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Abstract

Multipartitioning is a strategy for partitioning multi-
dimensional arrays among a collection of processors
so that line-sweep computations can be performed
efficiently. The principal property of a multiparti-
tioned array is that for a line sweep along any array
dimension, all processors have the same number of
tiles to compute at each step in the sweep. This prop-
erty results in full, balanced parallelism. A secondary
benefit of multipartitionings is that they induce only
coarse-grain communication.

Previously, computing a d-dimensional multipar-

titioning required that p
1

d−1 be integral, where p is
the number of processors. Here, we describe an algo-
rithm to compute a d-dimensional multipartitioning
of an array of ρ dimensions for an arbitrary number
of processors, for any d, 2 ≤ d ≤ ρ. When using a
multipartitioning to parallelize a line sweep compu-
tation, the best partitioning is the one that exploits
all of the processors and has the smallest communica-
tion volume. To compute the best multipartitioning
of a ρ-dimensional array, we describe a cost model for
selecting d, the dimensionality of the best partition-
ing, and the number of cuts along each partitioned
dimension. In practice, our technique will choose a
3-dimensional multipartitioning for a 3-dimensional
line-sweep computation, except when p is a prime;
previously, a 3-dimensional multipartitioning could
be applied only when

√
p is integral.

We describe an implementation of multipartition-
ing in the Rice dHPF compiler and performance re-
sults obtained to parallelize a line sweep computation
on a range of different numbers of processors.

∗This work performed while a visiting scholar at Rice Uni-

versity.

1 Introduction

Line sweeps are used to solve one-dimensional recur-
rences along each dimension of a multi-dimensional
discretized domain. This computational method is
the basis for Alternating Direction Implicit (ADI)
integration — a widely-used numerical technique
for solving partial differential equations such as the
Navier-Stokes equation [4, 13, 15] — and is also at
the heart of a variety of other numerical methods and
solution techniques [15]. Parallelizing computations
based on line sweeps is important because these com-
putations address important classes of problems and
they are computationally intensive.

The recurrences that line sweeps are used to solve
serialize each computational line in a sweep along a
dimension. If a dimension is partitioned, this induces
a serialization between computations on different
processors. Using standard block uni-partitionings,
in which each processor is assigned a single hyper-
rectangular block of data, there are two classes of
alternative partitionings. Static block unipartition-
ings involve partitioning some set of dimensions of
the data domain, and assigning each processor one
contiguous hyper-rectangular volume. To achieve sig-
nificant parallelism for a line sweep computation with
this type of partitionings requires exploiting wave-
front parallelism within each sweep. In wavefront
computations, there is a tension between using small
messages to maximize parallelism by minimizing the
length of pipeline fill and drain phases, and using
larger messages to minimize communication overhead
in the computation’s steady state when the pipeline
is full. Dynamic block unipartitionings involve parti-
tioning a single data dimension and performing line
sweeps in all unpartitioned data dimensions locally,
then transposing the data to localize the data along



the previously partitioned dimension and performing
the remaining sweep locally. While dynamic block
unipartitionings achieve better efficiency during a (lo-
cal) sweep over a single dimension compared to a
(wavefront) sweep using static block unipartitionings,
they require transposing all of the data to perform a
complete set of sweeps, whereas static block uniparti-
tionings communicate only data at partition bound-
aries.

To support better parallelization of line sweep com-
putations, a third sophisticated strategy for parti-
tioning data and computation known as multiparti-
tioning was developed [4, 13, 15]. Multipartitioning
distributes arrays of two or more dimensions among
a set of processors so that for computations perform-
ing a directional sweep along any one of the array’s
data dimensions, (1) all processors are active in each
step of the computation, (2) load-balance is nearly
perfect, and (3) only a modest amount of coarse-
grain communication is needed. These properties are
achieved by carefully assigning each processor a bal-
anced number of tiles between each pair of adjacent
hyperplanes that are defined by the cuts along any
partitioned data dimension. We describe multiparti-
tionings in detail in Section 2. A study by van der Wi-
jngaart [18] of implementation strategies for hand-
coded parallelizations of ADI Integration found that
3D multipartitionings yield better performance than
both static block unipartitionings and dynamic block
unipartitionings.

The most general class of multipartitionings de-
scribed in the literature is known as diagonal mul-
tipartitionings. To compute a d-dimensional diago-

nal multipartitioning, p
1

d−1 must be integral, where
p is the number of processors. Thus, for three di-
mensions, diagonal multipartitionings are restricted
to cases in which the number of processors is a per-
fect square. In this paper, we describe an algorithm
to compute a d-dimensional multipartitioning of an
array of ρ dimensions for an arbitrary number of
processors, for any d, 2 ≤ d ≤ ρ. When using a
multipartitioning to parallelize a line sweep compu-
tation, the best partitioning is the one that exploits
all of the processors and has the smallest communi-
cation cost. To compute the best multipartitioning
of a ρ-dimensional array, we describe a cost model
for selecting d, the dimensionality of the best parti-
tioning, and the number of partitions γi, 1 ≤ i ≤ d
along each dimension. Our new algorithm for com-
puting multipartitionings enables them to be used for
parallelizing line sweep computations effectively in a
much broader set of circumstances. In practice, our
algorithm will choose a three-dimensional multiparti-

tioning for three-dimensional data, except when the
number of processors p is a prime.1

In the next section, we describe prior work in multi-
partitioning. Then, we present our strategy for com-
puting generalized multipartitionings. This has three
parts: an objective function for computing cost of a
line sweep computation for a given multipartitioning,
a cost-model-driven algorithm for computing the di-
mensionality and tile size of the best multipartition-
ing, and an algorithm for computing a mapping of
tiles to processors. Finally, we describe an implemen-
tation of multipartitioning in the Rice dHPF com-
piler for High Performance Fortran and ongoing work
to incorporate generalized multipartitionings into the
dHPF compiler.

