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Abstract

The contribution of this paper is threefold. First, an im-
provement to a previously published paper on the timing
analysis of Controller Area Network (CAN) in the presence
of transient network faults is presented. A probabilistic fault
model is considered, where random faults from electromag-
netic interference occur according to a Poisson distribution.
The analysis provides worst case response times for mes-
sage frames, not as a single value, but as a probability dis-
tribution. Secondly, a similar result is produced for time-
triggered CAN (TTCAN), a version of CAN based on time-
driven schedule. Thirdly, these analyses are applied to an
example message set and used to discuss the dependabil-
ity of event-triggered and time-triggered communication in
the presence of electromagnetic interference. The results in-
dicate that, an event-triggered bus can generally provide a
higher probability of timely-delivery of data than a time-
triggered bus.

1. Introduction

The discussion about the relative merits of event-
triggered and time-triggered communication has been long
and varied [22, 11, 23]. A popular conclusion to the debate
is that time-triggered communication (such as TTP [40, 21],
TTCAN [15, 14]) is needed where dependable, real-time
communication is required, while event-triggered commu-
nication (such as Controller Area Network, CAN [4, 18])
may be used elsewhere, where requirements for flexibil-
ity supersede any dependability requirements. This paper
argues that event-triggered communication, and in partic-
ular CAN, is also suitable for dependable real-time com-
munication. One reason for this is that event-triggered
communication is able to provide a higher probabil-
ity of timely delivery of message frames under electro-
magnetic interference than time-triggered communication
alone can do. Supporting evidence appears later in this pa-
per.

Proponents of time-triggered communication have ar-
gued that event-triggered communication is incapable of
dependable real-time communication for the several rea-
sons including [22, 14]: lack of fault containment (includ-
ing the babbling idiot failure) and no guarantee of response
times/deadlines.

Solutions to fault containment in event-triggered commu-
nication have been proposed, for example the Timely-CAN

(TCAN1) protocol [7, 5] provides containment of delays on
the bus, and there are at least three approaches to prevent-
ing babbling idiots [8, 39, 13].

In this paper, the supposed lack of guarantee of response
times is considered in detail. We show that no electrical
bus system (whether time-triggered or event-triggered) is ca-
pable of providing absolute guarantees of behaviour, how-
ever, CAN is able to provide a higher probability of success-
ful timely delivery than, for example, Time-triggered CAN
(TTCAN) [15].

The foundation of this argument is the axiom that faults
are hard to predict; the precise times and nature of faults
in the system are not known in advance. In particular, there
is no bound on the number of individual faults that can oc-
cur within any time interval. This is discussed in more detail
in Section 2.1. Since faults cannot be predicted, an event-
triggered protocol that is able to respond to faults dynam-
ically at run-time (by requesting retransmissions as neces-
sary), may be able to provide a better service than a time-
triggered protocol where the response to faults can only be
considered in advance (for example in the case of TTP by
routinely making two transmissions of each frame [21]).

This paper will first discuss the effect of faults in bus-
based systems and some related work. A contribution of this
paper is the probabilistic analysis in Section 3. Section 4
presents a similar analysis technique for TTCAN. These ap-
proaches are used in Section 5 to provide probabilities of
failure an example message set on CAN and TTCAN. Sec-
tion 6 briefly summarises the results.

2. Background

This section proceeds by discussing faults in communica-
tion, introducing CAN and TTCAN, and provides a model
and a metric for comparison.

2.1. On Faults and Fault Models

Any electrical bus is susceptible to faults induced by elec-
tromagnetic interference (EMI). Screening and differential
signalling are of benefit in reducing the ability for environ-
mental radiation to affect the data on the bus, but no screen-
ing is perfect and in electrically noisy environments, the
long lengths of cabling are always vulnerable [17]. How-
ever, the behaviour of a bus depends heavily on the indi-
vidual environment, cable routing, cable type, proximity to

1 Originally termed LST-CAN.



potential sources of electrical noise and so on. Measuring
and predicting the effects of EMI is difficult [24] because its
causes are diverse (sparks, lightning, digital signals, radar,
mobile phones [16], high voltage switching etc.) and uncer-
tain (what is the worst/average effect of lightning?). There
is no indication that the results of a given experiment are
representative. Indeed, one would expect that the influence
of sources such as mobile telephones, spark transmissions,
radar and other devices are not constant from day to day, nor
from system to system. The conclusion that this inevitably
leads to is that faults cannot be predicted with any accuracy
[17].

