Random Sampling from Boltzmann Principles

Philippe Duchon', Philippe Flajolet?, Guy Louchard?, and Gilles Schaeffer?

L' Université Bordeaux I, 351 Cours de la Libération, F-33405 Talence, France
2 Algorithms Project, INRIA-Rocquencourt, F-78153 Le Chesnay, France
3 Université Libre de Bruxelles, Département d’informatique,
Boulevard du Triomphe, B-1050 Bruxelles, Belgium
4 ADAGE Group, LORIA, F-54000 Villers-les-Nancy, France

Abstract. This extended abstract proposes a surprisingly simple frame-
work for the random generation of combinatorial configurations based on
Boltzmann models. Random generation of possibly complex structured
objects is performed by placing an appropriate measure spread over the
whole of a combinatorial class. The resulting algorithms can be imple-
mented easily within a computer algebra system, be analysed mathemat-
ically with great precision, and, when suitably tuned, tend to be efficient
in practice, as they often operate in linear time.

1 Introduction

In this text, Boltzmann models are proposed as a framework for the random
generation of structured combinatorial configurations, like words, trees, permu-
tations, constrained graphs, and so on. A Boltzmann model relative to a combi-
natorial class C depends on a control parameter x > 0 and places an appropriate
measure that is spread over the whole of C. Random objets under a Boltzmann
model then have a fluctuating size, but objects with the same size invariably
occur with the same probability. In particular, a Boltzmann sampler (i.e., a
random generator that obeys a Boltzmann model), with the size of its output
conditioned to be a fixed value n, draws uniformly at random an object of size n.

As we demonstrate in this article, Boltzmann samplers can be derived sys-
tematically (and simply) for classes that are specified in terms of a basic col-
lection of general-purpose combinatorial constructions. These constructions are
precisely the ones that surface recurrently in modern theories of combinatorial
analysis; see, e.g., [2,7,9] and references therein. As a consequence, one obtains
with surprising ease Boltzmann samplers covering an extremely wide range of
combinatorial types.

Fixed-size generation is the standard paradigm in the random generation of
combinatorial structures, and a vast literature exists on the subject. There, either
specific bijections are exploited or general combinatorial decompositions are put
to use in order to generate objects at random based on possibility counts—this
has come to be known as the “recursive method” originating with Nijenhuis and
Wilf [12] and formalized by Flajolet, Zimmermann, and Van Cutsem in [8]. In
contrast, the basic principle of Boltzmann sampling is to relaz the constraint



of generating objects of a strictly fixed size, and prefer to draw objects with a
randomly varying size. As we shall see, normally, one can tune the value of the
control parameter z in order to favour objects of a size in the vicinity of a target
value n. If needed, one can pile up a filter that rejects objects whose size is out
of range. In this way, Boltzmann samplers may also serve for approximate-size
as well as exact-size random generation.

We propose Boltzmann samplers as an attractive alternative to standard
combinatorial generators based on the recursive method and implemented in
packages like Combstruct (under the computer algebra system MAPLE) and CS
(under MUPAD). Boltzmann algorithms are expected to be competitive when
compared to many existing combinatorial methods: they only necessitate a small
fized number of multiprecision constants that are fairly easy to compute; when
suitably optimized, they operate in low polynomial time—often even in linear
time. Accordingly, uniform generation of objects with sizes in the range of mil-
lions is becoming a possibility, whenever the approach is applicable.

2 Boltzmann models and generators

We consider a class C of combinatorial objects of sorts, with |- | the size function
from C to Zx>o. By C, is meant the subclass of C comprising all the objects in C
having size n. Each C, is assumed to be finite. One may think of binary words
(with size defined as length), permutations, graphs and trees of various types
(with size defined as number of vertices), and so on. Any set C endowed with
a size function and satisfying the finiteness axiom will henceforth be called a
combinatorial class.