2 Background

Johnsson et al. [13] describe a two-dimensional do-
main decomposition strategy, now known as a multi-
partitioning, for parallel implementation of ADI inte-
gration on a multiprocessor ring. They partition both
dimensions of a two-dimensional domain to form a
p× p grid of tiles. They use a tile-to-processor map-
ping θ(i, j) = (i− j) mod p, where 0 ≤ i, j < p. Us-
ing this mapping for an ADI computation requires
each processor to exchange data with only its two
neighbors in a linear ordering of the processors, which
maps nicely to a ring.

Bruno and Cappello [4] devised a three-
dimensional partitioning for parallelizing three-
dimensional ADI integration computations on a
hypercube architecture. They describe how to map a
three-dimensional domain cut into 2d × 2d × 2d tiles
on to 22d processors. They use a tile to processor
mapping θ(i, j, k) based on Gray codes. A Gray
code gs(r) denotes a one-to-one function defined
for all integers r and s where 0 ≤ r < 2s, that
has the property that gs(r) and gs((r + 1) mod 2s)
differ in exactly one bit position. They define
θ(i, j, k) = gd((j + k) mod 2d) · gd((i + k) mod 2d),
where 0 ≤ i, j, k < 2d and · denotes bitwise concate-
nation. This θ maps tiles adjacent along the i or j
dimension to adjacent processors in the hypercube,
whereas tiles adjacent along the k dimension map to
processors that are exactly two hops distant. They
also show that no hypercube embedding is possible
in which adjacent tiles always map to adjacent
processors.

1When computing a multipartitioning for three-dimensional

data for a prime number of processors, a two-dimensional par-

titioning will be selected because it yields a superior computa-

tion to communication ratio.
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Figure 1: 3D Multipartitioning on 16 processors.

Naik et al. [15] describe diagonal multipartition-
ings for two and three dimensional problems, that
generalizes Johnsson et al’s result [13]. In general,
this class of multipartitionings involves partitioning

data into p
d

d−1 tiles, where p is the number of proces-
sors and d is the number of partitioned array dimen-

sions. Each processor handles p
1

d−1 tiles arranged
along diagonals through each of the partitioned di-
mensions. Figure 1 shows a three-dimensional multi-
partitioning of this style for 16 processors; the num-
ber in each tile indicates the processor that owns the
block. In three dimensions, a diagonal multiparti-
tioning is specified by the tile to processor mapping
θ(i, j, k) = ((i−k) mod

√
p)
√

p+((j−k) mod
√

p) for
a domain of

√
p×√p×√p tiles where 0 ≤ i, j, k <

√
p.

Diagonal multipartitionings in d dimensions are pos-

sible only when p
1

d−1 is integral; however, they are
still more broadly applicable than the Gray code
based mapping described by Bruno and Cappello.

3 General Multipartitioning

Bruno and Cappello noted that multipartitionings
need not be restricted to having only one tile per pro-
cessor per hyperplane of a multipartitioning [4]. How
general can multipartitioning mappings be? A suf-
ficient condition to support load-balanced line-sweep
computation is that in any hyperplane of the parti-
tioning, each processor must have the same number
of tiles. We call any hyperplane in which each pro-
cessor has the same number of tiles balanced. This
raises the question: can we find a way to partition
a d-dimensional array into tiles and assign the tiles
to processors so that each hyperplane is balanced?
The answer is yes. However, such an assignment is
possible if and only if the number of tiles in each hy-
perplane along any dimension is a multiple of p. We
describe a “regular” solution (regular to be defined)
to this general problem that enables us to guarantee

that the neighboring tiles of a processor’s tiles along
a direction of a data dimension all belong to a sin-
gle processor — an important property for efficient
computation on a multipartitioned distribution.

In Section 4, we define an objective function that
represents the execution time of a line-sweep compu-
tation over a multipartitioned array. In Section 5,
we present an algorithm that computes a partition-
ing of a multidimensional array into tiles that is op-
timal with respect to this objective. In Section 6,
we develop a general theory of modular mappings for
multipartitioning. We apply this theory to define a
mapping of tiles to processors so that each line sweep
is perfectly balanced over the processors.

We use the following notations in the subsequent
sections:

• p denotes the number of processors. We write
p =

∏s
j=1 α

rj

j , to represent the decomposition of
p into prime factors.

• d is the number of dimensions of the array to be
partitioned. The array is of size n1, . . . , nd. The
total number of array elements n =

∏d
i=1 ni.

• γi, for 1 ≤ i ≤ d, is the number of tiles into which
the array is cut along its i-th dimension. We con-
sider the d-dimensional array as a γ1 × . . . × γd

array of tiles. In our analysis, we assume γi di-
vides ni evenly and do not consider alignment or
boundary problems that must be handled when
applying our mappings in practice if this assump-
tion is not valid.

To ensure each hyperplane is balanced, the number
of tiles it contains must be a multiple of p; namely,
for each 1 ≤ i ≤ d, p should divide

∏

j 6=i γj .

