroupcanbeusedto describe
that group,andso a small table is advantageousas this
meansmoreparsimoniousdescriptions.HR canalsoas-
sessthe noveltyof a concept,which is inverselypropor-
tional to thenumberof timesthecategorisationproduced
by a concepthasbeenseenalready, (with moreunusual
categorisationsbeingmoreinteresting).Finally, HR can
measurethe complexity of a conceptwhich is inversely
proportionalto the numberof old conceptsappearingin
its constructionpath.Thisgivesaroughindicationof how
complicatedthedefinitionof a conceptwill be,andmore
concisedefinitionsaredesirable.

HR can make conjecturesby spottingthat the data-
tableof a newly formedconceptis exactly the sameas
a previous concept,and conjecturingthat the concepts
areequivalent. Whenthis happens,definitionsfor each
conceptaregeneratedandusedto write theconjecturein
awayacceptableto theOTTERtheoremprover, McCune
(1990),which HR asksto prove the conjecture.For ex-
ample,whenHR inventsthe conceptof elements,� , for
which ���	����� , it spotsthatthenew data-tableis thesame



astheoneit hasfor theuser-givenconceptof theidentity
element,andthefollowing conjectureis generated:� � O [`����y��¡ �¢ ���£���V�¤]ze
This is broken into

� � O [`�}�¥y¦�¡§P¨©�ª�«���m�¤] and� � O [`���¬�­�®�¯§P¨°�k�±y���] , which areboth passedto
andeasilyprovedby thetheoremprover, OTTER.Before
passinga conjectureto OTTER, HR usessomesimple
deductivetechniquesto checkwhethertheconjecturefol-
lowseasilyfrom thosealreadyproved.

HR hasasetof ‘sleepingconcepts’,suchasthetrivial
group,andwhena conceptis conjecturedto bethesame
asthese,theconjectureis flaggedsothattheusercanpay
specialattentionto it (or chooseto ignoreit). If the in-
terestingnessof conjecturesandproofscanbeestimated,
thentheaverageinterestingnessof thetheoremsaconcept
appearsin canbetakenasanew measurefor theinterest-
ingnessof the conceptitself. Conjecturesare assessed
in two ways. Firstly, the surprisingnessof a conjecture
measureshow differentthetwo (possibly)equivalentcon-
ceptsare,by evaluatingtheproportionof conceptswhich
appearin the constructionpath of one but not both of
the concepts.This givessomeindicationof how differ-
ent looking thedefinitionsof theequivalentconceptsare
goingto be. Secondly, if a conjectureis proved,OTTER
will provide a proof lengthmeasurein its output,which
givessomeindicationof thedifficulty of theproof.

If the equivalenceof two definitionsis proved, HR
usesthisfactto re-assesstheconceptsinvolved,andkeeps
only the leastcomplex definitionfor theconcept.If OT-
TERcannotproveaconjecture,HR passesit to theMACE
modelgenerator, McCune(1994),which is askedto find
a singlecounterexampleto the conjecture. If MACE is
successful,thecounterexampleis addedto HR’sdatabase
andall previousconceptsandmeasuresarere-calculated,
giving HR a betterideaof the theoryit is exploring. All
future conjectureswill be basedon the additionaldata
providedby thenew group.HR’stheoryformationis gen-
eral enoughto apply to any finite algebraand HR can
bootstrapthe process,that is, it can start with just the
axiomsof the algebra,and end with a theory contain-
ing models,definitions,openconjectures,theoremsand
proofs.Theconceptformationis generalenoughto apply
to differentdomains,includinggraphandnumbertheory.

Indeed,HR’sbiggestsuccesssofarhascomein num-
ber theory, whereit inventedthe conceptof refactorable
numbers,thefirst examplesof whichare:

c OR²�Op³�OR´�O c ²¤O c ³µOR²	¶~Op·¹¸�Oº¶¹»�OR¼½¸�Op¸f»�Ov¾½²¤Oº³¹»¤Op³f¶�Op³¹³¤Op´¹¸¤O ese¿e
Thesearedefinedasthoseintegerswherethenumberof
divisorsis itself adivisor. Thisconceptwasnovelbecause
it wasmissingfromandsubsequentlyaddedto theonline-
encyclopediaof integersequences,Sloane(1998),which
containsover45,000integersequences.Refactorablesare
alsointerestingbecausetherearemany provableproper-
ties about them, for example,all odd refactorablesare
squarenumbers. Resultsaboutrefactorableshave been
publishedin themathematicalliterature,Colton(1999).

