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Abstract. We present a family of number sequences which interpolates between

the sequences Bn, of Bell numbers, and n!. It is de�ned in terms of permutations with

forbidden patterns or subsequences. The introduction, as a parameter, of the number

m of right{to{left minima yields an interpolation between Stirling numbers of the se-

cond kind S(n;m) and of the �rst kind (signless) c(n;m). Moreover, q-counting the

restricted permutations by special inversions gives an interpolation between variants

of the usual q-analogues of these numbers.

R�esum�e. Nous pr�esentons une famille de suites de nombres qui interpole entre la

suite Bn des nombres de Bell et la suite n!. Cette famille est d�e�nie en termes de per-

mutations �a motifs interdits. L'introduction comme param�etre du nombre d'�el�ements

saillants minimums de gauche �a droite donne une interpolation plus �ne entre les

nombres de Stirling de deuxi�eme esp�ece S(n;m) et de premi�ere esp�ece (sans signe)

c(n;m). De plus, un q-comptage de ces permutations selon des inversions particuli�eres

donne une interpolation entre des variantes des q-analogues habituels de ces nombres.

1 Introduction

The study of Stirling numbers and their q{analogues has a long history;
in the last twenty years mathematicians have been interested in models giving
combinatorial interpretations of classical relations involving the q{analogues of
Stirling numbers. In 1961, Gould [13] gives expressions in terms of symmetric
functions. A combinatorial treatment of q{Stirling numbers of second kind,
involving �nite dimensional vector spaces over a �eld Kq of cardinality q and
inversions of restricted growth functions corresponding to set partitions is due
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to Milne [18, 19, 20]. In [11], Garsia and Remmel introduce particular rook
placements in Ferrers boards. Later, Leroux [15] introduces 0{1 tableaux to
prove the conjecture of Butler [8] concerning the q{log concavity for q{Stirling
numbers, and De M�edicis and Leroux [16, 17] study and generalize q{Stirling
numbers of both kinds, using this interpretation. See also Wachs and White
[25].

On the other hand, the study of permutations with forbidden subsequences
has made meaningful progresses in the last thirty years: Simion and Schmidt
have showed that the n{th Catalan number is the common value for the number
of permutations with a single forbidden subsequence of length three [23]; B�ona
in [5, 6] and Gessel in [12] provide some other results for permutations avoiding
a single forbidden subsequence of length four. Concerning permutations avoi-
ding a single subsequence of length greater than four, Regev [21] obtained an
interesting result, that is: the number of permutations of length n avoiding the
pattern 1 : : : (k+1) is asymptotically equal to c(k�1)2nn(2k�k

2)=2, where c is a
constant. Pell, Fibonacci, Motzkin and Schr�oder numbers are sequences which
count permutations avoiding more than one forbidden subsequence. We refer to
Guibert [14] and West [26] for an exhaustive survey on the results and on the
tools used to study permutations with forbidden subsequences and to B�ona [7]
for recent results.

In this paper we put these two research areas together. In particular, we
give combinatorial interpretations of q{analogues of Stirling numbers of both
kinds in terms of permutations with forbidden subsequences. More precisely,
in the spirit of two previous works of Barcucci, Del Lungo, Pergola, Pinzani
[3, 4], we introduce an in�nite family

�
Bj
n

	
j�1

of permutations with forbidden

subsequences whose cardinalities interpolate between the Bell number Bn and
n!. By considering right{to{left minima and jth-kind inversions (see the de�ni-
tion in Section 2), this specializes to an interpolation between Stirling numbers
of the second kind S(n;m) and of the �rst kind (signless) c(n;m) and their q{
analogues. In fact, for j large Bj

n is the set of all permutations. For j = 1, there
is a simple bijection between B1

n and set partitions of f1; 2; : : : ; ng for which
right{to{left minima of permutations correspond to blocks, and �rst-kind inver-
sions, essentially to usual inversions in partitions.

In Section 2, we recall the concept of permutation with forbidden subse-
quences and generalize some classical de�nitions about permutations. We also
recall the classical de�nitions of the q-analogues Sq [n;m] and cq[n;m] of the
Stirling numbers. In Section 3, we introduce a class of permutations with one
forbidden subsequence, counted by the Bell numbers and we call them Bell per-
mutations for this reason. This is the case j = 1. These permutations avoid
the subsequence 4�132; this is a natural extension of the forbidden pattern which
consists of three decreasing elements in a permutation [23]. A bijection with set
partitions is established and also the connection with the classical q{analogue.
In Section 4, the forbidden subsequence characterizing Bell permutations is ge-
neralized, and we obtain an in�nite family Bj of classes of permutations. The
n{th term of each number sequence associated to the class lies between the
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n{th Bell number and n!. An evaluation of Bell polynomials is obtained in
the particular case j = 2, and the q{analogue is given a combinatorial inter-
pretation. The permutations of length n counted by the n{th term of this
sequence are in bijection with bicolored set partition on a (n � 1){element set,
and both a recursive and a direct bijection is presented in Section 5. Section
6 contains enumerative results on the classes of permutations Bj =

S
n�1B

j
n,

j � 1, and a combinatorial interpretation of polynomials a
(k;j)
n;m (q) such that

a
(m+1;1)
n;m (q) = qn�mSq [n;m] and a

(n+1;1)
n;m (q) = qn�mcq [n;m].