Definition 1. The Boltzmann models of parameter x exist in two varieties, the
ordinary version and the exponential version. They assign to any object v € C
the following probability:

1
Ordinary/Unlabelled case: P(y) = 5] 2 with  C(x) = me,
ec
E tial/Labelled Po(y) = — it C(z) WZW
zponential/Labelled case: Pp(y) = =—— — wi x) = —.
3@ i 21

A Boltzmann generator (or sampler) I'C(z) for a class C is a process that pro-
duces objects from C according to a Boltzmann model.

The normalization coefficients are nothing but the counting generating functions
of ordinary type (OGF) for C'(z) := ), Chz™ and exponential type (EGF)
for a(a:) = >, Chx™/n!l. Only coherent values of x defined to be such that
0 <z < pc (or ps), with py the radius of convergence of f are to be considered.

The name “Boltzmann model” comes from the great statistical physicist Boltzmann
whose works (together with those of Gibbs) led to enounce the following principle: Sta-
tistical mechanical configurations of energy equal to E in a system have a probability of



occurrence proportional to e P¥. (There, 8 is an inverse temperature.) If one identifies
size of a combinatorial configuration with energy of a thermodynamical system and sets
& = e~ ?, then what we term the ordinary Boltzmann models become the true model
of statistical mechanics. The counting generating function in the combinatorial world
then coincides with the normalization constant in the statistical mechanics world where
it is known as the partition function and is often denoted by Z. Under this perhaps
artificial dictionary, Boltzmann models and random combinatorics become united.

For reasons which will become apparent, we have also defined the exponen-
tial Boltzmann model. These are appropriate for handling labelled combinatorial
structures while the ordinary models are to be used for unlabelled combinato-
rial models. In the unlabelled universe, all elementary components of objects
(“atoms”) are indistinguishable, while in the labelled universe, they are all dis-
tinguished from one another by bearing a distinctive mark, say one of the integers
between 1 and n if the object considered has size n. (This terminology is standard
in combinatorial enumeration and graph theory [2,7,9].)

The size of the resulting object under a Boltzmann model is a random vari-
able, denoted throughout by N, whose law is quantified by the following lemma.

Proposition 1. The random size of the object produced under the ordinary
Boltzmann model of parameter x satisfies

C'(z)
Clz)’

22C" (z) + 2C' ()
@ : (1)

E.(N) ==z E, (N?) =

Proof. By construction the probability of drawing an object of size n is P, (N =
n) = C,z"/C(z). Consequently, the probability generating function of N is
C(zz)/C(z) and the result follows.

In the next two sections (Sections 3 and 4), we develop a collection of rules
by which one can assemble Boltzmann generators from simpler ones. The com-
binatorial classes considered are built on a small set of constructions that have a
wide expressive power. The language in which classes are specified is in essence
the same as the one underlying the recursive method [6, 8]: it consists of the con-
structions of union, product, sequence, set, and cycle. For each allowable class,
a Boltzmann sampler can be built in an entirely systematic manner.

3 Ordinary Boltzmann Generators

A combinatorial construction builds a new class C from structurally simpler
classes A, B, in such a way that Cy, is determined from objects in {A;}7_,, {B;}}_o-
Constructions considered here are disjoint union (4), cartesian product (x), and
sequence formation (&). We define these in turn and concurrently build the cor-
responding Boltzmann sampler I'C for the composite class C, given random
generators I'A, I'B for the ingredients and assuming the values of intervening
generating functions A(x), B(z) at = to be known exactly.



Disjoint union. Write C = A + B if C is the union of disjoint copies of A
and B, while size on C is inherited from A4, B. One has C(z) = A(z) + B(z).
The Boltzmann model corresponding to C(z) is then a mixture of the models
associated to A(z) and B(z), with the probability of selecting a particular 7
in C being P(y € A) = A(z)/C(x), P(y € B) = A(x)/C(x). Let us be given a
generator for a Bernoulli variable Bern (p) defined as follows: Bern (p) = 1 with
probability p; Bern (p) = 0 with probability 1 — p; a sampler I'C given I'A and
I'B is simply obtained by

function I'C(z : real); let pa := A(z)/(A(z) + B(z));
if Bern (p4) then return(I"A(x)) else return(I’B(z)) fi.

