A conjecture about numerators of Bernoulli numbers related to Integer Sequence A092291

Bernd C. Kellner

5th October 2004*

Abstract

In this paper we disprove a conjecture about numerators of divided Bernoulli numbers B_{n} / n and $B_{n} / n(n-1)$ which was suggested by Roland Bacher. We give some counterexamples. Finally, we extend the results to the general case.

Keywords: Bernoulli number, Kummer congruences, irregular pair, Chinese remainder theorem

Mathematics Subject Classification 2000: 11B68

1 Introduction

Let B_{n} be the n-th Bernoulli number with $n \geq 0$. They are defined by the power series

$$
\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n} \frac{z^{n}}{n!}, \quad|z|<2 \pi,
$$

where all numbers B_{n} are zero with odd index $n>1$. Therefore, we will consider only even indices concerning Bernoulli numbers. These numbers play an important role in several topics in mathematics. Here, we are interested in the numbers

$$
\frac{B_{n}}{n} \text { and } \frac{B_{n}}{n(n-1)}
$$

which occur, e.g., in approximation formulas of harmonic numbers H_{n} resp. Stirling's approximation of $\log \Gamma(x)$, see [GKP94, pp. 480-482].
Now, we need some basic facts about Bernoulli numbers which can be found in [IR90, Chapter 15]. In 1850 Kummer introduced the following definition.

Definition 1.1 Let p be an odd prime. A pair (p, l) is called an irregular pair if $p \mid B_{l}$ with $2 \leq l \leq p-3$ and even l. The index of irregularity of p is defined by

$$
i(p):=\#\{(p, l) \text { is an irregular pair : } l=2,4, \ldots, p-3\} .
$$

Then p is called an irregular prime if $i(p)>0$, otherwise p is a regular prime.

[^0]Let φ be the Euler φ-function, then the classical Kummer congruences state for n, n^{\prime} even, p prime, and $p-1 \nmid n$

$$
\begin{equation*}
\frac{B_{n}}{n} \equiv \frac{B_{n^{\prime}}}{n^{\prime}} \quad(\bmod p) \tag{1.1}
\end{equation*}
$$

with $n \equiv n^{\prime}(\bmod \varphi(p))$. An easy consequence of the Kummer congruences supplies that the numerator of B_{n} / n consists only of irregular primes and that infinitely many irregular primes exist. Let (p, l) be an irregular pair. Using congruence (1.1) provides for all $k \in \mathbb{N}_{0}$

$$
\begin{equation*}
p \mid B_{l+k \varphi(p)} /(l+k \varphi(p)) . \tag{1.2}
\end{equation*}
$$

The following conjecture about numerators of B_{n} / n and $B_{n} / n(n-1)$ was suggested by Roland Bacher, see The On-Line Encyclopedia of Integer Sequences [Slo04], Sequence A092291. First values are given by 574, 1269, 1910, 3384, 1185, 1376, 9611. The statements will differ by a factor 2 , because we will use only even indices n instead of $2 n$. Define num (r) as the numerator of a rational number r.

Conjecture 1.2 Let (p, l) be an irregular pair with smallest l in case of index of irregularity $i(p)>1$. Define

$$
A(p)=\min _{m}\left\{m \left\lvert\, \operatorname{num}\left(\frac{B_{m}}{m}\right) / \operatorname{num}\left(\frac{B_{m}}{m(m-1)}\right)=p\right.\right\} .
$$

Then $A(p)=(l-1) p+1$.
Actually, let p_{n} be the n-th irregular prime, then $A\left(p_{n}\right) / 2$ gives Integer Sequence A092291.

2 Counterexamples

Because the conjecture does not cover all irregular pairs, we will extend our research to all of them. Note that for example $(157,62)$ and $(157,110)$ are irregular pairs and the index of irregularity is $i(157)=2$.

Theorem 2.1 Let (p, l) be an irregular pair. Define

$$
A(p)=\min _{k}\left\{m=l+k \varphi(p) \left\lvert\, \operatorname{num}\left(\frac{B_{m}}{m}\right) / \operatorname{num}\left(\frac{B_{m}}{m(m-1)}\right)=p\right.\right\} .
$$

Then $A(p)=(l-1) p+1$ is valid and has smallest possible value if and only if one of the following cases holds
(1) $l-1$ has no irregular prime factors.
(2) If q is an irregular prime divisor of $l-1$, then $q \nmid B_{(l-1) p+1} /((l-1) p+1)$.