2 Notations and De�nitions

In this section we recall the concepts of permutations with forbidden subse-
quences and generalize some classical de�nitions about permutations. In parti-
cular, the concept of jth{kind inversion is introduced. We also recall the classical
q-analogues of Stirling numbers and the concept of generating tree.

A permutation � = �(1)�(2) : : :�(n) on [n] = f1; 2; : : : ; ng is a bijection
from [n] to [n]. Let Sn be the set of permutations on [n]. A permutation
� 2 Sn contains a subsequence of type � 2 Sk if and only if a sequence of indices
1 � i1 < i2 < : : : < ik � n exists such that �(i1)�(i2) : : : �(ik) is ordered as
� . We denote the set of permutations of Sn avoiding subsequences of type � by
Sn (� ). The concept of permutation avoiding a subsequence of type � can be
extended to any totally ordered set `, for example, for ` an l{element subset of
[n], we can use the notation S`(� ) in this case.

Example 2.1 The permutation 58132674 belongs to S8(4321) because none
of its subsequences of length 4 are of type 4321. This permutation does not
belong to S8(4132) because there exist some subsequences of type 4132 like, for
example, �(2)�(3)�(6)�(8) = 8164.

A barred subsequence �� on [k] is a permutation of Sk having a bar over one
of its elements. Let � be a permutation on [k] identical to �� but unbarred and
�̂ be the permutation on [k � 1] made up of the (k � 1) unbarred elements of
�� , rewritten to be a permutation on [k � 1]. A permutation � 2 Sn contains a

type �� subsequence if � contains a type �̂ subsequence that, in turn, does not
expand to a type � subsequence. We denote the set of permutations of Sn not
containing type �� subsequences by Sn(�� ) and we set S(�� ) =

S
n�1 Sn(�� ) In

words, � 2 Sn(�� ) if and only if any subsequence of type �̂ of � can be extended
to a subsequence of type � .

Example 2.2 If �� = 4�132 then � = 4132 and �̂ = 321. The permutation
� = 58132674 belongs to S8(�� ) because all its subsequences of type �̂ :
�(1)�(4)�(5) = 532, �(2)�(4)�5) = 832, �(2)�(6)�(8) = 864 and
�(2)�(7)�(8) = 874 are subsequences of a sequence of type � , because
�(1)�(3)�(4)�(5) = 5132, �(2)�(3)�(4)�(5) = 8132,
�(2)�(4)�(6)�(8) = 8364 and �(2)�(5)�(7)�(8) = 8274 are of type � .
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If we have the set �1 2 Sk1 ; : : : ; �p 2 Skp of barred or unbarred permutations,
we denote the set Sn (�1) \ : : : \ Sn(�p) by Sn (�1; : : : ; �p) or by Sn(F ), if F =
f�1; : : : ; �pg. For � 2 Sn, we call insertion sites the n+ 1 positions lying on the
left of �(i), 1 � i � n, and on the right of �(n); the site i is the one on the
left of �(i) and the site (n+ 1) is on the right of �(n). The site i of � 2 Sn(F )
is called active if the insertion of n + 1 into the position between �(i � 1) and
�(i) gives a permutation belonging to the set Sn+1(F ); otherwise it is said to
be inactive.

Example 2.3 The permutation � = 58132674 2 S8(4�132) has 4 active sites
that is the sites: 3, 5, 8 and 9. Indeed, the permutations: 589132674, 581392674,
581326794 and 581326749 belong to S9(4�132), while the remaining sites are
inactive, for example 581326974 has the subsequence 974 of type 321 but it is
not a subsequence of a sequence of type 4132.

Let � be a permutation on [n]. The element �(i), 1 � i � n, is a right{to{

left minimum if �(i) < �(t); for all t 2 [i+ 1; n]. This means that an index i1,
i + 1 � i1 � n, such that �(i) > �(i1) does not exist. We propose to generalize
the concept of right{to{left minimum as follows: let � be a permutation on [n];
the element �(i), 1 � i � n, is a j{th kind right{to{left minimum if and only
if a sequence of indices of length j: i1; :::; ij, i + 1 � i1 < ::: < ij � n, such
that �(i) > �(il), 1 � l � j does not exist. This implies that the j rightmost
elements of � are trivially j{th kind right{to{left minima. Of course a right{
to{left minimum is the same as a �rst kind right{to{left minimum while each
element of the permutation is an 1{kind right{to{left minimum. Hence the
number of 1{kind right{to{left minima is the length of the permutation.

Example 2.4 The permutation � = 58132764 has:

� 3 right{to{left minima: �(3) = 1, �(5) = 2 and �(8) = 4;

� 5 second kind right{to{left minima: �(3) = 1, �(4) = 3, �(5) = 2, �(7) = 6
and �(8) = 4;

� 6 third kind right{to{left minima: �(3) = 1, �(4) = 3 �(5) = 2, �(6) = 7,
�(7) = 6 and �(8) = 4;

� 8 1{kind right{to{left minima.

