THE LONG AND THE SHORT ON COUNTING SEQUENCES

Jim Sauerberg and Linghsueh Shu
Union College and University of Vermont

$7 / 3 / 1997$

1. INTRODUCTION. Consider the sequence of positive integers $S_{0}=2,1,1,4$. S_{0} consists of two 1 's, one 2 , and one 4 , so let us define S_{1} to be this description: $S_{1}=2,1,1,2,1,4$. Repeating this process, S_{1} consists of three 1's, two 2 's and one 4 , so set $S_{2}=3,1,2,2,1,4$. Continuing in this way for several more steps produces

$$
\begin{aligned}
& S_{3}=2,1,2,2,1,3,1,4 \\
& S_{4}=3,1,3,2,1,3,1,4 \\
& S_{5}=3,1,1,2,3,3,1,4 \\
& S_{6}=3,1,1,2,3,3,1,4 .
\end{aligned}
$$

In general, given any finite sequence of positive numbers S_{0}, this process of constructing S_{i+1} to be the sequence that counts how many times each number in S_{i} appears in S_{i} creates a counting sequence $\left\{S_{i}\right\}_{i \geq 0}$. As the reader certainly noticed, in our counting sequence we have $S_{5}=S_{6}=S_{7}=\cdots$. In fact, in any counting sequence, because S_{i+1} is uniquely determined by S_{i}, if there exist numbers p and i such that $S_{i}=S_{i+p}$, then $S_{i^{\prime}}=S_{i^{\prime}+p}$ for all $i^{\prime} \geq i$. We then say that $\left\{S_{i}\right\}_{i \geq 0}$ is ultimately periodic. The rather surprising main result of [1] is

Theorem 1. For any finite sequence of positive integers S_{0}, the associated counting sequence $\left\{S_{i}\right\}_{i \geq 0}$ is ultimately periodic. In other words, given S_{0} there are integers p_{0} and p so that $S_{i+p}=S_{i}$ for all $i \geq p_{0}$.

The smallest p_{0} and smallest p satisfying Theorem 1 are called the pre-period and the period of the counting sequence $\left\{S_{i}\right\}$. Then a periodic counting sequence of period p, or simply a p-cycle, is a counting sequence of pre-period 0 and period p. So the counting sequence corresponding to $S_{0}=2,1,1,4$ has pre-period 5 and period 1 , that is, it "ends" in a 1-cycle. Similarly, the counting sequence corresponding to $S_{0}=5,6$ ends in a two-cycle, and that the counting sequence corresponding to $S_{0}=6,7$ ends in a three-cycle.

Several different types of counting sequences have been studied in recent years (see [1], [5], [6], [7], [8], and M4779 in [9]). In this paper we will consider these counting sequences, bring out their connections, and explore the periodic behavior of each. To expand on this, the questions we answer are:

The second author was partially supported by NSF Grant DMS-9301098.

1) What are the possible periods p ? For each p, how many p-cycles are there? In Section 3 we will find all possible periods and classify all cycles. A partial answer in a different form to this question is given in [6].
2) A puzzle of Raphael Robinson [3, pg 389-90] asks the reader to place numbers in the blanks so that the following is true: "In this sentence, the number of occurrences of 0 is _, of 1 is __, of 2 is _, of 3 is _, of 4 is __, of 5 is _, of 6 is \qquad , of 7 is __, of 8 is \qquad , and of 9 is \qquad ." To find such a sentence we must find a one-cycle that contains all of the numbers in base 10 , as opposed to the infinite base consisting of all the natural numbers implicitly used in the preceeding paragraphs. More generally, one can build counting sequences in base k for any $k \geq 2$. Are such counting sequences also eventually periodic? In Section 4 we show that they are, and will determine exactly how many different cycles there are in each base. This expands upon the results of [6].
3) What happens when S_{0} is replaced by an infinite sequence? It is very easy to give infinite sequences S_{0} such that $\left\{S_{i}\right\}_{i \geq 0}$ is not well-defined. In Section 5 we show how to construct examples of infinite sequences S_{0} so that $\left\{S_{i}\right\}_{i \geq 0}$ is well-defined and is ultimately periodic. We also give two different methods for constructing infinite sequences S_{0} so that $\left\{S_{i}\right\}_{i \geq 0}$ is well-defined and but it not ultimately periodic.
4) The second term, fourth term, sixth term, etc., in each sequence S_{i} of a counting sequence do little more than serve as place holders. Assuming there is a way to tell which integer each number is describing, what happens if we form counting sequences without these place holders? One can then ask questions similar to those in 1) for these sequences. These questions have, for the most part, been answered in [5], [7], and [8]. We will see in Section 6 that the answers also follow as very simple corollaries of our work in Sections 2 and 3.
In each of the various methods we use to construct counting sequences, the successor sequence lists the number of appearances of a particular digit throughout the entire previous sequence. It is also possible to construct counting sequences in which the successor lists the number of consecutive appearances of a digit: if $C_{0}=2,1,1,4$, then $C_{1}=1,2,2,1,1,4$ and $C_{2}=1,1,2,2,2,1,1,4$. See [2] for Conway's analysis of such counting sequences.
2. BASIC PROPERTIES OF COUNTING SEQUENCES. We begin by giving several important properties of the sequences making up a counting sequence, and then give a simple proof of Theorem 1. So fix a finite sequence of positive integers S_{0} and let $\left\{S_{i}\right\}_{i \geq 0}$ be the corresponding counting sequence. For $i \geq 1$ we will write S_{i} as

$$
S_{i}=m_{i, 1}, f_{i, 1}, m_{i, 2}, f_{i, 2}, \cdots, m_{i, n_{i}}, f_{i, n_{i}}
$$

We will assume the $f_{i, j}$'s are in increasing order and will leave out commas to unclutter the notation when there is no risk of confusion. The positive integer $m_{i, j}$ is called a multiplier of S_{i} and indicates that the integer $f_{i, j}$, called a factor of S_{i}, appears exactly $m_{i, j}$ times in S_{i-1}. Let $\left|S_{i}\right|=2 n_{i}$ be the total number of terms in S_{i}. The following observations about the S_{i} 's will be used often, and frequently without mention. Similar facts are proved in [1] and [6].

Proposition 2. Fix S_{0} and let $\left\{S_{i}\right\}_{i \geq 0}$ be the corresponding counting sequence. Let $i \geq 1$.