Cartesian Product. Write C = A x B if C is the set of ordered pairs from 4
and B, and size on C is inherited additively from A4, B. For generating functions,
one finds C(z) = A(z) - B(z). A random element of C(z) is then obtained by
forming a pair {(«, 8) with «, 8 drawn independently from the Boltzmann models
A(z), B(z), respectively:

function I'C(z : real); return((I"A(z), I'B(z))) {independent calls}.

Sequences. Write C = S(A) if C is composed of all the finite sequences
of elements of A. The sequence class C is also the solution to the symbolic
equation ¢ = 1+ AC (with 1 the empty sequence), which only involves unions
and products. Consequently, one has C(z) = (1 — A(z))~!. This gives rise to
a recursive generator for sequences. Once recursion is unwound, the resulting
generator assumes a particularly simple form:

function I'C'(x : real); let A(x) be the value of the OGF of A;
draw K according to Geometric(A(z));
return the K-tuple (I"A(z), ['A(z),...,'A(z)) {independent calls}.

Finite sets. There finally remains to discuss initialization (when and how do
we stop?). Clearly if C is finite (and in practice small), one can generate a random
element of C by selecting it according to the finite probability distribution given
explicitly by the definition of the Boltzmann model.

Proposition 2. Define as specifiable an unlabelled class that can be specified (in
a possibly recursive way) from finite sets by means of disjoint unions, cartesian
products, and the sequence construction. Let C' be an unlabelled specifiable class.
Let x be a “coherent” parameter in (0, pc), and let I'C' be the generator compiled
from the definition of C by means of the three rules above. Then I'C correctly
draws elements from C according to the ordinary Boltzmann model. It halts with
probability 1 and in finite expected time.

Example 1. Words without long runs. Consider the collection R of binary words
over the alphabet .4 = {a, b} such that they never have more than m consecutive
occurrences of any letter. The set W of all words is expressible by a regular
expression written in our notation W = &(b) x & (a&(a)bS(b)) x &(a). This



expresses the fact that any word has a “core” formed with blocks of a’s and blocks
of b’s in alternation that is bordered by a header of b’s and a trailer of a’s. The
decomposition serves for R: e.g., replace any internal a&(a) by &1 n(a) and
any bS(b) by &1 .. (b), where &1, means a sequence of between 1 and m
elements. The composition rules given above give rise to a generator for R of
the following form: two generators produce sequences of a’s or b’s according to a
truncated geometric law; a generator for the product C := (&1 . (a)S1 . 1 (D))
is built according to the product rule; a generator for the “core” sequence D :=
6S(C) is constructed according to the sequence rule. The generator assembled
automatically from the general rules is then

Gg(r)nm (; b){ Geom [%] ° <(;Ire071rill (z;a), Geom (; b)> } Gg(r)nm (z;a).

Ezample 2. Trees (rooted, plane). Take first the class B of binary trees defined
by the recursive specification B = Z 4+ (Z x B x B), where Z is the class com-
prising the generic node. The generator I'Z is deterministic and consists simply
of the instruction “output a node” (since Z is finite and in fact has only one
element). The Boltzmann generator I'B calls I'Z (and halts) with probability
z/B(z) where B(z) is the OGF of binary trees, B(z) = (1 — v1 — 422)/(2z).
With the complementary probability corresponding to the strict binary case,
it will make a call to I'Z and two recursive calls to itself. In other words: the
Boltzmann generator for binary trees as constructed automatically from the com-
position rules produces a random sample of the (subcritical) branching process
with probabilities x/B(x), xB(z)?/B(x). Unbalanced 2-3 trees are similarly pro-
duced from U = Z + U? + U3, unary-binary trees from V = Z(1 +V + V?),
etc.

Example 3. Secondary structures. This example is inspired by the works of Wa-
terman et al., themselves motivated by the problem of enumerating secondary
RNA structures. To fix ideas, consider rooted binary trees where edges con-
tain 2 or 3 atoms and leaves (“loops”) contain 4 or 5 atoms. A specification is
S=(2'"+2%)+(22+ 2%)?> x (§ xS). A Bernoulli switch will decide whether to
halt or not, two independent recursive calls being made in case it is decided to
continue, with the algorithm being sugared with suitable Bernoulli draws. The
method is clearly universal for this entire class of problems.