Proof. First of all, we will prove that $A(p)=(l-1) p+1$ is the smallest possible value. To solve

$$
\operatorname{num}\left(\frac{B_{m}}{m}\right) / \operatorname{num}\left(\frac{B_{m}}{m(m-1)}\right)=p
$$

factor $m-1$ must have the form $m-1=p c$ with some integer c to reduce the p-power of the second numerator. In other words, we must have

$$
\operatorname{ord}_{p} \operatorname{num}\left(\frac{B_{m}}{m}\right)=s \quad \text { and } \quad \operatorname{ord}_{p} \operatorname{num}\left(\frac{B_{m}}{m(m-1)}\right)=s-1
$$

with some integer $s \geq 1$. Let m^{\prime} be the smallest possible value we are searching for. By (1.2) we then have $m^{\prime}=l+k(p-1)$ and $m^{\prime}-1=p c$. This yields

$$
l-1+k(p-1)=p c \quad \text { resp. } \quad k \equiv l-1 \quad(\bmod p)
$$

By definition we have $1<l<p-2$. Thus, $k=l-1$ is the smallest possible value and finally

$$
m^{\prime}=l+(l-1)(p-1)=(l-1) p+1=A(p)
$$

Now, we have to take care that $m^{\prime}-1=(l-1) p$ does not delete other irregular prime factors of the numerator of $B_{m^{\prime}} / m^{\prime}$. In case (1) nothing happens. In case (2) an irregular prime divisor q of $l-1$ must not appear in the numerator of $B_{m^{\prime}} / m^{\prime}$.

Using Kummer congruences (1.1) and property (1.2) again, we can now reformulate Conjecture 1.2 to an extended equivalent conjecture described only by irregular pairs.

Conjecture 2.2 Let (p, l) be an irregular pair. If q is an irregular prime divisor of $l-1$ then for all irregular pairs $\left(q, l^{\prime}\right)$ the following holds

$$
(l-1) p \not \equiv l^{\prime}-1 \quad(\bmod q-1)
$$

But this conjecture is not valid. We have done some calculations for all irregular pairs (p, l) with $p<1000000$ using a database of irregular pairs calculated in [$\left.\mathrm{BCE}^{+} 01\right]$. There are 39181 irregular pairs all together, 16540 of them have irregular prime divisors of the corresponding $l-1$ and 149 exceptions occur.

The first five exceptions and the last calculated exception are listed below.

(p, l)	$m=(l-1) p+1$	$l-1$	$\left(q, l^{\prime}\right)$
$(6449,4884)$	31490468	$19 \cdot 257$	$(257,164)$
$(8677,2658)$	23054790	2657	$(2657,710)$
$(11351,1044)$	11839094	$7 \cdot 149$	$(149,130)$
$(12527,2122)$	26569768	$3 \cdot 7 \cdot 101$	$(101,68)$
$(15823,482)$	7610864	$13 \cdot 37$	$(37,32)$
\ldots	\ldots	\ldots	\ldots
$(999599,649768)$	649506443434	$3 \cdot 59 \cdot 3671$	$(59,44)$

Note that there are two irregular pairs $(6449,4884)$ and $(6449,5830)$. But the first of them disproves the suggested conjecture with minimal $l=4884$. The smallest index for which such an exception occurs is 7610864 . This index is the smallest of our calculated exceptions. For irregular pairs (p, l) with $p>1000000$ we obtain index $m=(l-1) p+1>37 \cdot 10^{6}$ for a possible exception, because 37 is the first irregular prime.

3 Extending results to prime powers

In order to extend the results to irregular prime powers, we need some further definitions and generalization. First, the Kummer congruences generally state for $r \geq 1$, n, n^{\prime} even, p prime, and $p-1 \nmid n$

$$
\begin{equation*}
\left(1-p^{n-1}\right) \frac{B_{n}}{n} \equiv\left(1-p^{n^{\prime}-1}\right) \frac{B_{n^{\prime}}}{n^{\prime}} \quad\left(\bmod p^{r}\right) \tag{3.1}
\end{equation*}
$$

with $n \equiv n^{\prime}\left(\bmod \varphi\left(p^{r}\right)\right)$.
The definition of irregular pairs can be extended to irregular prime powers which was first introduced by the author [Kel02, Section 2.5], see also [Kel04] for details and new results. Here we will recall necessary facts.