Let � be a permutation on [n]. An inversion is a pair of indices, (s; t),
1 � s < t � n, such that �(s) > �(t); furthermore, we say that it is a j{
th kind inversion if �(t) is a j{th kind right{to{left minimum. Following this
de�nition the classical concept of an inversion becomes an 1{kind inversion,
while the number of inversions with respect to the right{to{left minima are �rst
kind inversions. We use the notation invj(�) to denote the number of j{th kind
inversions of �.

Example 2.5 The permutation � = 58132764 of Example 2.4 has:
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� 9 �rst kind inversions: (1; 3),(1; 5),(1; 8),(2;3),(2;5),(2; 8),(4; 5),(6;8),(7;8);

� 12 second kind inversions: (1; 3),(1; 4),(1; 5),(1; 8),(2;3),(2;4),(2; 5),(2; 7),
(2; 8),(4; 5),(6; 8),(7; 8);

� 13 third kind inversions: (1; 3),(1; 4),(1; 5),(1;8),(2;3),(2;4),(2; 5),(2; 6),
(2; 7),(2; 8),(4; 5),(6; 8),(7; 8);

� 13 1{kind inversions: (1; 3),(1; 4),(1; 5),(1; 8),(2; 3),(2;4),(2;5),(2; 6),
(2; 7),(2; 8),(4; 5),(6; 8),(7; 8).

Hence we have inv1(�) = 9, inv2(�) = 12, inv3(�) = 13, inv1(�) = 13.

The classical q-analogues of the Stirling numbers of the �rst kind (signless)
cq [n;m] and of the second kind Sq[n;m], as de�ned by Gould [13] in 1961, are
characterized by the generating functions

nX
m=0

cq[n;m]zn�mym =
n�1Y
i=0

(y + [i]qz); (2.1)

1X
n=m

Sq [n;m]zn�m =
mY
i=1

1

1� [i]qz
; (2.2)

where [i]q := 1+ q+ : : :+ qi�1 = (qi � 1)=(q� 1) denotes the usual q-analogues
of i. They satisfy the recurrences

cq[n+ 1;m] = cq[n;m� 1] + [n]qcq [n;m]; (2.3)

Sq [n+ 1;m] = Sq[n;m� 1] + [m]qSq [n;m]: (2.4)

A combinatorial interpretation of the polynomial Sq[n;m] as the generating
function of the partitions of an n-element set into m blocks, where the variable
q marks the \inversions", has been given by Milne [19, formula (4.9)], Leroux
[15, formula (2.1)] and Wachs and White [25, the statistics lb]. The de�nition is
as follows. Let p be a partition of the set [n] = f1; 2; : : :; ng, written in standard
form (see example 3.1). An inversion of p is a pair (�; �) of elements of [n] such
that � > �, � appears to the left of �, and � is a block minimum. Let inv(p)
denote the number of inversions of p. Then we have:

Sq [n;m] =
X

p2Par(n;m)

qinv(p);

where Par(n;m) denotes the set of partitions of [n] into m blocks.

A combinatorial interpretation of the polynomials cq [n;m] is given by Le-
roux in [15].

The concept of generating tree was introduced by Chung, Graham, Hoggatt
and Kleiman in [9] for the study of Baxter permutations. Later West applied it
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to the study of various permutations with forbidden subsequences [27]. Gene-
rating trees and succession rules can be used in combinatorics to deduce enu-
merative results about various combinatorial objects [1], permitting also their
random generation [2].

The generating trees used in this paper to study permutations are rooted
trees, labelled in IN, having the property that the labels of the set of children of
each node x can be determined from the label of x itself. More precisely, such a
generating tree is speci�ed by a recursive de�nition consisting of:

1. the basis: the label of the root,

2. the inductive step: a set of succession rules that yields a multiset of label-
led children which depends solely on the label of the parent. Moreover, the
number of labelled children produced by a parent with label k, is exactly
k; so the label size gives the degree of the node itself.

A succession rule can be used to describe the growth of the objects to which
it is related and also to obtain the number sequence counting the objects them-
selves. The introduction of a parameter, say j, in a succession rule allows us
to obtain a denumerable family of number sequences. In [3] the introduction of
such a parameter into the classical succession rule for the Motzkin numbers allo-
wed the authors to de�ne number sequences such that the n{th number of each
of them is lying between the n{th Motzkin and Catalan numbers. Moreover,
the permutations enumerated by each number sequence are identi�ed: they are
permutations with two forbidden subsequences; the �rst, of length three, is �xed
and the second has a length which increases with j. In [4] the introduction of
the parameter j in the classical succession rule for the Catalan numbers de�nes
number sequences such that the n{th term interpolates between the n{th Ca-
talan number and n!. The objects that each sequence counts are permutations
with j! forbidden subsequences of length (j + 2).