4 Objective Function

We consider the cost of performing a line sweep com-
putation along each dimension of a multipartitioned
array. The total computation cost is proportional to
the number of elements in the array, n. A sweep
along the i-th dimension consists of a sequence of γi

computation phases (one for each hyperplane of tiles
along dimension i), separated by γi − 1 communica-
tion phases. The work in each hyperplane is perfectly
balanced, with each processor performing the com-
putation for its own tiles. The total computational
work for each processor is roughly 1

p
of the total work

in the sequential computation. The communication
overhead is a function of the number of communica-
tion phases and the communication volume. Between



two computation phases, a hyperplane of array ele-
ments is transmitted – the boundary layer for all tiles
computed in first phase. The total communication
volume for a phase communicated along dimension
i is

∏

j 6=i nj elements, i.e., n
ni

. Therefore, the total
execution time for a sweep along dimension i can be
approximated by the following formula:

Ti(p) = K1
n

p
+ (γi − 1)(K2 + K3

n

ni

)

where K1 is a constant that depends on the sequen-
tial computation time, K2 is a constant that depends
on the cost of initiating one communication phase
(start-up), and K3 is a constant that depends of
the cost of transmitting one array element. Define
λi = K2 + K3

n
ni

, λi depends on the domain size,
number of processors and machine’s communication
parameters. The total cost of the algorithm, sweep-
ing in all dimensions, is thus

T (p) = d

(

K1
n

p
−K2 −K3

d
∑

i=1

n

ni

)

+
d
∑

i=1

γiλi

Remark: if all communications are performed with
perfect parallelism, with no overhead, then the term
with K3 is actually divided by p. We assume here
that, in general, the cost of one communication phase
is an affine function of the volume of transmitted
data.

Assuming that p, n, and the ni’s are given, what
we can try to minimize is

∑d
i=1 γiλi.

There are several cases to consider. If the number
of phases is the critical term, the objective function
can be simplified to

∑

i γi. If the volume of communi-
cations is the critical term, the objective function can
be simplified to

∑

i
γi

ni
, which means it is preferable

to partition dimensions that are larger into relatively
more pieces. For example, in 3D, even for a square
number of processors (e.g., p = 4), if the data domain
has one very small dimension, then it is preferable to
use a 2D partitioning with the two larger ones rather
than a 3D partitioning. Indeed, if n1 and n2 are
at least 4 times larger than n3, then cutting each of
the first two dimensions into 4 pieces (γ1 = γ2 = 4,
γ3 = 1) leads to a smaller volume of communication
than a “classical” 3D partitioning in which each di-
mension is cut into 2 pieces (γ1 = γ2 = γ3 = 2). The
extra communication while sweeping along the first
two dimensions is offset by the absence of communi-
cation in the local sweep along the last dimension.

5 Finding the Partitioning

In this section, we address the problem of minimiz-
ing

∑

i γiλi for general λi’s, with the constraint that,
for any fixed i, p divides the product of the γj ’s ex-
cluding γi. We give a practical algorithm, based on
an exhaustive search, exponential in s (the number
of factors) and the ri’s (see the decomposition of p
into prime factors), but whose complexity in p grows
slowly.

From a theoretical point of view, we do not know
whether this minimization problem is NP-complete,
even for a fixed dimension d ≥ 3, even if all λi are
equal to 1, or if there is an algorithm polynomial in
log p or even in log s and the log ri’s. We suspect
that our problem is strongly NP-complete, even if
the input is s and the ri’s, instead of p. If p has
only one prime factor, we point out that a greedy
approach leads to a polynomial (i.e., polynomial in
log r) algorithm (see [10]). However, we do not know
if an extension of this greedy approach can lead to a
polynomial algorithm for an optimal solution in the
general case.

5.1 Basic Properties of Potentially

Optimal Partitionings

We say that (γi)1≤i≤d – or (γi) for short – is a valid

solution if, for each 1 ≤ i ≤ d, p divides
∏

j 6=i γj .
Furthermore, if

∑

i γiλi is minimized, we say that
(γi) is an optimal solution. We start with some
basic properties of valid and optimal solutions.

Lemma 1 Let (γi) be given. Then, (γi) is a valid so-
lution if and only if, for each factor α of p, appearing
rα times in the decomposition of p, the total num-
ber of occurrences of α in all γi is at least rα + mα,
where mα is the maximum number of occurrences of
α in any γi.

Proof: Suppose that (γi) is a valid solution. Let
α be a factor of p appearing rα times in the decom-
position of p, let mα be the maximum number of
occurrences of α in any γi, and let i0 be such that α
appears mα times in γi0 . Since p divides the product
of all γi excluding γi0 , α appears at least rα times in
this product. The total number of occurrences of α
in all of the γi is thus at least rα + mα. Conversely,
if this property is true for any factor α, then for any
product of (d−1) different γi’s, the number of occur-
rences of α is at least rα + mα minus the number of
occurrences in the γi that is not part of the product,
and thus must be at least rα. Therefore, p divides
this product and (γi) is a valid solution.

�



Thanks to Lemma 1, we can interpret (and ma-
nipulate) a valid solution (γi) as a distribution of the
factors of p into d bins. If a factor α appears rα times
in p, it must appear (rα + mα) times in the d bins,
where mα is the maximal number of occurrences of
α in a bin. As far as the minimization of

∑

i λiγi

is concerned, no other prime number can appear in
the γi without increasing the objective function. The
following lemma refines the result of Lemma 1 for a
potentially optimal solution.

Lemma 2 Let (γi) be an optimal solution. Then,
each factor α of p, appearing rα times in the decom-
position of p, appears exactly (rα +mα) times in (γi),
where mα is the maximum number of occurrences of
α in any γi. Furthermore, the number of occurrences
of α is mα in at least two γi’s.

Proof: Let (γi) be an optimal solution. By
Lemma 1, each factor α, 0 ≤ j < s, that appears rα

times in p, appears at least (rα + mα) times in (γi).
The following arguments hold independently for each
factor α.

Suppose mα occurrences of α appear in some γi0

and no other γi. Remove one α from γi0 . Now, the
maximum number of occurrences of α in any γi is
mα − 1 and we have (rα + mα)− 1 = rα + (mα − 1)
occurrences of α. By Lemma 1, we still have a valid
solution, and with a smaller cost. This contradicts
the optimality of (γi). Thus, there are at least two
bins with mα occurrences of α.

