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Abstract. The goal of this paper is to enumerate solid 2-trees according to the number of edges
(or triangles) and also according to the edge degree distribution. We �rst enumerate oriented
solid 2-trees using the general methods of the theory of species. In order to obtain non oriented
enumeration formulas, we use quotient species which consists in a specialization of P�olya theory.

R�esum�e. Le but de cet article est d'obtenir l'�enum�eration des 2-arbres solides selon le nombre
d'arêtes (ou de triangles) ainsi que selon la distribution des degr�es des arêtes. Nous obtenons
d'abord le d�enombrement des 2-arbres solides orient�es en utilisant les m�ethodes de la th�eorie des
esp�eces. Pour obtenir le d�enombrement des 2-arbres solides non orient�es, nous utilisons la notion
d'esp�ece quotient qui provient d'une sp�ecialisation de la th�eorie de P�olya.

1. Introduction

De�nition 1. Let E be a non-empty �nite set of n elements called edges. A 2-tree is either a single
edge (if n = 1) or a non-empty subset T � P3(E) whose elements are called triangles, satisfying the
following conditions:

1. For every pair fa; bg = ffa1; a2; a3g; fb1; b2; b3gg of distinct elements of T , we have ja\ bj � 1,
which means that two distinct triangles share at most one edge.

2. For every ordered pair (a; b) = (fa1; a2; a3g; fb1; b2; b3g) of distinct elements of T , there is a
unique sequence (t0 = a; t1; t2; : : : ; tk = b) such that for i = 0; 1; : : : ; k � 1, we have ti 2 T
and jti \ ti+1j = 1, which means that each pair of consecutive triangles in this sequence share
exactly one edge.

An edge e and a triangle t are incident to each other if e 2 t. The degree of an edge is the number
of triangles which are incident to that edge. The edge degree distribution of a 2-tree is described by
a vector ~n = (n1; n2; : : : ), where ni is the number of edges of degree i. Since the case of a 2-tree
reduced to a single edge (of degree 0) is obvious, we exclude it of this descritption. We denote by
Supp(~n) the support of ~n which is the set of indices i such that ni 6= 0. Figure 1 shows a 2-tree
having 11 edges, 5 triangles and edge degree distribution given by ~n = (8; 2; 1).
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Figure 1. A 2-tree on E = fa; b; c; d; e; f; g; h; i; j; kg.

Several classes of 2-trees have been studied before. Beineke and Pippert enumerate some k-
dimensional trees in [1] labelled at vertices. In [9], Harary and Palmer count unlabelled 2-trees. For
the enumeration of plane 2-trees, see [15], and for a classi�cation according to symmetries of plane
and planar 2-trees, see [12]. In [7, 8], Fowler et al. worked on general 2-trees and give asymptotical
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results. More recently, in [13], the authors generalize the results of Fowler et al. to the larger
familly of k-gonal 2-trees. We also mention the works of Kloks in [10, 11] about partial biconnected
2-trees. Here, we consider a new class of 2-trees, that is, solid 2-trees, i.e., 2-trees embedded in
three-dimensional space.

The �rst result gives a su�cient and necessary condition on edges to ensure the existence of a
2-tree.

Lemma 1. Let m;n be two nonnegative integers and ~n = (n1; n2; : : :), an in�nite vector of nonne-
gative integers. Then:

1. There exists a 2-tree having m triangles and n edges if and only if n = 2m + 1.
2. There exists a 2-tree having n edges and ~n as edge degree distribution if and only ifX

i

ni = n and
X
i

ini = 3m:(1)

Proof. Item 1 is quite obvious as the reader can check. For item 2, the condition
P

i ni = n is
straightforward. Concerning the relation

P
i ini = 3m, it su�ces to observe that the left-hand side

counts the total degree of the structure, while, in the right-hand side, each triangle contributes for
three units in the total degree.

We say that ~n = (n1; n2; : : :) is a coherent (or valid) edge degree distribution if condition (1) is
satis�ed.

1 231 2 34 4

Figure 2. Two distinct solid 2-trees but the same 2-tree.

Figure 3. A well oriented 2-tree.