4 Exponential Boltzmann Generators

We consider here labelled structures in the precise technical sense of combina-
torial theory; see, e.g., [7]. A labelled object of size n is then composed of n
distinguishable atom, each bearing a distinctive label that is an integer in the
interval [1,n]. Labelled combinatorial classes can be subjected to the labelled
product defined as follows: if 4 and B are labelled classes, the product C = A% B
is obtained by forming all ordered pairs {a,3) with « € A4 and 8 € B and



relabelling them in all possible order-consistent ways. From the definition, a bi-
nomial convolution C,, = 3" _ () AxBn—, takes care of relabellings. In terms
of exponential generating functions, this becomes C(z) = A(z) - B(z).

Like in the ordinary case, we proceed by assembling Boltzmann generators
for structured objects from simpler ones.

Dzisjoint union. The unlabelled construction carries over verbatim.

Labelled product. The cartesian product construction adapts to this case:
in order to produce an element from C = A% B, simply produce an independent
pair by the cartesian product rule, but using the EGF values A(z), B(z).

Sequences. In the labelled universe, C is the sequence class of A, written C =
S(A) iff it is composed of all the sequences of elements from A up to order-
consistent relabellings. Then, the EGF relation a(a:) =(1- f/l\(a;))’1 holds, and
the sequence construction of the generator I'C from I'A given in Section 3 and
based on the geometric law is applicable.

Sets. This is a new construction that we did not consider in the unlabelled
case. The class C is the set-class of A, written C = JP(A) (P is reminiscent
of “powerset”) if C is the quotient of G{A} by the relation that declares two
sequences as equivalent if one derives from the other by an arbitrary permu-
tation of the components. It is then easily seen that the EGFs are related by
Clz) = Y k>0 E(m)k/k' = ¢4(®) where the factor 1/k! “kills” the order present in
sequences. A moment of reflection shows that, under the exponential Boltzmann
model, the probability for a set in C to have k components is e’A(z)A\(a:)k/k!,
that is, a Poisson law of rate //1\(:1:) This gives rise to a simple algorithm for
generating sets (analogous to the geometric algorithm for sequences):

function I'C/(z : real); let A(z) be the value of the EGF of A;

draw K according to Poisson(A(x));
return the K-tuple (I"A(z), ['A(z),...,'A(z)) {independent calls}.

Cycles. This construction, written C = €(A), is defined like sets but with
two sequences being identified if one is a cyclic shift of the other. The EGF's
satisfy C(z) = 3,50 A(x)F/k = log(1 — A(z))~". The log-law (also known as
“logarithmic series distribution”) of rate A < 1, is defined by P(X = k) =
(—1log(1 — X)) ~*A*/k. Then cycles under the exponential Boltzmann model can
be drawn like in the case of sets upon replacing the Poisson law by the log-law.

Proposition 3. Define as specifiable a labelled class that can be specified (in
a possibly recursive way) from finite sets by means of disjoint unions, cartesian
products, as well as sequence, set and cycle constructions. Let C be a labelled
specifiable class. Let x be a “coherent” parameter in (0, ps), and let I'C' be the
generator compiled from the definition of C by means of the five rules above. Then
I'C correctly draws elements from C according to the exponential Boltzmann
model. It halts with probability 1 and in finite expected time.

Example 4. Set partitions. A set partition of size n is a partition of the inte-
ger interval [1,n] into a certain number of nonempty classes, also called blocks,



the blocks being by definition unordered between themselves. Let 3> represent
the powerset construction where the number of components is constrained to be
> 1. The labelled class of all set partitions is then definable as S = P(P>1(Z)),
where Z consists of a single labelled atom, Z = {1}. The EGF of § is the
well-known generating function of the Bell numbers, §(m) = e 1. By the com-
position rules, a random generator is as follows: Choose the number K of blocks
as Poisson(e* —1). Draw K independent copies X1, Xo, ..., Xk from the Poisson
law of rate x, each conditioned to be at least 1.