3 Bell permutations and set partitions

The Stirling numbers of the second kind, denoted by S(n;m), for n � m � 0,
count the ways of partitioning a set of n objects intom nonempty subsets, called
blocks. The number of partitions of an n{element set is given by the sum over
m, 0 � m � n, of S(n;m); this de�nes the n{th Bell number, denoted by Bn

[22]. For example, there are 7 ways of partitioning a 4{element set into two
blocks:

f1; 2; 3g f4g; f1; 2; 4g f3g; f1; 3; 4g f2g; f1; 2g f3; 4g; f1; 3g f2; 4g; f1; 4g f2; 3g;
f1g f2; 3; 4g,

and the total number of partitions is

B4 =
4P

m=0
S(4;m) = 0 + 1 + 7 + 6 + 1 = 15. Note that S(0; 0) = B(0) = 1.
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The standard representation of a given set partition consists in using the
increasing order within each block and, in listing the blocks according to the
increasing order of their minimumelements. We consider a new representation of
the partition by moving the minimum element from the �rst to the last position
in each block and then erasing the curly braces. The sequence of elements thus
obtained is a permutation such that its (�rst kind) right{to{left minima are
exactly the minimum elements of the blocks in the partition.

Example 3.1 Let us consider the following partition of an 8{element set into
three blocks, written in standard form:

p = f1; 5; 8g f2; 3g f4; 6; 7g:

The new representation described above is the permutation:

�(p) = 5 8 1 3 2 6 7 4

which has exactly three (underlined) right{to{left minima.

We observe that the permutation � = �(p) obtained from a partition p of
an n{element set contains a subsequence of type �̂ = 321 if and only if it is a
subsequence of some sequence of type � = 4132. In other words, three indices
i1, i2, i3, i1 < i2 < i3, such that � (i1) > � (i2) > � (i3) can be found in � if and
only if it exists an index j, i1 < j < i2 < i3, such that � (i1)�(j)� (i2)� (i3) is of
type 4132. Such a condition is described by the forbidden subsequence 4�132. Let
� (i1) < � � � < � (im) be the m right{to{left minima of �; then � (il), 1 � l � m,
is the �rst element of the lth block in the corresponding partition, while the
elements to the left of � (il) and to the right of �(il�1) (if l > 1) are all the
elements belonging to the lth block of the partition. Permutations in Sn(4�132)
with m right{to{left minima are counted by the Stirling numbers of the second
kind, and Sn(4�132) is enumerated by the Bell numbers, Bn. Moreover, the �rst-
kind inversions of �, i.e. the inversions with respect to the right{to{left minima,
are essentially the same as the classical inversions of the original partition p.
The di�erence here is that each non minimum element contributes one more to
the inversions since in �(p) it is written to the left of the minimum element of
its block. Hence we have

inv1(�(p)) = inv(p) + n�m; (3.1)

if the partition has m blocks, and we see that the q-counting of permutations
in Sn(4�132) with m right{to{left minima, according to the number of �rst-kind
inversions, is given by qn�mSq[n;m].

Proposition 3.1 We have

X
�2Sn(4�132)

qinv1(�) = qn�mSq [n;m]: (3.2)
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The �rst construction we take into consideration for the class S(4�132) is a re-
cursive construction which allows to obtain Sn+1(4�132), starting with Sn(4�132).
It uses the concept of active site of a permutation introduced in Section 2. Let
� 2 Sn(4�132) and i1 < i2 < ::: < im�2 < n be the indices of its (m � 1) right{
to{left minima, namely �(i1); �(i2); :::; �(im�2); �(n). The active sites of � are
the sites on the immediate left of each right{to{left minimum and on the right
of the last element, that is, sites of � are i1, i2; : : : ; im�2, n and n+ 1. Indeed,
the insertion of n+ 1 into the site (n+ 1) does not cause any occurrence of the
forbidden subsequence 321; by inserting n+ 1 into the site l, l = i1; :::; im�2; n
we can obtain the forbidden subsequences 321 if and only if there exist two
indices t1, t2 such that l < t1 < t2 and n + 1 > �(t1) > �(t2), but in this case
n+ 1�(l)�(t1)�(t2) is of type 4132. Each other site is inactive: take a site lying
on the left of �(i) that is not a right{to{left minimum. This means that there
exists i1 > i : �(i) > �(i1), and the insertion of n+ 1 on the left of �(i) gives
n+1�(i)�(i1), that is a decreasing sequence of length three, with n+1 and �(i)
adjacent elements and we get a forbidden subsequence 321. Observe that the
insertion of n+1 into the site n+1 increases the number of right{to{left minima
of � while each other insertion does not change this number in the permutation.
The above arguments prove the following proposition:

Proposition 3.2 Let � 2 Sn(4�132) be a permutation with k � 2 active sites,

that is the sites i1, i2; : : : ; ik�2, n and (n + 1). Then the number of active

sites is still k in the permutation obtained by inserting n+1 into any active site

di�erent from the rightmost one; the permutation obtained from � by inserting

n+1 into the site n+1 has (k+1) active sites: i1; i2; : : : ; ik�2, n, (n+1) and
(n + 2).

If we classify the permutations of Sn(4�132), n � 1, according to their number
of active sites then we can synthetically describe this recursive construction by
the succession rule:�

basis : (2)
inductive step : (k)! (k)k�1(k + 1);

(3.3)

since the only permutation of S1(4�132), that is 1, has two active sites.