A solid 2-tree can be viewed topologically as a 2-tree in which the faces of the triangles cannot
interpenetrate themselves. As a consequence, there is a cyclic con�guration of triangles around each
edge. Figure 2 shows an example of two di�erent solid 2-trees which are in fact the same 2-tree.
Indeed, the cyclic order on labels 1, 2, 3, 4 given to the triangles for the two 2-trees are di�erent. A
well oriented solid 2-tree is obtained from a solid 2-tree in the following way: �rst, pick any triangle
and give a cyclic orientation on its edges; then each triangle adjacent to the �rst triangle inherits
a cyclic orientation (see Figure 3). This process is repeated until all edges receive an orientation.
By the arborescent nature of the structure, there will be no con
ict (the orientation of each edge
will always be well de�ned). Figure 3 shows an example of a well oriented 2-tree. The species of
non-oriented and well oriented solid 2-trees will be denoted respectively by A and Ao. For details
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about species, see [2]. In order to analyze these two species, the following auxiliary species will be
used:

� The species of triangles X: a single triangle will be denoted by X;
� The species of edges Y : a single edge will be denoted by Y ;
� The species L of lists or linear orders;
� The species C and C3, respectively of oriented cycles and of oriented cycles of length 3;
� The species A� and A�

o , respectively of non oriented and well oriented solid 2-trees rooted at

an edge;
� The species AM and AMo , respectively of non oriented and well oriented solid 2-trees rooted at

a triangle;
� The species AM and AM

o , respectively of non oriented and well oriented solid 2-trees rooted at

a triangle having itself one of its edges distinguished;
� Finally, the species B of planted oriented solid 2-trees which consists of an oriented root
edge Y incident to a linear order (L-structure) of triangles X each of which having its two
remaining sides being themselves B-structures. Therefore, the species B satis�es the following
combinatorial equation

B(X;Y ) = Y L(XB2(X;Y ));(2)

as illustrated by Figure 4.

... ...

L

BB BBB B
X X X

Y

Figure 4. A B-structure.

Note that B has been de�ned as a two-sort species where the sorts are X and Y . Since the
numbers of edges n and of triangles m are linked by the relation n = 2m+1, as stated in Lemma 1,
equation (2) above can either be expressed as a one sort species in X alone by setting Y := 1, or in
Y alone, by setting X := 1 respectively, giving the two following equations:

B(X; 1) = L(XB2(X; 1));(3)

B(1; Y ) = Y L(B2(1; Y )):(4)

Recall that setting X := 1 in a two sort species F (X;Y ) essentially means unlabelling the elements
of sort X. The second form in equation (4) is more suitable for the use of Lagrange inversion
formula. Therefore, the species Y of edges will be used as the base singleton species to make our
computations and we will rather use the shorter form B(Y ) = Y L(B2(Y )) for (4). Hence, the
structures are labelled at edges. However, some results will be more concise when expressed as a
function of the number m of triangles.

In this paper, we make an extensive use of Lagrange inversion formula (see [2]). Let A(y) and
R(y) be formal series satisfying A(y) = yR(A(y)) and R(0) = 0. If F is another formal series, then

[yn]F (A(y)) =
1

n
[tn�1]F 0(t)Rn(t);(5)

where [yn]F (A(y)) denotes the coe�cient of yn in F (A(y)).
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Another main tool used in this paper is the following dissymmetry theorem which has been proved
in [7, 8]. Note that in their paper, the authors made a proof for general 2-trees but obviously, the
proof is also valid for both well oriented and non oriented solid 2-trees.

Theorem 1. The species Ao and A, respectively of well oriented and (non oriented) solid 2-trees,
satisfy the following relations:

A�
o + AMo = Ao +AM

o ;(6)

and

A� + AM = A+AM:(7)

2

To each species F , we associate two series: the exponential generating series of labelled structures

F (x) and the ordinary generating series of unlabelled structures eF (x), as follows:
F (x) =

X
n�0

jF [n]j
xn

n!
;(8)

eF (x) =
X
n�0

j eF [n]jxn;(9)

where jF [n]j and j eF [n]j are respectively the numbers of labelled and unlabelled F -structures over n
elements.

2. Well oriented solid 2-trees

We begin this section by expressing the species appearing in the dissymmetry theorem (oriented
case) in terms of the species B.

Proposition 1. The species A�
o , A

M

o and AM

o satisfy the following isomorphisms of species:

A�
o (Y ) = Y + Y C(B2(Y ));(10)

AMo (Y ) = C3(B(Y ));(11)

AM

o (Y ) = B(Y )3:(12)

Proof. Let us begin with relation (10). The term Y corresponds to the case of a single rooted
edge. In the general case, as illustrated by Figure 5 a), by convention with the right-hand rule, we
de�ne a cyclic order over the triangles glued around the oriented root-edge. Next, each triangle in
this cyclic con�guration, possesses, on its two remaining oriented edges, two B-structures, leading
to the expression Y C(B2(Y )). For (11), it su�ces to remark that, since the structures are (well)
oriented, there is a cyclic order of length three around the edges of the root triangle (see Figure 5
b)). These edges being oriented, we can attach B-structures on them, giving quite directly (11). We
obtain (12) in a very similar way (see Figure 5)).
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Figure 5. Illustration of equations (10), (11) and (12).
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2.1. Enumeration according to the number of edges.