Ezample 5. Random surjections (or ordered set partitions). These may be de-
fined as functions from [1,n] to [1,n] such that the image of f is an initial
segment of [1,n] (i.e., there are no “gaps”). One has for the class Q of surjec-
tions @ = &(P>1(Z)). Thus a random generator for Q first chooses a number
of components K € Geom (e¢* — 1) and then launches K Poisson generators.

Ezample 6. Cycles in permutations. This corresponds to P = PB(€>1(Z)) and
is obtained by a (PoissonoLog) process. (This example is loosely related to the
Shepp-Lloyd model that generates permutations by ordered cycle lengths.)

Example 7. Assemblies of filaments in a liquid. We may model these as sets of
sequences, F = PB(S>1(2)). The EGF is exp(z/(1 — z)). The random generation
algorithm is a compound of the form (PoissonoGeometric), with appropriate
parameters. (See A000262 in Sloane’s encyclopedia [14].)

5 The realization of Boltzmann samplers

In this section, we examine the way Boltzmann sampling can be implemented
and sketch a discussion of complexity issues involved. In this abstract, only the
real-arithmetic model (R) is considered. There, what is assumed to be given is
a random-access machine with unit cost for (exact) real arithmetic operations
and elementary transcendental functions over the real numbers.

By definition, a Boltzmann sampler requires as input the value of the control
parameter x that defines the Boltzmann model of use. As seen in previous sec-
tions, it also needs the finite collection of values at = of the generating functions
that intervene in a specification. We assume these values to be provided by what
we call the (generating function) “oracle”. Such constants, which need only be
precomputed once, are likely to be provided by a multiprecision package or a
computer algebra system used as coroutine.

First one has to specify fully generators for the probabilistic laws Geom (),
Pois (A), Loga (A), as well as the Bernoulli generator Bern (p), where the latter
outputs 1 with probability p and 0 otherwise. A random generator ‘uniform ()’
produces at unit cost a random variable uniformly distributed over the real
interval (0, 1).

Bernoulli generator. The Bernoulli generator is simply

Bern (p) := if uniform () < p then return(1) else return(0) fi.
This generator serves in particular to draw from unions of classes.



Geometric, Poisson, and Logarithmic generators. For the remaining
laws, we let pi be the probability that a random variable with the desired dis-
tribution has value k, namely,

Ak 1 AP
. _ k. : LA . .
Geom (M) : (L —X)A\"; Pois(A): e ok Loga ()) : el =N Tk

The general scheme that goes well with real-arithmetic models is the sequential
algorithm:

U := uniform (); S:=0; k :=0;
while U < S do S :=S +py; k:=k +1; od; return(k).

This scheme is nothing but a straightforward implementation based on inversion
of distribution functions (see [4, Sec. 2.1]). For the three distributions under
consideration, the probabilities p; can themselves be computed recurrently on
the fly. In particular, under the model that has unit cost for real arithmetic
operations and functions, the sequential generators have a useful property: a
variable with outcome k is drawn with a number of operations that is O(k + 1).
This has immediate consequences for all classes that are specifiable in the sense
of Propositions 2 and 3.

Theorem 1. Consider a specifiable class C, either labelled or unlabelled. As-
sume as given an oracle that provides the finite collection of exact values of
the intervening generating functions at a coherent value x. Then, the Boltzmann
generator I'C(x) has a complexity in the number of real-arithmetic operations
that is linear in the size of its output object.

The linear complexity in the abstract model R, as expressed in Theorem 1,
provides an indication of the broad type of complexity behaviour one may aim
for in practice, namely linear-time complexity. For instance, one may realize
a Boltzmann sampler by truncating real numbers to some fixed precision, say
using floating point numbers represented on 64 bits or 128 bits. The resulting
samplers operate in time linear in the size of the output, though they may fail
(by lack of digits in values of generating functions) in a small number of cases,
and accordingly must deviate (slightly) from uniformity. Pragmatically, such
samplers are likely to suffice for most medium-size simulations.