3 Assessingthe Inter estingness
of Conjecturesand Concepts

We cannotdiscussmeasuresof interestingnesswithout
addressinghow themeasuresareused.For example,one
programmight saythat theconceptof evenprimesis in-
terestingbecausea conjecturecanbe madethat 2 is the
only one,whereasanotherprogrammight say that they
are dull becauseonly one exampleof them is known.
Herethe samemeasurehasbeenused(see

�
3.4 below),

but differentconclusionshave beendrawn. Thereforewe
have to clearly separatethe measuresfor interestingness
from their uses. Onecommonuseof interestingnessis
to improve the efficiency of the programs.To save time
checkingandproving conjectures,certainconjecturesare
discardedbeforeevencheckingthemempirically, andthe
reasonto performanempiricalcheckis, of course,to cut
down on thetimespenttrying to provefalseconjectures.

Anothercommonuseof interestingnessis to improve
the appealof the output for the user. It is not possible
to avoid all uninterestingconceptsor conjectureswhen
constructingatheoryandinterestingnessmeasurescanbe
usedto filter the outputdependingon the user’s needs.
Also, measuresof interestingnesscan guide the search
sothat theprogramcanmake informedprogressinto the
spaceand find interestingconceptsthat it might take a
longer time to find with an exhaustive search. A more
specificuseof interestingnessmeasuresis to predict in
advancehow difficult aconjectureis goingto beto prove,
which, in all but sometrivial circumstancesis noteasyto
do. Finally, interestingnessmeasurescanbeusedto steer
theconceptformationtowardsaparticularconceptwhich
performsauser-definedtask.Having identifiedsomeuses
for interestingness,wecandetailcertaingeneralmeasures
andlook athow eachoneis used.

3.1 Empirical Plausibility of Conjectures

A conjectureis likely to be uninterestingif the empir-
ical evidencea programhasprovidescounterexamples.
This doesnot meanthat falseconjecturesin generalare
uninteresting,asthe productionof counterexamplesis a
worthwhilepursuit.However, if acounterexampleis found
in thedataa programhas,theconjecturecannotprovide
this worthwhile pursuit. Only the systemdevelopedby
Bagaiet al makesconjectureswhich have not beenfirst
verifiedby someempiricalevidence.In this case,theef-
ficiency andpower of the theoremprover andthenature
of the idealisedgeometricaldomainmake it unproduct-
ive to look for counterexamples. The AM programis
the only one which doesn’t immediatelydiscarda con-
jectureprovedfalseby empiricalevidence. In this case,
an attemptis madeto alter the conjectureto make it fit
the data. One way to do this is to exclude what AM
calls ‘boundary’ integers,so for example,theconjecture
that ‘all primesareodd’ becomestheconjecturethat ‘all
primesexcept2 areodd’.



HR and Graffiti use all of their data at once. HR
usesits data to spot (ie. suggest)a conjecture,so by
thetimea conjecturehasbeenmade,theempiricalcheck
hasbeencompletelyperformed.Similarly, onceaconjec-
turehasbeensuggestedby othermeansto Graffiti, all the
empiricalevidenceis usedto discardit. Note however,
thatbothof theseprogramskeeptheamountof empirical
datadown to a minimumbecausethey only storemodels
which have beengeneratedas counterexamplesto pre-
vious conjectures.GT employs a moreefficient system
becausea conjectureis suggestedby the small amount
of empiricalevidencein the setof basecases,andonly
thoseconjecturespassingthis testarecheckedagainstall
theexamplesfor theconcepts.Similarly, AM will make
a conjecturebasedon a little empiricalevidence,thentry
to generatemoremodelsto disprovetheconjecture.