In this section, we obtain the labelled and unlabelled enumeration of oriented solid 2-trees accor-
ding to the number n of edges. We also give formulas in terms of the number m of triangles.

� Labelled case

Let Ao[n] be the set of edge-labelled solid 2-trees over n edges. We similarly de�ne A�
o [n], A

M

o [n]
and A

M

o [n]. Our �rst task is to determine jA�
o [n]j, the cardinality of the set A�

o [n]. By applying
Lagrange inversion with F (t) = C(t2) = � ln(1 � t2) and R(t) = L(t2) = (1 � t2)�1, we �nd, for
n > 1,

[yn]A�
o (y) = [yn�1]C(B2(y));

=
2

3(n� 1)

�
3(n� 1)=2

n� 1

�
:

Hence, we have

jA�
o [n]j = n![yn]A�

o (y) =
2

3
n(n� 2)!

�3(n�1)
2

n� 1

�
:(13)

Note that, when a solid 2-tree over n edges is labelled, we have n di�erent choices for the root
edge. Therefore

njAo[n]j = jA�
o [n]j;

and the next proposition follows.

Proposition 2. The number jAo[n]j of well oriented edge-labelled solid 2-trees over n edges is given
by

jAo[n]j =
2

3
(n� 2)!

�3(n�1)
2

n� 1

�
; n > 1:(14)

2

Note that if we express equation (14) as a function of m, the number of triangles, we obtain

jAo;t[m]j =
(m � 1)!

3

1

2m+ 1

�
3m

m

�
; m � 2;(15)

where the index t in jAo;t[m]j means that the structures are labelled at triangles instead of edges.

� Unlabelled case

We �rst need to compute the ordinary generating series eA�
o (y) of unlabelled A

�
o -structures. In

order to accomplish this, we use the following property.

Theorem 2. ([2]) Let F and G be two species. Then, we have

(F (G))�(x) = ZF ( eG(x); eG(x2); eG(x3); : : : );(16)

where the cycle index series ZF of a species is de�ned by

ZF (x1; x2; : : : ) =
X
k�0

1

k!

X
�2Sk

�xF [�]x�11 x�22 x�33 � � � ;(17)

where Sk is the symmetric group of order k, �i, the number of cycles of length i in the permutation
� 2 Sk and �xF [�], the number of F -structures left �xed under the relabelling induced by �. 2

For example, if F = C, the species of oriented cycles, we have

ZC(x1; x2; : : : ) =
X
k�1

�(k)

k
ln

�
1

1� xk

�
;(18)
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where � is the Euler function. Now, applying this to the species A�
o = Y + Y C(B2), we geteA�

o (y) = y + yZC ( eB2(y); eB2(y2); eB2(y3); : : : )
= y + y

X
k�1

�(k)

k
ln

 
1

1� eB2(yk)
!
:

We note that since B is asymmetric (there are exactly n! labelled structures for each unlabelled

structures or equivalently, the stabilizer of each B-structure is trivial), we have eB(y) = B(y). Hence,
for n > 1,

j eA�
o [n]j = [yn] eA�

o (y);

= [yn�1]
X
k�1

�(k)

k
ln

�
1

1� B2(yk)

�
:

But, using the fact that [yn]H(yk) = [yn=k]H(y) and Lagrange inversion,

[yn�1] ln

�
1

1� B2(yk)

�
=

2k

n � 1
[t

n�1

k
�2](1� t2)�

n�1

k
�1

=
2k

3(n� 1)

�
3(n� 1)=2k

(n� 1)=k

�
:

Obviously, k must divide n� 1 and (n � 1)=k must be even. Letting d = (n � 1)=k, we �nally get

j eA�
o [n]j =

2

3(n� 1)

X
d

�(n�1

d
)

�
3d=2

d

�
;(19)

the sum being taken over all even divisors d of n � 1. To compute j eA4
o [n]j, we use equation (11)

and the fact that

ZC3
(y1; y2; : : : ) =

1

3
(y31 + 2y3):

We have

[yn]B3(y) =
1

n

�
3(n� 1)=2

n� 1

�
;

and

[yn]B(y3) = [yn=3]B(y) =
3

n

�
(n� 3)=2

n=3� 1

�
;

so that,

j eAMo [n]j = 1

3n

�3(n�1)
2

n� 1

�
+

2

n
�(3jn)

� (n�3)
2

n
3
� 1

�
;(20)

where �(3jn) = 1 if 3 divides n and 0 otherwise. It can be easily shown, by a very similar way, that

j eAM

o [n]j =
1

n

�3(n�1)
2

n � 1

�
:(21)