A sensitivity analysis of truncated Boltzmann samplers would be feasible,
though rather heavy to carry out. One could even correct perfectly the lack of
uniformity by appealing to an adaptive precision strategy based on guaranteed
multiprecision floating point arithmetic. (The reader may get a feeling of the
type of analysis involved by referring to the papers by Denise, Zimmermann,
and Dutour, e.g., [3], where a thorough examination of the recursive method
under this angle has been conducted.) In the full paper [5], we shall discuss bit-
level implementations of Boltzmann samplers (see Knuth and Yao’s insightful
work [10] for context), as well as implementation issues raised by the oracle.



6 Exact-size and approximate-size sampling

Our primary objective in this article is the fast random generation of objects of
some large size. Two types of constraints on size are considered. In ezact-size
random sampling, objects of C should be drawn uniformly at random from the
subclass C,, of objects of size exactly n. In approrimate-size random sampling,
objects should be drawn with a size in an interval of the form [n(1—¢),n(1+¢)],
for some quantity € > 0 called the (relative) tolerance, with two objects of
the same size still being equally likely to occur. The conditions of exact and
approximate-size sampling are immediately satisfied if one filters the output a
Boltzmann generator by rejecting the elements that do not obey the desired size
constraint. The main question is when and how can this rejection process be
made reasonably efficient. The major conclusion from this and the next section
is as follows: in many cases, including all the examples seen so far, approximate-
size sampling is achievable in linear time under the real-arithmetic model of
Theorem 1. The constants appear to be not too large if a “reasonable” tolerance
on size is allowed.

The outcome of a basic Boltzmann sampler has a random size N whose
distribution is exactly described by Proposition 1. First, for the rejection sampler
tuned at the “natural” value & = x, such that E,,_ (N) = n, a direct application
of Chebyshev’s inequalities gives:

Theorem 2. Let C be a specifiable class and e a fixed nonzero tolerance on size.
Assume the following Mean Value and Variance Conditions,

. . \/Ex(NQ)_Ex(N)Q
lim E,(N) =400, 1
Jm B, (N) =+oo,  lim_ E, (N)

=0. 2)

Then, the rejection sampler equipped with the value x = x, defined by the inver-
sion relation ©,C'(x,)/C(xn) = n succeeds in one trial with probability tending
to 1 as n — oo. Its total cost is O(n) on average.

The mean and variance conditions are satisfied by the class S of set partitions
(Example 4) and the class F of assemblies of filaments (Example 7).

It is possible to discuss at a fair level of generality cases where rejection
sampling is efficient, even though the strong moment conditions of Theorem 2
may not hold. The discussion is fundamentally based on the types of singularities
that the generating functions exhibit. This is an otherwise well-researched topic
as it is central to asymptotic enumeration [7,13].

Theorem 3. Let C be a combinatorial class that is specifiable. Assume that the
generating function C(z) (for z € C) has an isolated singularity at p, which is the
unique dominant singularity. Assume also that the singular expansion of C(z)
at p is of the form (with P a polynomial)

C(z) ~ P(z) + el —2/p)™" +o((1 —2/p)™%). (3)

Z—p



10

When the exponent —a is negative, for any fixed nonzero tolerance €, the rejec-
tion sampler corresponding to x = x, succeeds in an expected number of trials
asymptotic to the constant

&%(6)’ where 5“(5):%/6 (1 + s)2tea+3) gg,

Moreover the total cost of this rejection sampler is O(n) on average.

—€

Words without long runs, surjections, and permutations (Examples 1, 5, and 6)
have generating functions with a polar singularity, corresponding to the singular
exponent —1, and hence satisfy the conditions above.

We note here that a condition —a < 0 can often be ensured by successive
differentiations of generating functions. Combinatorially, this corresponds to a
“pointing” construction. Boltzmann sampling combined with pointing and re-
jection is developed in the full article [5] as a viable optimization technique.