3.2 Novelty

Becauseof theredundancy ofteninherentin searchesfor
conceptsandconjectures,it is importantto beableto spot
whena repetitionhasoccurred,andeachprogrameither
tailors its searchto reducerepetitions,or canspot them
whenthey occur. Here,the programsaremeasuringthe
novelty of a conceptor conjecturestatement,andreject-
ing thosewhichhavebeenseenalready. TheGraffiti pro-
gram goesto the length of storing conjecturesbetween
sessions.Another issueof novelty in programssearch-
ing for conjecturesis whethera theoremfollows as an
obvious corollary to a strongertheorem,in which case,
theweaker resultdoesnot sayanything particularlynew.
Graffiti works hard to show that a new conjecturesays
somethingmorethanall the previousones,by checking
thatthereis at leastonegraphfor which theinequalityin
the conjectureis strongerthanall the previousones(the
dalmationheuristic),andby checkingthat theconjecture
is not impliedby previousones(theechoheuristic).Spot-
ting the implicationof oneconjectureby anotheris also
usedin Graffiti to improveefficiency: if a laterconjecture
turnsout to be strongerthana previous one, the earlier
oneis removed,hencesaving Graffiti time later whenit
looksthroughits old conjectures.

The HR programdealswith the implication of one
conjectureby previous onesby extracting and attempt-
ing to prove all strongerconjecturesthan the one it is
considering.For example,if interestedin theconjectureX �ÁÀ §P¨ÂY , HR will first usesomesimpledeductive
techniquesto seeif it follows as a corollary to the res-
ults it hasalreadyproved. If not, it will askOTTER to
prove XÃ§P¨ÄY , and À §Å¨ÂY andif eitherturnsout to
be true, the weaker, original conjectureis discardedand
thestrongerconjectureis kept.Themostefficientway to
dealwith oneconjectureimplying anotheris to tailor the
searchto producethe mostgeneralconjecturesfirst, so
thereis lesschancethat later conjectureswill imply the
earlierones. This techniqueis usedin the systemfrom
Bagaiet al, but they point out in Bagaiet al. (1993)that

it is still possibleto producea laterconjecturewhich im-
pliesanearlierone.

A conceptcaneasilybeshowntobenovelwith empir-
ical evidence.For example,if a functionproducessome
outputfor a given input thatno otherfunctionproduces,
it mustbe novel. Given only a limited amountof data
though,it is moredifficult to tell thattwo conceptsarein-
deedthe same.Bagaiet al’s system(which hasno data
availableatall) tacklesthisby generatingall possibleiso-
morphicconceptswhenevera new conceptis introduced,
sothatif anisomorphicconceptto thenew oneis reached
by anotherroute,thesystemwill spotthis. HR’s conjec-
turemakingabilitiesrely on thefactthata proof is often
neededto tell thattwo conceptdefinitionsarein factequi-
valent,and,likeAM, HR assessesconceptsasmoreinter-
estingif they werederivedin two or moredifferentways.
If a conceptisn’t the sameasonealreadyin the theory,
it is possibleto assesshow muchit differs from theoth-
ers,usingcertainpropertiesof it. AM, for example,gave
extra interestingnessto newly formedconcepts,ie. those
with thespecialpropertyof beingrecentlyinvented.The
HR programassessesthe novelty of a conceptin terms
of thenovelty of thecategorisationof groupsit gives. It
is importantto make thedistinctionbetweenoneconcept
having two properties(eg. two definitions),which is of-
ten interesting,andtwo conceptssharingthesameprop-
erty (eg. a categorisation),which oftendetractsfrom the
interestingnessof both.

3.3 Surprisingness

Asportrayedin Fajtlowicz(1999),whenaskedwhatmakes
a goodconjecture,themathematicianJohnConway said
without any hesitation:“it shouldbe outrageous”.This
is goodadvice,andin somecasesanassessmentof how
surprisinga conjectureis can be automated.The least
surprisingconjecturesarethosewhich arejust instances
of tautologies.For example,givenobjectsof any type, � ,
andpredicatesof any nature,g and j , theconjecture� � O_Æ �wÇÈ[ Æ �wÇÈ[�gx[`�¬]º]º]­ �¢Égx[`�Ê]
is always going to be true, and conjecturefinding pro-
gramsshouldavoid makingtheseandsimilarconjectures.