For the purposes of this paper, a fault is considered to
have occurred when the state of the bus as read by one or
more nodes is different to the state that was transmitted.
These faults are typically caused by some form of electro-
magnetic interference from sources listed previously. Other
types of fault such as network partitioning and faults in the
nodes are not considered here, although it should be noted
that many protocols have effective means of dealing with
such faults [36, 32].

There have been several attempts to model interference in
bus systems. Tindell [38] suggested that faults could be re-
garded as sporadic single-bit faults. That is, there is a min-
imum separation between faults. Therefore in CAN, faults
can be treated in almost the same way as frames in the spo-
radic stream model. Additionally, to allow for the possibil-
ity of faults occurring closer than the minimum separation,
a single burst of faults is accepted (and the burst has a max-
imum length).

The model is simple and effective but somewhat crude.
There is no evidence that it reflects the nature of real faults,
although some simulation work [5] suggests that its use is
not wholly inappropriate. In the absence of the ability to ac-
curately measure or predict faults, this model is useful in
that it gives a guide as to how much spare bandwidth is
required to meet deadlines—a “fudge factor”. However, in
use, it quickly leads to a very high overhead in the analy-
sis which is not necessarily justified in practice.

One fault model frequently used to describe EMI in other
domains is to model faults as a random pulse train with
an exponential distribution of inter-arrival times, forming a
Poisson distribution [10, 19]. This means that there is nei-
ther a guarantee on the minimum separation between faults,
nor on the number of faults within an interval. This model is
well suited to modelling faults in electronic circuits and net-
works.

Navet [27] adopted a probabilistic fault model for
CAN using a Poisson distribution. Faults are modelled
as a stochastic process which considers both the fre-
quency of the faults and their gravity. In that model, faults
in the channel occur following a Poisson law and can be ei-
ther single-bit faults (which have a duration of one bit) or
burst errors (which have a duration of more than one bit) ac-
cording to a random distribution.

Note that if the occurrence of faults in the channel fol-
lows a Poisson distribution, the maximum number of trans-

mission errors suffered by the system in a given interval is
not bounded, so the probability of having sufficient inter-
ference to prevent a message from meeting its deadline is
always non-zero; therefore every system is inherently un-
schedulable (as should be expected).

A probabilistic model encapsulates the idea that there
may normally be a low level of faults—well separated with
large inter-arrival times—yet occasionally, the system may
experience higher loads with faults occurring closer to-
gether. Of course, a random distribution, particularly a Pois-
son distribution (which requires an assumption of indepen-
dent faults) cannot be a precise measure of fault activity.
Nevertheless, we hypothesise that in the absence of the
ability to perform precise measurement for general system,
a Poisson distribution is an appropriate way of modelling
faults, with significant merit. Its use is proposed in replace-
ment of the sporadic fault model which is the most fre-
quently used scheme in industrial practice.

However, previous approaches to providing probabilities
of deadline failure [12, 27] are shown to give quite pes-
simistic results [9, 5].

2.2. Event- and Time-triggered Communication

This paper considers two general forms of communica-
tion, event-triggered and time-triggered. This section briefly
describes each one, and its behaviour in the presence of
faults.

Time-triggered protocols, such as TTP and TTCAN,
make scheduling decisions based on the progression of time.
The usual method is to use a TDMA (Time Division Mul-
tiple Access) scheme, where bus access is determined en-
tirely by predefined time-slots. Generally, TDMA schemes
divide time into repeating cycles (sometimes also into ma-
jor cycles and smaller minor cycles), each node is allowed
to write to the bus only at certain times within a cycle. In or-
der to ensure that collisions cannot occur, each node is given
a different time slot in which to transmit. The slots and cy-
cles are determined off-line, often using tool support.
The cycles are usually the same length and repeat indef-
initely, making the bus periodic in nature. For detailed
descriptions of TDMA approaches, there are numerous de-
scriptions [21].