So, by virtue of the dissymmetry theorem (6), we get the following result:

Proposition 3. The number of unlabelled well oriented solid 2-trees over n edges is given by

j eAo[n]j =
2

3(n� 1)

X
d

�

�
n� 1

d

��
3d=2

d

�
+ �(3jn)

2

n

� n�3
2

n
3 � 1

�
�

2

3n

�3(n�1)
2

n� 1

�
;(22)

the sum being taken over all even divisors d of n� 1. 2
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We can also write j eAo;t[m]j, in function of the number m of triangles, as follows

j eAo;t[m]j =
1

3m

X
djm

�
�m
d

��3d
d

�
+ �(3j2m+ 1)

2

2m+ 1

�
m � 1
2m�2
3

�
�

2

3(2m+ 1)

�
3m

m

�
:

Note that this expression also counts the number of unlabelled 3-gonal cacti on m triangles (see [3]).
There is an quite direct bijection between these objects and solid 2-trees. The sequence of these
numbers is known as sequence A054423 in the on-line encyclopedia of integers sequences ([16]). To

Figure 6. Bijection between solid 2-trees and cacti

obtain a (uncolored) 3-gonal cactus from a solid 2-tree, construct the dual of each triangle by putting
vertices on edges of each triangle, and join vertices belonging to the same triangle (see Figure 6).
Preserving the cyclic order gives a 3-gonal cactus. This construction closely resembles the one of
the edge-graph of a solid 2-tree.

2.2. Enumeration according to edge degree distribution.

For enumeration according to edge degree distribution, we follow the approach of Labelle and
Leroux [14] for plane trees. Consider r = (r1; r2; r3; : : : ) an in�nite vector of formal variables.
Recall that A[n] is the set of solid 2-trees over n edges. In order to keep track of the edge degree
distribution, we introduce, for a given integer n, the following weight function (see [14]):

w : A[n] �! Q[r1; r2; : : : ]
s 7�! w(s)

(23)

where Q[r1; r2; : : : ] is the ring of polynomials over the �eld of rational numbers Q in the variables
r1; r2; : : : , and where the weight of a given A-structure s is de�ned by w(s) = rn11 rn22 � � � , where ni
is the number of edges of degree i in the structure s. Equations (2), (10), (11) and (12) have the
following weighted versions:

Br = Y Lr0 (B
2
r );(24)

and

A�
o;w(Y ) = Y + Y Cr(B

2
r );(25)

AMo;w(Y ) = C3(Br);(26)

AM

o;w(Y ) = B3r ;(27)

where Cr is the weighted species of cycles such that a cycle of length i has the weight ri, and its
derivative Lr0 which is the species of lists where a list of length i has the weight ri+1. It is well
known that these species have the following generating series of labelled structures (see [2, 14]):

Cr(y) = r1y +
r2
2
y2 +

r3
3
y3 + � � �

and

Lr0(y) = (Cr(y))
0 = r1 + r2y + r3y

2 + � � � :



8 MICHEL BOUSQUET AND C�EDRIC LAMATHE

Let ~n = (n1; n2; n3; : : : ) be a vector of nonnegative integers. Recall that, from Lemma 1, there
exists a 2-tree having a total of n edges and ni edges of degree i, i � 1, if and only if the following
relations are satis�ed: X

i

ni = n and
X
i

ini = 3

�
n� 1

2

�
:(28)

Let us begin the weighted enumeration by the labelled case.

� Labelled case

Let ~n be a coherent vector in the sense of Lemma 1 (satisfying (28)). Then, the number jA�
o [~n]j

of well oriented edge-rooted labelled solid 2-trees having ~n as edge degree distribution, is given by

jA�
o [~n]j = n![rn11 rn22 � � � ][yn]A�

o;w(y):(29)

We have

[yn]A�
o;w(y) =

1

n� 1
[tn�2]

d

dt
(Cr(t

2)) � Ln�1
r0 (t2)

=
2

n� 1
[tn�3](r1 + r2t

2 + r3t
4 + � � � )n

=
2

n� 1
[tn�3]

X
`1+`2+���=n

�
n

`1; `2; : : :

�
r`11 r

`2
2 � � � t2`2+4`3+6`4+���:

Finally, we obtain

[yn]A�
o;w(y) =

X
`1;`2;:::

�
n

`1; `2; : : :

�
r`11 r

`2
2 � � � ;

the sum being taken over all vectors (`1; `2; : : : ) satisfyingX
i

`i = n and
X
i

2(i � 1)`i = n� 3:

We note that this condition is equivalent to relation (28). Hence, using (29), we have

jA�
o [~n]j = 2n(n� 2)!

�
n

n1; n2; : : :

�
:(30)

As in the unweighted case, we have

jA�
o [~n]j = njAo[~n]j;

and we get the following result.

