BT Research at Martlesham, Suffolk

- Cambridge-Ipswich high-tech corridor
- 2000 technologists
- 15 companies
- UCL, Univ of Essex

Graphs

- (simple unlabelled undirected) graph:

- (simple unlabelled undirected) connected graph:

- (simple undirected) labelled graph:

The Bernoulli random graph model $G\{n, p\}$

- let G be a graph of n nodes
- let $p=1-q$ be the probability that each possible edge exists
- edge events are independent II
- let $P(n)$ be the probability that $G\{n, p\}$ is connected
- then $P(1)=1$ and $P(n)=1-\sum_{k=1}^{n-1}\binom{n-1}{k-1} P(k) q^{k(n-k)}$ for $n=2,3,4, \ldots$.

$$
\begin{aligned}
& P(1)=1 \\
& P(2)=1-q \\
& P(3)=(2 q+1)(q-1)^{2} \\
& P(4)=\left(6 q^{3}+6 q^{2}+3 q+1\right)(1-q)^{3} \\
& P(5)=\left(24 q^{6}+36 q^{5}+30 q^{4}+20 q^{3}+10 q^{2}+4 q+1\right)(q-1)^{4}
\end{aligned}
$$

- as $n \rightarrow \infty$, we have $P(n) \rightarrow 1-n q^{n-1}$.

Connectivity for the Bernoulli model

x-axis: $\log (n=$ number of nodes $), n=2, \ldots, 100$
y-axis: $p, 0$ at top, 1 at bottom
blue $=0$ red=1

Probability of connectivity - the $G(n, m)$ model

- problem: compute the numbers of connected labelled graphs with n nodes and $m=n-1, n, n+1, n+2, \ldots$ edges II
\triangleright with this information, we can compute the probability of a randomly chosen labelled graph being connected
- compute large-n asymptotics for these quantities, where the number of edges is only slightly larger than the number of nodes $\|$
- I did some exact numerical calculations to try to establish the dominant asymptotics \|
- I then looked at some earlier papers and found that the required theory to compute exact asymptotics is known I
- I computed the exact asymptotics and got perfect agreement with my exact numerical data

The inspirational paper [fss04]

- Philippe Flajolet, Bruno Salvy and Gilles Schaeffer: Airy Phenomena and Analytic Combinatorics of Connected Graphs
- The claim: the number $C(n, n+k)$ of labelled (étiquetés) connected graphs with n nodes and excess (edges-nodes) $=$ $k \geqslant 2$ is

$$
A_{k}(1) \sqrt{\pi}\left(\frac{n}{e}\right)^{n}\left(\frac{n}{2}\right)^{\frac{3 k-1}{2}}\left[\frac{1}{\Gamma(3 k / 2)}+\frac{A_{k}^{\prime}(1) / A_{k}(1)-k}{\Gamma((3 k-1) / 2)} \sqrt{\frac{2}{n}}+\mathcal{O}\left(\frac{1}{n}\right)\right]
$$

-

k	1	2	3	4	5	6	7
$A_{k}(1)$	$5 / 24$	$5 / 16$	$1105 / 1152$	$565 / 128$	$82825 / 3072$	$19675 / 96$	$1282031525 / 688128$
$A_{k}^{\prime}(1)$	$19 / 24$	$65 / 48$	$1945 / 384$	$21295 / 768$	$603965 / 3072$	$10454075 / 6144$	$1705122725 / 98304$

- Airy in Playford:
WWW.ast.cam.ac.uk/~ipswich/History/Airys_Country_Retreat.htm

Some problems with the paper

- I did some comparisons with exact counts for up to $n=1000$ nodes and for excess $k=2,3, \ldots, 8 \|$
- The exact data was computed from the generating functions
- The fit was very bad
- This formula was found to fit the data much better for $k=2$:

$$
A_{k}(1) \sqrt{\pi} n^{n}\left(\frac{n}{2}\right)^{\frac{3 k-1}{2}}\left[\frac{1}{\Gamma(3 k / 2)}-\frac{A_{k}^{\prime}(1) / A_{k}(1)-k}{\Gamma((3 k-1) / 2)} \sqrt{\frac{2}{n}}+\mathcal{O}\left(\frac{1}{n}\right)\right]
$$