Event-triggered real-time protocols, of which CAN [4]
is a notable example, make scheduling decisions based on
which nodes wish to transmit at any given time. CAN
achieves non-destructive collision resolution: when a colli-
sion occurs between two or more frames, the frame with the
highest priority continues transmitting and any other nodes
stop transmitting their lower priority frames (the means by
which this is achieved is explained elsewhere [4, 18, 5]).
Ultimately, CAN provides a non-preemptive, priority-based
bus scheduling protocol. One key feature of CAN is that if a
fault occurs during transmission of a frame (hence corrupt-
ing the frame) then the frame is automatically queued for
retransmission. This can generally be used to provide an as-
sured delivery service [26, 30, 33], but can also be the cause



of uncertainty in timing since the number and distribution of
faults determines the time at which a frame is received.

Many buses based on a time-triggered paradigm (such
as ARINC-629 [1], TTP, FlexRay [3]) do not make any
response to corrupted frames, other than to disregard the
frames. These protocols leave all the concerns of absent data
to the application. The result of this is that the timeliness of
the bus is preserved, but the number of messages that are lost
is related to the number and distribution of faults that occur.

TTCAN is a recent proposal to extend CAN by adding
a time-triggered higher-level protocol. Thus, in principal at
least, one may achieve time-triggered communication using
existing, readily available and inexpensive CAN hardware.
It is now accepted as part 4 of ISO standard 11898.

2.3. Deadlines and Timing Analysis

It is common to talk of hard deadlines in communica-
tion. However, in this paper we accept the unpredictable na-
ture of faults [17], and as Section 2.1 explained, no matter
what form of protocol is used, if faults may occur without
constraint then absolute guarantees of timely delivery can-
not be made. Instead, it is necessary to accept that some
frames may either arrive late (in the case of CAN) or not
at all (in the case of TTP, TTCAN and TCAN). Therefore
we adopt the firm deadline model, which carries the impli-
cation that occasional delivery failures are acceptable and
expected. This practical approach is necessary; guarantees
of hard deadlines cannot be made in any form of electrical
communication with the potential for unpredictable faults.

Timing requirements in dependable real-time communi-
cation are well described by firm deadlines. Firm deadlines
are easy to reason about because they allow the creation of
a precise boundary point between correct and incorrect be-
haviour, at which point error recovery actions may be neces-
sary. Further, timeliness may be tested easily during the life-
time of the system: a deadline was either met, or it wasn’t;
this allows testing procedures to be formalised and the justi-
fication of confidence in a system’s correctness.

We may define a successful message delivery as when
a message is received by an appropriate set of nodes (per-
haps all nodes) before its (specified) deadline. In a fairly
static system, as many dependable systems are, is reason-
able to assume that a receiving node has sufficient knowl-
edge of the time to be able to determine whether or not a
message is received in a timely fashion. Therefore no dis-
tinction is made between a message that is permanently lost
and one which is delivered after its deadline; they are of the
same ‘value’ to the application.

In this domain, periodic streams of traffic are com-
mon practice. Additionally, time-triggered protocols are
most suited to periodic traffic. Therefore, it is appropri-
ate to assume the periodic stream model of traffic for the
comparison in this paper.

Timing analysis of time-triggered protocols is straight-
forward. Since the time of each message is determined in
advance, it is simple to calculate response times and hence

determine whether deadlines will be met. This can be done
off-line, to determine guarantees of behaviour.

Timing analysis of event-triggered protocols is more
complicated, although no less understood. Worst case re-
sponse times for CAN are calculated in a similar way to a
fixed priority scheduler [38] to provide deadline guaran-
tees.

It should be noted that in the absence of any kind of fault
(whether EMI related or not), the deadline guarantees pro-
vided by both types of bus protocol are of identical signif-
icance. If no faults occur then both bus architectures can
equally provide guarantees that all messages are received
(assured delivery) and received on time (timely delivery).

However, it is clear that in a dependable system, it is
not appropriate to assume that there are no faults. Indeed,
Section 2.1 argues that at the very least, EMI-related faults
cannot be overlooked. Instead, this paper promotes the con-
cept of probability of successful delivery. This allows a con-
venient method to compare the reliability (with respect to
timely delivery) of protocols with differing failure seman-
tics.

2.4. Related Work on CAN

The first timing analysis of CAN was presented by Tin-
dell [38]. His model consists of periodic messages and a
sporadic faults. The work forms the foundation of signifi-
cant later work and this paper. Tindell’s equations are pre-
sented below, because they will be used later in the proba-
bilistic analysis. They are changed slightly from their origi-
nal form to remove one slight discrepancy and to aid math-
ematics later; for details of the changes, see [5]. The worst
case response time of a data frame i is given by Ri in equa-
tions (1) and (2).