Proposition 4. Let ~n be a coherent edge degree distribution. Then, the number of oriented solid
2-trees having ~n as edge degree distribution, jAo[~n]j, is given by

jAo[~n]j = 2(n� 2)!

�
n

n1; n2; : : :

�
:(31)

2

We now give the unlabelled weighted enumeration.

� Unlabelled case

Let ~n = (n1; n2; : : :) be a coherent edge degree distribution. In order to compute the number

j eA�
o [~n]j of unlabelled A

�
o -structures having ~n as edge degree distribution, we use the weighted version

of Theorem 2.



ENUMERATION OF SOLID 2-TREES 9

Theorem 3. ([2]) Given two weighted species Fw and Gv, the generating series eH(y) of unlabelled
H-structures, where H = Fw(Gv), is given byeH(y) = ZFw ( eGv(y); eGv2(y

2); eGv3(y
3); : : : );(32)

with Gvk(y
k) = pk � Gv(y) where pk denotes the kth power sum and for all structure s, vk(s) =

(v(s))k . 2

In the present case, we have A�
o;w = Y +Y Cr(B2r ), and since the species B is asymmetric, that iseBr(y) = Br(y),

j eA�
o [~n]j = [rn11 rn22 � � � ][yn�1]ZCr

(B2r (y);B
2
r2 (y

2);B2r3 (y
3); : : : ):(33)

But, the cycle index series of the weighted species Cr, ZCr
(y1; y2; : : : ), can be expressed as the

following sum:

ZCr
(y1; y2; : : :) =

X
k�1

rk
k

X
djk

�(d)yk=dd :(34)

Roughly speaking, the integer k represents the degree of the root edge in the A�
o -structure. Hence,

k may only belong to Supp(~n), the support of ~n, which consists in the set of integers i � 1 such that
ni 6= 0. So, we have

j eA�
o [~n]j = [rn11 rn22 � � � ][yn�1]

X
k2Supp(~n)

rk
k

X
djk

�(d)B
2k=d
rd

(yd):(35)

First, we compute

[yn�1]B
2k=d
rd

(yd) = [y(n�1)=d]B
2k=d
rd

(y):

Using Lagrange inversion, we get the following result, which will be usefull during computations:

Lemma 2. We have,

[ym]B`rd (y) =
`

m

X
`1;`2;:::

�
m

`1; `2; : : :

�
rd`11 rd`22 � � � ;(36)

where the `i's satisfy
P

i `i = m and
P

i 2(i � 1)`i = m � `. 2

Now, letting m = (n� 1)=d and ` = 2k=d in the previous lemma, we �nd

j eA�
o [~n]j = [rn11 rn22 � � � ]

2

n� 1

X
k2Supp(~n)

X
djk

�(d)
X

`1;`2;:::

�
(n� 1)=d

`1; `2; : : :

�
rd`11 rd`22 � � � rd`k+1k � � � :(37)

Finally, we have:

Proposition 5. Let ~n be a coherent edge degree distribution. Then, the number j eA�
o [~n]j of unla-

belled oriented solid 2-trees pointed at an edge and having ~n as edge degree distribution is given
by

j eA�
o [~n]j =

2

n� 1

X
k2Supp(~n)

X
djfk;~n��kg

�(d)

� n�1
d

~n��k
d

�
;(38)

where ~n��k
d

= (n1
d
; n2
d
; : : : ; nk�1

d
; : : : ), for d � 1,� n�1

d
~n��k
d

�
=

� n�1
d

n1=d; n2=d; : : : ; (nk � 1)=d; : : :

�
;

and djfk; ~n� �kg means that the integer d must divide k and all components of the vector ~n� �k. 2

Let j eAMo [~n]j and j eAM

o [~n]j be the numbers of unlabelled oriented solid 2-trees pointed respectively at
a triangle and at a triangle rooted itself at one of its edges and having ~n as edge degree distribution.
Next proposition gives explicit formulas for these numbers.
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Proposition 6. Let ~n be a coherent edge degree distribution, then the numbers j eA4
o [~n]j and j

eAM

o [~n]j
are given by

j eAMo [~n]j =
1

n

�
n

n1; n2; : : :

�
+
�(3j~n)

n

�
n=3

n1=3; n2=3; : : :

�
;(39)

j eA M

o [~n]j =
3

n

�
n

n1; n2; : : :

�
;(40)

where

�(3j~n) =

�
1; if all components of ~n are multiples of 3;
0; otherwise.