To avoid makingtautologiesof a particulartype,GT
did not make subsumptionconjecturesif oneof thecon-
ceptswasa specialisationof theother. TheHR program
avoidscertaintautologiesby forbiddingcertainseriesof
conceptformationsteps,eg. not allowing two negation
stepsin succession.Graffiti usesa semantictreeto meas-
urehow differentinvariantsy and | arein theconjecture:�

graphs� O yz[`�^]�Z¡|P[`�^] , andthe beagleheuristicdis-
cardsmany tautologyconjectureswhichinvolveverysim-
ilar concepts,suchas yv[\�^]_Z¯yv[\�^]haVc . WhereasGraffiti
usesits measurefor surprisingnessonly to discardconjec-
tures,whentheHR programmakesaaconjecturethattwo
conceptdefinitionsareequivalent,it hassemanticinform-
ationaboutthoseconcepts,socantell how differentthey
are, giving an indication of how surprisingthe conjec-



ture is. HR usestheheuristicthatconceptsappearingin
surprisingconjecturesaremoreinteresting,which helps
driveabestfirst search.While HR andGraffiti canestim-
atethesurprisingnessof conjectures,only AM measured
thesurprisingnessof a concept:it gave extra interesting-
nessto conceptswhich possessedaninterestingproperty
not possessedby its parents(seeheuristic180 in Davis
andLenat(1982),for example).

3.4 Applicability

Theapplicabilityof apredicatecanbedefinedasthepro-
portionof modelsin a program’s databasewhich satisfy
the predicate.Also, the applicability of function canbe
definedastheproportionof modelsin a program’s data-
basewhich arein thedomainof thefunction.Thismeas-
ure is somewhat analogousto the empiricalplausibility
of conjectures,but canitself beextendedto coverconjec-
tures: theapplicabilityof a conjecturecanbedefinedas
the proportionof modelsin a program’s databasewhich
satisfy the conjecture’s preconditions. Thesemeasures
areusedin avarietyof waysasfollows.

In AM andGT, if a newly formedconcepthad low
applicability (ie. few examples),a task was put on the
agendato generatesomemoremodelsthat it appliedto.
If a concertedeffort to generateexamplesstill resulted
in a low applicability, GT would discardthe conceptas
uninteresting,and AM would give it a low interesting-
nessscore.In thespecialcasewheretheapplicabilitywas
zero, (ie. no exampleswere found), both GT and AM
would make theconjecturethatnoneexist. TheHR pro-
grammakessimilar non-existenceconjectures,andother
conjecturesaboutthe applicability of a concept,for ex-
ample,that it is restrictedto the trivial group. In Bagai
et al’s system,the whole point wasto prove that certain
conceptshave no models(ie. situationsareinconsistent),
which is equivalentto showing that theapplicabilityof a
conceptis zero. Sowe seethatconceptswith little or no
applicabilityareoftenthoughtof asdull, but theconjec-
turethatthis is trueis interesting.

Furthermore,in GT, if a generalisationstepproduced
a conceptwith no greaterapplicability than the one it
generalised,or if a specialisationstepproduceda new
conceptwith a greaterapplicability than the one it was
supposedto specialise,thenew conceptwasdiscarded.In
Graffiti, if theuserhasspecifiedaninterestin aparticular
setof graphs(ie. thosewith a particularquality), thenif
a conjectureis outputwhich is applicableto a supersetof
thatset,it is discardedasbeingtoogeneral(theechoheur-
istic). Also, in HR, the parsimony measurepreferscon-
ceptswith smalldata-tables,andhencesmallapplicabil-
ity. This givesan emphasisto specialisationprocedures
andcanbe useful in controlling the search.Finally, the
AM programused‘rarelysatisfiedpredicates’- thosewith
low applicability- to assessotherconcepts.For example,
heuristic15 from Davis andLenat(1982)gave morein-
terestingnessto functionswhoseoutputalwayssatisfied

oneof the rarely satisfiedpredicatesthat AM hadcome
across.We seethat applicability is a commonmeasure,
but how it is usedis alwaysdeterminedby thecontext of
thediscoverytaskbeingattempted.

3.5 Comprehensibility and Complexity

As programsareintendedto produceoutputunderstand-
ableby theuser, morecomprehensibleconceptsandcon-
jecturesare usually more interesting. The GT and Ba-
gai et al programsconstructedconceptsincrementallyso
that themostcomprehensibleoneswereintroducedfirst.
TheHR programemploysthecomplexity measurewhich
prefersconceptswith smallerconstructionpaths(which
roughlyrelatesto how longtheirdefinitionwill be).HR’s
best first searchis not guaranteedto producethe least
complex conceptsfirst, so, if two conceptsareprovedto
be equivalent,the leastcomplex definition of the two is
kept. Also in HR, conceptscanbe usedto describethe
groupsin the theory, andtheparsimony measureprefers
conceptsgiving shorter, moreconcisedescriptions.