Definition 3.1 A pair (p, l) is called an irregular pair of order n if $p^{n} \mid B_{l} / l$ with $2 \leq l<\varphi\left(p^{n}\right)$ and even l. Let

$$
\Psi_{n}^{\mathrm{irr}}:=\left\{(p, l): p^{n}\left|B_{l} / l, 2 \leq l<\varphi\left(p^{n}\right), 2\right| l\right\}
$$

be the set of irregular pairs of order n. For a prime p the index of irregular pairs of order n is defined by

$$
i_{n}(p):=\#\left\{(p, l):(p, l) \in \Psi_{n}^{\mathrm{irr}}\right\} .
$$

Let $(p, l) \in \Psi_{n}^{\mathrm{irr}}$ be an irregular pair of order n. Let

$$
\left(p, s_{1}, s_{2}, \ldots, s_{n}\right) \in \widehat{\Psi}_{n}^{\mathrm{irr}}, \quad l=\sum_{\nu=1}^{n} s_{\nu} \varphi\left(p^{\nu-1}\right)
$$

be the p-adic notation of (p, l) with $0 \leq s_{\nu}<p$ for $\nu=1, \ldots, n$ and $2 \mid s_{1}, 2 \leq s_{1} \leq p-3$. The corresponding set will be denoted as $\widehat{\Psi}_{n}^{\mathrm{irr}}$. The pairs (p, l) and $\left(p, s_{1}, s_{2}, \ldots, s_{n}\right)$ will be called associated. Define for an irregular pair (p, l)

$$
\Delta_{(p, l)} \equiv p^{-1}\left(\frac{B_{l+\varphi(p)}}{l+\varphi(p)}-\frac{B_{l}}{l}\right) \quad(\bmod p)
$$

with $0 \leq \Delta_{(p, l)}<p$.

Note that this definition includes for $n=1$ the usual definition of irregular pairs with $i(p)=i_{1}(p)$. By Kummer congruences (3.1) the interval $\left[2, \varphi\left(p^{n}\right)-2\right]$ is given for irregular pairs of order n if they exist. Moreover, we have the property that if $(p, l) \in \Psi_{n}^{\text {irr }}$ then

$$
\begin{equation*}
p^{n} \mid B_{l+k \varphi\left(p^{n}\right)} /\left(l+k \varphi\left(p^{n}\right)\right) \tag{3.2}
\end{equation*}
$$

for all $k \in \mathbb{N}_{0}$. Note that $\left(p, s_{1}, s_{2}, \ldots, s_{n}\right)$ is also called a pair keeping in mind that $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is the second parameter in a p-adic manner. The main result of irregular pairs of higher order can be stated as follows, see [Kel04, Theorem 3.1, p. 8].

Theorem 3.2 Let $\left(p, l_{1}\right)$ be an irregular pair. If $\Delta_{\left(p, l_{1}\right)} \neq 0$ then for each $n>1$ there exists exactly one irregular pair of order n corresponding to $\left(p, l_{1}\right)$. Therefore a unique sequence $\left(l_{n}\right)_{n \geq 1}$ resp. $\left(s_{n}\right)_{n \geq 1}$ exists with

$$
\left(p, l_{n}\right) \in \Psi_{n}^{\mathrm{irr}} \quad \text { resp. } \quad\left(p, s_{1}, \ldots, s_{n}\right) \in \widehat{\Psi}_{n}^{\mathrm{irr}} .
$$

If $\Delta_{\left(p, l_{1, \nu)}\right.} \neq 0$ for all $i(p)$ irregular pairs $\left(p, l_{1, \nu}\right) \in \Psi_{1}^{\mathrm{irr}}$, then

$$
i(p)=i_{2}(p)=i_{3}(p)=\ldots
$$

So far, no irregular pair (p, l) with $\Delta_{(p, l)}=0$ has been found for $p<12000000$ by calculations in $\left[\mathrm{BCE}^{+} 01\right]$. Because the case $\Delta_{(p, l)}=0$ would imply a strange behavior, it is conjectured that this will never happen.

Theorem 3.3 Let $r \geq 1$ be an integer. Let (p, l) be an irregular pair with $\Delta_{(p, l)} \neq 0$. Then let $\left(p, l_{r}\right) \in \Psi_{r}^{\mathrm{irr}}$ resp. $\left(p, s_{1}, \ldots, s_{r}\right) \in \widehat{\Psi}_{r}^{\mathrm{irr}}$ be the corresponding irregular pair of order r. Define

$$
A\left(p^{r}\right)=\min _{k}\left\{m=l_{r}+k \varphi\left(p^{r}\right) \left\lvert\, \operatorname{num}\left(\frac{B_{m}}{m}\right) / \operatorname{num}\left(\frac{B_{m}}{m(m-1)}\right)=p^{r}\right.\right\}
$$