7 Singular Boltzmann samplers.

We now discuss two infinite categories of models, where it is of advantage to place
oneself right at the singularity £ = pc in order to develop a rejection sampler
from a Boltzmann model for C. One category covers several of the sequence
constructions, the other one corresponds to a wide set of recursive specifications.

Singular samplers for sequences. Define a sequence construction C =
S(A) to be supercritical if pa > po. The generating function of C and A sat-
isfy C'(z) = (1 — A(z))™!, so that the supercriticality condition corresponds to
A(pc) =1, with the (dominant) singularity pc of C'(z) being necessarily a pole.

Theorem 4. Consider a sequence construction C = &(A) that is supercritical.
Generate objects from A sequentially according to I'A(pc) until the total size
becomes at least n. With probability tending to 1 as n — oo, this produces a
random C object of size n + O(1) in one trial. Exact-size random generation is
achievable from this generator by rejection in expected time O(n).

This theorem applies to “cores” of words without long runs (from Example 1) and
surjections (Example 5), for which exact-size generation become possible in linear
time. It also provides a global setting for a variety of ad hoc algorithms developed
by Louchard in the context of efficient generation of certain types (directed,
convex) of random planar diagrams known as “animals” and “polyominos”.

Ezample 8. Coin fountains (O). These were enumerated by Odlyzko and Wilf.
They correspond to Dyck paths taken according to area (disregarding length).
The OGF is the continued fraction O(z) =1 /(1—z /(1—22 /(1=2% /(--+)))). At
top level, the singular Boltzmann sampler of Theorem 4 applies (write O = &(Q)
and O(z) = (1-Q(z)) ™). The root p of Q(z) = 1 s easily found to high precision
as p = 0.5761487691 - - -. The objects of Q needed are with high probability of



11

size at most O(logn), so that they can be generated by whichever subexponential
method is convenient. The overall (theoretical and practical) complexity is O(n)
with very low implementation constants. Random generation well in the range
of millions is now easy thanks to the singular Boltzmann generator.

Singular samplers for recursive structures. What we call a recursive
class C is the component C = F; of a system of mutually dependent equations:

{}'1:1/1(2,}'1,,fm),,}'m:@m(z,}'l,,fm)}

where the ¥’s are any functional term involving any constructor defined previ-
ously (‘+’, ‘X’ or ‘¥, and &,3,¢) The system is said to be irreducible if the
dependency graph between the F; is strongly connected (everybody depends on
everybody else). In such a case, the singular type of the generating functions
is a square-root, as follows from a mild generalization of a famous theorem by
Drmota, Lalley, and Woods; see [7, Ch. 8] and references therein. A consequence
is that coefficients of generating functions are of the universal form p~"n—3/2,
In particular objects of a small size are likely to be produced by the singular
generator I'C'(pc) whereas the expectation of size E,  (IV) is infinite. (In other
words, a very high dispersion of sizes is observed.) The singular sampler consid-
ered here simply uses the singular value p = pco together with an “early-abort”
strategy: it aborts its execution as soon as the size of the partially generated
object exceeds the tolerance upper bound. The process is repeated till an object
within the tolerance bounds is obtained.

Theorem 5. Let C be a combinatorial class given by a recursive specification
that is irreducible and aperiodic. For any fixed nonzero tolerance €, the “early-
abort” rejection sampler succeeds in a number of trials that is O(n'/?) on average.
Furthermore, the total cost K,, of this sampler satisfies

E(K,) ~ g ((1—5)1/2 +(1+s)1/2). (4)

For exact-size generation, the “early-abort” rejection sampler has complexity O(n?).

The early-abort sampler thus gives linear-time approximate-size random gener-
ation for all the simple varieties of trees of Example 2 (including binary trees,
unary-binary trees, 2-3 trees, and so on) and for secondary structures (Exam-
ple 3). For all these cases, exact-size is also achievable in quadratic time. The
method is roughly comparable to drawing from a suitably dimensioned critical
branching process in combination with abortion and rejection.

The rejection algorithm above is akin to the “Florentine algorithm” invented
by Barcucci-Pinzani-Sprugnoli [1] to generate prefixes of Motzkin words and cer-
tain directed plane animals. The cost analysis is related to Louchard’s work [11].