Thecomprehensibilityof a conceptgivesone,albeit
shallow, indicationof thecomplexity of thatconcept,and
usuallylesscomplex, morecomprehensible,conceptsare
desirable. An alternative way to assessthe complexity
of a conceptis to evaluatehow much informationthere
is aboutit. AM countshow many conjecturesthereare
involving a conceptandusesthis asa measureof the in-
terestingnessof theconcept.The HR programgoesone
stagefurther and assessesnot only the conjecturesbut
alsotheproofsof them,andusesthis to measurethe in-
terestingnessof theconceptsinvolvedin theconjectures.

Thenovelty andsurprisingnessmeasuresoftenprune
easyto prove conjectures,becausetautologies,conjec-
tureswhich follow as an obvious corollary to previous
theoremsandthosewhichareunsurprisinghaveagreater
likelihoodof beingeasyto prove. Removing thesecon-
jectureswill possibly increasethe averagedifficulty to
prove the conjecturesremaining. However, this is sep-
aratefrom theissueof how difficult aconjectureis to un-
derstand.Preferringconjecturesaboutlesscomplex con-
ceptswill increasethe overall comprehensibilityof the
theory, andchoosinga simpleformatfor conjecturescan
alsohelp. For example,asnotedin Valdés-Ṕerez(1999),
it is easyto understandwhatGraffiti’ s inequalityconjec-
turesaresaying. Further, the programfrom Bagaiet al
presentsits theoremsnot asunsatisfiabilityresults,but as
relationswhichcannotoccuronceasituationhasbeenset
up,which is amoreunderstandableformat.

3.6 Achieving Particular Tasks

Therearewaysby which the usercanexplicitly express
interestin particularconceptsor conjectures.This is clear
in theAM programwhich wasdesignedasaninteractive
programwherethe usercan interruptthe sessionat any
timeandexpressaninterestin aparticularconcept.AM’ s



heuristicsweresetup to pay particularattentionto this
concept,andthe limited numberof conceptsAM could
producein a sessionwere heavily biasedby the user’s
choice. Herewe seethat the userwantsAM’ s concepts
and conjecturesto perform a particulartask, namelyto
discussthe conceptchosenby the user. This is taken a
stagefurther in theGT andGraffiti programs,wherethe
usercanspecifya ‘focus’ concept,andonly conjectures
involving the chosenconceptwill be produced.In GT’s
case,this also meantthat specialisationsor generalisa-
tionsof only thefocusconceptwouldbeattempted.

In theGraffiti program,all theprovedconjecturesgive
a boundfor an invariant (which may save computation
time), sowe seethat thesearchspacehasbeendesigned
with a taskin mind. More explicit tasksaresetfor other
programs. By giving a ‘gold standard’classificationof
groupsto HR,usersareexpressinganinterestin concepts
which achieve that categorisation. By giving concepts
andconjecturesparticulartasksto achieve,aprogramcan
measurehow closeeachcomesto completingthe tasks
andusethis to estimateinterestingness,which will hope-
fully drive thebest-firstsearchtowardssomethingwhich
achievesthetask.

4 Conclusions

Assessingthe interestingnessof a conceptor conjecture
automaticallyis difficult becausea programhasto try to
predicthow muchusefulmathematicswill resultfrom an
investigationof the conceptor the attemptsto prove the
conjecture. Fermat’s last theorem,for example, could
easilyhave beenrelegatedto the appendixof a number
theorytext if it hadnot beenso difficult to prove. Also,
asin discovery of any kind, it is oftennecessaryto have
expertknowledgeto decidewhetheraninventionhasany
far reachingimplicationsor applications,aspointedout
in Langley (1998).

By comparingandcontrastingfivemachinediscovery
programs,all of whichareforcedto guidetheirsearchto-
wardsmoreinterestingoutputandmakeinstantdecisions
aboutthepossibleinterestingnessof conjecturesandcon-
cepts,we have extractedsomepossiblewaysa program
canmeasuretheinterestingnessof theconceptsandcon-
jecturesit makes. The empiricalplausibility of conjec-
tures,novelty and comprehensibilitymeasuresare ana-
logoustoqualitiesdescribedin Valdés-Ṕerez(1999)toas-
sesstheoutputfrom machinediscoveryprograms.There-
fore,we seethatautomatedattemptsto estimateinterest-
ingnessoftencheckthe internalplausibility, novelty and
intelligibility of a theoryin the waysa humanmight es-
timatethequalityof a theoryexternally.