Then $A\left(p^{r}\right)$ has only a solution if $\left(p, s_{1}, s_{2}, \ldots, s_{r}\right)=(p, l, l-1, \ldots, l-1)$ and $l_{r}-1=$ $(l-1) p^{r-1}$. Furthermore $A\left(p^{r}\right)=\left(l_{r}-1\right) p+1=(l-1) p^{r}+1$ is valid and has smallest possible value if and only if one of the following cases holds
(1) $l-1$ has no irregular prime factors.
(2) If q is an irregular prime divisor of $l-1$, then all irregular pairs $\left(q, l^{\prime}\right)$ must satisfy

$$
(l-1) p^{r} \not \equiv l^{\prime}-1 \quad(\bmod q-1) .
$$

Lemma 3.4 Let $n \geq 1$ and s_{1}, \ldots, s_{n+1} be integers with $0 \leq s_{\nu}<p$ for all $\nu=$ $1, \ldots, n+1$. If

$$
\sum_{\nu=1}^{n} s_{\nu} \varphi\left(p^{\nu-1}\right)=s_{n+1} p^{n-1}
$$

then $s_{1}=s_{2}=\ldots=s_{n+1}$.
Proof. Reordering terms yields

$$
0=\sum_{\nu=1}^{n} s_{\nu} \varphi\left(p^{\nu-1}\right)-s_{n+1} p^{n-1}=\sum_{\nu=1}^{n}\left(s_{\nu}-s_{\nu+1}\right) p^{\nu-1}
$$

which deduces the result p-adically by induction.
Proof of Theorem 3.3. Case $r=1$ is handled by Theorem 2.1, because $(p, l)=$ $\left(p, l_{1}\right)=\left(p, s_{1}\right)$. For now let $r \geq 2$. First we will show the proposed formula for $A\left(p^{r}\right)$. To solve

$$
\operatorname{num}\left(\frac{B_{m}}{m}\right) / \operatorname{num}\left(\frac{B_{m}}{m(m-1)}\right)=p^{r}
$$

factor $m-1$ must have the form $m-1=p^{r} c$ with some integer c. Then $m-1$ must reduce the p-power of the second numerator in order that

$$
\operatorname{ord}_{p} \operatorname{num}\left(\frac{B_{m}}{m}\right)=u \quad \text { and } \quad \operatorname{ord}_{p} \operatorname{num}\left(\frac{B_{m}}{m(m-1)}\right)=u-r
$$

is valid with some integer $u \geq r$ which is granted by irregular pair $\left(p, l_{r}\right)$ of order r. Let m^{\prime} be the smallest possible value. By (3.2) we have $m^{\prime}=l_{r}+k \varphi\left(p^{r}\right)$ and $m^{\prime}-1=p^{r} c$ which yields

$$
\begin{equation*}
l_{r}-1+k p^{r-1}(p-1)=p^{r} c \quad \text { and } \quad l_{r}-1 \equiv 0 \quad\left(\bmod p^{r-1}\right) . \tag{3.3}
\end{equation*}
$$

Keeping in mind that $l_{r}=\sum_{\nu=1}^{r} s_{\nu} \varphi\left(p^{\nu-1}\right)<\varphi\left(p^{r}\right)$, we obtain

$$
0<l_{r}-1=p^{r-1} t<p^{r-1}(p-1)
$$

with $0<t<p-1$. Rewriting (3.3) we get

$$
p^{r-1} t+k p^{r-1}(p-1)=p^{r} c \quad \text { and } \quad k p^{r-1} \equiv t p^{r-1} \quad\left(\bmod p^{r}\right)
$$

which provides $k \equiv t(\bmod p)$ and finally $k=t$ as smallest value. Note that $l=s_{1}$ and $2 \leq l \leq p-3$. Now, using Lemma 3.4 with $l_{r}-1=t p^{r-1}$ yields $s_{1}-1=s 2=\ldots=$ $s_{r}=t$. Thus, we derive the following conditions

$$
\left(p, s_{1}, s_{2}, \ldots, s_{r}\right)=(p, l, l-1, \ldots, l-1) \quad \text { and } \quad l_{r}-1=(l-1) p^{r-1} .
$$

After all, we obtain

$$
A\left(p^{r}\right)-1=m^{\prime}-1=l_{r}-1+(l-1) \varphi\left(p^{r}\right)=(l-1) p^{r}=\left(l_{r}-1\right) p .
$$

