ON DIRICHLET SERIES FOR SUMS OF SQUARES

JONATHAN MICHAEL BORWEIN AND KWOK-KWONG STEPHEN CHOI

ABSTRACT. In [14], Hardy and Wright recorded elegant closed forms for the
generating functions of the divisor functions o (n) and a,% (n) in the terms of
Riemann Zeta function ¢(s) only. In this paper, we explore other arithmetical
functions enjoying this remarkable property. In Theorem 2.1 below, we are
able to generalize the above result and prove that if f; and g; are completely
multiplicative, then we have

i (f1 *91)(n) - (f2 * g2)(n) — Lf1f2(s)L9192 (S)Lf192 (S)Lg1f2 (s)
n=1 ne Ly, f29192 (2s)

where L¢(s) := >, f(n)n~* is the Dirichlet series corresponding to f. Let
rn(n) be the number of solutions of 2 + --- + 2% = n and 7 p(n) be the
number of solutions of 22 + Py? = n. One of the applications of Theorem 2.1
is to obtain closed forms, in terms of ((s) and Dirichlet L-functions, for the
generating functions of ry (n),7% (n),72,p(n) and 75 p(n)? for certain N and
P. We also use these generating functions to obtain asymptotic estimates of
the average values for each function for which we obtain a Dirichlet series.

1. INTRODUCTION

Let o denote the sum of kth powers of the divisors of n. It is also quite usual
to write d for oy and 7 for o4. There is a beautiful formula for the generating
functions of o4 (n) (see Theorem 291 in Chapter XVII of [14])

)
(1.1) Z

which is in terms of only the Riemann Zeta function ((s). Following Hardy and
Wright, by standard techniques, one can prove the following remarkable identity
due to Ramanujan (see [21]) (also see Theorem 305 in Chapter XVII of [14])

C(s)¢(s—k), R(s)>max{l,k+1}

w2 5% 7adon) _ Ll)lo ~ Clo ~ o —a 1)

Z (2s—a-b)
for ®(s) > max{1,a+1,b+1,a+b+1}. In this paper, we identify other arithmetical
functions enjoying similarly explicit representations. In Theorem 2.1 of §2 below,

Date: February 6, 2002.

1991 Mathematics Subject Classification. Primary 11M41, 11E25.

Key words and phrases. Dirichlet Series, Sums of Squares, Closed Forms, Binary Quadratic
Forms, Disjoint Discriminants, L-functions.

Research supported by NSERC and by the Canada Research Chair Programme.
CECM Preprint 01:167.



2 JONATHAN MICHAEL BORWEIN AND KWOK-KWONG STEPHEN CHOI

we are able to generalize the above result and prove that if f; and g; are completely
multiplicative, then we have

i (f1 xg1)(n) - (f2 * g2)(n) _ Ly g, (S)Lglgz (S)Lflgz (3)L91f2 (s)
n? Lf1f2g192 (28)

n=1

where Lg(s) := Y o2, f(n)n~* is the Dirichlet series corresponding to f. As we
shall see, this result recovers Hardy and Wright’s formulae (1.1) and (1.2) immedi-
ately.

More generally, for certain classes of Dirichlet series, Y > ; A(n)n~%, our The-
orem 2.1 can be applied to obtain closed forms for the series Y oo | A%(n)n~*. In
particular, if the generating function L¢(s) of an arithmetic function f is expressible
as a sum of products of two L-functions:

Lf(s) = Z a(X15X2)LX1 (S)LX2 (3)

X1,X2

for certain coefficients a(x1, x2) and Dirichlet characters x;, then we are able to find
a simple closed form (in term of L-functions) for the generating function L?c(s) =
Yot fAn)n=>.