If c, the number of occurrences of α in (γi), is such
that c > rα+mα, then we can remove one α from any
nonempty bin, containing fewer than mα occurrences.
We now have c−1 ≥ rα+mα occurrences of α and the
maximum is still mα (since at least two bins had mα

occurrences of α). Therefore, according to Lemma 1,
we still have a valid solution, and with smaller cost,
again a contradiction.

�

We can now give some upper and lower bounds for
the maximal number of occurrences of a given factor
in any bin.

Lemma 3 In any optimal solution, for any factor
α appearing rα times in the decomposition of p, we
have d rα

d−1e ≤ mα ≤ rα ≤ (d− 1)mα where mα is the
maximal number of occurrences of α in any bin and
d is the number of bins.

Proof: By Lemma 2, we know that the number of
occurrences of α is exactly rα + mα, and at least two
bins contain mα elements. Thus, rα+mα = 2∗mα+e
where e is the total number of elements in (d − 2)

bins, excluding two bins of maximal size mα. Since
0 ≤ e ≤ (d − 2)mα, then mα ≤ rα ≤ (d − 1)mα.
Finally, any valid solution requires that p divides the
product of all of the factor instances in each group of
d− 1 bins. Thus, there must be rα instances of α in
d− 1 bins, and thus mα ≥ d rα

d−1e.
�

5.2 Exhaustive Enumeration of Po-

tentially Optimal Partitionings

We now give an algorithm that finds an optimal solu-
tion by generating all possible partitionings (γi) that
satisfy the necessary optimality conditions given by
Lemma 2, and determining which one yields the low-
est cost partitioning. We also evaluate how many
candidate partitions there are and present the com-
plexity of our algorithm. For the complexity, we are
not interested in the exact number of solutions that
respect the conditions of Lemma 2, but in the order
of magnitude, especially when the number of bins d
is fixed (and small, equal to 3, 4, or 5), but when p
can be large (up to 1000 for example), since this is
the situation we expect to encounter in practice when
computing multipartitionings.

The C program of Figure 2 generates, in linear
time, all possible distributions into d bins, satisfy-
ing the (r + m) optimality condition of Lemma 2, of
a given factor appearing r times in the decomposition
of p. It is inspired by a program [16] for generating all
partitions of a number, which is a well-studied prob-
lem (see [17]) since the mathematical work of Euler
and Ramanujam. The procedure Partitions first
selects the maximal number m in a bin, and uses the
recursive procedure P(n,m,c,t,d) that generates all
distributions of n elements in (d−t+1) bins (from in-
dex t to index d), where each bin can have at most m
elements and exactly c bins should have m elements.
Therefore the initial call is P(r+m,m,2,1,d).

We now prove the correctness of the program. The
procedure P selects a number of elements for the bin
number t and makes a recursive call with parameter
t + 1 for the selection in the next bin. It is thus
clear that all generated solutions are different since
each iteration of a loop selects a different number of
elements for each bin. It remains to prove that all
solutions generated by P are valid (the total number
of elements should be r + m, each bin should have
less than m elements, and there should be at least
c bins with m elements), and that all solutions are
generated. For that we prove that P(n,m,c,t,d) is
always called with parameters for which there exists
at least a valid solution, that all possible numbers of
elements are selected and only those.



// Precondition: d >= 2

void Partitions(int r, int d) {

int m;

for (m = (r+d-2)/(d-1); m <= r; m++)

P(r+m,m,2,1,d);

}

void P(int n, int m, int c, int t, int d) {

int i;

if (t==d)

bin[t] = n;

else {

for (i=max(0,n-(d-t)*m);

i<=min(m-1,n-c*m); i++) {

bin[t] = i;

P(n-i,m,c,t+1,d);

}

if (n>=m) {

bin[t] = m;

P(n-m,m,max(0,c-1),t+1,d);

}

}

}

Figure 2: Program for generating all possible distri-
butions for one factor.

Let us first consider the loop in function
Partitions. Thanks to Lemma 3, we know that
the maximal number of elements in a bin is between
d r

d−1e and r. Furthermore, for each such m, there
is indeed at least one valid solution with (r + m) el-
ements and two maxima equal to m (if d ≥ 2), for
example the solution where the first two bins have m
elements and the (d − 2) other bins contain a total
of (r − m) elements, one possibility being with the
r − m elements distributed so that q = b r−m

m
c bins

contain m elements and one contains (r − m − mq)
elements. Therefore, if the function P is correct, the
function Partitions is also correct.

To prove the correctness of the function P we prove
by induction on d − t + 1 (the number of bins) that
there is at least one valid solution if and only if c ≤
d − t + 1 and cm ≤ n ≤ (d − t + 1)m and that P

generates all of them if these conditions are satisfied.
These conditions are simple to understand: we need
at least cm elements (so that at least c bins have m
elements) and at most (d−t+1)m elements, otherwise
at least one bin will contain more than m elements.

The terminal case is clear: if we have only one bin
and n elements to distribute, the bin should contain
n elements. Furthermore, if there is a solution, we
should have c ≤ 1 and n = m if c = 1, i.e., c ≤ d−t+1
and cm ≤ n ≤ (d− t + 1)m.

The general case is more tricky. We first select the
number of elements i in the bin number t and re-
cursively call P for the remaining bins. If we select
strictly less than m elements (this selection is in the
loop), we will still have to select c bins with m ele-
ments for the remaining (d− t) bins, with (n− i) ele-
ments. Therefore, the number i that we select should
not be too small, nor too large, and we should have
cm ≤ n−i ≤ m(d−t), i.e., n−(d−t)m ≤ i ≤ n−cm.
Furthermore, i should be strictly less than m, non-
negative, and less than n. Since c is always positive,
the constraint i ≤ n − cm ensures i ≤ n. If the pa-
rameters are correct for the bin number t, we also
have c ≤ d − t + 1 and if c = d − t + 1, then the
loop has no iteration, thus for an i selected in the
loop, we have c ≤ d − t. Therefore the recursive call
P(n-i,m,c,t+1,d) has correct parameters. Finally,
if we select m elements for the bin t (after the loop),
this is possible only if m is less than n of course, and
then it remains to put (n −m) elements into (d− t)
bins, with a maximum of m, and at least max(0, c−1)
maxima. Again, the recursive call has correct pa-
rameters since we decreased both c and (d − t) and
removed m elements.