Ri = Ji + ti (1)

ti = Bi +Ci + Ii(ti)+Ei(ti) (2)

where: Ci is the worst case transmission time [31] (the time
it takes, in the worst case to send frame i) assuming no er-
rors, maximum bit stuffing and not including the inter-frame
space that follows the frame,

Ci =

(

44+8b+

⌊

34+8b−1
4

⌋)

τ (3)

where τ is one bit-time and b is the number of data bytes
in the frame (0 to 8). Due to bit-stuffing, the actual length
of a frame depends on the data and arbitration value. For an
8-byte data frame, for example, the frame size can vary be-
tween 108 and 126 bits. Ci is understood to be the maximum
possible length of a frame since this is a worst case analy-
sis. A study on the actual amount of bit stuffing that is typi-
cally observed provides a useful method to reduce its effects
[28].

The worst case blocking, Bi is the maximum time a mes-
sage may need to wait due to a lower priority message on



the bus:
Bi = max

∀k∈lp(i)
(Ck)+S (4)

where lp(i) is the set of messages with lower priority than i.
Note that if i is the lowest priority frame then Bi = S.

The term Ii(t) is the worst case interference that message
i may receive in t time units:

Ii(t) =
∑

j∈hp(i)

⌈

t −Ci + J j + τ
Tj

⌉

(C j +S) (5)

where hp(i) is the set of messages with higher priority than
i and J j is the worst case release jitter of frame j. Note that
the numerator in the fraction involves t −Ci as interference
can only take place before frame i begins transmission (care
must be taken never to require Ii(a) if a < C +J + τ). The τ
is used to eliminate ‘edge effects’ in non-preemptive analy-
sis where a high priority frame becomes ready as a medium
priority one completes [2].

Bus faults are incorporated into the analysis by consider-
ing their effects. Ei(t) is the worst case overhead due to net-
work faults and extra frames that can occur in any given time
interval, t. Ei(t) must be bounded and non-decreasing over t.
Each fault on CAN will cause an error frame to be transmit-
ted and the retransmission of either a higher priority frame
or if the fault falls in frame i then that frame will have to
be retransmitted before it is received. In the worst case (i.e.
where the fault falls on the last bit of a frame) then a fault
leads to an overhead of the error frame and the retransmis-
sion (in addition to the the whole of the lost frame, which
is already considered in the WCRT formulation). The spo-
radic fault model derives the following equation for Ei(t):

Ei(t) =

(

nburst +

⌈

t
TF

⌉)(

max
j∈hep(i)

C j +E

)

(6)

where TF is the minimum inter-arrival-time between faults
and nburst is the maximum number of faults that can occur in
succession during a burst, E is the maximum length of an er-
ror frame (taken to be 29τ), hep(i) is the set of streams of
higher or equal priority than i. The leftmost product-term of
equation (6) is the maximum number of faults that can oc-
cur in an interval t, and the rightmost product-term is the
maximum overhead of each fault.

Equation (2) may be solved iteratively by forming a re-
currence relation with t0

i =Ci which terminates when tn+1
i =

tn
i or fails when tn+1

i > Di − Ji where Di is the deadline and
Di ≤ Ti. If there is a solution Ri ∀i and Ri ≤Di then the anal-
ysis above will guarantee that all messages will always meet
their deadlines, provided that there are no faults.

2.5. Tree-based Probabilistic Analysis

A previous publication [9] presented an approach to pro-
ducing a probability distribution of response times based on
a random fault model. This approach was very general and
may be applied in a number of situations. Its use was shown

to be beneficial and accurate. However, it was quite compu-
tationally expensive and does not necessarily cover all the
search space. The general approach was to produce a prob-
ability tree of feasible scenarios starting from a critical in-
stant, then to traverse the tree to calculate a distribution of
response times. Branch pruning, based on a threshold pa-
rameter for insignificant probabilities, limited the size of the
tree. The approach therefore requires a compromise between
the time taken to compute the analysis and the accuracy of
the analysis results.

The basis of the algorithm are equations (1) and (2). For
the error overhead, Ei(t), given in equation (8), a Poisson
probability distribution is used, derived as follows.