One of our central applications is to the study of the number of representations as
a sum of squares. Let ry(n) be the number of solutions to z§ +z3 +---+ 2% =n
(counting permutations and signs). Hardy and Wright record a classical closed
form, due to Lorenz, of the generating function for 73(n) in the terms of {(s) and
a Dirichlet L-function, namely,

> 20 g

nS

n=1

where L,(s) = Yo, (£)n~® is the primitive L-function corresponding to the

Kronecker symbol (%) Define

Ly(s) = i an_(sn) and  Rn(s):= i r?j](sn)'

Simple closed forms for Ly (s) are known for N = 2,4,6 and 8; indeed the cor-
responding g—series were known to Jacobi. The entity £3(s) in particular is still
shrouded in mystery, as a series relevant to the study of lattice sums in the phys-
ical sciences. Lately there has appeared a connection between L3 and a modern
theta-cubed identity of G. Andrews [1] which we list in (6.7), R. Crandall [6] and
p-301 of [3]. In §3, we shall obtain simple closed forms for Ry (s) for these N from
the corresponding Ly (s), via Theorem 2.1. Since the generating functions are ac-
cessible, by an elementary convolution argument, see §3 below, we are also able to
deduce

> rhv(n) = Wya" "' + 0@V )
n<lz
for N = 6,8 and for N = 4 with an error term O(z? log® z) where
1 v (N -1)

(1.3) Wi = (N-1)(1-2-M)T2(LN) ¢(N)

(N > 3).

1
2
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This technique can be adjusted to handle all N > 2 except N = 3, see Theorem 3.3,
and so to establish all but the most difficult case of the following general conjecture
due to Wagon:

Wagon’s Conjecture. For N >3,% _ 14 (n) ~ Wnz"N ! as 2 — .

Now from (3.14) below, one has Y, .. r3(n) ~ 4z logz so that Wagon’s conjec-
ture holds only for N > 3. This conjecture motivated our interest in such explicit
series representations. Recently, it has been proved by Crandall and Wagon in [8].
In fact, they show that
. 1-N 2
$1er;0:1: nzs:er(n) =Wn,

with various rates of convergence (those authors found the N = 3 case especially
difficult, with relevant computations revealing very slow convergence to the above
limit). In their treatment of the Wagon conjecture and related matters, they needed
to evaluate the following Dirichlet series

i $(n)oo(n?)
n=1 n?
and we have established, by an easier version of what follows, that it is

i%g("z):@@_l)n@_i 14 1 )

- ps p2s—2 p2.s—1 p3s—2

where the product is over all primes. A word is in order concerning the importance
of first- and second-order summatories. In a theoretical work [7] and a computa-
tional one [8] it is explained that the Wagon conjecture implies that sums of three
squares have positive density. This interesting research connection is what inspired
Wagon to posit his computationally motivated conjecture. Though it is known that
the density of the set S = {z? + y? + 2} is exactly 5/6 due to Landau (e.g [18]
or [11]), there are intriguing signal-processing and analytic notions that lead more
easily at least to positivity of said density. Briefly, the summatory connection runs
as follows: from the Cauchy-Schwarz inequality we know

(Cneesm)’

Zn<z T%(n) ’
so the Wagon conjecture even gives an explicit numerical lower bound on the density
of §. Of course, the density for sums of more than 3 squares is likewise positive,
and boundable, yet the Lagrange theorem that sums of four squares comprise all
nonnegative integers dominates in the last analysis. Still, the signal-processing
and computational notions of Crandall and Wagon forge an attractive link between
these L-series of our current interest and additive number theory.

In §4 and §5, we similarly study the number of representations by a binary

quadratic forms. Let ro p(n) be the number of solutions of the binary quadratic
form z? + Py? = n. Define

#{n<z;neSt>

o] o 2
Ly p(s) :== Z Tz’;# and  Rop(s):= Z %.
n=1 n=1
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The closed forms of £, p(s) has been studied by a number of people, particular by
Glasser, Zucker and Robertson (see [10] and [23]). In finding the exact evaluation of
lattice sums, they are interested in expressing a multiple sum, such as the generating
functions of 72 p(n), as a product of simple sums. As a result, plenty of closed forms
of Dirichlet series 3=, ,.1(0,0)(@m”® +bmn + en?)~* in terms of L-functions have
been found. One of the most interesting cases is when the binary quadratic forms
have disjoint discriminants, i.e, have only one form per genus. Then there are
simple closed forms for the corresponding L5 p(s) (see (4.1) below). By applying
Theorem 2.1, we obtain closed forms for R, p(s) and from this we also deduce
asymptotic estimates for r2 p(n) and r2 p(n)?.

In the last section, we shall discuss £ (s) for some other less tractable cases. In
particular, we collect some representations of the generating function for r3(n), ry (n),
and discuss 712(n) and rog(n).