5.3 Complexity of the Exhaustive

Enumeration

For generating all optimal solutions to our minimiza-
tion problem, we first decompose p into prime fac-
tors (complexity O(

√
p) by a standard algorithm, but

could be less), we then generate all potentially op-
timal solutions that satisfy Lemma 2 for each fac-
tor (with the function Partitions), and we combine
them while keeping track of the best overall solution.
For evaluating each solution, we need to build the cor-
responding (γi)’s and add them. Each γi is at most
p and is obtained by at most

∑

i ri ≤ log2 p multipli-
cations of numbers less than p. Therefore, building
each γi costs at most (log2 p)3. The overall complex-
ity (excluding the cost of the decomposition of p into
prime factors) is thus the product of the complexity
of the function Partitions (which is the number of
solutions generated by the algorithm) times (log2 p)3.
Therefore, it remains to evaluate the number of solu-
tions generated by the function Partitions.

Consider first the case of a number p, product of
simple prime factors, in particular the product of the
first s prime numbers: p =

∏s
i=1 πi where πi is the

i-th prime number. For each factor, there are d(d−1)
2

possible distributions (picking two bins where to put
one copy of each element), so the total number of

solutions is
(

d(d−1)
2

)s

. Now, the i-th prime number



is approximated by i log i (see for example the Prime
Pages [5]). Therefore, when p grows, we have

log p =

s
∑

i=1

log πi ∼
s
∑

i=1

log(i log i)

∼
s
∑

i=1

log i ∼
∫ s

1

log x dx ∼ s log s

since divergent series with equivalent nonnegative
terms are equivalent. Therefore log p ∼ s log s and

log p
log log p

∼ s. The total number of solutions for p

is thus
(

d(d−1)
2

)
log p

log log p
(1+o(1))

, thus at least of order

p
f(d)(1+o(1))

log log p , for a small function f(d) of d. We can
prove that this situation (when p is the product of
single prime factors) is actually representative of the
worse case (in order of magnitude). The proof is too
long to be provided here but is available in the ex-
tended version of this paper [10].

Theorem 1 When p grows, the total number of gen-

erated solutions is less than p
f(d)(1+o(1))

log log p where f(d) is
a small function of d.

6 Finding the Mapping

In Section 5, we determined a particular way of cut-
ting the array so as to optimize communications: af-
ter partitioning, we get an array (of tiles) whose size
is (γi) for which the objective is minimized. But until
now, we made the assumption that we will be indeed
able to assign tiles to processors so that each slice of
the array contains exactly the same number of tiles
per processor (load-balancing property). This is not
sure yet.

The only property we have until now is that the
(γi) form is a valid solution: for each 1 ≤ i ≤ d, p
divides

∏

j 6=i γj , the defining property of a completely
balanced multipartitioning. Our main result is that
this condition is sufficient to guarantee a mapping of
processors to tiles. Our proof is constructive. For
any valid solution (γi), optimal or not, with or with-
out the additional property of Lemma 2, we give an
automatic way to assign a processor number to each
tile so that the load-balancing property is satisfied.
This assignment is done through the use of modular
mappings, defined below. The proof of our construc-
tion is much too long to be given here. We refer
the reader to the extended version of this paper [10]
for details of the proof and interesting properties of
modular mappings.

The solution we build is one particular assignment,
out of a set of legal mappings. It is not unique, and
more experiments might show that they are not all
equivalent in terms of execution time, for example
because of communication patterns. But, currently,
with our objective function (Section 4), the network
topology is not taken into account yet and all valid
mappings are considered equally good.

6.1 Modular Mappings

Consider the assignment in Figure 1. Can we give
a formula that describes it? There are 16 proces-
sors that can be represented as a 2-dimensional grid
of size 4 × 4. For example the processor number
7 = 4 + 3 can be represented as the vector (3, 1),
in general (r, q) where r and q are the remainder and
the quotient of the Euclidian division by 16. The as-
signment in the figure corresponds to the assignment
(i − k mod 4, j − k mod 4), which is what we call a
multi-dimensional modular mapping.

Definition 1 A mapping Mm :
�

d −→ �
d′ de-

fined by Mm(~i) = (M~i) mod ~m where M is an inte-
gral d×d′ matrix and ~m is an integral positive vector
of dimension d′ is a modular mapping.

With a multi-dimensional mapping, each tile is as-
signed to a “processor number” in the form of a vec-
tor. The product of the components of ~m is equal
to the number of processors. It then remains to de-
fine a one-to-one mapping from the hyper-rectangle
{~j ∈ �

d′ | ~0 ≤ ~j < ~m} (inequalities component-wise)
onto the processor numbers. This can be done by
viewing the processors as a virtual grid of dimension
d′ of size ~m. The mapping M~m is then an assign-
ment of each tile (described by its coordinates in the
d-dimensional array of tiles) to a processor (described
by its coordinates in the d′-dimensional virtual grid).
(Note: in our construction, we will need only the case
d′ = d− 1.)

The following definitions summarize the notions of
modular mappings and of modular mappings that
satisfy the load-balancing property.

Definition 2 Given a positive integral vector ~b, the
rectangular index set defined by ~b is the set Ib =
{~i ∈ �

n | 0 ≤~i < ~b} (component-wise) where n is the

dimension of ~b.