- Also, on pages 4 and 24 , I think S should have the expansion $1-(5 / 4) \alpha+(15 / 4) \alpha^{2}+\ldots$

Asymptotic expansion of $C(n, n+k) / n^{n+\frac{3 k-1}{2}}$

$\xi \equiv \sqrt{2 \pi}$ green: from [bcm90] red: from [fss04] (with removal of factor e)

k	type	$\left[n^{0}\right]$	$\left[n^{-1 / 2}\right]$	$\left[n^{-1}\right]$	$\left[n^{-3 / 2}\right]$
-1	tree	1	0	0	0
0	unicycle	$\xi \frac{1}{4}$			
1	bicycle	$\frac{5}{24}$			
2	tricycle	$\xi \frac{5}{256} \xi \frac{5}{256}$	$-\frac{35}{144}$		
3	quadricycle	$\frac{221}{1512} \frac{221}{24192}$	$-\sqrt{\pi} \frac{35}{96}$		
4	pentacycle	$\xi \frac{113}{196608}$			

blue: conjectured by KMB from numerical experiments

k	type	$\left[n^{0}\right]$	$\left[n^{-1 / 2}\right]$	$\left[n^{-1}\right]$	$\left[n^{-3 / 2}\right]$	$\left[n^{-2}\right]$	$\left[n^{-5 / 2}\right]$
0	unicycle	$\xi \frac{1}{4}$	$-\frac{7}{6}$	$\xi \frac{1}{48}$	$\frac{131}{270}$	$\xi \frac{1}{1152}$	$-\frac{4}{2835} ?$
1	bicycle	$\frac{5}{24}$	$-\xi \frac{7}{24}$	$\frac{25}{36}$	$-\xi \frac{7}{288}$	$-\frac{79}{3240} ?$	
2	tricycle	$\xi \frac{5}{256}$	$-\frac{35}{144}$	$\xi \frac{1559}{9216}$	$-\frac{55}{144}$		
3	quadricycle	$\frac{221}{24192}$	$-\xi \frac{35}{10706}$				

Definitions of generating functions

- generating function (gf):

$$
\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \leftrightarrow \sum_{k=1}^{\infty} a_{k} x^{k}
$$

- exponential generating function (egf):

$$
\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \leftrightarrow \sum_{k=1}^{\infty} \frac{a_{k}}{k!} x^{k}
$$

Exponential generating functions

- exponential generating function for all labelled graphs:

$$
g(w, z)=\sum_{n=0}^{\infty}(1+w)^{\binom{n}{2}} z^{n} / n!
$$

- exponential generating function for all connected labelled graphs:

$$
\begin{aligned}
c(w, z) & =\log (g(w, z)) \\
& =z+w \frac{z^{2}}{2}+\left(3 w^{2}+w^{3}\right) \frac{z^{3}}{6}+\left(16 w^{3}+15 w^{4}+6 w^{5}+w^{6}\right) \frac{z^{4}}{4!}+\ldots
\end{aligned}
$$

egfs for labelled graphs [jklp93]

- rooted labelled trees

$$
T(z)=z \exp (T(z))=\sum n^{n-1} \frac{z^{n}}{n!}=z+\frac{2}{2!} z^{2}+\frac{9}{3!} z^{3}+\cdots
$$

- unrooted labelled trees

$$
W_{-1}(z)=T(z)-T(z)^{2} / 2=z+\frac{1}{2!} z^{2}+\frac{3}{3!} z^{3}+\frac{16}{4!} z^{4}+\ldots
$$

- unicyclic labelled graphs

$$
W_{0}(z)=\frac{1}{2} \log \left[\frac{1}{1-T(z)}\right]-\frac{1}{2} T(z)-\frac{1}{4} T(z)^{2}=\frac{1}{3!} z^{3}+\frac{15}{4!} z^{4}+\frac{222}{5!} z^{5}+\frac{3660}{6!} z^{6}+.
$$

- bicyclic labelled graphs

$$
W_{1}(z)=\frac{T(z)^{4}(6-T(z))}{24(1-T(z))^{3}}=\frac{6}{4!} z^{4}+\frac{205}{5!} z^{5}+\frac{5700}{6!} z^{6}+\ldots
$$