The general form of the Poisson distribution, considering
m events in time t, is:

pt(F = m) =
e−λ t(λ t)m

m!
(7)

It is assumed that each fault causes the maximum length
error frame (E) and occurs on the last bit of the longest
frame, such that the maximum overhead due to one fault is
equal to:

Mi = E + max
∀ j∈hep(i)

C j

where hep(i) is the set of messages with higher or equal pri-
ority to i. Therefore the error overhead function, Ei(t), is a
random distribution:

Ei(t) = mMi with probability pt(F = m) (8)

The immediate result of the analysis is a set of pairs
Ri = 〈ti,p(ti)〉. More usefully, a cumulative probability dis-
tribution can be plotted.

3. New Analysis of CAN

In the specific case of faults on CAN, the probabilistic
analysis above [9] can be modified to reduce the computa-
tion time of the algorithm and eliminate branch pruning to
achieve complete coverage. Section 3.1 first makes a small
improvement by pre-computing response times, then Sec-
tion 3.3 exploits the specific fault model to produce a scheme
which has a very low computation cost and achieves full
coverage.

3.1. Pre-computing Response Times

As previous examples [9] and one later in this paper il-
lustrate, the shape of the probability distribution output is
‘stepped’. The cause is the simple nature of the error over-
head function, equation (8). It is noted, therefore, that there
are only a relatively small number of possible worst case
response times. A large number of different scenarios con-
tribute to the probability of each response time value; the
probability of each response time is the sum of the probabil-
ities of these scenarios.

Therefore, it is possible to pre-compute the set of possi-
ble response times up to some point (such as the period of



the message, which is the limit of the analysis) and then cal-
culate the possible scenarios which contribute to each re-
sponse time. Note that we use the notation Ri|K to mean the
worst case response time given that K faults delay the frame.

Pre-computing the response times is done in the expected
manner, by forming a recurrence relation from equation (9).

Ri|K = Bi +Ci + I(Ri|K)+Ei|K(Ri|K) (9)

where
Ei|K(t) = K(E + max

∀ j∈hep(i)
C j) (10)

3.2. Scenarios

After pre-computing the possible worst case response
times, it is necessary to consider the scenarios that contribute
to each possible value. In this paper, an analysis scheme is
presented which avoids having to enumerate all possible sce-
narios, hence avoid a large, expensive tree traversal. The fol-
lowing discussion of these scenarios is useful to aid under-
standing of the scheme.

Equation (1) generates a set of non-overlapping intervals,
as shown in Figure 1. The notation e(K) is used to denote
the number of faults that occur in time interval (Ri|K−1,Ri|K ]
(or (0,Ri|K ] where K = 0).

PSfrag replacements

· · ·
0

e(0) e(1) e(n−1)
Ri|0 Ri|1 Ri|2 Ri|n−1 Ri|n

Figure 1. Possible Worst Case Response Times for
a Given Number of Faults.

Using the shorthand, [210] to mean the scenario e(0)=2,
e(1)=1, e(2)=0, Table 1 shows the scenarios which con-
tribute to a given response time. Note that (for example)
the sequence [1020] cannot contribute to R3, since the se-
quence begins [10] which contributes only to Ri|1 because
at time Ri|1, there has been only one fault therefore the it-
eration of the WCRT equation terminates. It would be pes-
simistic to attach the scenario [1020] to the probability of the
response time for 3 faults, Ri|3 as a different approach does
[27].

Response
Time

Possible Scenarios
(Shorthand)

Number of
Scenarios

Ri|0 [0] 1
Ri|1 [10] 1
Ri|2 [200], [110] 2
Ri|3 [3000], [2100], [2010], [1200], [1110] 5
Ri|4 [40000], [31000], [30100], [30010],

[21100], [21010], . . .
14

Table 1. Enumeration of Scenarios.

The sequence of the number of scenarios which consti-
tute each response time grows rapidly. It begins 1, 1, 2, 5, 14,

42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900,
and is known as the Catalan Series [35] given by the for-
mula:

(2K)!
K!(K +1)!

(11)

where K is the number of faults, as in Ri|K . This growth
gives some understanding of the potential size of the tree
in the previous approach, although the tree never actually
reaches anywhere near it potential maximum size because
of the branch pruning.

3.3. Efficient Probabilistic Analysis

From the precomputed response times, an efficient prob-
abilistic analysis can be used to find the probabilities of the
response times without enumerating all the scenarios. The
technique is presented in this section.