1) For each factor $f_{i, j}$ of S_{i} there are $m_{i, j}-1$ or $m_{i, j}$ multipliers of S_{i-1} with the value $f_{i, j}$, depending on whether or not the value $f_{i, j}$ appears as a factor in S_{i-1}.
2) We have $\left|S_{i-1}\right|=\sum_{j=1}^{n_{i}} m_{i, j}$ and $\left|S_{i}\right| \leq\left|S_{i+1}\right|$, because every factor of S_{i-1} is also a factor of S_{i}.
3) If $\left\{S_{i}\right\}_{p_{0} \leq i \leq p}$ constitutes a p-cycle, then $\left|S_{i}\right|=\left|S_{i+1}\right|$ for all i and each S_{i} in the cycle has exactly the same factors. Further, $\left|S_{i-1}\right|=\sum_{j=1}^{n_{i}}\left(m_{i, j}-1\right) f_{i, j}$.
To show how these facts will be used we provide the following proof of Theorem 1.

Proof of Theorem 1. Fix S_{0}, and let $\max \left(S_{i}\right)$ be the value of the largest term in S_{i}. Clearly either $\max \left(S_{i}\right)=\max \left(S_{2}\right)$ for all $i \geq 2$, or there is some i such that $\max \left(S_{i+1}\right)>\max \left(S_{i}\right)$. First assume the former. For $i \geq 2$, the number of sequences S_{i} with $\max \left(S_{i}\right) \leq n$ for any particular n is at most $(n+1)^{n}$, and so is finite. Since S_{i+1} is completely determined by S_{i}, we then see that the counting sequence $\left\{S_{i}\right\}_{i \geq 0}$ must eventually repeat, and so enters a cycle.

So now suppose $\max \left(S_{i+1}\right)>\max \left(S_{i}\right)$ for some $i \geq 2$, and choose n so that $n+1$ is a term in S_{i+1} and is larger than every term in S_{i}. Since $n+1$ can appear in S_{i+1} only as a multiplier, S_{i} has at least $n+1$ equal terms. But clearly $\left|S_{i}\right| \leq 2 n$, and since $i \geq 2$ the factors in S_{i} are distinct. It must therefore be the case that all of the multipliers of S_{i} are equal, that $\left|S_{i}\right|=2 n$, and that each of the integers from 1 to n appear as multipliers in S_{i}. So write $S_{i}=m, 1, m, 2, \ldots, m, n$ for some $m \geq 1$. Then $m n=\sum_{j=1}^{n} m=\left|S_{i-1}\right| \leq\left|S_{i}\right|=2 n$ shows $m \leq 2$.

If $m=2$ then $2 n \geq\left|S_{i-1}\right| \geq \sum_{j=1}^{n}(m-1) f_{j}=\sum_{j=1}^{n} f_{j} \geq \sum_{j=1}^{n} j$ shows that $n \leq 3$, and that S_{i} must be 2,1 or $2,1,2,2$ or $2,1,2,2,2,3$. A counting sequence containing any of these is easily shown to converge to $2,1,3,2,2,3,1,4$, a one-cycle. A similar argument shows that if $m=1$ and $i \geq 2$, then $S_{i-1}=1,2$ or $1,2,3,4$ or $1,2,3,4,5,6$, all of which also lead to periodic counting sequences.
3. CYCLES AND THEIR TRUNCATIONS. Theorem 1 ensures that no matter the finite sequence S_{0} of positive integers we begin with, the counting sequence associated to S_{0} will be ultimately periodic, that is, it will end in a cycle of some period p. We now determine the possible periods, and for each p classify the p-cycles. As the word "classify" hints, there are actually infinitely many different cycles, and the sequences in these cycles may be arbitrarily long. Fortunately there are only three possible periods, and each cycle has a companion cycle made up of very short sequences. It is by means of these truncated sequences that we will make our classification.

Fix a p-cycle, and for ease, rename the sequences in it $S_{1}, S_{2}, \ldots, S_{p}$. We first show that 1 occurs as a term in each S_{i}, unless the cycle is the one-cycle $S_{1}=2,2$. This implies that the multiplier of the factor 1 will play an important role in our classification.

Lemma 3. Either 1 occurs at least twice in each S_{i}, or $p=1$ and $S_{1}=2,2$.
Proof. First suppose no S_{i} has 1 as a factor, so all of the multipliers in each S_{i} have values larger than 1. Let $\left|S_{i}\right|=2 n$. Since the sum of the n multipliers of S_{i} equals
$\left|S_{i-1}\right|=\left|S_{i}\right|=2 n$, all of the multipliers of S_{i} must equal 2. This is true for all i. But then all of the S_{i} 's have exactly the same multipliers, all of value 2 , and exactly the same factors, so this cycle is the one-cycle $S_{1}=2,2$.

Next, when one S_{i} has 1 as a factor, then each S_{i} does. If S_{i+1} contains exactly one 1 , for some i, then none of S_{i} 's multipliers equal 1. Again, $\sum_{j=1}^{n} m_{i, j}=\left|S_{i-1}\right|=$ $\left|S_{i}\right|=2 n$ then implies that all of the multipliers of S_{i} have the value 2. However, as in the proof of Theorem 1, a counting sequence containing such an element converges to the one-cycle $2,1,3,2,2,3,1,4$, which is not equal to S_{i+1}, contradicting our assumption. Thus each S_{i} contains at least two 1's, as desired.

Next consider the factors whose multipliers are equal to 1 . If the factor f of S_{i} has multiplier 1, then f appears in S_{i-1} only as a factor, so it played a relatively unimportant role in the creation of S_{i}. This leads us to consider the truncation S_{i}^{\prime} of S_{i} formed by deleting all the multiplier-factor pairs of S_{i} whose multipliers are 1. For example, if $S_{1}=6,1,2,2,1,3,1,4,1,5,2,6,1,7$, then $S_{1}^{\prime}=6,1,2,2,2,6$. We will see that there are rather few sequences that arise as the truncation of a sequence in a cycle, and so will be able to use truncation to classify the cycles.

Assume S_{i} is a sequence belonging to a cycle, and by Lemma 3 that S_{i}^{\prime} has the form

$$
S_{i}^{\prime}=m_{i, 1} 1 m_{i, 2} f_{i, 2} \cdots m_{i, k_{i}} f_{i, k_{i}}
$$

with $m_{i, j} \geq 2$ for all j. We will write $\left|S_{i}^{\prime}\right|=2 k_{i}$ for the number of terms in S_{i}^{\prime}. In studying S_{i}^{\prime}, the first step is to establish a property similar to part 2 of Proposition 2.