Theory 1

The previous observations can be proved using theory available in [jklp93] and [fgkp95]. I sketch the computations.II

- Ramanujan's Q-function is defined for $n=1,2,3, \ldots$:

$$
Q(n) \equiv \sum_{k=1}^{\infty} \frac{n^{\underline{k}}}{n^{k}}=1+\frac{n-1}{n}+\frac{(n-1)(n-2)}{n^{2}}+\ldots
$$

- $\sum_{n=1}^{\infty} Q(n) n^{n-1} \frac{z^{n}}{n!}=-\log (1-T(z))$ I
- here T is the egf for rooted labelled trees: $T(z)=$ $\sum_{n=1}^{\infty} \frac{n^{n-1}}{n!} z^{n}$
- $T(z)=z \exp (T(z))$

Theory 2

- to get the large-n asymptotics of Q, we first consider the related function $R(n) \equiv 1+\frac{n}{n+1}+\frac{n^{2}}{(n+1)(n+2)}+\ldots, n=1,2,3, \ldots$
\triangleright we have $Q(n)+R(n)=n!e^{n} / n^{n}$
\triangleright let $D(n)=R(n)-Q(n)$
$\triangleright \sum_{n=1}^{\infty} D(n) n^{n-1} \frac{z^{n}}{n!}=\log \left[\frac{(1-T(z))^{2}}{2(1-e z)}\right]$
$\triangleright D(n) \sim \sum_{k=1}^{\infty} c(k)\left[z^{n}\right](T(z)-1)^{k}$, where $c(k) \equiv\left[\delta^{k}\right] \log \left(\delta^{2} / 2 /\left(1-(1+\delta) e^{-\delta}\right)\right)$
\triangleright this gives $D(n) \sim \frac{2}{3}+\frac{8}{135} n^{-1}-\frac{16}{2835} n^{-2}-\frac{32}{8505} n^{-3}+\frac{17984}{12629925} n^{-4}+\frac{668288}{492567075} n^{-5}+$ $O\left(n^{-6}\right)$
- now using $Q(n)=\left(n!e^{n} / n^{n}-D(n)\right) / 2$, we get

$$
\begin{aligned}
& \triangleright Q(n) \sim \frac{1}{2} n^{1 / 2} \sqrt{2 \pi}-\frac{1}{3}+\frac{1}{24} \sqrt{2 \pi} n^{-1 / 2}-\frac{4}{135} n^{-1}+\frac{1}{576} \sqrt{2 \pi} n^{-3 / 2}+\frac{8}{2835} n^{-2}- \\
& \frac{139}{103680} \sqrt{2 \pi} n^{-5 / 2}+\frac{16}{8505} n^{-3}-\frac{571}{4976640} \sqrt{2 \pi} n^{-7 / 2}-\frac{8992}{12629925} n^{-4}+\frac{163879}{418037760} \sqrt{2 \pi} n^{-9 / 2}- \\
& \frac{334144}{492567075} n^{-5}+\frac{5246819}{150493593600} \sqrt{2 \pi} n^{-11 / 2}+O\left(n^{-6}\right)
\end{aligned}
$$

Theory 3

- Let W_{k} be the egf for connected labelled $(k+1)$-cyclic graphs
\triangleright for unrooted trees $W_{-1}(z)=T(z)-T^{2}(z) / 2,\left[z^{n}\right] W_{-1}(z)=n^{n-2}$
\triangleright for unicycles $W_{0}(z)=-\left(\log (1-T(z))+T(z)+T^{2}(2) / 2\right) / 2$
\triangleright for bicycles $W_{1}(z)=\frac{6 T^{4}(z)-T^{5}(z)}{24(1-T(z))^{3}}$
\triangleright for $k \geqslant 1, W_{k}(z)=\frac{A_{k}(T(z))}{(1-T(z))^{3 k}}$, where A_{k} are polynomials computable from results in [jklp93]
- Knuth and Pittel's tree polynomials $t_{n}(y)(y \neq 0)$ are defined by $(1-T(z))^{-y}=\sum_{n=0}^{\infty} t_{n}(y) \frac{z^{n}}{n!}$

$$
\begin{aligned}
& \triangleright \text { we can compute these for } y>0 \text { from } \\
& t_{n}(1)=1 ; \quad t_{n}(2)=n^{n}(1+Q(n)) ; \boldsymbol{t}_{n}(y+2)=n t_{n}(y) / y+t_{n}(y+1)
\end{aligned}
$$