Throughout, our notation is consistent with that in [14, 15] and [16]. We should
also remark that we were lead to the structures exhibited herein by a significant
amount of numeric and symbolic computation: leading to knowledge of the formulae
for Ra2,R4,Rs, Ra,2 and Ro 3 before finding our general results. And indeed R.
Crandall triggered our interest by transmitting his formula for Ry4.

2. Basic RESULTS

Let o(f) be the abscissa of absolute convergence of the Dirichlet series

oo
=) fn~
n—1
For any two arithmetic functions f and g, define

frgn Zf g(n/d)

to be the conwvolution of f and g.

Theorem 2.1. Suppose fi, fo and g1,g92 are completely multiplicative arithmetic
functions. Then for R(s) > max{o(f;),o(g:)}, we have

— (f1x91)(1) - (f2%92)(n) _ Ly, 15 (5)Lgigs(5)Lsigs(5) Loy s (5)
21) Z n? B Ly, f2919-(25) '

n=1

Proof. Since (f1 *g1)(n) - (f2 * g2)(n) is multiplicative, we only need to consider its
values at the prime powers. For any prime p and any [ > 0,

£0) — g
fi(p) — gi(p)

as each of fi, f2, 91,92 is completely multiplicative. We intend above that if both
fi(p) and g;(p) are zero, then

(fi * gi) (pl Zfz gz(pl/d)

d|p

1 if [ =0;

(49 0) = {0 o1
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Thus, we have

oo

S o= Y (hixa)@)(f2xg)@)p "

=0

_ i (O™ =@ (EET - @)
=0 (f1(p) = 91(p)) (f2(p) — 92(P))

Lizo {(A£)0) P + (9192) ()97 = (f192) () '™ — (91 o) )17}

(fi(p) = 91(P))(f2(p) — 92(P))

On summing up all the geometric series, we arrive at

(f1f2)(p) + (9192)(p) (f192)(p) (g1f2)(p)

y .o =R T 1-(ae)®r=t  1=(fAg)@r~  1-(af)@p=°

P (f1(p) — 91(p))(f2(p) — g2(P))
1 — (fif29192)()p 2"
(1= (frf2)@)p~*) (A = (9192) (P)p~*)(1 = (f192)(P)p~*) (A = (91 f2)(P)p~%)

In view of the Euler product form for a Dirichlet series, we have

i (fixg)(n) (faxg)(n) 10 {i (f1 % 90) (@) (Jo *!h)(pl)}

n=1 m p Ui=0 P’
Ly s, (S)L9192 (S)Lf192 (S)Lgl f2 (3)
Lflfzglgz (23) -
This proves our theorem. O

A first easy application of Theorem 2.1 is to evaluate the Dirichlet series >~ | ox(n)n=*
and 07 a,(n)op(n)ns. I welet fi(n) :=nk, fo(n) := 6(n) and g1(n) = g2(n) :=
1 where §(n) is 1 if n = 1 and 0 otherwise, then

Lf1f2 (S) = Lg1f2 (S) = Lf1f2glg2 (S) =1,
Lf1gz (5) = C(S - k)7 Lglg2 (S) = C(S)

Thus Theorem 2.1 recovers the identity (1.1)
Similarly, if we let fi(n) := n?, fo(n) := n® and g;(n) = g2(n) := 1, then

Ly, (s) = Ly, f2g190 (8) =C(s — (a+b)), Ly, g, (s) =¢(s),
Lf192 (S) = C(S - a)a szgl (S) = C(S - b)

and Theorem 2.1 gives (1.2).
In particular, for any real A,

= oy v s C(s=2X)¢(s — N)*¢(s)
(2.2) ;JA(n)n = RSy :

We shall discuss more elaborate applications of Theorem 2.1 in the latter sections.
Before doing this, we give the following example here to explain why Theorem 2.1
cannot in general be extended nicely to higher order.

We are interested in obtaining the generating functions for the kth moment of
ro(n). For any n > 1 and |z| < 1, in view of

lel =z(1 —2)72
1=0
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and
(2.3) xi il” b= il”“xl
’ dx n
1=0 1=0
it is immediate that
- En(z)
2.4 npl = _TEnE) =1.2....

for a certain polynomial E,(x) of degree n — 1. E,(z) is known as the nth Fuler
polynomial [4] and it is easy to see that (2.3) implies the recursion

Ept1(z) = (1 +nz)E,(z) +2(1 — z)E) ().