The expansion of this succession rule gives the generating tree of Fig. 1,
where the active sites are denoted by \ ". Consequently if pn;k = jf� 2 Sn(4�132) :
� has k active sitesgj then�

p1;2 = 1;
pn+1;k = pn;k�1+ (k � 1)pn;k; 2 � k � n + 2;

(3.4)

which is the recursive relation of the Stirling numbers of the second kind (see
Comtet [10]), replacing pn;k by S(n; k � 1). Moreover the number of new �rst-
kind inversions which are created by inserting n + 1 into the k active sites
i1; i2; : : : ; ik�2; n, and n + 1 is respectively k � 1; k � 2; : : : ; 2; 1; and 0. Hence
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the polynomialpn;k(q) which q-counts these permutations according to �rst-kind
inversions satis�es the recurrence

pn;k(q) = pn;k�1(q) + q[k � 1]qpn;k(q): (3.5)

This is coherent with our previous observation that pn;m+1(q) = qn�mSq [n;m]
using (2.4).

   4    1    2    3  

   1    4    2    3  

(2)

(4)

   1    3    2    4  

   1    3    4    2  

   4    1    3    2  
(3)

   3    1    2    4  

   3    1    4    2  

   2    1    3    4  

   2    1    4    3  

   3    4    1    2  

   2    4    1    3  
(3)

   2    3    1    4  
(3)

   2    3    4    1  
(2)

(3)

(4)

(3)

(3)

(4)

(3)

(4)

(4)

(5)

(4)

(4)

(3)

  1 

   1    2  

(2)

    2    1   

   1    2    3  

(3)

   1    3    2   

(3)

    3    1    2   

(3)

  2    1    3  

   2    3   1  
(2)

   1    2    3    4  

   1    2    4    3  

Figure 1: The generating tree for 4�132{avoiding permutations.

Proposition 3.3 Permutations in Sn(4�132) are counted by the n{th Bell num-

ber, S(n;m) counts the number of permutations in Sn(4�132) with m right{to{
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left minima or equivalently with (m+1) active sites, and qn�mSq [n;m] q-counts
these permutations according to �rst-kind inversions.

De�nition 3.4 Permutations in Sn(4�132) are called Bell permutations.

Another approach in order to generate S(4�132) permutations, is to construct
Sn+1(4�132), using S1(4�132); S2(4�132); :::; Sn(4�132). Indeed, the permutations in
Sn+1(4�132) with m right{to{left minima can be obtained in the following way.
For each l such that 0 � l � n:

� extract an l{element subset ` from the set f2; :::; n+ 1g,

� construct the permutations in S`(4�132) with (m�1) right{to{left minima,

� add the element 1 on its left,

� place on the left of 1 the remaining (n� l) elements in an increasing order.

Here the notation S`(� ) refers to the permutations of the totally ordered set
` which avoid the pattern � . The principle of this approach is represented by
Fig. 2.

This implies that:

pn+1;k+1 =
nX

l=m

�
n

l

�
pl;k: (3.6)

As pn;m+1 = S(n;m) we obtain a combinatorial interpretation of the well
known relation involving the second kind Stirling numbers (see Comtet, [10]),
by means of Bell permutations. There is a q-analogue of (3.6) due to Mercier
and Sundaram (see [16, formula (2.12)]), whose combinatorial proof uses the
concept of non-inversions of a partition p. We can de�ne the concept of (�rst-
kind) non-inversions for permutations as follows: a non-inversion of � is a pair
(i; j), with i < j such that �(i) is a right{to{left minimumand �(i) < �(j). For
� = �(p), this corresponds to the statistics ls of [6]. Let us denote by Sq [n;m]
the polynomial which q-counts the permutations in Sn(4�132) having m right{
to{left minima, according to non-inversions. Our �rst recursive construction of
permutations in Sn+1(4�132), which inserts the element n + 1 in permutations
of Sn(4�132) shows that

Sq [n+ 1;m] = qm�1Sq [n;m� 1] + [m]qSq [n;m]: (3.7)

This implies that in fact

Sq[n;m] = q(
m
2 )Sq [n;m]: (3.8)

The q-analogue of (3.6) is then given by

Sq [n+ 1;m] =
nX

l=m�1

�
n

l

�
qlSq[l;m� 1]; (3.9)

10



since, in the second construction of Sn+1(4�132) described above, and summari-
zed by Figure 2, the only new non-inversions that are created come from the l
elements which are to the right of 1.

By summing over m, we obtain the q-analogue Bn(q) of the Bell numbers as
de�ned by Milne in [15],

Bn(q) =
nX

m=0

Sq[n;m] (3.10)

with the combinatorial interpretation

Bn(q) =
X

�2Sn(4�132)

qnin(�) (3.11)

where nin(�) denotes the number of non-inversions of �. Moreover, the second
construction of the permutations in Sn(4�132), giving rise to (3.9) also yields the
reccurence formula

Bn+1(q) =
nX
l=0

�
n

l

�
qlBl(q); (3.12)

which is due to Milne [18] and extends the classical recursion for Bell numbers
(see [10]).

1 S  ( 4 1 3 2)

Figure 2: The second construction for S(4�132) permutations.

4 Generalized Bell permutations

In this section we introduce a parameter j in the succession rule (3.3) giving
the Bell numbers. Each value of j yields a number sequence such that the
n{th term lies between Bn and n!. We are interested in characterizing the
permutations enumerated by these number sequences.