Proof. Let us start with j eAMo [~n]j. We have

j eAMo [~n]j = [rn11 rn22 � � � ][yn] eAMo;w(y)
= [rn11 rn22 � � � ][yn]ZC3

( eBr(y) eBr2 (y2); : : : ):
Since ZC3

(y1; y2; : : : ) = (y31 + 2y3)=3, and eBr(y) = Br(y),

j eAMo [~n]j = 1

3
[rn11 rn22 � � � ][yn]

�
B3r (y) + 2Br3(y

3)
�
:(41)

From equation (36) in Lemma 2, letting m = n, ` = 3 and d = 1, we get

[yn]B3r(y) =
3

n

X
`1;`2;:::

�
n

`1; `2; : : :

�
r`11 r

`2
2 � � � ;(42)

where the `i's satisfy
P

i `i = n and
P

i 2(i� 1)`i = n� 3. Now letting m = n=3, ` = 1 and d = 3
in (36), we obtain

[yn]Br3 (y
3) = [yn=3]Br3 (y) =

3

n

X
`1;`2;:::

�
n=3

`1; `2; : : :

�
r3`11 r3`22 � � � ;(43)

where the `i's satisfy
P

i `i = n and
P

i 2(i�1)`i = n�1. Now letting `i = ni in (42) and `i = ni=3
in (43), we get equation (39). We obtain (40) in a very similar way, details are left to the reader.

Finally, using the dissymmetry theorem (6), we obtain the �nal result of this section:

Proposition 7. Let ~n be a coherent edge degree distribution. Then the number j eAo[~n]j of unlabel-
led oriented solid 2-trees having ~n as edge degree distribution is given by

j eAo[~n]j =
2

n � 1

X
k2Supp(~n)

X
djfk;~n��kg

�(d)

� n�1
d

~n��k
d

�
+
�(3j~n)

n

�
n
3

n1
3 ;

n2
3 ; : : :

�
�

2

3n

�
n

n1; n2; : : :

�
;(44)

where

�(3j~n) =

�
1; if all components of ~n are multiples of 3,
0; otherwise,

~n� �k
d

=

�
n1
d
;
n2
d
; : : : ;

nk � 1

d
; : : :

�
for d � 1;

and � n�1
d

~n��k
d

�
=

� n�1
d

n1
d
; n2
d
; : : : ; nk�1

d
; : : :

�
:

2
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3. Non-oriented solid 2-trees

In order to compute the numbers of labelled and unlabelled solid 2-trees, we use Burnside's
Lemma with the group Z2 = fId; �g, where the action of � is to reverse the orientation of the
structures. This involves the notion of quotient species (see [4]).

3.1. Enumeration according to the number of edges.

As in the unweighted case, we begin with the labelled and unlabelled enumeration according to
the number of edges.

� Labelled case

The labelled case is particularly simple since every labelled oriented 2-tree has exactly two possible
orientations except the structure consisting of a single oriented edge. Hence, we have:

Proposition 8. The number jA[n]j of edge-labelled solid 2-trees over n edges is given by

jA[n]j =

�
1
2 jAo[n]j; if n > 1;
1; if n = 1:

(45)

2

Of course, the same argument remains valid for all other pointed structures discussed in the
previous section.

� Unlabelled case

In the unlabelled case, the action of � is not so trivial. Figure 7 shows an oriented 2-tree which
is left �xed under the action of � . Let A� be the species of (unoriented) solid 2-trees rooted at
an edge. This species can be expressed as the following quotient species (see [7, 8, 13] for quotient
species related to 2-trees):

A� =
A�
o

Z2
=

Y + Y C(B2(Y ))

Z2
;(46)

where Z2 = fId; �g is the two-element group consisting of the identity and � , whose action is to
reverse the orientation of the edges. Hence, an unlabelled A�-structure is an orbit fa; � � ag under
the action ofZ2, where a is any (oriented) unlabelled A�

o -structure. Roughly speaking, quotient by
Z2 corresponds to forget the orientation in the structures.

τ

Figure 7. An unlabelled 2-tree invariant under the action of � .

Let us introduce the auxiliary species BSym of � -symmetric B-structures, i.e, the species of B-

structures left �xed under the edge orientation inversion. Denote by eBSym(y) its ordinary generating
series of unlabelled structures. Recall the functional equation veri�ed by the species B:

B = Y L(B2):

In order to compute eBSym(y), we have to distinguish two cases according to the parity of k, the
length of the list of B2-structures attached to the rooted edge. First consider the case where k is
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odd (Figure 8 shows an example where k = 5). A B-structure is � -symmetric if it can be embedded
in space in such a way that the action of reversing the orientation of all edges corresponds to 
ip
the whole structure back to itself by reversing the end points of the root edge. When an inversion of
the orientation of the rooted edge is applied, the two B-structures glued on the two (non root) sides
of the middle triangle (structures B5 and B50 in Figure 8) are isomorphically exchanged. The k � 1
remaining triangles are exchanged pairwise carrying with them each of their attached B-structures
as shown in Figure 8, where Bi

�
= Bi0 . This gives a factor of Bk(y2). We then have to sum the

previous expression over all odd values of k. The case where k is even is very similar except that
there is no middle triangle, as shown in Figure 9 and we get the same expression summed over all
even values of k. It leads us to eBSym(y) = y

X
k�0

Bk(y2) =
y

1� B(y2)
:(47)

B2B1 B3 B4 B5 B5’ B B B B4’ 3’ 2’ 1’

Figure 8. A BSym-structure, k odd.