- thanks to this recurrence, the asymptotics for t_{n} follow from the known asymptotics of Q

Theory 4

Let $\xi=\sqrt{2 \pi}$. All results agree with numerical estimates on this page.

- the number of connected unicycles is $C(n, n)=n!\left[z^{n}\right] W_{0}(z)=$ $\frac{1}{2} Q(n) n^{n-1}+3 / 2+t_{n}(-1)-t_{n}(-2) / 4$

$$
\begin{aligned}
& \triangleright \frac{C(n, n)}{n^{n}} \sim \frac{1}{4} \xi n^{-1 / 2}-\frac{7}{6} n^{-1}+\frac{1}{981} \xi n^{-3 / 2}+\frac{131}{270} n^{-2}+\frac{1}{152} \xi n^{-5 / 2}+\frac{4}{2835} n^{-3}-\frac{139}{207360} \xi n^{-7 / 2}+ \\
& \frac{8}{8505} n^{-4}-\frac{5151}{9953280} \xi\left(n^{-1}\right)^{9 / 2}-\frac{4496}{12629925} n^{-5}+\frac{16879}{836075520} \xi n^{-11 / 2}+O\left(n^{-6}\right) \|
\end{aligned}
$$

- the number of connected bicycles is $C(n, n+1)=n!\left[z^{n}\right] W_{1}(z)=$ $\frac{5}{24} t_{n}(3)-\frac{19}{24} t_{n}(2)+\frac{13}{12} t_{n}(1)-\frac{7}{12} t_{n}(0)+\frac{1}{24} t_{n}(-1)+\frac{1}{24} t_{n}(-2)$

$$
\begin{aligned}
& \triangleright \frac{C(n, n+1)}{n^{n}} \sim \frac{5}{24} n-\frac{7}{24} \xi n^{1 / 2}+\frac{25}{36}-\frac{7}{288} \xi n^{-1 / 2}-\frac{79}{3240} n^{-1}-\frac{7}{69912} \xi n^{-3 / 2}-\frac{413}{4860} n^{-2}+ \\
& \frac{973}{124166} \xi n^{-5 / 2}-\frac{4}{36454519} n^{-3}+\frac{3997}{59779680} \xi n^{-7 / 2}+\frac{2248}{5412825} n^{-4}-\frac{163879}{7166361160} \xi n^{-9 / 2}+\frac{83536}{211100175} n^{-5}- \\
& \frac{5246819}{257989017600} \xi n^{-11 / 2}+O\left(n^{-6}\right) \text { I }
\end{aligned}
$$

- similarly, for the number of connected tricycles we get

$$
\begin{aligned}
& \triangleright \frac{C(n, n+2)}{n^{n}} \sim \frac{5}{256} \xi n^{5 / 2}-\frac{35}{144} n^{2}+\frac{1559}{9216} \xi n^{3 / 2}-\frac{55}{144} n+\frac{33055}{221184} \xi n^{1 / 2}-\frac{41971}{136080}+\frac{31357}{2654208} \xi n^{-1 / 2}+ \\
& \quad \frac{1129}{81648} n^{-1}+O\left(n^{-3 / 2}\right)
\end{aligned}
$$