Let us carefully examine the succession rule (3.3): the \exponents" of the
terms on the right hand side of the inductive step are k�1 for the label (k) and
1 for the label (k+ 1). We can make these \exponents" depend on a parameter
j, thus giving the \exponent" k � j to the label (k) and j to the label (k + 1);
moreover if k � j then only the label (k + 1) is obtained exactly k times. The
exact form of the succession rule we obtain is

11



8<
:

basis : (2)
inductive step : (k)! (k + 1)k; k � j
inductive step : (k)! (k)k�j(k + 1)j; k > j:

(4.1)

It is easy to verify that if j = 1, then the succession rule (4.1) reduces to
(3.3).

In (4.1) the \exponent" of a label means the number of times the label must
be repeated and the number of terms on the right hand side of the inductive
step is exactly k. The idea is to perform (4.1) on permutations and try to
characterize the class we obtain. The �rst step is to give an interpretation
of (4.1) in terms of active sites in a permutation; we have to decide how the
active sites are modi�ed when a new element is added into a permutation with
a �xed number of active sites. The second step is to describe the resulting
permutations in terms of forbidden subsequences. We refer to the �rst active
site as the leftmost active site in the permutation and so on, and we make the
following choices:

� if a new element is inserted in the lth active site, l � k � j, then the site
on the left of the inserted element is inactive and the number of active
sites do not change in the new permutation (see Fig 3, (case �)),

� if a new element is inserted in the lth active site, l � k � j + 1, then the
site on the left of the inserted element is also active and the number of
active sites grows by one (see Fig. 3, (case �)).

. . . . . . . π. .

. .

(n)

. . . .

..

. (n).

.

. π(n-t+1).

. . ..

.

. . . . . . . π(n)

....

π.1

..

k-j-1 π(i     )k-j π(n-j+2) π(n-t+1)(i        ).π(i  )t

(i  )1

...... (i  )1

...... (i  )

π

π π(1) π π(i  )t

π π(1) π (n+1)

π π(1) π π(i  )t π k-j-1 π(i     )k-j π(n-j+2) π(n-t+1)(i        )

π k-j-1 π(i     )k-j π(n-j+2)(i        ) (n+1)

Figure 3: The active sites in the permutations obtained from a permutation of
length n with (k � 1) right{to{left minima of j{th kind, by inserting n+ 1.

The permutations we obtain avoid the subsequences (j + 2)(j + 1)� where
� 2 Sj and the elements corresponding to (j + 2) and (j + 1) are consecu-
tive. In terms of permutations with forbidden subsequences such a condition
is given by the union of j sets of permutations with forbidden subsequences:Sj

i=1 S
�
�F j
i

�
where �F j

i is a set of barred subsequences �� = (j+3)�i(j+2)�i with

�i a permutation on the set f(j + 1); :::; (i+ 1); (i � 1); :::; 1g; so
��� �F j

i

��� = j! and

j�� j = j + 3.

Example 4.1 Let j = 2 then 1 � i � 2. The set �F 2
2 obtained for i = 2 is

f5�2431; 5�2413g.
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Let us note that in the union i can assume all values between 1 and j. This
means that we are not interested in the value of the element lying between
(j + 3) and (j + 2), but at least one element must exist between (j + 3) and
(j+2). Such a condition avoids subpatterns of two adjacent decreasing elements
having at least j smaller elements on their right. Moreover, i cannot be equal
to (j + 1) because the subsequence (j + 3)(j + 1)� (� being a permutation of
length j) is of the forbidden type. Let Bj be the class of permutations de�ned

by Bj =
S

n�1B
j
n where Bj

n =
Sj

i=1 Sn(
�F j
i ).

Proposition 4.1 For j � 1, let � be a permutation in Bj
n having k � 2 active

sites: i1, : : : ; ik�j; n� j + 2; n� j + 1; : : : ; n+ 1. Then the number of active

sites does not change in the permutation obtained by inserting n+1 into the site

it, t = 1; :::; k� j; the permutation obtained from � by inserting n + 1 into the

site (n+ 1� t), 0 � t � j � 1, has (k + 1) active sites: i1; : : : ; ik�j; n� j + 2;
: : : ; n+ 1; n+ 2.

Corollary 4.2 The class Bj has a recursive construction described by the suc-

cession rule (4.1).

5 Bicolored set partitions and permutations

In Section 3 we illustrated the case j = 1, that is we showed that 4�132{
avoiding permutations are counted by the Bell numbers and gave a bijection
with set partitions. We also presented q-analogues. For j = 2 we now show
that the number of B2-permutations, that is of (5�1432; 5�1423) or (5�2431; 5�2413){
avoiding permutations are values of Bell polynomials whose n{th term is de�ned
by
P

m�0 2
mS(n � 1;m) (see [24], sequence M1662). These numbers count

bicolored set partitions (that is to say each block can be red or black) and there
is a bijection between these two classes of structures. This correspondence can
be easily obtained by applying the succession rules:�

basis : (2)
inductive step : (k)! (k)k�2(k + 1)2; k � 2;

(5.1)

to the bicolored set partitions, obtaining a recursive bijection. In bicolored set
partitions the label k represents the number of blocks plus two. Given an n{
element set bicolored partition with k � 2 blocks, labeled by (k), we can add
on its right the block f(n + 1)g that can be red or black and in this case the
number of blocks becomes k � 1, so the label of these new partitions is (k+ 1);
or we can insert n+1 into any of the blocks of the partition, the color remaining
the same. This bijection is represented in Fig. 4, where the red blocks are those
with the underlined elements.