Lemma 4. In a cycle we have $k_{i}-1=\left|S_{i}^{\prime}\right| / 2-1 \leq \sum_{j=2}^{k_{i}}\left(m_{i, j}-1\right)=\left|S_{i-1}^{\prime}\right| / 2$ for all i. In particular, $\left|S_{i}^{\prime}\right| \leq\left|S_{i-1}^{\prime}\right|+2$ for all i.

Proof. The first equality and the second inequality are trivial, since $m_{i, j} \geq 2$. For the last equality, since $m_{i, j}-1$ is the number of multipliers in S_{i-1} with value $f_{i, j}$, the number of multipliers in S_{i-1} that are not equal to 1 is $\sum_{j \geq 2}\left(m_{i, j}-1\right)$. But the multipliers in S_{i-1}^{\prime} are exactly the multipliers in S_{i-1} that do not equal 1. Thus the sum equals the number of multipliers in S_{i-1}^{\prime}, or $\left|S_{i-1}^{\prime}\right| / 2$.

Therefore, in a cycle either $\left|S_{i}^{\prime}\right|=\left|S_{i-1}^{\prime}\right|$ for all i, or $\left|S_{i}^{\prime}\right|=\left|S_{i-1}^{\prime}\right|+2$ for some i. Since each multiplier in S_{i}^{\prime} is larger than 1, if $\left|S_{i}^{\prime}\right|=\left|S_{i-1}^{\prime}\right|$ then Lemma 4 shows that $\left\{m_{i, j}: j \geq 2\right\}$ consists of all 2's except for possibly one 3 , while if $\left|S_{i}^{\prime}\right|=\left|S_{i-1}^{\prime}\right|+2$ then $m_{i, j}=2$ for all $j \geq 2$. We next show that the first case corresponds to the one-cycles, and so the second case corresponds to the longer cycles.

Proposition 5. Suppose $\left\{S_{i}\right\}_{1 \leq i \leq p}$ is a cycle such that $\left|S_{i}^{\prime}\right|=\left|S_{i+1}^{\prime}\right|$ for all i. Then $p=1$, so S_{1} is actually a one-cycle.

Proof. Since all the S_{i} 's have exactly the same factors, it suffices to show that the multiplier of any particular factor is the same in all of the S_{i} 's. Because the set of multipliers of S_{i-1} is exactly the set of factors of S_{i}^{\prime}, and we might as well assume S_{i} is not 2,2 , the only factors of S_{i} whose multipliers are not 1 are $1,2,3$, and m, where m is the multiplier of 1 in S_{i-1}. We concentrate on these factors. First, $1+\left(\left|S_{i}\right|-\left|S_{i}^{\prime}\right|\right) / 2$ is independent of i and gives the number of 1's in S_{i}. Thus $1+\left(\left|S_{i}\right|-\left|S_{i}^{\prime}\right|\right) / 2=m$, and each of the S_{i} 's contains m 1's. Next, we have seen
that each $\left\{m_{i, j}: j \geq 2\right\}$ consists of all 2 's except for possibly one 3 . Since the value of the sum $\sum_{j \geq 2}\left(m_{i, j}-1\right)=\left|S_{i-1}^{\prime}\right| / 2$ is independent of i, as m is, we see that each S_{i} must contain the same number of 2's and the same number of 3's. Finally, for $m \geq 4, m$ occurs in each S_{i} exactly twice, as the multiplier of 1 and as a factor.

This proposition allows us to find the truncations of all the one-cycles. Except for $S=2,2$, the set of multipliers of a one-cycle consists of 2 's, possibly one 3 , and the multiplier m of 1 . We point out the various cases and let the reader check the details. If $m=2$ then $S^{\prime}=2,1,3,2,2,3$, while if $m=3$ then $S^{\prime}=3,1,2,2,3,3$ or $S^{\prime}=3,1,3,3$ depending on whether 2 is a multiplier of S or not. Since m is at least 2 , the only other possibility is $m \geq 4$, and then $S^{\prime}=m, 1,3,2,2,3,2, m$. We have proved
Theorem 6. If S is a one-cycle, then S^{\prime} is 2,2 or $3,1,3,3$ or $2,1,3,2,2,3$ or $3,1,2,2,3,3$ or $m, 1,3,2,2,3,2, m$ for some $4 \leq m$.

We next turn our attention to the cycles whose periods are longer than 1. From Lemma 4 and Proposition 5 we know that in such a cycle $\left|S_{i}^{\prime}\right|=\left|S_{i-1}^{\prime}\right|+2 \geq 4$ for some i, and that the multipliers in S_{i}^{\prime} all equal 2, except for possibly the multiplier of 1 . In fact, since $2 n=\left|S_{i}\right|=\left|S_{i-1}\right|=\sum_{j=1}^{n} m_{i, j}$ is a sum of 1 's, at least one 2 , and the multiplier of 1 , we see the multiplier of 1 in S_{i} must be at least 3 . So if we write

$$
S_{i}^{\prime}=m_{i, 1}, 1,2, f_{i, 2}, \cdots, 2, f_{i, k_{i}}
$$

for $k_{i} \geq 2$, then

$$
S_{i+1}^{\prime}=m_{i+1,1}, 1, k_{i}, 2,2, m_{i, 1}
$$

for some m_{i+1}. Thus if $\left|S_{i}^{\prime}\right|=\left|S_{i-1}^{\prime}\right|+2$ for some i, then $\left|S_{i+1}^{\prime}\right|=6$. Because $\left|S_{i}^{\prime}\right| \leq\left|S_{i-1}^{\prime}\right|+2$ for all i, it must therefore be the case that $\left|S_{i-1}^{\prime}\right|=6,\left|S_{i}^{\prime}\right|=8$, and $\left|S_{i+1}^{\prime}\right|=6$.