3.3.1. Notation For clarity, the notation p(n, t) is used to
denote the probability of n faults occurring in interval t.
p(n, t) ≡ pt(n), as defined in equation (7). The notation
p(Ri|K) is the upper bound on the probability that a frame
i is affected by exactly K faults and hence may arrive no
later than Ri|K . Ri|K is precomputed as shown in Section 3.1.

The analysis will be derived by considering the scenarios
which contribute to each particular response time.

3.3.2. Calculating p(Ri|0) Considering the worst case re-
sponse time with no faults, Ri|0: p(Ri|0) is the upper bound
on the probability of faults not causing a frame i to exceed
this time. It is simply the probability that there are no faults
in the interval (0,Ri|0]. As Table 1 showed, this is the only
possible scenario that can produce a response time of Ri|0.
This is exactly the same as the previous analysis.

p(Ri|0) = p(0,Ri|0)

3.3.3. Calculating p(Ri|1) For the response time Ri|1, i.e.
1 fault, there is only one scenario which can cause this. Ta-
ble 1 shows this to be [10], there must be exactly one fault in
(0,Ri|0] and no faults in (Ri|0,Ri|1]. The previous section sug-
gested that the probability of [10] may be calculated by sum-
ming the probabilities of the scenarios (just one in this case).

However, an alternative approach is to begin with
the probability of having exactly one fault in the inter-
val (0,Ri|1], which is p(1,Ri|1). This can occur in only
two ways: [01] or [10], of which only [10] is of inter-
est. The probability of scenario [01] is already partially
calculated because this is p(Ri|0) multiplied by the proba-
bility of 1 fault in (Ri|0,Ri|1].

p(1,Ri|1) =p(Ri|1) [10]

+p(Ri|0)p(1,Ri|1 −Ri|0) [01]

Hence:

p(Ri|1) = p(1,Ri|1)−p(Ri|0)p(1,Ri|1 −Ri|0)



3.3.4. Calculating p(Ri|n) Likewise, to calculate p(Ri|2), is
it possible to begin with the probability that there must be
exactly two faults in (2,Ri|2] and then exclude the scenar-
ios where there were exactly 0 faults in (0,Ri|0], or exactly
1 fault in (0,Ri|1] since these scenarios would give rise to
smaller response times.

p(Ri|2) =p(2,Ri|2)

−p(Ri|1)p(1,Ri|2 −Ri|1)

−p(Ri,|0)p(2,Ri|2 −Ri|0)

The result is generalised as follows. The probability of
exactly n faults in Ri|n is derived directly from the Poisson
distribution equation, p(n,Ri|n). However only some permu-
tations of faults can possibly lead to such a response time.
The permutations which cannot lead to Ri|n are those which
would lead to a response time Ri| j where j < n.

If there are j faults in (0,Ri| j] then (because there are n
faults in (0,Ri|n]) there must be n− j faults in (Ri| j,Ri|n]. So,
the probability of j faults in (0,Ri| j] given that there are n
faults in (0,Ri|n] is p(Ri| j)p(n− j,Ri|n−Ri| j). This value can
then be subtracted from the probability p(Ri|n).

The resulting general equation for the upper bound on the
probability of worst case response time Ri|n is:

p(Ri|n) =p(n,Ri|n)

−

n−1
∑

j=0

p(Ri| j)p(n− j,Ri|n−Ri| j)
(12)

Results obtained from this scheme should also have
greater accuracy than the tree based probabilistic schemes
because there are far fewer calculations, hence less ac-
cumulated rounding errors. Additionally, it should be
noted that there is no branch pruning; therefore full cover-
age should be achieved.

Implementation of this is trivial, so code is not shown.
A software implementation based on equations (9) and (12)
was used to perform the study in Section 5.

The results of the analysis are of the same form as the pre-
vious analysis, and are usefully plotted as a cumulative dis-
tribution of response times. The only difference with the pre-
vious analysis is that when using an analysis based on pre-
computed worst case response times (rather than the gen-
eral tree-based form of the analysis) is that it leads to a dif-
ficulty in determining the accuracy. Response times greater
than the deadline are indistinguishable from loss of preci-
sion from e.g. floating point arithmetic. Therefore, it is not
possible to check the accuracy directly. However, in general,
since uncovered regions are added to the probability of be-
ing unschedulable, this does not affect the overall results of
the analysis.