To avoid that an irregular prime divisor q of the remaining factor $l-1$ of $m^{\prime}-1$ divides $B_{m^{\prime}} / m^{\prime}$, we must have

$$
m^{\prime} \not \equiv l^{\prime} \quad(\bmod q-1)
$$

for all irregular pairs $\left(q, l^{\prime}\right)$. Then $A\left(p^{r}\right)$ is valid with the derived value.
Corollary 3.5 Let (p, l) be an irregular pair with $\Delta_{(p, l)} \neq 0$. Let $r \geq 2$ be an integer, $\left(p, s_{1}, \ldots, s_{r}\right) \in \widehat{\Psi}_{r}^{\mathrm{irr}}$, and $A\left(p^{r}\right)$ be defined as in Theorem 3.3. Assume $\left(p, s_{1}, s_{2}, \ldots, s_{r}\right)$ $\neq(p, l, l-1, \ldots, l-1)$ then $A\left(p^{u}\right)$ related to (p, l) has no solution for all $u \geq r$.

Proof. As a result of Theorem 3.2, if $\Delta_{(p, l)} \neq 0$ then a unique sequence $\left(s_{\nu}\right)_{\nu \geq 1}$ exists that describes all irregular pairs of higher order related to (p, l). Then one has $\left(p, s_{1}, \ldots, s_{r}, \ldots, s_{u}\right) \neq(p, l, l-1, \ldots, l-1)$ for all $u>r$.

The condition $\left(p, s_{1}, s_{2}, \ldots, s_{r}\right)=(p, l, l-1, \ldots, l-1)$ is a very strange condition. No such irregular pair $\left(p, s_{1}, s_{2}\right) \in \widehat{\Psi}_{2}^{\text {irr }}$ of order two with $s_{2}=s_{1}-1$ has been found yet. For irregular primes $p<1000$ the smallest difference $\left|s_{1}-s_{2}\right|$ is 4 which happens for the following elements

$$
(353,186,190),(647,554,558) \in \widehat{\Psi}_{2}^{\mathrm{irr}}
$$

Therefore $A\left(p^{r}\right)$ has no solution for $p<1000$ and $r \geq 2$. Calculated irregular pairs of order 10 for $p<1000$ can be found in [Kel04, Table A.3].

Remark 3.6 Although the more complicated case $\Delta_{(p, l)}=0$ should not happen, Theorem 3.3 is also valid in that case. We only need an irregular pair $\left(p, l_{r}\right) \in \Psi_{r}^{\mathrm{irr}}$ and its associated pair $\left(p, s_{1}, \ldots, s_{r}\right) \in \widehat{\Psi}_{r}^{\text {irr }}$ which are related to (p, l). Corollary 3.5 remains to be valid in a similar way. A strong condition must hold that further irregular pairs of order $r+1$ related to $\left(p, l_{r}\right)$ exist. In case of existence they all have the form $\left(p, s_{1}, \ldots, s_{r}, t\right) \in \widehat{\Psi}_{r+1}^{\text {irr }}$ with $0 \leq t<p$, see [Kel04, Theorem 3.2, p. 8].

4 The composite case

For completeness we will examine the composite case. For now, we will recognize composite integers c

$$
c=\prod_{\nu=1}^{n} p_{\nu}^{e_{\nu}}
$$

having only irregular primes p_{ν} in its factorization with $n>1$. Therefore, p will only denote irregular primes. To determine the minimal index of the composite case, define

$$
\Lambda(c)=\min _{m}\left\{m \left\lvert\, \operatorname{num}\left(\frac{B_{m}}{m}\right) / \operatorname{num}\left(\frac{B_{m}}{m(m-1)}\right) \equiv 0 \quad(\bmod c)\right.\right\}
$$

in case of no solution define $\Lambda(c)=\infty$. Then, by Theorem 2.1, we always have

$$
\Lambda(p)=\min _{(p, l) \in \Psi_{1}^{\mathrm{irr}}}(l-1) p+1
$$

Theorem 3.3 asserts for $r \geq 2$

$$
\Lambda\left(p^{r}\right)=\min _{(p, l, l-1, \ldots, l-1) \in \widehat{\Psi}_{r}^{\mathrm{irr}}}(l-1) p^{r}+1,
$$

but there is no solution for $p<1000$. Note that $m=12$ is the smallest index for which $\operatorname{num}\left(B_{m} / m\right)>1$. Hence, for $p>1000, r \geq 2$, and $\Lambda\left(p^{r}\right)<\infty$, we have a weak estimate

$$
\begin{equation*}
\Lambda\left(p^{r}\right)>11 \cdot 10^{6} \tag{4.1}
\end{equation*}
$$

Lemma 4.1 Let $c=\prod_{\nu} p_{\nu}^{e_{\nu}}$ with irregular primes p_{ν}. Then

$$
\Lambda(c) \geq \max _{\nu} \Lambda\left(p_{\nu}^{e_{\nu}}\right) .
$$

Proof. Assume $\Lambda(c)<\Lambda\left(p_{\nu}^{e_{\nu}}\right)$ for a fixed ν. But this contradicts the definition of Λ, because $p_{\nu}^{e_{\nu}} \mid c$. The case of no solution is handled similarly.