Definition 3 Given a rectangular index set Ib, a
slice Ib(i, ki) of Ib is defined as the set of all ele-
ments of I whose i-th component is equal to ki (an
integer between 0 and bi − 1).



Definition 4 Given an hyper-rectangle (or any more
general set) Ib, a modular mapping Mm is a one-to-

one mapping from Ib onto Im if and only if for
each ~j ∈ Im there is one and only one ~i ∈ Ib such
that Mm(~i) = ~j.

Definition 5 Given an hyper-rectangle (or any more
general set) Ib, a modular mapping Mm is a many-

to-one modular mapping from Ib onto Im if and
only if the number of ~i ∈ Ib such that Mm(~i) = ~j
does not depend on ~j.

Definition 6 Given a rectangular index set Ib,
a modular mapping Mm has the load-balancing

property for Ib if and only if for any slice Ib(i, ki),
the restriction of Mm to Ib(i, ki) is a many-to-one
mapping onto Im.

Because a modular mapping is linear, it is easy to
see that the load-balancing property can be checked
only for the slices that contain 0 (the slices Ib(i, 0)).

Furthermore, if ~b[i] denotes the vector obtained from
~b by removing the i-th component and M [i] denotes
the matrix obtained from M by removing the i-th
column, then the images of Ib(i, 0) under Mm are the
images of Ib[i] under the modular mapping M [i]m.
We therefore have the following property.

Lemma 4 Given an hyper-rectangle Ib, a modular
mapping Mm has the load-balancing property for Ib

if and only if each mapping M [i]m is a many-to-one
modular mapping from Ib[i] to Im.

We also have the following straightforward result.

Lemma 5 If Mm is a one-to-one modular mapping
from Ib′ onto Im, then Mm is a many-to-one modular
mapping from any multiple Ib of Ib′ onto Im.

Lemmas 4 and 5 explain why we focus on one-to-one
modular mappings first, then on many-to-one modu-
lar mappings, and finally on modular mappings with
the load-balancing property. In the extended ver-
sion of this paper [10], we explore the properties of
such modular mappings, in order to define a prov-
ably adequate matrix M and shape ~m for the virtual
grid of processors. Our results are linked to previous
works by Lee and Fortes [14] and Darte, Dion, and
Robert [9] to the case of one-to-one modular map-
pings. As in [9], the theory we developed is linked to
a famous (in covering/packing theory) theorem due
to Hajos [12]. Our results are also connected (through
the use of Hajos’ theorem) to scheduling techniques
used in systolic-like array design (see [8] and [11])
for generating “juggling schedules”. However, unlike

these two works, which are “one-to-one”-like prob-
lems, many questions remain open in the many-to-
one case because the extension of Hajos’ theorem to
a similar “many-to-one” case is true only up to di-
mension 3 included. Also, while it is easy to build a
one-to-one mapping (just take ~m = ~b and the iden-
tity matrix!), here we need a much more constrained
matrix, such that any submatrix obtained by remov-
ing one column is many-to-one for the corresponding
~b and ~m. In other words, to use the terminology [11],
we need to juggle simultaneously in all dimensions!

We just give here the steps of our construction.
We build a modular mapping Mm with the load-
balancing property for an index set Ib (which is given,
~b is the vector whose components are the γi’s of Sec-
tion 5). The freedom we have is that we can choose
the matrix M and the modulo vector ~m, but with
the constraint that the cardinality of Im (the prod-
uct of the components of ~m) is also given, (equal to
the number of processors p). The only property of
~b we exploit is that ~b is a valid solution (with the
meaning of Section 5), which means that the product

of any (d− 1) components of ~b is a multiple of p.
We choose the matrix M with the following form:

M =

(

N 0
~λ 1

)

where N will be computed by induction. Therefore,
finally, M will be even triangular, with 1’s on the
diagonal. We have the following preliminary result.

Lemma 6 Suppose that md divides bd, and that the
modular mapping Nm′ – in dimension (d − 1) – de-
fined by N and ~m′ has the load-balancing property
for Ib′ , where ~b′ and ~m′ are the vectors defined by the
(d− 1) first components of ~b and ~m. Then, the mod-
ular mapping Mm defined by M and ~m has the load-
balancing property for Ib if it is many-to-one from
the last slice Ib(0, d) onto Im.

Proof: In order to check that the mapping defined
by M and ~m has the load-balancing property for the
rectangular index set Ib, we have to make sure that
it is many-to-one for all slices Ib(0, i), 1 ≤ i ≤ d
(Lemma 4). To prove this lemma, we only have to
prove that this is true for the slices Ib(0, i), i < d if
N has the properties stated.

Without loss of generality, let us consider the
first dimension, i.e., the first slice Ib(0, 1). Given
~j ∈ �

d/~m
�

, let us count the number of vectors
~i ∈ Ib, such that M~i = ~j mod ~m and i1 = 0. Now
(M~i = ~j mod ~m) ⇔ (N~i′ = ~j′ mod ~m′ and ~λ.~i′+id =
jd mod md), where~i′ and ~j′ are defined the same way



as ~b′ and ~m′, and ~λ is the row vector formed by the
first (d − 1) component of the last row of M . Now,
because of the load-balancing property of Nm′ , there
are exactly n vectors ~i′ ∈ Ib′ such that i1 = 0 and
N~i′ = ~j′ mod ~m′, where n is a positive integer that
does not depend on ~j′. It remains to count the num-
ber of values id, between 0 and bd − 1, such that
id = jd − ~λ.~i′ mod md. Since md divides bd, there
are exactly bd/md such values, whatever the value

x = (jd−~λ.~i′ mod md). These are the values x+kmd,
with 0 ≤ k < bd/md. Therefore, ~j has (nbd)/md pre-
images in Ib and this number does not depend on ~j.