Now write $S_{i}^{\prime}=m, 1,2, a, 2, b, 2, c$ for $m \geq 3$ and some a, b, and c. Clearly S_{i-1} must have $m-1$ multipliers equal to 1 . Because $\left|S_{i-1}^{\prime}\right|=6$, we have $\left|S_{i}\right|=\left|S_{i-1}\right|=$ $2(m+2)$, so the number of 1's in S_{i} is $1+\left(\left|S_{i}\right|-\left|S_{i}^{\prime}\right|\right) / 2=(m-1)$. Thus the multiplier of 1 in S_{i+1} is $m-1$. Similarly, the multiplier of 1 in S_{i-1} is m or $m-1$, depending on whether $\left|S_{i-2}\right|$ is 6 or 8 , so S_{i} contains either two m 's or two ($m-1$)'s.

Before considering these two cases, we show how to construct S_{i+1}^{\prime} directly from S_{i}^{\prime}. For any integer $f \neq 1, f$ appears as a factor in S_{i+1}^{\prime} if and only if it appears as a multiplier in S_{i}^{\prime}, and then its multiplier in S_{i+1}^{\prime} is one more than the number of times it appears as a multiplier in S_{i}^{\prime}. Lemma 3 shows that $f=1$ also will appear as a factor in S_{i+1}^{\prime}. The next lemma shows how to compute its multiplier.

Lemma 7. The number of 1 's in S_{i} is $1+\sum\left(\left(m_{i, j}-1\right)\left(f_{i, j}-1\right)-1\right)$, where the sum is over the multipliers of S_{i}^{\prime}.

Proof. Let m be the number of 1's appearing as multipliers in S_{i}. Then

$$
\begin{aligned}
1+\sum_{m_{i, j} \in S_{i}^{\prime}}\left(\left(m_{i, j}-1\right)\left(f_{i, j}-1\right)-1\right) & =1+m+\sum_{m_{i, j} \in S_{i}}\left(\left(m_{i, j}-1\right)\left(f_{i, j}-1\right)-1\right) \\
& =1+m+\sum_{m_{i, j} \in S_{i}}\left(m_{i, j}-1\right) f_{i, j}-\sum_{m_{i, j} \in S_{i}} m_{i, j} .
\end{aligned}
$$

The two last sums both equal $\left|S_{i-1}\right|$, and $1+m$ is the number of 1's in S_{i}.
Consider again $S_{i}^{\prime}=m, 1,2, a, 2, b, 2, c$. If S_{i} contains two ($m-1$)'s, with $m \geq 3$, then $S_{i}^{\prime}=m, 1,2, a, 2, b, 2, m-1$, for some a and b, and so $S_{i+1}^{\prime}=m-1,1, A, 2,2, m$, for some A. It is then clear that m cannot be 3 . By Lemma $7, a+b=6$, so $a=2$ and $b=4$. Thus $S_{i}^{\prime}=m, 1,2,2,2,4,2, m-1$ and $m \neq 5$. Using Lemma 7 again we see

$$
\begin{aligned}
S_{i+1}^{\prime} & =m-1,1,4,2,2, m \\
\text { and } \quad S_{i+2}^{\prime} & =m, 1,2,2,2,4,2, m-1=S_{i}^{\prime}
\end{aligned}
$$

for $m=4$ or $m \geq 6$, and so this is a two-cycle. Notice that when $m \geq 6$ the multiplier-factor pair $1, m$ must appear in S_{i} and the pair $1, m-1$ in S_{i+1}.

If S_{i} contains two m 's, then $S_{i}^{\prime}=m, 1,2, a, 2, b, 2, m$ for some a and b, and so $S_{i+1}^{\prime}=m-1,1, A, 2,2, m$ for some A. By Lemma $7, a+b=5$, so $a=2, b=3$ and $S_{i}^{\prime}=m, 1,2,2,2,3,2, m$. Thus $S_{i+1}^{\prime}=m-1,1,4,2,2, m$. If m is not equal to 5 , we are led to one of the cycles above. If m does equal 5 , then using Lemma 7 we have

$$
\begin{aligned}
S_{i}^{\prime} & =5,1,2,2,2,3,2,5 \\
S_{i+1}^{\prime} & =4,1,4,2,2,5 \\
S_{i+2}^{\prime} & =5,1,2,2,3,4
\end{aligned}
$$

and $S_{i+3}^{\prime}=S_{i}^{\prime}$, so this is a three-cycle. Notice that the pair 1,3 must appear in S_{i+1} and 1,5 in S_{i+2}. We have proved

Theorem 8. Suppose $\left\{S_{i}\right\}_{1 \leq i \leq p}$ is a periodic counting sequence with period $p>1$. Then either $p=2$ or $p=3$. In fact,
i) If $p=2$ then the truncated form of $\left\{S_{i}\right\}$ is $\left\{\begin{array}{l}S_{1}^{\prime}=m, 1,2,2,2,4,2, m-1 \\ S_{2}^{\prime}=m-1,1,4,2,2, m,\end{array}\right.$ with $m=4$ or $m \geq 6$
ii) If $p=3$ then the truncated form of $\left\{S_{i}\right\}$ is $\left\{\begin{array}{l}S_{1}^{\prime}=5,1,2,2,2,3,2,5 \\ S_{2}^{\prime}=4,1,4,2,2,5 \\ S_{3}^{\prime}=5,1,2,2,3,4\end{array}\right.$.

It is a simple matter to rebuild a cycle from its truncation just by picking reasonable factors. For instance, if $S^{\prime}=3,1,2,2,3,3$ then $S=3,1,2,2,3,3,1,4,1,5$ gives a one-cycle. Of course, so does $S=3,1,2,2,3,3,1,5,1,20$ and, if we expand our possible choice of factors, so does $S=1,-4,1,0,3,1,2,2,3,3$. In the sequel it will be useful to allow 0 as a factor.

Notice that no three-cycle can contain more than seven factors, or more than two factors larger than 5 . So if S_{0} contains eight or more distinct numbers, or two or more distinct numbers larger than 5 , then the cycle to which its counting sequence converges cannot have period 3 . Nor can it converge to any one-cycle, except for one whose truncation has the form $m, 1,3,2,2,3,2, m$. Since most finite sequences S_{0} contain three different numbers larger than 5 , we see most counting sequences converge to a one-cycle of the form $m, 1,3,2,2,3,2, m$, or to a two-cycle. In fact, the multiplier of 2 can be used to distinguish between these last two cases, but unfortunately we do not have methods to predict the multipliers of 2 . It would be quite interesting to have a more precise answer.