Let \mathcal{M} be the smallest index for which a composite number appears. By our formerly calculated exceptions, we have an upper bound

$$
\begin{equation*}
\mathcal{M}=\min _{c} \Lambda(c) \leq 7610864 \tag{4.2}
\end{equation*}
$$

Regarding estimate (4.1) for prime powers above and using Lemma 4.1, for now, we only have to examine composite numbers which are squarefree. Therefore, define the
minimal value of Λ for composite squarefree numbers having $n \geq 2$ irregular prime factors by

$$
\mathcal{M}_{n}=\min _{c=p_{1} \cdots p_{n}} \Lambda(c) .
$$

Then, by definition we obviously have

$$
\mathcal{M}=\mathcal{M}_{2} \leq \mathcal{M}_{3} \leq \ldots
$$

For further results we need the well-known Chinese remainder theorem (CRT), s. [IR90, p. 34], and its generalization.

Theorem 4.2 (CRT) Let w_{1}, \ldots, w_{n} be positive integers which are pairwise relatively prime. Define $W=\prod_{\nu=1}^{n} w_{\nu}$. For a given system of simultaneous congruences

$$
x \equiv a_{\nu} \quad\left(\bmod w_{\nu}\right), \quad \nu=1, \ldots, n
$$

there always exists a unique integer $x(\bmod W)$ with

$$
x \equiv \sum_{\nu=1}^{n} a_{\nu} b_{\nu} \frac{W}{w_{\nu}} \quad(\bmod W)
$$

and b_{ν} defined by

$$
b_{\nu} \frac{W}{w_{\nu}} \equiv 1 \quad\left(\bmod w_{\nu}\right), \quad \nu=1, \ldots, n
$$

Theorem 4.3 (CRT') Let w_{1}, \ldots, w_{n} be positive integers. A system of simultaneous congruences

$$
x \equiv a_{\nu} \quad\left(\bmod w_{\nu}\right), \quad \nu=1, \ldots, n
$$

has a solution if and only if

$$
a_{i} \equiv a_{j} \quad\left(\bmod \operatorname{gcd}\left(w_{i}, w_{j}\right)\right)
$$

holds for all $i \neq j$. Define $W=\operatorname{lcm}\left(w_{1}, \ldots, w_{n}\right)$, then x has a unique solution $(\bmod W)$.

To state our next theorem, we will introduce a new definition to characterize a set of irregular pairs.

Definition 4.4 Irregular pairs $\left(p_{1}, l_{1}\right), \ldots,\left(p_{n}, l_{n}\right)$ are called friendly if

$$
l_{i} \equiv l_{j} \quad\left(\bmod \operatorname{gcd}\left(p_{i}-1, p_{j}-1\right)\right)
$$

is valid for all $i \neq j$. They are called strong friendly if, in addition,

$$
p_{i} \not \equiv 1 \quad\left(\bmod p_{j}\right) \quad \text { or } \quad\left(p_{i}, l_{i}\right) \equiv(1,1) \quad\left(\bmod p_{j}\right)
$$

holds for all $i \neq j$.

For example, the irregular pairs $(37,32),(59,44),(101,68)$ are strong friendly. $\{(101,68)$, $(607,592)\}$ and $\{(131,22),(263,100)\}$ are sets of friendly irregular pairs, but they are not strong friendly.