B2B1 B3 B4 B B B B4’ 3’ 2’ 1’

Figure 9. A BSym-structure, k even.

From expression (47) and another use of Lagrange inversion, we easily obtain the following result.

Proposition 9. The number j eBsym[m]j of � -symmetric unlabelled oriented B-structures over m
triangles is given by

j eBsym[m]j =

8>>>><>>>>:
1

m + 1

�
3m=2

m

�
; if m is even;

1

m

�
(3m � 1)=2

m + 1

�
+

1

3m

�
3(m+ 1)=2

m + 1

�
; if m is odd:

(48)

2
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We can also express j eBsym[m]j as follows:

j eBsym[m]j =

8>>>><>>>>:
1

2k + 1

�
3k

k

�
; if m = 2k;

1

2k + 1

�
3k + 1

k + 1

�
; if m = 2k+ 1:

(49)

Note that, the numbers j eBsym[m]j also enumerate several classes of symmetric objects (in some
sense), in particular symmetric diagonally convex directed polyominoes, or symmetric non-crossing
trees, : : : ( see [5, 6]). These numbers are indexed in the on-line Encyclopedia of integer sequences
[16] as the sequence A047749.

We now give an expression for the generating function of unlabelled quotient structures, which
will allow us to enumerate various kind of unlabelled solid 2-trees.

Proposition 10. ([4]) Let F be any (weighted) species and G, a group acting on F . Then the
ordinary generating series of the quotient species F=G is given by

(F=G)�(y) =
1

jGj

X
g2G

X
n�0

jFix
eFn
(g)jw yn;(50)

where Fix
eFn
(g) denotes the set of unlabelled F -structures over n edges left �xed under the action

of the element g 2 G and jFix
eFn
(g)jw represents the total weight of this set. 2

Using an unweighted version of Proposition 10, with F = A�
o and G =Z2 = fId; �g, we obtain

eA�(y) =
1

2

X
n�0

jFix
eA�

o;n
(Id)jyn +

1

2

X
n�0

jFix
eA�

o;n
(� )jyn;(51)

=
1

2
eA�
o (y) +

1

2
eBsym(y);(52)

since the oriented A�-structures left �xed under the action of � have the same generating series as
the BSym-structures. Hence, it becomes easy to extract the coe�cient of yn in relation (52), and we
get the number jA�[n]j of edge-pointed solid 2-trees over n edges,

jA�[n]j =
1

2
j eA�

o [n]j+
1

2
j eBSym[n]j:(53)

We now consider the species AM of triangle rooted solid 2-trees. Since AM = AMo =Z2, by virtue of
Proposition 10, we have

eAM(y) = 1

2

X
n�0

jFix
eAMo;n

(Id)jyn +
1

2

X
n�0

jFix
eAMo;n

(� )jyn;(54)

where jFix
eAMo;n

(� )j, the number of � -symmetric AM-structures over n edges has to be determined.

As shown in Figure 10, such a structure must have an axis of symmetry which coincides with one of
the root triangle's medians. Since the structure is already considered up to rotation around the root
triangle, the choice among the three possible axes is arbitrary. The base side of the triangle must
be a BSym-structure while the two other sides must be isomorphic copies of the same B-structure

(B
�
= B

0

). Therefore,

eAM(y) = 1

2
eAMo (y) + 1

2
eBSym(y)B(y2 ):(55)

In a very similar way, since AM= A
M

o=Z2, we obtaineAM(y) =
1

2
eAM

o (y) +
1

2
eBSym(y)B(y2):(56)

Finally, combining equations (52), (55), (56) and the dissymmetry theorem, we get:
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B B’

B sym

Figure 10. A � -symmetric AMo -structure.