Finally, the probability of deadline failure for frame i is
given by equation (13).

pi( f ailure) = 1−
∑

∀K|Ri|K<Di

p(Ri|K) (13)

4. Analysis of TTCAN

In this section, a similar probabilistic analysis for
TTCAN is presented. The same Poisson fault model will
be assumed. The analysis is somewhat simpler than the
CAN analysis, since the times of the messages are predeter-
mined.

For any given message, i, of maximum length Ci, the
worst case probability of it being lost is the probability of it
being hit by one or more faults, which is 1 minus the proba-
bility of it not being hit by a fault. The Poisson equation (7),
directly derives the probability of an unsuccessful delivery.

p(k 6= 0) = 1−
e−λCi(λCi)

0

0!
= 1− e−λCi

(14)

Where a TTCAN schedule contains more than one in-
stance of a frame for fault-tolerance, then since we assume
faults are independent, the probability of an unsuccessful de-
livery in n attempts is 1 minus the probability of n failures:

pn
i ( f ailure) = (1− e−λCi)n (15)

5. Comparison

There are several well-known message sets used for eval-
uation of CAN. The Society of Automotive Engineers (SAE)
produced a set of messages [34] that might be transmitted
within a vehicle. This message set has frequently been used
as a benchmark to evaluate CAN and has been the source
of some discussion [37, 20]. Results using this benchmark
and a probabilistic analysis have been previously published
[9, 5], and have shown positive evaluation of the resilience
of event-triggered communication with faults. To avoid rep-
etition of previous results, a new dataset is presented and
used to evaluate the probabilistic analyses in this paper and
hence compare the behaviour of event-triggered communi-
cation and time-triggered communication in the presence of
faults.

The message set is from a design for a simple mobile
robot using “smart sensors” (sensors which contain an in-
tegral CAN controller). There are only 6 messages in this
example, but they are quite demanding, both in terms of
frequency of transmission and short deadlines. The bus is
used at 256kbit/s baud-rate, making the total utilisation of
this set fairly low, 41%. Such a low value is chosen in or-
der to be able to construct a TTCAN schedule where all
messages can be transmitted twice. The messages appear in
Table 2 with conventional worst case response times from
equation (1). Note that we adopt the convention that a higher
priority is indicated by a higher numeric priority, rather than
stating CAN identifiers (where a lower numeric value in-
dicates a higher priority). For the fault model, a value of
λ = 30faults/second is chosen. This value of λ is used be-
cause it has been frequently used in the past [27, 29] as an
expected number of faults in an aggressive environment.

In order to be able to construct a comparison between
CAN and a TDMA bus, the periods of these messages have



Priority Length Period Deadline WCRT Comment
(µs) (µs) (µs)

6 288 2000 2000 828 MotorCtrl
5 328 4000 4000 1168 Wheel1
4 328 4000 4000 1508 Wheel2
3 528 8000 8000 2048 RadioIn
2 248 12000 12000 2608 Proximity
1 528 240000 240000 2320 Logging

Table 2. Example Message Set

been selected to be harmonic. This is of course not neces-
sary for an event-triggered bus and can even limit the per-
formance compared to when non-harmonic periods are used
[6].

The immediate result of the CAN probabilistic analysis
with λ = 30faults/second appears in Figure 2 as a cumula-
tive probability distribution. The graph shows the probabil-
ities of each message exceeding a given response time. The
lowest point on each line can be interpreted as the probabil-
ity of deadline failure. The probabilities of deadline failures
are recorded for later comparison.
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Figure 2. Probabilistic Analysis of Message Set on
CAN at λ = 30

An equivalent schedule for TTCAN was designed, using
a cycle period of 240ms. Concerns about jitter, offsets and
synchronisation with nodes were not considered in the de-
sign of the cycle. Since the utilisation is less than 50% there
is sufficient space to transmit all frames twice. Two TTCAN
experiments are considered, one where each frame appears
in the schedule once, and the other where each frame ap-
pears in the schedule twice. The probabilities of deadline
failure for the message sets appear in Table 3.