Similarly, we would like to have a method to determine the pre-period of a given S_{0}, that is, to be able to measure how far S_{i} is from entering a cycle.
4. CYCLES IN A FINITE BASE. From Theorem 6 the numerical portion of an answer Raphael Robinson's puzzle is

$$
1,0,1,7,1,3,2,2,3,1,4,1,5,1,6,2,7,1,8,1,9
$$

Is this answer unique? No, there is another:

$$
1,0,11,1,2,2,1,3,1,4,1,5,1,6,1,7,1,8,1,9
$$

if we read 11 as two 1 's. This makes sense only if we represent the value eleven as $1 \cdot 10^{1}+1 \cdot 10^{0}$, i.e., if we write our numbers in base 10 . This example reveals the basic and interesting difference between the counting sequences over finite bases and those over the infinite base: when we use a finite base the multipliers can consists of multiple digits, which, by definition, is impossible over the infinite base.

What cycles are possible if we must choose the factors from the digits 0 through $k-1$ and consider the multipliers in base k ? If the factors are kept smaller than k, then Theorems 6 and 8 provide examples of cycles in base k. In base 5 , for instance,

$$
1,0,3,1,1,2,3,3 \quad \text { and } \quad 2,1,3,2,2,3,1,4
$$

are one-cycles. However $(11)_{5}, 1,1,2,1,3,1,4$ is also a one-cycle in base 5 , where $(11)_{5}$ is the representation of the number $s i x$ in base 5 , so these theorems do not list all of the cycles. It thus remains for us to find the cycles that contain at least one multiplier with multiple digits in base k.

We first show that given any sequence S_{0} the counting sequence $\left\{S_{i}\right\}_{i \geq 0}$ formed in base k is eventually periodic. As in Section 2, it suffices to show that $S_{i}, i \geq 1$, can take on only finitely many forms. We now write $\left|S_{i}\right|$ for the total number of digits appearing in S_{i}, so $\left|(11)_{3}, 1,1,2\right|=5$.
Lemma 9. In base $k \geq 4$, we have $\left|S_{i}\right| \leq 2 k+1$ for all sufficiently large i.
Proof. We simply show that if $\left|S_{i-1}\right| \leq\left|S_{i}\right|$ for some i, then $\left|S_{i}\right| \leq 2 k+1$. As in Proposition 2 we have $\left|S_{i-1}\right|=\sum_{j \geq 1} m_{j}$, where the m_{j} 's are the multipliers of S_{i}. Letting $\# m_{j}$ be the number of digits of m_{j} in base k, we then have

$$
\begin{equation*}
\left|S_{i}\right|=\text { the number of factors in } S_{i}+\sum_{m_{j} \in S_{i}} \# m_{j} \leq k+\sum_{m_{j} \in S_{i}} \# m_{j} \tag{4.1}
\end{equation*}
$$

Using $\sum m_{j}=\left|S_{i-1}\right| \leq\left|S_{i}\right|$, we see that

$$
\begin{equation*}
\sum_{m_{j} \in S_{i}}\left(m_{j}-\# m_{j}\right) \leq k \tag{4.2}
\end{equation*}
$$

But $m_{j}-\# m_{j}$ is at least $k-2$ if $m_{j} \geq k \geq 4$. Thus, for $k \geq 5$ there can be at most one multiplier of S_{i} consisting of multiple digits in base k, and its value can be at most $k+2$. When $k=4$, one shows easily that a sequence in a counting sequence
with two multipliers larger than 3 must have multipliers $4=(10)_{4}, 4=(10)_{4}, 1$, and 1 , and its counting sequence converges to $1,0,(11)_{4}, 1,1,2,2,1,3$. Therefore $\left|S_{i}\right| \leq 2 k+1$, as desired.

Thus, when k is at least 4 there are only finitely many sequences that may appear in any given counting sequence. In bases 2 and 3 inequality (4.2), which holds in any base, shows that 5 is the largest possible value of a multiplier in a counting sequence in base 2 or 3 , and so also over these bases a sequence in any given counting sequence may take on only finitely many forms. Therefore, all counting sequences in base k are eventually periodic for all k.

Checking the possibilities, which we leave to the reader, in base 2 the only cycles are $(11)_{2}, 1$ from Theorem 8, and $(11)_{2}, 0,(100)_{2}, 1$. In base 3 , Theorem 6 gives only 2,2 , while Theorem 8 gives three one-cycles. The only other one-cycles in base 3 are

$$
(10)_{3}, 0,(10)_{3}, 1,2,2 \quad \text { and } \quad 2,0,2,1,(10)_{3}, 2 \quad \text { and } \quad(10)_{3}, 0,(10)_{3}, 1,
$$

and the only longer cycle is $\left\{\begin{array}{l}S_{1}=1,0,(10)_{3}, 1,(10)_{3}, 2 \\ S_{2}=(10)_{3}, 0,(11)_{3}, 1,1,2 \\ S_{3}=2,0,(12)_{3}, 1,1,2 .\end{array}\right.$
So now suppose k is at least 4 , and, by Lemma 9 , that S_{i} is a sequence with one multiplier M such that $k \leq M \leq k+2$. If S_{i} has f factors, then S_{i-1} has at most f factors, and since they each have no more than one multiplier with two digits, we see that $\left|S_{i-1}\right| \leq\left|S_{i}\right|$. So inequality (4.2) may be more accurately stated as

$$
\begin{equation*}
k-2 \leq \sum_{m_{j} \in S_{i}}\left(m_{j}-\# m_{j}\right) \leq\left(\left|S_{i}\right|-1\right) / 2 \leq k \tag{4.3}
\end{equation*}
$$

If $M=k+2$, then all of the other multipliers in S_{i} must equal 1 , and $\left|S_{i}\right|=2 k+1$. One then sees that S_{i+1} has the form

$$
\begin{equation*}
S_{i+1}=1,0,(11)_{k}, 1,2,2,1,3, \ldots, 1, k-1 \tag{4.4}
\end{equation*}
$$

which constitutes a one-cycle. If $M=k+1$, then the other multipliers in S_{i} equal 1 , except for possibly one 2 . When 2 is a multiplier of S_{i}, we have $\left|S_{i}\right|=2 k+1$ and then S_{i+1} is as given in (4.4). When 2 is not a multiplier in S_{i}, then $\left|S_{i}\right|=2 k-1$ and

$$
S_{i+1}=1,0,(11)_{k}, 1,1,2, \ldots, \widehat{1, l}, \ldots, 1, k-1
$$

for some $0 \leq l \leq k-1, l \neq 1$, where $\widehat{1, l}$ means that this pair does not appear in S_{i+1}. Clearly S_{i+1} forms a one-cycle. Finally, if $M=k=(10)_{k}$, then it is not difficult to use part 2) of Proposition 2 to show that $\left\{S_{i}\right\}_{i \geq 0}$ converges to a one-cycle consisting of terms having one base k digit each. We have proved

Proposition 10. The only cycles in base $k \geq 4$ that have multipliers with two or more digits are one-cycles. Further, if S^{\prime} is the truncated version of one of these sequences, then S^{\prime} is either $(11)_{k}, 1$ or $(11)_{k}, 1,2,2$.