Explicitly, the first few Euler polynomials are Ey(z) = 1, Ea(z) = 1 + z, E5(z) =
1+4x + 2% and E4(z) = 1+ 11z + 1122 + 2. Equation (2.4) enables us to obtain
the generating functions for the higher moments of ro(n) as follows: for u =0 or 1
(mod 4), we let (%) be the Jacobi-Legendre-Kronecker symbol and again consider

n=1

the L-function corresponding to (£). It is known (e.g. p. 291 in [3]) that

> ra(n) _ 4C(s)La(s) = ) x5 (n?))(n)

and r2(n) = 4(1 % (=2))(n) for any n > 1. A simple calculation shows that for any

1 if p=2;
(1*(%4))(#): l+1 iprSand(_T})zl;
—(_I%I'H if p> 3 and (%1) =-1.
We now have
i) ves (A (G}
ngl 2ns _ Aang1 =
> 1% (=2 Ay
_ ey G
p 1=0
%) N o0
= 1 4];—3 H Z ((—1)l+1> plis H Z(l+1)Np_ls
G (3)=11=0
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on using (2.4). [Here [], denotes the infinite product over all primes.] Firstly, when
N = 2, we have most pleasingly,
ir%(n) B 16 I 1 I l+p*
s - 1—92-s 1—p2s 1—p—5)3
= Cy L G
2

A= [[a-»2)

p

16 1
1+2-% |1—-2-3

I
—
—_
I
==
|
by
—
=
I
—

(4¢(5)L-a(5))”

(14+2-%)¢(2s)°

However, when N > 3, the generating functions cannot be expressed in terms of
L-functions as completely as in formula (2.5). For example, when N =3

i Tg(n) _ 64 H 1 H 1 =+ 4:p_8 =+ p—23
ns 1—2-s 1 (1—p=)t

(2.5)

_ p—2s
"= G T (@)
and when N =4
f: ra(n) _ 256 11 N B b 11p~» +p~%
ns 1—2-s 1—p2s 1—p—2)° .
= (5)=-1 ()

This helps explain why our Theorem 2.1 has no ‘closed-form’ extension to higher
order. For the detailed asymptotic estimate of the generating function of the kth
moment of 79(n), we refer the reader to [5].

3. SuMs OF A SMALL EVEN NUMBER OF SQUARES

In view of Theorem 2.1, whenever a Dirichlet series is expressible as a sum of
two-fold products of L-functions:

Lf(s) = Z a(X15X2)LX1 (S)sz (8);
X1,X2

we are able to provide a closed form (in terms of L-functions) of the Dirichlet series
Lg2(s) = >0, f>(n)n~*, on using (2.1).

In particular, let rx(n) be the number of solutions to 2 + 25 +--- + 2% = n
(counting permutations and signs) and let

Ln(s) = ZTN(n)n_S, Rn(s) := ir?\,(n)n_s

be the Dirichlet series corresponding to rn(n) and r%(n). Closed forms are obtain-
able for Ly (s) for certain even N from the explicit formulae known for ry(n). For
example, we have

(3.1) La(s) = 4¢(s)L-4(s),

(3:2) La(s) = 8(1—4"7°)(s)¢(s — 1),

(33) Le(s) = 16¢(s —2)L_4(s) —4¢(s)L-s(s — 2),
(3.4) Ls(s) = 16(1—2""% +427%)((s)¢(s — 3).
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The derivation of (3.1) and (3.3) from the formulas for r2(n) and rg(n) (e.g. §91
in [20]) is immediate if we write those formulas in the form

ra(n) = 4 ) x(d)

m,d>1

md=n

re(n) = 16 ) x(m)d® -4 ) x(d)d
m,d>1 m,d>1
md=n md=n

where y denotes the non-principal character modulo 4. For derivation of (3.2) and
(3.4) from the formulas for r4(n) and rg(n) (e.g. §91 in [20]) is immediate if we
write those formulas in the form

r4(n) = 8o1(n) —3201(n/4)
rg(n) = 1603(n) — 3203(n/2) + 25603(n/4)
where it is understood that o (n) = 0 if n is not a positive integer.
In this section, we shall demonstrate how to use our Theorem 2.1 to obtain

counterpart closed forms for Ry (s) from the above expressions for £y (s).
Let us start with Ra(s). It has already been shown in (2.5) that