Priority Probability of Failure
CAN TTCAN1 TTCAN2

6 1.5 ·10−5 8.6 ·10−37.4 ·10−5

5 1.6 ·10−9 9.8 ·10−3 9.6 ·10−5

4 8.7 ·10−8 9.8 ·10−3 9.6 ·10−5

3 2.7 ·10−9 1.6 ·10−2 2.5 ·10−4

2 2.1 ·10−12 7.4 ·10−3 5.5 ·10−5

1 < 1 ·10−20 1.6 ·10−02 2.5 ·10−4

Priority Probability of Failure
CAN TTCAN1 TTCAN2

6 1.5 ·10−5 8.6 ·10−3 7.4 ·10−5

5 1.6 ·10−9 9.8 ·10−3 9.6 ·10−5

4 8.7 ·10−8 9.8 ·10−3 9.6 ·10−5

3 2.7 ·10−9 1.6 ·10−2 2.5 ·10−4

2 2.1 ·10−12 7.4 ·10−3 5.5 ·10−5

1 < 1 ·10−20 1.6 ·10−2 2.5 ·10−4

Key
1 Scheduled once
2 Scheduled twice

Table 3. CAN and TTCAN, Prob. of Failure

From the table, it is clearly seen that in all cases, CAN
outperforms TTCAN, in most by several orders of magni-
tude. This is an intuitive result. CAN uses its flexibility to
retransmit frames only when necessary, making efficient use
of the bandwidth. There is no limit on the number of times
that any given frame is retransmitted; if it is corrupted on
the third attempt then a fourth is made, and so on. Figure 2
gives an indication about how many message retransmis-
sions are used to provide this level of probability; each ‘step’
in the graph is caused by one more fault and hence one more
retransmission (the retransmission does not necessarily oc-
cur in the frame that is under investigation). Considering the
frame with priority 5, to achieve a probability of failure of
1.6 ·10−9 it tolerates 5 faults, occurring while it is queued or
being transmitted.

The effect of retransmission is to delay all lower priority
frames, but as the example demonstrates the probability the
fault propagating downwards to the extent that these frames
are also pushed beyond their deadlines is low. On the other
hand, TTCAN is constrained to 2 transmissions, regardless
of whether more are needed or not, hence creating a bound
on the probability of delivery.

Other datasets (including the SAE benchmark) not shown
in this paper demonstrate similar results. Accurate simula-
tion and fault injection [5] provide further evidence that the
probabilistic analysis is both accurate and exhibits low pes-
simism.

Despite these results however, it is not necessarily the
case that the analysed probabilities of failure for CAN are
always lower than TTCAN. It is possible to contrive a mes-
sage set with very short deadlines whereby some medium
priority frames have a worst case probability of failure with
CAN to be higher than an equivalent TTCAN2 (scheduled
twice) analysis result. The characteristic of such a message
set is that the CAN WCRT of one transmission, one retrans-
mission and the worst case blocking is beyond the deadline:
Ct + S +Ci + E + Bi > Di so only one transmission is use-
ful. Whereas in a TTCAN schedule in a system with syn-
chronised (time-triggered) nodes, where one would not nor-
mally incorporate the blocking in timing analysis (because
nodes are tightly synchronised) can accommodate two trans-
missions, Ct +S+Ci +E < Di.



6. Conclusion

Based on the assumption that faults are difficult to pre-
dict, this paper has promoted a Poisson fault model. It is ac-
cepted that this model cannot be expected to be exact, but it
is proposed as a reasonable model for design guidance and
to gain an understanding of the behaviour of the system. Us-
ing this fault model, schemes for simple probabilistic analy-
sis for CAN and TTCAN are explained.

For both protocols, the analyses provide probabilities of
successful delivery of frames before a firm deadline. Addi-
tionally, for CAN, the analysis gives a probability distribu-
tion of worst case response times which derives the proba-
bility for deadline failure.

This result applied to a simple message set, which is used
as evidence to compare CAN with TTCAN. Using identi-
cal fault models, and the metric ‘probability of timely deliv-
ery’, the results showed that CAN outperformed TTCAN in
terms of probability of successful delivery.

There are a broad range of motivations when choosing a
protocol, of which the ability to tolerate transient faults is
only one. Nevertheless, it is an important issue in depend-
able systems. Combined with the broad section of other re-
search [32, 41, 25], this work provides further evidence that
event-triggered communication has a genuine and important
role in dependable real-time communication.
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PhD thesis, Universidade Técnica de Lisboa Instito Superior Técnico,
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