Under this bijection p 7�! �(p) between bicolored set partitions and B2-
permutations, we have the following parameter correspondences:
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(4)

(5)

(5)

(5)
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,
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O
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   1  

(3)

   1    3    2  
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    3    1    2  
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(4)
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  2    1    3  
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   1    2    3    4  

(4)

(5)
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   2    1    4    3  

   2    4    1    3  
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   2    3    4    1  

   1    4    2    3  

Figure 4: The �rst four levels of the generating tree for permutations in B2 and
the constructive bijection with the bicolored set partitions.
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bicolored set partitions B
2-permutations

cardinality of the partitioned set +1 n = length of the permutations
nb of black blocks nb of right{to{left minima �1
m = nb of blocks nb of second kind right{to{left minima �1

nb of red blocks + nb of inversions nb of second{kind inversions
+2(n �m � 1)

In particular, if p is a colored partition of [n�1] having m blocks, r of which
are red, then we have

inv2(�(p)) = inv(p) + 2(n�m� 1) + r (5.2)

and it follows that the q-counting, with respect to second-kind inversions, of the
set B2

n;m of permutations in B2
n having m+ 1 second-kind left{to{right minima

is given by

X
�2B2n;m

qinv2(�) = q2(n�m�1)Sq [n� 1;m](1 + q)m: (5.3)

The standard representation for bicolored set partitions is the same as for
the set partition, but, in this case, the blocks can be red or black. In order
to directly obtain a permutation in Sn(5�1432; 5�1423)

S
Sn(5�2431; 5�2413) from a

(n� 1){element set bicolored partition we consider a new representation of the
partition. It is obtained by performing the following steps:

1. shift each number in the bicolored set partition of one unit obtaining a
(n� 1){element set bicolored partition on f2; : : : ; ng;

2. move the minimum element from the �rst to the last position into each
block;

3. add on the left of the resulting partition the black block f1g;

4. erase the curly braces but maintain the color of numbers;

5. starting from the left to the right, place each black number which is a
right{to{left minimum in the position on the left of the position occupied
by the nearest black number on its right which is a right{to{left minimum;
the last (right-most) black left{to{rightminimumshould be at the extreme
right, jumping over red elements if necessary;

6. use only the black color for the numbers in the obtained sequence.

Example 5.1 The following bicolored set partition p, where the red elements
are underlined,

p = f1; 4gf2; 3; 7gf5; 8; 9gf6; 11gf10g; (5.4)
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bijectively corresponds to the permutation:

�(p) = 5 1 4 8 3 9 10 6 12 2 11 7: (5.5)

As a matter of fact, this is the �nal result obtained by performing the above
described 6 steps on (5.4) as follows:

1. f2; 5gf3; 4; 8gf6; 9; 10gf7; 12gf11g;

2. f5; 2gf4; 8; 3gf9; 10; 6gf12; 7gf11g;

3. f1gf5; 2gf4; 8; 3gf9; 10; 6gf12; 7gf11g;

4. 1 5 2 4 8 3 9 10 6 12 7 11;

5. 5 1 4 8 3 9 10 6 12 2 11 7;

6. 5 1 4 8 3 9 10 6 12 2 11 7.

These 6 steps can be performed in an inverse order allowing us to pass
from a particular number sequence in Sn(5�1432; 5�1423)

S
Sn(5�2431; 5�2413) to a

bicolored set partition in one and only one way. In particular it su�ces to search
second kind right{to{left minima from the permutation in order to perform steps
6 and 5 in reverse order.

Moreover, the permutation �(p) that we obtain belongs to Sn(5�1432; 5�1423)
S

Sn(5�2431; 5�2413) because the sequence of numbers does not contain two conse-
cutive decreasing elements having on their right two smaller elements.

If j = 1, then we obtain all permutations and n! appears. Moreover the
1-kind inversions are simply the usual inversions in a permutation. Let cn;m(q)
denote the polynomial obtained by q-counting by inversions the permutations
of [n] having m right{to{left minima. The recursive construction of these per-
mutations, inserting the element n+ 1 into one of the n+ 1 active sites, shows
that

cn+1;m(q) = cn;m�1(q) + q[n]qcn;m(q): (5.6)

It follows, using (2.3), that

cn;m(q) = qn�mcq[n;m] (5.7)

and, summing over m, we �nd that

[n]!q =
nX

m=0

qn�mcq [n;m]; (5.8)

where [n]!q =
Qn

i=1[i]q is the q-analogues of n!.
For each other value of j � 3 we obtain sequences of numbers such the n{

th term of each of them is between Bn and n! (see Fig. 5). These sequences
do not appear in the Sloane{Plou�e book [24]: \The Encyclopedia of Integer
Sequences".
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S  (52431,52413)n

j = Sn

S  (615432,615423,615342,615324,615243,615234)
S  (625431,625413,625341,625314,625143,625134)
S  (635421,635412,635241,635214,635142,635124)

n

n

n

...