Probability of connectivity 1

- we now have all the results needed to calculate the asymptotic probability $P(n, n+k)$ that a randomly chosen graph with n nodes and $n+k$ edges is connected (for $n \rightarrow \infty$ and small fixed k)
- the total number of graphs is $g(n, n+k) \equiv\left(\begin{array}{c}n \\ 2 \\ n+k\end{array}\right)$. This can be asymptotically expanded:

$$
\begin{aligned}
& \triangleright \frac{g(n, n-1)}{\sqrt{\frac{2}{T}} e^{n-2}\left(\frac{n}{2}\right)^{n} n^{-3 / 2}} \sim 1+\frac{7}{4} n^{-1}+\frac{259}{96} n^{-2}+\frac{22393}{5760} n^{-3}+\frac{54359}{10240} n^{-4}+\frac{52279961}{7741440} n^{-5}+ \\
& \quad \frac{777555299}{10321920} n^{-6}+O\left(n^{-7}\right) \\
& \triangleright \frac{g(n, n+0)}{\sqrt{\frac{2}{\pi}} e^{n-2}\left(\frac{n}{2}\right)^{n} n^{-1 / 2}} \sim \frac{1}{2}-\frac{5}{8} n^{-1}-\frac{53}{192} n^{-2}-\frac{4067}{11520} n^{-3}-\frac{9817}{20480} n^{-4}-\frac{10813867}{15482880} n^{-5} \\
& \quad-\frac{21556501}{206438400} n^{-6}-\frac{11591924473}{7431782400} n^{-7}+O\left(n^{-8}\right) \\
& \triangleright \\
& \triangleright \frac{g(n, n+1)}{\sqrt{\frac{2}{2}} e^{n-2}\left(\frac{n}{n}\right)^{n} n^{3 / 2}} \sim \frac{1}{4}-\frac{21}{16} n^{-1}+\frac{811}{384} n^{-2}-\frac{43187}{23040} n^{-3}+\frac{159571}{73728} n^{-4}-\frac{55568731}{30965760} n^{-5} \\
& \quad+\frac{2867716177}{1238630400} n^{-6}-\frac{3215346127}{2123366400} n^{-7}+\frac{1317595356557}{475634073600} n^{-8}+O\left(n^{-9}\right) \\
& \triangleright \\
& \triangleright \\
& \triangleright \\
& \\
& g(n, n+k) \sim \sqrt{\frac{2}{\pi}} e^{n-2}\left(\frac{n}{2}\right)^{n} n^{k-1 / 2}\left(2^{-k-1}+O\left(n^{-1}\right)\right)
\end{aligned}
$$

Probability of connectivity 2

- $\frac{P(n, n-1)}{2^{n} e^{2-n} n^{-1 / 2} \xi} \sim \frac{1}{2}-\frac{7}{8} n^{-1}+\frac{35}{192} n^{-2}+\frac{1127}{11520} n^{-3}+\frac{5189}{61440} n^{-4}+\frac{457915}{3096576} n^{-5}+$ $\frac{570281371}{1857945600} n^{-6}+\frac{291736667}{495452160} n^{-7}+O\left(n^{-8}\right)$
\triangleright check: $n=10$, exact $=0.1128460393$, asymptotic $=0.1128460359$
- $\frac{P(n, n+0)}{2^{n} e^{2-n} \xi} \sim \frac{1}{4} \xi-\frac{7}{6} n^{-1 / 2}+\frac{1}{3} \xi n^{-1}-\frac{1051}{1080} n^{-3 / 2}+\frac{5}{9} \xi n^{-2}+O\left(n^{-3}\right)$
\triangleright check: $n=10$, exact=0.276, asymptotic=0.319
- $\frac{P(n, n+1)}{2^{n} e^{2-n} n^{1 / 2} \xi} \sim \frac{5}{12}-\frac{7}{12} \xi n^{-1 / 2}+\frac{515}{144} n^{-1}-\frac{28}{9} \xi n^{-3 / 2}+\frac{788347}{51840} n^{-2}-\frac{308}{27} \xi n^{-5 / 2}+$ $O\left(n^{-3}\right)$
\triangleright check: $n=10$, exact $=0.437$, asymptotic $=0.407$
\triangleright check: $n=20$, exact $=0.037108$, asymptotic $=0.037245$
\triangleright check: $n=100$, exact $=2.617608 \times 10^{-12}$, asymptotic $=2.617596 \times 10^{-12}$