�

We define the vector ~m according to the following
formula:

∀i, 1 ≤ i ≤ d, mi =
gcd

(

p,
∏d

j=i bj

)

gcd
(

p,
∏d

j=i+1 bj

) (1)

(By convention, an “empty” product is equal to 1).
The vector ~m defined this way has several properties
that will make a recursive construction of M possible
(see [10] again).

Because m1 = 1, we will be able to drop, at the
end of the construction, the first component of the
mapping, and end up with a mapping from

�
d into

a subgroup of
�

d−1 (or of smaller dimension if some
other components of m are equal to 1). Once N is
built, we write:

M =

(

N 0
~λ 1

)

=





1 0 0
~u T 0
ρ ~z 1





and we define ρ and ~z such that ~z = −~tT and ρ = 1−
~t.~u, where the row vector ~t, with (d−2) components,
is defined by the following (decreasing) recurrence:

• rd−1 = md,

• for 1 ≤ i ≤ d − 2, ti = ri+1

gcd(bi+1,ri+1)
and ri =

gcd(timi+1, ri+1).

This schema corresponds to the C program of Fig-
ure 3 (where the matrix M has rows and columns
from 1 to d as in the presentation of this paper). In
our current implementation, we of course take the
final matrix modulo the corresponding values of ~m.
We also play some tricks, variants of the previous
program (alternating signs of t for example, or pre-

permuting the components of ~b) to make coefficients
smaller. We also use Theorem 3 in [9] (injectivity of
Mλm for Iλb) to reduce the components of M , divid-

ing the components of ~b by their gcd. But the basic
kernel is the one presented in Figure 3.

// Precondition: d >= 2

void ModularMapping(int d) {

for (i=1; i<=d; i++)

for (j=1; j<=d; j++)

if ((i==1) || (i==j)) M[i][j] = 1;

else M[i][j] = 0;

for (i=2; i<=d; i++) {

r = m[i];

for (j=i-1; j>=2; j--) {

t = r/gcd(r, b[j]);

for (k=1; k<=i-1; k++) {

M[i][k] -= t*M[j][k];

}

r = gcd(t*m[j],r);

}

}

}

Figure 3: Program for generating a mapping with the
load-balancing property.

7 Multipartitionings in dHPF

We have implemented support for Naik-style diago-
nal multipartitionings in our dHPF compiler. We are
currently in the process of implementing support for
general multipartitionings.

Multipartitioning within the dHPF compiler is im-
plemented as a generalization of BLOCK-style HPF
partitioning [6, 7]. The partitioned dimensions of the
template are distributed onto a virtual array of pro-
cessors that has the correct size for the rank of the
multipartitioning. Internally, the compiler analyzes
communication and loop bounds reduction as if the
multipartitioned template was a standard BLOCK par-
titioned template onto a larger array of processors.
The main difference comes in the interpretation that
the compiler gives to the PROCESSORS directive. For a
BLOCK partitioned template, the number of processors
onto which each dimension is partitioned determines
the data sizes of the tiles. The number of processors
may be different for each dimension (i.e. processors
p(2, 3); distribute t(block, block) onto p).

In the case of diagonal multipartitionings the num-
ber of processors cannot be specified on a per dimen-
sion basis. The tiles are partitioned according to the
rank of the multipartitioning and then assigned in a
skewed-cyclic fashion to the processors (as presented
in section 2). Figure 1 illustrates a 3D diagonal mul-
tipartitioning on 16 processors. In general, each pro-

cessor handles a total of p
1

d−1 tiles where p is the
number of processors and d is the number of multi-



partitioned dimensions of the array. However, diago-
nal multipartitionings are restricted to having exactly
one tile per hyperplane.

There are several important issues for correctly
generating efficient code for diagonal multiparti-
tioned distributions:

• Tile Iteration Order: The order in which a
processor’s tiles are enumerated has to satisfy
any loop-carried dependences present in the orig-
inal loop from which the multipartitioned loop
has been generated. If the tiles are not enumer-
ated in the order indicated by the loop-carried
dependences, then it is possible to execute the
loop correctly, but in a serialized manner induced
by data exchange-related synchronization.

• Inter-loop nest Communication Aggrega-

tion: Communication, which has effectively
been vectorized out of a loop nest, should not
be performed on a tile-by-tile basis, but instead
should be executed once for all of a processor’s
tiles. This is possible because multipartitioning
guarantees that the neighboring tiles for a par-
ticular processor will be the same for all of its
owned tiles.

In the case of generalized multipartitionings, we
might have distributions in which we have more than
one tile per processor on a single hyperplane. In order
to generate high-performing code, we have to address
these challenges:

• Extended Tile Iteration Order: For a single
hyperplane, a processor may need to enumerate
several tiles. The enumeration order does not
have any bearing on correctness because depen-
dences are being carried across hyperplanes in-
stead of within a single hyperplane.

• Intra-loop nest Communication Aggrega-

tion: Communication cause by a loop-carried
dependence may require several of a processor’s
tiles on a single hyperplane to send or receive
data. We desire that this communication event
should be executed as a single unit, instead of
once per tile. This is possible because general-
ized multipartitionings provide the same neigh-
borhood guarantee as simpler, diagonal multi-
partitionings.

8 Experiments

Our implementation of multipartitioning in dHPF
currently supports only Naik-style diagonal multipar-

# CPUs hand-coded dHPF % diff.

1 1.01 0.96 5.50
4 4.21 3.21 23.72
9 11.60 7.51 35.30
16 16.21 14.13 12.85
25 21.00 20.13 4.15
36 30.69 26.92 12.26

Table 1: Comparison of hand-coded and dHPF
speedups for NAS SP (class A).