...

...

...

...

...

S  (51432,51423)

S  (4132)j = 1

j = 3

n

n

Index Family  of  permutations

.

j = 4

.

.

1  2  6  22    94  454  2430  14214    89918    610182     4412798

1  2  6  24  114  618  3732  24702  177126  1363740  11195286

1  2  5  15    52  203    877    4140    21147    115975       678570

1  2  6  24  120  696  4536 32568  254136  2133816  19130040

1  2  6  24  120  720  5040  40320  362880  3628800  39916800

Numbers

1  2  6  24  120  720  4920  37320  309120  2763720  26440920

j = 2

j = 5

. .
.
.
.
.

.

.

.

.
.

Figure 5: Table of permutations.

6 Enumerative results for Bj-permutations

For each j, we are interested in the enumeration of the permutations in Bj

according to the length, number of right{to{left minima and the number of
j{th kind inversions. The reason we introduce this last parameter is to give
a combinatorial interpretation of the q{analogue that we obtain in a natural
way from (4.1) by giving a \weight" to the label on the right{hand side of each
inductive step in (4.1). More precisely the i{th child of a label (k) is given the
weight qk�i.

Let ajk(x; y; q) be the generating function of Bj{permutations with k active
sites, according to their length (variable x), the number of right{to{left minima
(y) and the number of j{th kind inversions (q). A detailed analysis of the
parameter modi�cations in the recursive construction of the permutations yield
the following recursive relations for ajk(x; y; q):

aj2(x; y; q) = xy;

ajk(x; y; q) = xyajk�1(x; y; q) + xq[k� 2]qa
j
k�1(x; y; q); 3 � k � j; (6.1)

ajk(x; y; q) = xyajk�1(x; y; q) + xq[j � 1]qa
j
k�1(x; y; q) + xqj[k � j]qa

j
k(x; y; q);

k � j + 1;

Solving the recursions, we obtain the following:

Proposition 6.1 The generating function ajk(x; y; q) for B
j{permutations ve-

rify:

ajk(x; y; q) = xk�1
k�2Q
i=0

(y + q[i]q) ; 2 � k � j;

ajk(x; y; q) = xk�1 (y + q[j � 1]q)
k�j

j�2Q
i=0

(y+q[i]q )

k�jQ
i=1

(1�xqj [i]q)

; k � j + 1:
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The coe�cient [xnym] ajk(x; y; q) gives a polynomial in q-counting the Bj{
permutations of length n, having m right{to{left minima and k active sites,
according to their number of j{th kind inversions.

Corollary 6.2 Let a
(k;j)
n;m (q) = [xnym ]ajk(x; y; q), m � k � 1; then we have

a
(k;j)
n;m (q) = �n;k�1cq [k� 1;m]qk�1�m; 2 � k � j; (6.2)

a(k;j)n;m (q) = qj(n+1�k)+(k�m�1)Sq [n+ 1� j; k � j] ([j � 1]q)
k�j�m

j�1X
i=0

�
k � j

m� i

�
cq[j � 1; i] ([j � 1]q)

i
;

k � j + 1; (6.3)
where �i;j is the Kronecker delta.

Let us now examine the polynomials a(k;j)n;m (q) for some particular values of j.

� If j = 1, then equation (6.3) should be used and the result is di�erent from
0 if and only if the exponent of ([j � 1]q) = 0 is zero, that is k = m + 1.

Once n and m are �xed the only possibility is a
(m+1;1)
n;m (q) = Sq [n;m]qn�m

which con�rms the results of Section 3.

� If j = 2 then equations (6.2) and (6.3) give:

a
(2;2)
1;1 (q) = 1;

a
(k;2)
n;m (q) =

�
k�2
m�1

�
Sq [n� 1; k � 2]q2n+1�k�m; k � 3:

:

By summing over m we obtain the polynomials for the permutations with
forbidden subsequences (5�1432; 5�1423) or (5�2431; 5�2413) of length n having
k active sites according to the number of their second kind inversions:X

1�m�n

a(k;2)n;m (q) = q2(n+1�k)Sq[n� 1; k� 2](1 + q)k�2; n � 2: (6.4)

This is coherent with (5.3) since k active sites in �(p) corresponds to k�2
blocks in p.

� If j =1 then equation (6.2) gives:

a(n+1;1)
n;m (q) = cq[n;m]qn�m; n � 1;

as expected.

The meaning of \Stirling numbers interpolation" lies in the observation that
the permutations of length n having m right{to{left minima are counted by the
second kind Stirling numbers for j = 1 and by the �rst kind Stirling numbers

c(n;m) for j = 1. In the intermediate cases this number, p(j)n;m, is such that

S(n;m) � p
(j)
n;m � c(n;m), and it is given by
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p(j)n;m =
nX

k=2

a(k;j)n;m (1); (6.5)

where a
(k;j)
n;m (1) can be computed by setting q = 1 in (6.3).
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