Example of unlabelled case - unicycles for $n=7$

$0509: 54$

The unlabelled case - unicycles

- Christian Bower's idea: A connected unicyclic graph is an undirected cycle of 3 or more rooted trees. Start with a single undirected cycle (or polygon) graph. It must have at least 3 nodes. Hanging from each node in the cycle is a tree (a tree is of course a connected acyclic graph). The node where the tree intersects the cycle is the root, thus it is (combinatorially) a rooted tree.

```
& A000081 is undirected cycles of exactly 1 rooted tree
\triangleright ~ A 0 0 1 4 2 9 ~ i s ~ u n d i r e c t e d ~ c y c l e s ~ o f ~ 3 ~ o r ~ m o r e ~ r o o t e d ~ t r e e s
\triangleright ~ A 0 2 7 8 5 2 ~ i s ~ u n d i r e c t e d ~ c y c l e s ~ o f ~ e x a c t l y ~ 2 ~ r o o t e d ~ t r e e s
\triangleright ~ A 0 6 8 0 5 1 ~ i s ~ u n d i r e c t e d ~ c y c l e s ~ o f ~ 1 ~ o r ~ m o r e ~ r o o t e d ~ t r e e s
```

- this gives formulae which should be amenable to analysis, but let's first do some brute-force numerics to get a feel for the behaviour
- I calculated the counts up to $n=20000$ nodes, and tried to guess the form of the asymptotic expansion and then the values of the coefficients

Transforms

- A027852 is undirected cycles of exactly 2 rooted trees

$$
A_{27852}(x)=\frac{1}{2}\left(A_{81}(x)^{2}+A_{81}\left(x^{2}\right)\right)
$$

- A068051 is undirected cycles of 1 or more rooted trees

$$
\begin{aligned}
& A_{68051}(x)=-\frac{1}{2} \sum_{k=1}^{\infty} \frac{\phi(k)}{k}\left(\log \left(1-A_{81}\left(x^{k}\right)\right)\right)+ \\
& \frac{2 A_{81}(x)+A_{81}(x)^{2}+A_{81}\left(x^{2}\right)}{4\left(1-A_{81}\left(x^{2}\right)\right)}
\end{aligned}
$$

- A001429 is undirected cycles of 3 or more rooted trees

$$
A_{1429}(x)=A_{68051}(x)-A_{27852}(x)-A_{81}(x)
$$

Asymptotics of A81 (unlabelled rooted trees) [fin03]

- $d=2.9557652856519949747148175241231 \ldots$
- $\frac{A 81(n)}{d^{n}} n^{3 / 2} \sim$

$$
\begin{gathered}
0.4399240125710253040409033914+ \\
0.4416990184010399369262808877 n^{-1}+ \\
0.2216928059720368062220256792 n^{-2}+ \\
0.8676554908288089633384550125 n^{-3}+ \\
0.6252197622721944695355918318 n^{-4}+ \\
32.3253941706451396137450650501 n^{-5}+\ldots
\end{gathered}
$$

Asymptotics for unlabelled unicycles

- I get that the number $c(n, n)$ of connected unlabelled unicyclic graphs behaves like

$$
\begin{aligned}
& \quad\left(\frac{c(n, n)}{d^{n}}-\frac{1}{4^{n}}\right) n^{3 / 2} \sim \\
& -0.4466410059+0.44311055235 n^{-1}+0.91158865326 n^{-2}+O\left(n^{-3}\right)
\end{aligned}
$$

- the coefficients are poorly determined (unlike in a similar analysis of the labelled case)

References

[bcm90] E A Bender, E R Canfield \& B D McKay: The asymptotic number of labeled connected graphs with a given number of vertices and edges, Random structures and algorithms 1, 127169 (1990)
[slo03] N J A Sloane, ed. (2003), The on-line encyclopedia of integer sequences www.research.att.com/~njas/sequences/
[jklp93] S Janson, D E Knuth, T Luczak \& B G Pittel: The birth of the giant component Random Structures and Algorithms, 4, 233-358 (1993)
www-cs-faculty.stanford.edu/~knuth/papers/bgc.tex.gz
[fss04] Philippe Flajolet, Bruno Salvy and Gilles Schaeffer: Airy Phenomena and Analytic Combinatorics of Connected Graphs www.combinatorics.org/Volume_11/Abstracts/v11i1r34.html
[gil59] E N Gilbert: Random graphs Ann. Math. Statist., 30, 1141-1144 (1959)