Theorem 4.5 Let $n \geq 2$ and $c=p_{1} \cdots p_{n}$ be a composite number of distinct irregular primes. Then $\Lambda(c)$ has only a solution if there exists a set of strong friendly irregular pairs $S=\left\{\left(p_{1}, l_{1}\right), \ldots,\left(p_{n}, l_{n}\right)\right\}$. In case of existence there is a unique integer m_{S} with

$$
c \leq m_{S}-1 \leq \operatorname{lcm}\left(c, p_{1}-1, \ldots, p_{n}-1\right)
$$

which simultaneously solves the congruences

$$
m_{S}-1 \equiv p_{\nu}\left(l_{\nu}-1\right) \quad\left(\bmod p_{\nu}\left(p_{\nu}-1\right)\right), \quad \nu=1, \ldots, n
$$

$\Lambda(c)$ is then given by

$$
\Lambda(c)=\min _{S} m_{S},
$$

whereas S passes all such sets of strong friendly irregular pairs.
Proof. To derive conditions let m be an integer solving

$$
\operatorname{num}\left(\frac{B_{m}}{m}\right) / \operatorname{num}\left(\frac{B_{m}}{m(m-1)}\right) \equiv 0 \quad(\bmod c)
$$

Thus, $c \mid B_{m} / m$ and $c \mid m-1$ provide the existence of irregular pairs $\left(p_{\nu}, l_{\nu}\right)$ with

$$
\begin{array}{ll}
m-1 & \equiv 0 \\
m-1 \equiv l_{\nu}-1 & \left(\bmod p_{\nu}\right) \tag{4.3}\\
\left(\bmod p_{\nu}-1\right)
\end{array}
$$

for $\nu=1, \ldots, n$. The system (4.3) of simultaneous congruences has only a solution if conditions of CRT' are satisfied. Therefore we have to recognize two cases

$$
\begin{array}{ll}
l_{i}-1 \equiv l_{j}-1 & \left(\bmod \operatorname{gcd}\left(p_{i}-1, p_{j}-1\right)\right) \tag{4.4}\\
l_{i}-1 \equiv 0 & \left(\bmod \operatorname{gcd}\left(p_{i}-1, p_{j}\right)\right)
\end{array}
$$

which must be valid for all $i \neq j$. The first congruence of (4.4) implies that all considered irregular pairs must be friendly. Additionally by the second congruence they must be strong friendly. This property must hold for a solution and defines set S. Combining (4.3) by CRT, we get

$$
\begin{equation*}
m-1 \equiv p_{\nu}\left(l_{\nu}-1\right) \quad\left(\bmod p_{\nu}\left(p_{\nu}-1\right)\right), \quad \nu=1, \ldots, n \tag{4.5}
\end{equation*}
$$

Let $W=\operatorname{lcm}\left(p_{1}\left(p_{1}-1\right), \ldots, p_{n}\left(p_{n}-1\right)\right)$, then system (4.3) resp. (4.5) has a unique solution $(\bmod W)$ by CRT' and given set S. Taking $1, \ldots, W$ as residue classes, we obtain a minimal solution $m_{S}-1$ with the desired properties. If $i\left(p_{\nu}\right) \geq 2$ holds for one index ν, then probably other sets S can exist corresponding to irregular primes p_{1}, \ldots, p_{n}. Therefore all such sets must be considered to get

$$
\Lambda(c)=\min _{S} m_{S}
$$

Theorem 4.5 implies the following easy algorithm.

Algorithm 4.6 Let $n \geq 2, U$ be integers. Given an existing upper bound U of \mathcal{M}_{n}, define $u=\left\lfloor U^{1 / n}\right\rfloor$. Otherwise set $U=u=\infty$. Consider irregular primes

$$
\begin{equation*}
p_{1}<\ldots<p_{n} \quad \text { with } \quad p_{1} \cdots p_{n}<U, \quad p_{1}<u . \tag{4.6}
\end{equation*}
$$

Start with smallest primes. For each tuple of primes do

- Step 1 . Check for sets $S=\left\{\left(p_{1}, l_{1}\right), \ldots,\left(p_{n}, l_{n}\right)\right\}$ of strong friendly irregular pairs. For each existing set S calculate m_{S} using Theorem 4.5. Let $m=\min _{S} m_{S}$. If $m<U$ update $U \leftarrow m$ and u.
- Step 2. If possible go to next primes satisfying (4.6), otherwise stop with $\mathcal{M}_{n}=U$.

Starting with $n=2$ and $U=7610864$ yields $\mathcal{M}_{2}=107430$ with $c=103 \cdot 149$. Thus $\mathcal{M}=107430$ is the smallest index for which a composite value occurs. The result for $n=3$ is a quite large number with $\mathcal{M}_{3}=3754314782$, see table below. To check this result, irregular pairs (p, l) up to $p<2000000$ must be considered for the first small primes.

n	S	U	u
2	$\{(37,32),(59,44)\}$	272876	522
2	$\{(103,24),(149,130)\}$	107430	327
3	$\{(37,32),(59,44),(101,68)\}$	3979497668	1584
3	$\{(157,62),(401,382),(1217,1118)\}$	3754314782	1554

All results were calculated by several C++ programs and finally checked with Mathematica.