Proposition 11. The ordinary generating function of unlabelled solid 2-trees is given by

eA(y) = 1

2
( eAo(y) + eBSym(y));(57)

where eBSym(y) is the ordinary generating series of � -symmetric B-structures. Consequently, the

number j eAt[m]j of unoriented solid 2-trees over m triangles is given by

j eAt[m]j =
1

2
(j eAo;t[m]j+ j eBsym[m]j);(58)

where

j eAo;t[m]j =
1

3m

X
djm

�
�m
d

��3d
d

�
+ �(3j2m+ 1)

2

2m + 1

�
m � 1
2m�2
3

�
�

2

3(2m+ 1)

�
3m

m

�
;

and

j eBsym[m]j =

8>>>><>>>>:
1

m + 1

�
3m=2

m

�
; if m is even;

1

m

�
(3m � 1)=2

m + 1

�
+

1

3m

�
3(m+ 1)=2

m + 1

�
; if m is odd:

(59)

2

Note that, to express j eAt[m]j in terms of n the number of edges, we only have to set n := 2m+ 1
in the previous expressions.

3.2. Enumeration of solid 2-trees according to the edge degree distribution.

We consider again the weight function de�ned by

w : A[n] �! Q[r1; r2; : : : ]
s 7! w(s);

(60)

where r = (r1; r2; r3; : : : ) is an in�nite set of formal variables and n is any positive integer.

� Labelled case

Using the same argument as in the unweighted case, we have

jA[~n]j =

�
1
2 jAo[~n]j; if n > 1;
1; if n = 1;

(61)

where ~n is a valid edge degree distribution, n is the number of edges and jA[~n]j = [rn11 rn22 � � � ][yn]Aw(y).

� Unlabelled case

Using the weighted versions of equations (52), (55) and (56), we easily get
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eA�
w(y) =

1

2
eA�
o;w(y) +

1

2
eBsym;w(y);(62)

eAMw(y) =
1

2
eAMo;w(y) + 1

2
eBsym;w(y)Bw(y

2);(63)

eAM

w(y) =
1

2
eAM

o;w(y) +
1

2
eBsym;w(y)Bw(y

2);(64)

where eBsym;w(y) is the ordinary generating series of unlabelled weighted � -symmetric B-structures.
Now, applying the dissymmetry theorem, leads to

eA(y) = 1

2
eAo;w(y) +

1

2
eBsym;w(y):(65)

The only unknown term in the above equation is eBsym;w(y). We �rst establish an additional
condition on the edge degree distribution for an edge-rooted oriented solid 2-tree to be � -symmetric.
Since the root edge must remain �xed and all other edges are exchanged pairwise, the edge degree
distribution vector ~n must have all its components even except one odd corresponding to the degree
of the rooted edge.

For an edge degree distribution ~n = (n1; n2; : : :) satisfying the previous condition, and using the

fact that eBsym;w(y) = yrkB
k(y2), we have

j eBsym[~n]j = 2k

n� 1

� n�1
2

~n��k
2

�
;(66)

where k corresponds to the root edge degree. We now present the �nal result of this paper.

Proposition 12. Let ~n be a vector satisfyingX
i

ni = n and
X
i

ini = 3m:

Then, the number j eA[~n]j of (non oriented) unlabelled solid 2-trees having ~n as edge degree distribu-
tion is given by

j eA[~n]j = 1

2
j eAo[~n]j+

1

2
j eBsym[~n]j;(67)

where

j eBsym[~n]j =
8<:

2k

n � 1

� n�1
2

~n��k
2

�
; if ~n has a unique odd component;

0; otherwise;

�k being the vector having 1 at the kth component and 0 everywhere else, and

j eAo[~n]j =
2

n� 1

X
k2Supp(~n)

X
djfk;~n��kg

�(d)

� n�1
d

~n��k
d

�
+

�(3j~n)

n

�
n=3

n1=3; n2=3; : : :

�
�

2

3n

�
n

n1; n2; : : :

�
:

Appendix.

To conclude this paper, we give here two tables giving the numbers of unlabelled solid 2-trees
oriented and unoriented as well as the number of unlabelled � -symmetric B-structures. The �rst
table gives these numbers according to the number n of edges for odd values of n from 1 up to
21, and the second, according to edge degree distribution for a few vectors ~n. We use the notation
1n12n2 � � � , where i ni means ni edges of degree i.
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n j eAo[n]j j eBsym[n]j j eA[n]j
1 1 1 1
3 1 1 1
5 1 1 1
7 2 2 2
9 7 3 5
11 19 7 13
13 86 12 49
15 372 30 201
17 1825 55 940
19 9143 143 4643
21 47801 273 24037

Table 1. Number of solid 2-trees according to the number of edges

~n j eAo[~n]j j eBsym[~n]j j eA[~n]j
172131 2 0 1

182231 9 3 6

112213141 46 0 23

11051 3 1 2

1154151 2 0 1

1163251 17 5 11

1152271 34 0 17

Table 2. Number of solid 2-trees according to edge degree distribution
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