We have now discovered all possible cycles in base k. Since k is finite, the number of cycles is finite and can be counted.

Theorem 11. For $k \geq 4$, the number of one-cycles in base k is $2^{k-4}+k(k-1) / 2$. In bases 4 and 5 there are no longer cycles, while in base $k \geq 6$ there are $2^{k-5}-1$ two-cycles, $\binom{k-5}{2}$ three-cycles, and no longer cycles.

Th proof of Theorem 11 is just a matter of undoing the truncation process, and then using the binomial theorem. For example, for each $m \geq 4$ and $k \geq 6$ there are $\binom{k-4}{m-1}$ one-cycles S with $S^{\prime}=m, 1,3,2,2,3,2, m$, so there are

$$
\sum_{m=4}^{k-1}\binom{k-4}{m-1}=2^{k-4}-1-(k-4)-\binom{k-4}{2}
$$

one-cycles S with S^{\prime} having the form $m, 1,3,2,2,3,2, m$. We leave the rest of the proof to the reader.
5. INFINITE SEQUENCES AND INFINITE CYCLES. From Theorem 1 we know that every counting sequence beginning with a finite sequence S_{0} is ultimately periodic. Is this true when S_{0} is an infinite sequence? In this section we show that it is not and provide two methods for constructing counter-examples.

If one chooses an infinite sequence S_{0} at random, its associated counting sequence may fail to exist. For example, if we choose $S_{0}=1,2,3,4,5,6, \ldots$, then $S_{1}=$ $1,1,1,2,1,3,1,4,1,5,1,6, \ldots$, but S_{2} is not well-defined and so $\left\{S_{i}\right\}_{i \geq 0}$ does not exist. It would be interesting to have necessary or sufficient conditions on S_{0} so that its counting sequence exists. We will not concern ourselves here with general existence and convergence questions but will instead concentrate on supplying a variety of examples.

We begin by constructing infinite sequences whose associated counting sequences are actually one-cycles. First, let $S_{0}^{0}=4,4$, and define $S_{0}^{1}=4,4,4,5,4,6$. Notice that there are four 4's in S_{0}^{1}, which fits the description given in S_{0}^{0}. Next, create S_{0}^{2} to fit the description given in S_{0}^{1} and to have consecutive factors, and then similarly create S_{0}^{3} by the description implicit in S_{0}^{2} :

$$
\begin{aligned}
S_{0}^{2}= & 4,4,4,5,4,6,5,7,5,8,5,9,6,10,6,11,6,12 \\
S_{0}^{3}= & 4,4,4,5,4,6,5,7,5,8,5,9,6,10,6,11,6,12,7,13,7,14,7,15,7,16,8,17,8,18, \\
& 8,19,8,20,9,21,9,22,9,23,9,24,10,25,10,26,10,27,10,28,10,29,11,30, \\
& 11,31,11,32,11,33,11,34,12,35,12,36,12,37,12,38,12,39 .
\end{aligned}
$$

Finally, define S_{0} to be the limit of the finite sequences $\left\{S_{0}^{k}\right\}$. It is then clear that S_{0} forms a one-cycle, and so each element of the counting sequence $\left\{S_{i}\right\}$ exists. We adapt the terminology of [3] to call the process that takes the finite sequence S_{0}^{0} and produces the infinite sequence S_{0} the self-generating process. It can be done more generally.

Proposition 12. Let $S=m_{1}, f_{1}, m_{2}, f_{2}, \ldots, m_{n}, f_{n}$ be a sequence of positive integers such that the f_{i} are strictly increasing, f_{i} appears no more than m_{i} times in S, and each m_{i} also appears as an f_{j}. Then, setting $S_{0}^{0}=S$, the sequences S_{0}^{k} can
be constructed using the self-generating process, $S_{0}=\lim _{k} S_{0}^{k}$ exists, and S_{0} forms a one-cycle.

To give the relative sizes of the factors and multipliers of our particular example $S_{0}=4,4,4,5,4,6, \ldots$ we introduce an integer sequence constructed and studied first by Golomb [3]. This sequence

$$
1,2,2,3,3,4,4,4,5,5,5,6,6,6,6,7,7,7,7,8, \cdots
$$

consists of the values of the function $G(n)$ defined on the natural numbers by
(i) $G(1)=1$
(ii) $G(n)=\#\{$ integers $m: G(m)=n\}$
(iii) $G(n)$ is non-decreasing.

Golomb proved the asymptotic formula $G(n) \sim \phi(n / \phi)^{\phi-1}$, where $\phi=(\sqrt{5}+1) / 2$ is the golden ratio. If we replace the first three terms of Golomb's sequence by a 3 , and then add 1 to each term, the resulting sequence consists of the multipliers of S_{0}. Thus, the multiplier of f in S_{0} is approximately $G(f)$. Inverting the asymptotic formula for $G(f)$ then gives

Proposition 13. Let m_{f} be the multiplier of f in $S_{0}=4,4,4,5, \ldots$. Then

$$
f \sim \phi\left(\frac{m_{f}}{\phi}\right)^{\phi}
$$

It is a simple matter to modify S_{0} to create counting sequences consisting of infinite sequences that converge to longer cycles. For instance, define $S_{0}(24)$ to be the sequence that is identical to S_{0} except that the multiplier-factor pair 9,24 , is replaced by 10,24 , i.e.,

$$
\begin{aligned}
S_{0}(24)= & 4,4,4,5,4,6,5,7,5,8,5,9,6,10,6,11,6,12,7,13,7,14,7,15,7,16,8,17 \\
& 8,18,8,19,8,20,9,21,9,22,9,23,10,24,10,25,10,26,10,27,10,28, \cdots .
\end{aligned}
$$