8 Conclusions

As shown here, combinatorial decompositions allow for random generation in
low polynomial time. In particular, approximate-size random generation is often



12

of a linear time complexity. Given the large number of combinatorial decompo-
sitions that have been gathered over the past two decades (see, e.g., [2,7,9], we
estimate to perhaps a hundred the number of classical combinatorial structures
that are amenable to efficient Boltzmann sampling. In contrast with the recur-
sive method [3, 8, 12], memory requirements are kept to a minimum since only a
table of constants of size O(1) is required.

In forthcoming works starting with [5], we propose to demonstrate the ver-
satility of Boltzmann sampling including: the generation of unlabelled multisets
and powersets, the encapsulation of constructions like substitution and pointing,
and the realization of Boltzmann samplers at bit-level. (Linear boolean complex-
ity seems to be achievable in many cases of practical interest.)

Acknowledgements: The authors are grateful to Brigitte Vallée for several archi-
tectural comments on an early version of this manuscript. Thanks also to Bernard
Ycart, Jim Fill, Marni Mishna, and Paul Zimmermann for encouragements and con-
structive observations. This work was supported in part by the ALCOM-FT Project
IST-1999-14186 of the European Union.

References

1. Barcuccl, E., PINzANI, R., AND SPRUGNOLI, R. The random generation of di-
rected animals. Theoretical Computer Science 127, 2 (1994), 333-350.

2. BERGERON, F., LABELLE, G., AND LEROUX, P. Combinatorial species and tree-
like structures. Cambridge University Press, Cambridge, 1998. Translated from the
1994 French original by Margaret Readdy, With a foreword by Gian-Carlo Rota.

3. DENISE, A., AND ZIMMERMANN, P. Uniform random generation of decomposable
structures using floating-point arithmetic. Theoretical Computer Science 218, 2
(1999), 233-248.

4. DEVROYE, L. Non-Uniform Random Variate Generation. Springer Verlag, 1986.

5. DucHON, P., FLAJOLET, P., LOUCHARD, G., AND SCHAEFFER, G. Boltzmann
samplers for random combinatorial generation. In preparation, 2002.

6. FLAJOLET, P., SALVY, B., AND ZIMMERMANN, P. Automatic average—case analysis
of algorithms. Theoretical Computer Science 79, 1 (Feb. 1991), 37-109.

7. FLaJOoLET, P., AND SEDGEWICK, R. Analytic Combinatorics. 2001.
Book in preparation: Individual chapters are available as INRIA Re-
search Reports 1888, 2026, 2376, 2956, 3162, 4103 and electronically under
http://algo.inria.fr/flajolet/Publications/books.html.

8. FLAJOLET, P., ZIMMERMANN, P., AND VAN CUTSEM, B. A calculus for the random
generation of labelled combinatorial structures. Theoretical Computer Science 132,
1-2 (1994), 1-35.

9. GOULDEN, I. P., AND JACKSON, D. M. Combinatorial Enumeration. John Wiley,
New York, 1983.

10. KnuTH, D. E., AND YAO, A. C. The complexity of nonuniform random number
generation. In Algorithms and complezity (Proc. Sympos., Carnegie-Mellon Univ.,
Pittsburgh, Pa., 1976). Academic Press, New York, 1976, pp. 357-428.

11. LoucHARD, G. Asymptotic properties of some underdiagonal walks generation
algorithms. Theoretical Computer Science 218, 2 (1999), 249-262.

12. NUIENHUIS, A., AND WILF, H. S. Combinatorial Algorithms, second ed. Academic
Press, 1978.

13. OpLyzko, A. M. Asymptotic enumeration methods. In Handbook of Combina-
torics, R. Graham, M. Grotschel, and L. Lovész, Eds., vol. II. Elsevier, Amsterdam,
1995, pp. 1063-1229.

14. SLOANE, N. J. A. The On-Line Encyclopedia of Integer Sequences. 2000. Published
electronically at http://www.research.att.com/~“njas/sequences/.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