# CPUs hand-coded SP dHPF % diff.

1 0.80 0.78 2.67
4 2.86 2.52 12.13
9 7.74 6.17 20.26
16 13.01 11.29 13.22
25 22.15 17.11 22.75
36 36.52 25.69 29.65

Table 2: Comparison of hand-coded and dHPF
speedups for NAS SP (class B).

titionings. By using a multipartitioned data distribu-
tion in conjunction with several other important com-
pilation techniques we have been able to obtain near
hand-coded performance on the NAS benchmarks SP
and BT [3, 7]. These results and details on the com-
pilation techniques have been described in [7, 6, 1, 2].

The most important analysis and code generation
techniques used to obtain high-performing multipar-
titioned applications are:

• Non-owner computes computation partitionings

• Communication vectorization

• Aggressive communication placement

• Intra-variable and inter-variable communication
aggregation

• Prefetchable dynamic array references

We performed these experiments on a SGI Origin
2000 with 128 250MHz R10000 CPUs, each CPU has
32KB of L1 instruction cache, 32KB of L1 data cache
and an unified, two-way set associative L2 cache of
4MB.

Tables 1 and 2 show the speedups for both the
dHPF-generated and hand-coded versions of the NAS
SP benchmark, for classes ’A’ and ’B’ respectively.
Each table presents the speedups for the hand-coded



# CPUs hand-coded dHPF % diff.

1 1.06 1.09 -2.64
4 3.28 3.34 -1.77
9 7.73 7.26 6.14
16 14.21 13.49 5.10
25 21.08 20.66 1.98
36 29.78 28.77 3.40

Table 3: Comparison of hand-coded and dHPF
speedups for NAS BT (class A).

# CPUs hand-coded dHPF % diff.

1 0.98 0.92 5.85
4 3.37 2.91 13.48
9 4.91 5.63 -14.70
16 12.30 12.83 -4.34
25 19.09 19.91 -4.30
36 30.95 28.80 6.93

Table 4: Comparison of hand-coded and dHPF
speedups for NAS BT (class B).

version, the dHPF version and the differences be-
tween them. Speedups are relative to the respective
sequential version of NAS SP. The average difference
is 16%.

Tables 3 and 4 show the speedups for both the
dHPF-generated and hand-coded versions of the NAS
BT benchmark, for classes ’A’ and ’B’ respectively.
Speedups are relative to the respective sequential ver-
sion of NAS BT. The average difference is 1.5%.

9 Conclusions

We described an algorithm for generating multipar-
titioned data distributions that is applicable for all
numbers of processors. For arrays of two or more
dimensions, our algorithm will compute generalized
multipartitionings. These partitionings minimize the
cost with respect to an objective function based on a
simple communication model. This objective func-
tion minimizes the cost of communication in line
sweep computations.

We have generalized the concept of multiparti-
tionings, to support fully parallel execution for line-
sweep computations using an arbitrary number of
processors. Previous work on multipartitionings re-
quired that for an d-dimensional multipartitioning
the (d− 1)th root of the number of processors had to

be an integer. Our extensions allow for d-dimensional
multipartitionings on any number of processors.

Using a simplified execution cost model, we devel-
oped a fast algorithm to select an optimal data par-
titioning (lowest communication cost, full processor
utilization). The data array is multipartitioned in
such a way that the number of tiles in each slice is a
multiple of the number of processors.

We have shown that, having a partition in which
the number of tiles in each slice is a multiple of the
number of processors – an obvious necessary condi-
tion – is also a sufficient condition for a balanced
mapping of tiles to processors. We also give a con-
structive method for building this mapping using new
techniques based on modular mappings. These tech-
niques assign the optimal tiles obtained by the parti-
tioning algorithm, to the physical processors that are
going to compute on them.

We have also started the implementation of these
algorithms in the dHPF compiler, which already sup-
ported diagonal multipartitionings.
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[6] D. Chavarŕıa-Miranda and J. Mellor-Crummey. To-

wards compiler support for scalable parallelism. In
Proceedings of the Fifth Workshop on Languages,
Compilers, and Runtime Systems for Scalable Com-
puters, Lecture Notes in Computer Science 1915,
pages 272–284, Rochester, NY, May 2000. Springer-
Verlag.
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[12] G. Hajós. Über einfache und mehrfache Bedeckung
des n-dimensionalen Raumes mit einen Würfelgitter.
Math. Zschrift, 47:427–467, 1942.

[13] S. L. Johnsson, Y. Saad, and M. H. Schultz.
Alternating direction methods on multiprocessors.
SIAM Journal of Scientific and Statistical Comput-
ing, 8(5):686–700, 1987.

[14] H. J. Lee and J. A. Fortes. On the injectivity of mod-
ular mappings. In P. Cappello, R. M. Owens, J. Earl
E. Swartzlander, and B. W. Wah, editors, Applica-
tion Specific Array Processors, pages 237–247, San
Francisco, California, Aug. 1994. IEEE Computer
Society Press.

[15] N. Naik, V. Naik, and M. Nicoules. Parallelization
of a class of implicit finite-difference schemes in com-
putational fluid dynamics. International Journal of
High Speed Computing, 5(1):1–50, 1993.

[16] J. Sawada. C program for computing all
numerical partitions of n whose largest part
is k. Information on Numerical Partitions,
Combinatorial Object Server, University of Vic-
toria, http://www.theory.csc.uvic.ca/~cos/inf/
nump/NumPartition.html, 1997.

[17] N. J. A. Sloane. The on-line encyclopedia of integer
sequences. http://www.research.att.com/~njas/

sequences, 2001.
[18] R. F. Van der Wijngaart. Efficient implementation

of a 3-dimensional ADI method on the iPSC/860. In
Proceedings of Supercomputing 1993, pages 102–111.
IEEE Computer Society Press, 1993.