We have underlined the multiplier-factor pairs of $S_{0}(24)$ that do not agree exactly with S_{0}, i.e., the positions of $S_{0}(24)$ that are in "error" when compared to S_{0}. If $S_{1}(24)$ is the usual description of the sequence $S_{0}(24)$, then $S_{1}(24)$ contains one more 10 but one fewer 9 than S_{0} contains, so

$$
\begin{aligned}
S_{1}(24)= & 4,4,4,5,4,6,5,7,5,8,4,9,7,10,6,11,6,12,7,13,7,14,7,15,7,16,8,17, \\
& 8,18,8,19,8,20,9,21,9,22,9,23,9,24,10,25,10,26,10,27,10,28, \cdots .
\end{aligned}
$$

and

$$
\begin{array}{r}
S_{2}(24)=\frac{5,4,3,5,3,6,6,7}{8,18,8,19,8,20}, 9,21,9,9,22,9,23,9,24,10,25,10,26,10,27,10,28, \cdots
\end{array}
$$

Notice that the multiplier-factor pair in error in $S_{0}(24)$ has been "repaired" in $S_{1}(24)$, and that the errors in $S_{1}(24)$ are repaired in $S_{2}(24)$. Also notice that the
numerical values of the multipliers in error in S_{0} and factors in error in S_{1} are very close. The same is true for the multipliers in error in S_{1} and the factors in error in S_{2}. If we continue, the counting sequences converges to

$$
\begin{aligned}
S_{10}(24) & =\underline{1,1,4,2,2,3,2,4,5,5}, 4,6,5,7,5,8,5,9,6,10, \cdots \\
S_{11}(24) & =\underline{2,1,3,2,1,3,3,4,5,5}, 4,6,5,7,5,8,5,9,6,10, \cdots \\
S_{12}(24) & =\underline{2,1,2,2,3,3,2,4,5,5}, 4,6,5,7,5,8,5,9,6,10, \cdots \\
S_{13}(24)=S_{10}(24) & =\underline{1,1,4,2,2,3,2,4,5,5}, 4,6,5,7,5,8,5,9,6,10, \cdots .
\end{aligned}
$$

So we have constructed an example of an infinite three-cycle.
We can abstract two facts from this example. Suppose we create an infinite sequence $S_{0}(f)$ that is identical to an infinite one-cycle S_{0} except that the multiplier of f in S_{0} has been increased by one. Then, (1), at the beginning of the counting sequence $\left\{S_{i}(f)\right\}_{i>0}$ the errors mover quickly to the "left", and (2) once the errors have reached the beginning of the sequences, they will (relatively) quickly settle into a cycle. It is not too difficult to convince oneself of these facts, because Proposition 13 tells us that a multiplier in S_{0} is far smaller its factor. These facts also hold if we replace f by a finite number of factors, that is, consider the counting sequence $\left\{S_{i}\left(f_{1}, f_{2}, \ldots, f_{m}\right)\right\}_{i \geq 0}$. It would be interesting to classify the cycles coming from this construction.

Using these ideas we can describe the construction of a infinite counting sequence that is not ultimately periodic. For a given integer f_{j} let n_{j} be the pre-period of $\left\{S_{i}\left(f_{j}\right)\right\}_{i \geq 0}$. That is, $S_{i}\left(f_{j}\right)$ will be part of a cycle if $i \geq n_{j}$. Choose a infinite set of factors $f_{j}, j \geq 1$, growing fast enough in j so that for all $i \leq n_{j}$ and $f<f_{j-1}$, the multipliers of the factor f in S_{0} and $S_{i}\left(f_{j}\right)$ are equal. In other words, choose f_{j} so that it takes more than n_{j} steps for the errors in $S_{i}\left(f_{j}\right)$ to move themselves to the point of the initial error in $S_{0}\left(f_{j-1}\right)$. Once we fix such an infinite sequence, then $\left\{S_{i}\left(f_{1}, f_{2}, f_{3}, \cdots\right)\right\}_{i \geq 0}$ will be a non-periodic counting sequence. To actually construct such a family of f_{j} 's one needs to use Proposition 13 to give a careful study of the rates at which the errors in $\left\{S_{i}\left(f_{j}\right)\right\}$ spread and move to the left.

As this study would occupy the better part of several pages, we instead end the section with a very simple method of constructing infinite counting sequences that are both well-defined and not ultimately periodic. Define $\left\{S_{i}\right\}_{i \geq 1}$ by the following rules:
(i) The multiplier of i in S_{i} has value at least i.
(ii) Every natural number occurs as a factor in each S_{i}.
(iii) The multipliers in each S_{i} form a non-decreasing sequence.
(iv) S_{i+1} is the description of S_{i} for $i \geq 1$.

Rule (i) insures that the terms "below" the main diagonal are not influenced by those above the main diagonal. For instance, taking the multiplier of i to be $i+1$
gives the following:

$$
\begin{aligned}
& S_{1}=\mathbf{2}, \mathbf{1}, 2,2,3,3,3,4,4,5,4,6,5,7,5,8,5,9,6,10,6,11,6,12,7,13,7,14,7,15, \cdots \\
& S_{2}=1,2, \mathbf{3}, \mathbf{2}, 3,3,3,4,4,5,4,6,4,7,5,8,5,9,5,10,6,11,6,12,6,13,7,14,7,15, \cdots \\
& S_{3}=1,1,2,2, \boldsymbol{4}, \mathbf{3}, 4,4,4,5,4,6,5,7,5,8,5,9,5,10,6,11,6,12,6,13,6,14,7,15, \cdots \\
& S_{4}=2,1,2,2,1,3, \boldsymbol{5}, \mathbf{4}, 5,5,5,6,5,7,5,8,6,9,6,10,6,11,6,12,6,13,7,14,7,15, \cdots \\
& S_{5}=2,1,3,2,1,3,1,4, \mathbf{6}, \mathbf{5}, 6,6,6,7,6,8,6,9,6,10,7,11,7,12,7,13,7,14,7,15, \cdots \\
& S_{6}=3,1,2,2,2,3,1,4,1,5, \boldsymbol{7}, \mathbf{6}, 7,7,7,8,7,9,7,10,7,11,7,12,8,13,8,14,8,15, \cdots \\
& S_{7}=3,1,3,2,2,3,1,4,1,5,1,6,8,7,8,8,8,9,8,10,8,11,8,12,8,13,8,14,9,15, \cdots \\
& S_{8}=4,1,2,2,3,3,1,4,1,5,1,6,1,7, \mathbf{9}, \mathbf{8}, 9,9,9,10,9,11,9,12,9,13,9,14,9,15, \cdots
\end{aligned}
$$