5 A connection with Iwasawa theory

In Section 4 we have seen that Theorem 3.3 asserts for $r \geq 2$

$$
\Lambda\left(p^{r}\right)=\min _{(p, l, l-1, \ldots, l-1) \in \hat{\Psi}_{r}^{\text {ir }}}(l-1) p^{r}+1,
$$

noting that there is no solution for $p<1000$. For a solution with $r \geq 2$ we basically need the existence of an irregular pair $(p, l, l-1) \in \widehat{\Psi}_{2}^{\text {irr }}$ of order two.

Now, the remarkable fact is that conditions $\Delta_{(p, l)} \neq 0$ and $(p, l, l-1) \notin \widehat{\Psi}_{2}^{\text {irr }}$ play an important role in Iwasawa theory of cyclotomic fields over \mathbb{Q}, see [Kel04, Section 6]. Here we give a brief summary.
Let $\mathbb{Q}\left(\mu_{p^{n}}\right)$ be the cyclotomic field and $\mathbb{Q}\left(\mu_{p^{n}}\right)^{+}$its maximal real subfield with $\mu_{p^{n}}$ as the set of p^{n}-th roots of unity Define the class number $h_{p}=h\left(\mathbb{Q}\left(\mu_{p}\right)\right)$ and its factoring $h_{p}=h_{p}^{-} h_{p}^{+}$with $h_{p}^{+}=h\left(\mathbb{Q}\left(\mu_{p}\right)^{+}\right)$and h_{p}^{-}as the relative class number introduced by Kummer. For details of the following theorem, see [Was97, Corollary 10.17, p. 202]. Note that conditions (2) and (3) are equivalently exchanged by our definitions.

Theorem 5.1 Let p be an irregular prime. Assume the following conditions
(1) The conjecture of Kummer-Vandiver holds: $p \nmid h_{p}^{+}$
(2) The Δ-Conjecture holds: $\Delta_{(p, l)} \neq 0$
(3) A special irregular pair of order two does not exist: $(p, l, l-1) \notin \widehat{\Psi}_{2}^{\mathrm{irr}}$
for all irregular pairs (p, l). Then $\operatorname{ord}_{p} h\left(\mathbb{Q}\left(\mu_{p^{n}}\right)\right)=i(p) n$ is valid for all $n \geq 1$.
Buhler, Crandall, Ernvall, Metsänkylä, and Shokrollahi [$\left.\mathrm{BCE}^{+} 01\right]$ have calculated not only irregular pairs, but also associated cyclotomic invariants up to $p<12000000$. These calculations ensure that no irregular pair $(p, l, l-1) \in \widehat{\Psi}_{2}^{\text {irr }}$ exists in that range. Therefore we have a much stronger estimate than (4.1)

$$
\Lambda\left(p^{r}\right)>1.729 \cdot 10^{15}
$$

which can be obviously improved by choosing a greater value $l>12$ examining the numerators of the first divided Bernoulli numbers B_{m} / m.

Acknowledgement

The author wishes to thank Tony D. Noe for advising the problem and Sequence A092291.

Bernd C. Kellner
address: Reitstallstr. 7, 37073 Göttingen, Germany
email: bk@bernoulli.org

References

[$\left.\mathrm{BCE}^{+} 01\right]$ J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä, and M. A. Shokrollahi. Irregular primes and cyclotomic invariants to 12 million. Journal of Symbolic Computation, 31(1/2):89-96, January 2001.
[GKP94] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, Reading, MA, USA, 1994.
[IR90] K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory, volume 84 of Graduate Texts in Mathematics. Springer-Verlag, 2nd edition, 1990.
[Kel02] B. C. Kellner. Über irreguläre Paare höherer Ordnungen. Diplomarbeit. Mathematisches Institut der Georg August Universität zu Göttingen, Germany. Also available at http://www.bernoulli.org/~bk/irrpairord.pdf, 2002.
[Kel04] B. C. Kellner. On irregular prime powers of Bernoulli numbers. Preprint, to appear, 1-29, 2004. arXiv:math.NT/0409223
[Slo04] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Published electronically at http://www.research.att.com/~njas/sequences/, 2004.
[Was97] L. C. Washington. Introduction to Cyclotomic Fields, volume 83 of Graduate Texts in Mathematics. Springer-Verlag, 2nd edition, 1997.

[^0]: ${ }^{*} 2$. version of 11.04 .04 , slightly revised

