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Let n ≥ 3 be an integer. A convex lattice n-gon is a polygon whose n vertices are
points on the integer lattice Z

2 and whose interior angles are strictly less than π. Let
an denote the least possible area enclosed by a convex lattice n-gon, then [1, 2, 3]
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where the unknown values x, y, z, and w are known to satisfy
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On the one hand, Rabinowitz [4] and Colburn & Simpson [5] demonstrated that
an ≤ Cn3 for some constant C > 0; Zunic [6] later proved that C ≤ 1/54. On the
other hand, Andrews [7] and Arnold [8] were the first to show that an ≥ cn3 for some
c > 0; other proofs appear in [9, 10, 11, 12]. Bárány & Tokushige [13] succeeded in
proving that limn→∞ an/n

3 actually exists and computed that

lim
n→∞

an
n3

= 0.0185067... <
1

54

via a heuristic solution of ≈ 1010 constrained minimization problems. Further, the
shape of the minimizing n-gon is approximated by that of the ellipse

x2

A2
+

y2

B2
= 1

where A = (0.003573...)n2 and B = (1.656...)n.
Much less can be said about the higher dimensional analog. A d-dimensional

convex lattice polytope with n vertices has volume vn satisfying [7, 9, 14, 15]

vn ≥ cdn
d+1

d−1

but little else is known.
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0.1. Integer Convex Hulls. Before discussing integer convex hulls, let us men-
tion ordinary convex hulls. Given n points chosen at random in the unit disk D,
the convex hull Cn is the intersection of all convex sets containing all n points. The
boundary of Cn is a polygon; let Nn denote the number of vertices of the polygon. It
can be proved that [16, 17, 18]

lim
n→∞

E(Nn
)

n1/3
= 2πξ, lim

n→∞

Var(Nn)

n1/3
= 2πη

where

ξ =
(
3π
2

)
−

1

3 Γ
(
5

3

)
= 0.5384576135...,

η =
16π2Γ

(
2

3

)
−3

− 57

27
ξ = 0.1316029298... = 2(0.3350302716...)− ξ.

We point out that this is more complicated than the corresponding result when the
unit disk is replaced by the unit square [16, 17, 19]:

lim
n→∞

E(Ñn)

ln(n)
=

8

3
, lim

n→∞

Var(Ñn)

ln(n)
=

40

27
.

In the integer case, we consider not n random points in D, but rather all lattice
points in rD, the disk of radius r, where r is large. The convex hull Cr of all these
lattice points is clearly a convex lattice polygon, together with its interior. Motivation
for studying this polygon comes from integer programming: When maximizing a linear
function ϕ on the lattice points in rD (or any given convex set in R

2), one looks for
the maximum point of ϕ on Cr. The size of the programming problem is hence
proportional to Nr, the number of vertices of Cr, and thus we wish to have bounds
on Nr.

Balog & Bárány [20, 21] proved that, for sufficiently large r,

0.33r2/3 ≤ Nr ≤ 5.54r2/3

but confessed that it isn’t clear whether limr→∞Nrr
−2/3 exists. It is possible, however,

to obtain asymptotics for the average value of Nr, defined in a special way:

Eθ(Nr) =
1

rθ

r+rθ∫
r

Nρ dρ

where the parameter θ satisfies 0 < θ < 1. (Actually, the only feature needed of rθ

is that it increases with r, but less rapidly than r itself.) Balog & Deshouillers [22]
proved that

lim
r→∞

Eθ(Nr)

r2/3
=

6 · 22/3

π
χ = 3.4536898915...
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independently of θ, where χ is defined later. The growth rate 2/3 is what we would
expect on the basis of the probabilistic model (ordinary convex hull case), but the
preceding constant 3.453... is slightly different from 2πξ = 3.383.... In this sense,
lattice points do not behave in the same way as random points.

Another occurrence of the constant χ is as follows. For real x, let ||x|| denote the
distance from x to the nearest integer. Then, for 0 ≤ a < b ≤ 1, we have [22]

lim
λ→0+

1

(b− a)λ1/3

b∫
a

min
t�=0

(
||αt||+ λt2

)
dα =

6

π2
χ.

If λ = 0, the integral clearly is zero since, for any α, the point t = 1/α gives the
minimum. If λ > 0, this strategy no longer works because the penalty term λt2 =
λ/α2 would be large.

Let ∆ denote the triangular region bounded by the lines y = x, y = 1 − x and
x = 1. Partition ∆ into four domains:

∆1 = {(x, y) ∈ ∆ : 1 ≤ xy(x+ y)} ,

∆2 = {(x, y) ∈ ∆ : xy(x+ y) ≤ 1 ≤ x(x+ y)(x+ 2y)} ,

∆3 = {(x, y) ∈ ∆ : x(x+ y)(x+ 2y) ≤ 1 ≤ x(x+ y)(2x+ y)} ,

∆4 = {(x, y) ∈ ∆ : x(x+ y)(2x+ y) ≤ 1} .

Define F : ∆→ R by

F (x, y) =




4− x3 − y3 in ∆1,
1

xy(x+ y)
+ 2− (x+ y)(x− y)2 in ∆2,

1

y(x+ y)(x+ 2y)
+ 6− (x+ y)(3x2 + 2xy + y2) in ∆3,

1

x(x+ y)(2x+ y)
+

1

y(x+ y)(x+ 2y)
+ 4− (x+ y)(x2 + xy + y2) in ∆4,

then χ is given by

χ =

1∫

1/2

x∫

1−x

F (x, y) dy dx.

Again, much less can be said about the higher dimensional analog. Let Bd denote
the d-dimensional unit ball. The number of vertices, Nr, of the integer convex hull
of rBd satisfies [23]

cdr
d(d−1)
d+1 ≤ Nr ≤ Cdr

d(d−1)
d+1

but an asymptotic average value for Nr is not known for any d ≥ 3.
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