4.1 The Interestingnessof Conjectures

In summary, it is often a goodideato prescribea defin-
ite taskfor aconceptor conjectureto achieve,anddesign

measuresof interestingnessaroundthis. If this is notpos-
sible,andanestimateof the interestingnessof a conjec-
ture is going to be made,someof the following points
couldbetakeninto consideration:K

Theconjectureshouldbeempiricallytrue.

This canbeachievedby only makingconjecturesbacked
up by all availabledata,suggestinga conjectureby some
othermeansandthenusingall thedatato discardthecon-
jectureif necessary, or alteringa conjectureso that any
datawhichdisprovesit is no longerapplicable.K

Theconjectureshouldbenovel w.r.t. previousones.

Thiscanbeachievedby understandingandcheckinghow
two conjecturescanbeequalor isomorphicin thedomain
of interest. Also, conjectureswhich areimplied by pre-
vious, strongerconjectures,shouldeitherbe avoidedby
tailoring thesearchspace,or rejectedwhenfound.K

Theconjectureshouldbesurprisingin someway.

Thiscanbeachievedbyavoidingordiscardingwell known
tautologies,andby usinginformationabouttheconcepts
discussedin the conjectureto estimatehow unlikely the
suggestedrelationbetweenthemis.K

Theconjectureshoulddiscusssomenon-trivial models.

Thiscanbeachievedby discardingany conjectureswhere
theonly modelssatisfyingthepreconditionsarea trivial,
or uninterestingset. Note that in certaincircumstances,
thiskind of highly specialisedconjecturemayactuallybe
of interestto theuser.K

The conjectureshould be understandable,but non-
trivial to prove.

This can be achieved by assessingthe numberand di-
versityof conceptsinvolvedin aconjectureandremoving
overly complicatedconjectures,or by fixing the search
strategy to outputthe simplestconjecturesfirst. Making
conjecturesin a well known formatwill helpunderstand-
ability. If theconjecturehasbeenproved,theproofcould
beusedto estimatehow difficult thetheoremwas.

4.2 The Interestingnessof Concepts

If anestimateof theinterestingnessof a conceptis going
to bemade,someof the following pointscouldbe taken
into consideration:K

Theconceptshouldhavemodels.

Thiscanbeachievedby checkingavailabledatafor mod-
els which satisfy a predicateor are in the domainof a
function. If no modelsexist, aneffort shouldbemadeto
generatesome.It maybenecessaryto provethatnomod-
elsexist, anddiscardtheconcept(but keepthetheorem).K

Theconceptshouldbenovel w.r.t. previousones.

To achieve this, thesearchshouldensurethatno two ob-
viously isomorphicdefinitionscan be made,and avoid
pathswhich will ultimately lead to the sameconcepts.



Then, if the modelsof oneconceptare the sameasan-
other, theconceptsarepossiblyequivalent,which should
lead to a proof of this fact. If a conceptis indeedse-
manticallydifferentto all theothers,thenthenovelty of
variousproperties(suchastheway it categorisesmodels)
couldbeassessed.K

Thereshouldbe somepossiblytrue conjecturesmade
abouttheconcept.

By thequalificationof possiblytrueconjectures,we note
thatwhile falseconjecturesaboutthenatureof a concept
areusuallyof no interest,anunsettledconjecturecanof-
tenbemoreinterestingthana provedtheorem.K

Theconceptshouldbeunderstandable.

Thiscanbeachievedby designingthesearchto construct
conceptswith thesimplestdefinitionsfirst, andby keep-
ing the simplestdefinition whenit hasbeenproved that
two conceptsareequivalent.K

Theconceptshouldhaveasurprisingproperty.

A surprisingpropertymaybesomethingthatisn’t trueof
theparentconcepts.

Building on the techniquesfor automateddiscovery
thathavebeendevelopedin artificial intelligenceandcog-
nitive science,andlearningfrom theresultsof programs
developedin mathematics,aneffort canbemadeto write
moreprogramswhich act ascollaboratorswith working
mathematicians.The productionof intelligently sugges-
tedconjecturesandconceptsplaysanintegralandimport-
ant part in developinga mathematicaltheory, andauto-
matingtheseprocessesis aworthyareafor research.How
programsestimatetheinterestingnessof theconceptsand
conjecturesthey produceis centralto building intelligent
discovery programs,andwe hopethat the notionsof in-
terestingnessderivedherewill beof somehelp.
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