In S_{i+1} the multiplier of i is either 2 or 1 , depending on whether the multiplier of i in S_{i} is i or greater than i. Therefore $\left\{S_{i}\right\}_{i \geq 1}$ is well-defined but is not ultimately periodic.
6. FACTOR-FREE COUNTING SEQUENCES. We end this paper the way we began it: by using the sequence $2,1,1,4$ to build a type of counting sequence. Because $2,1,1,4$ consists of 2 ones, 1 two, 0 threes, and 1 four, let us define R_{1} to be the numbers making up this description: $R_{1}=2,1,0,1$. Repeating this process, R_{1} consists of 1 zero, 3 ones, 1 two, 0 threes, and 0 fours, so set $R_{2}=1,2,1,0,0$. Continuing we have

$$
\begin{aligned}
& R_{3}=2,2,1,0,0 \\
& R_{4}=2,1,2,0,0 \\
& R_{5}=2,1,2,0,0 .
\end{aligned}
$$

We call the sequence $\left\{R_{i}\right\}_{i \geq 1}$ a factor-free counting sequence. The cycles of factorfree sequences are called self-descriptive and co-descriptive strings in [5], [7], and [8].

Since a factor-free counting sequence is built without the explicit benefit of the place-keeping factors we need a method for indicating which integer each term in each R_{i} describes. For $i \geq 1$ we will assume that the j-th entry of R_{i} gives the number of times $j-1$ appears in R_{i-1}, and that this entry is 0 if $j-1$ does not appear in R_{i-1} but some integer at least as large as $j-1$ appears in some $R_{i^{\prime}}$, $1 \leq i^{\prime}<i$. Then, just as the first number in an element S_{i} of a counting sequence almost always describes the number of 1's in S_{i-1}, the first number in an element R_{i} of a factor-free counting sequence will describe the number of 0 's in R_{i-1}.

Of course, one may allow the first digit of a sequence describe numbers other than 0 . For example, we have the one-cycle $1=$ one 1 , which is the factor-free version of the one-cycle 2, 2. Similarly, Golomb's sequence can be thought of as an infinite factor-free one-cycle that begins by describing the number of 1's it contains.

We also point out that the factor-free version of Robinson's question reappeared again recently in [10].

Using techniques similar to those in Section 2 it is easy to show that if R_{0} is a finite sequence of non-negative integers, then the factor-free counting sequence
$\left\{R_{i}\right\}_{i \geq 0}$ is ultimately periodic. To find all of the possible cycles we will relate the factor-free and "ordinary" counting sequences. Following [1], say that an element S_{i} of a counting sequence is complete if its factors are consecutive and the smallest factor is 1 . If $S=m_{1}, f_{1}, m_{2}, f_{2}, \ldots, m_{k}, f_{k}$ is a complete element of a counting sequence, then defining $R=n_{0}, n_{1}, \ldots, n_{k}$ by $n_{j}=m_{j+1}-1$ gives a factor-free sequence. Similarly, given a sequence $R=n_{0}, n_{1}, \ldots, n_{k}$ of a a factor-free counting sequence, defining S by $f_{j}=j+1$ and $m_{j}=n_{j-1}+1$ gives a factor-containing sequence. Notice that the sequence S corresponding to R is complete. While it is not true that this process allows one to convert between counting sequences $\left\{S_{i}\right\}_{i \geq 1}$ and factor-free counting sequences $\left\{R_{i}\right\}_{i \geq 1}$, it is very easy to show that there is a one-to-one correspondence between the cycles of factor-free counting sequences and the cycles of complete counting sequences. Since there is also a one-to-one correspondence between complete cycles and the truncations appearing in Section 3 , Theorems 6 and 8 give our final result.

Corollary 18. Other than 1 , the cycles of factor-free counting sequences all contain zeros, and have length one, two, or three. The one-cycles are 2, $0,2,0$ and $1,2,1,0$ and $2,1,2,0,0$ and $m+3,2,1,\left(m 0^{\prime} s\right), 1,0,0,0$ for $m \geq 0$. The two-cycles are

$$
\left\{\begin{array} { l }
{ 3 , 1 , 1 , 1 , 0 , 0 } \\
{ 2 , 3 , 0 , 1 , 0 , 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
m+3,1,0,1,(m 0 ' s), 1,0 \\
m+2,3,0,0,\left(m 0^{\prime} s\right), 0,1
\end{array}\right.\right.
$$

for $m \geq 2$. Finally, the only other cycle of any length is the three-cycle

$$
\left\{\begin{array}{l}
4,1,1,0,1,0,0 \\
3,3,0,0,1,0,0 \\
4,1,0,2,0,0,0
\end{array}\right.
$$

References

[1] Victor Bronstein and Aviezri S. Fraenkel, On a Curious Property of Counting Sequences, Amer. Math. Monthly 101 (1994), 560-563.
[2] J.H. Conway, The Weird and Wonderful Chemisty of Audioactive Decay, Open Problems in Communication and Computation (T.M. Cover and B. Gopinath, eds.), Springer-Verlag, New York, 1987, pp. 173-188.
[3] S. Golomb, Problem 5407, Amer. Math. Monthly 73 (1966), 674.
[4] Douglas Hopfstadter, Metamagical Themas, Basic Books, New York, 1985, p. 392.
[5] Steven Kahan, A Curious Sequence, Math. Monthly 48 (1975), 290-292.
[6] Hervé Lehning, Computer-Aided or Analytic Proof?, College Math. J. 21 (1990), 228-239.
[7] Michael D. McKay and Michael S. Waterman, Self-descriptive Strings, Math. Gazette 66 (1982), 1-4.
[8] Lee Sallows and Victor L. Eijkhout, Co-descriptive Strings, Math. Gazette 70 (1986), 1-10.
[9] N.J.A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, London, 1995.
[10] Marilyn Vos Savant, Ask Marilyn, Parade Magazine May 5th (1996), 6.
Dept. of Mathematics, Union College, Schenectady NY, 12308
E-mail address: sauerbej@unvax.union.edu
Dept. of Mathematics and Statistics, University of Vermont, Burlington Vt, 05401

E-mail address: lshu@math.uvm.edu