_ () _ (4¢(5) Lo (s))?
Ra(s) =) 2 (1+2—s)4c(2s)

n=1

but it can also be deduced directly from our Theorem 2.1 and (3.1) by taking
fi(n) = fo(n) =1 and g1(n) = g2(n) = (37).
We shall consider R4(s) and Rg(s) later. For Rg(s), we first write

Le(s) = 16¢(s —2)L_4(s) —4C(s)La(s — 2)

o8 (2o ) - (22 ()

o

D (16(f1 % g1)(n) — 4(f2 % g2)(n)) n~°

n=1

where fi(n) = n?, g1(n) = (32), f2(n) = 1 and ga(n) = (=2) n?. It follows from
our Theorem 2.1 and (3.3) that

oo

Re(s) = D (16(f1%g1)(n) — 4(f2 % g2)(n))* n~*

n=1
oo

= 16> (fixg1)*(mn~* =128 (f1 * g1)(n)(f2 * g2) (n)n~*

n=1 n=1

+16)_(f2%95)*(n)n ™"

n=1
Lf12 (S)Lgf (S)Lflgl (8)2 — 128 Ly, (S)Lglgz (S)Lf192 (S)Lylfz (s)
Lffg% (25) Ly, f2919 (2s)
Lfg(s)ng (S)Lf292 (8)2
Lyz45(29)

= 162

(3.5) +16
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It remains to evaluate the component L-functions and they are
Lp(s) =Cls—4),  Lg(s) = (1—279)(s),
Lpz(s) =((s),  Lg(s) =(1-16-27%)((s — 4),
Lig(s)=L-a(s=2), Lpp(s)=C(s-2), Lgg(s)=0-4-27")((s-2),
Ligs(8) = Loa(s =4),  Lgipy(s) = Loa(s), Ly (s) = La(s = 2),

Ly2g2(s) = Ly2g2(8) = L agrga(s) = (1 = 16-27°)((s — 4).
Now from (3.5), we have

(17 —32-27°) ((s —4)L2 (s — 2)((s)

Re(s) =16 (1—16-2-25) ((2s —4)

128 L_4(s—4)¢%(s —2)L_4(s)
(1+4-2-9) ((2s —4) '

For R4(s) and Rg(s), we need the following companion lemma:

Lemma 3.1. Suppose f(n) is a multiplicative function. Let p be a prime and let
the Dirichlet series

NE
ES
1S
Il
NE
38
NE

._.
3
Il
=
3
I
—

n=

be the product of L¢(s) and a power series in p—*. Then

e 2(n o 2 0 9/ 1 -1
68) S r 3 o (3500

n=1 m=0 =0 p
- Am+kAm — FOONFEH*) | s
es {3 e [+ SO0,
k=1 Um=0 =0
Proof. Since
o0 s o0 oo . s oo o0 n s
S A =33 anf @) =S4 S anf (—m) ,
n=1 n=1m=0 n=1 | m=0 p
p"n
we deduce

I
gk
gk

Q
3
~

VRS
1E

N————

|

Z A%(n)n~*

(3.7)

I
Q
E
e
5
ygk
~
N
bS]
§ S
N——
~
N\
=
5 S
SN——
|
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For any mq,my > 1 we let M := max(m1,m2) and m := min(mq,mz). Then the
last summation (over n) in (3.7) is

I
™
[
g\
e
N——
-
VN
EIE
N———

d

1 w— 2
(58) - WZf(p )£ (M=) p Z L
=0 (P N) 1
since f(n) is multiplicative. By writing
— f*(n f np — () «— ()
Z ns Z Z Z ps Z ns ’
n=1 =0 n=1
(p,n) 1 (pyn)=1

we deduce that

(3.9) Z L0 _ Lpate) <Zf2(p’)p"3) .
1=0
(p,n) 1

Using (3.7), (3.8) and (3.9), we have

-1
(3.10) ZAZ 0 =Lya(s (Zﬂ —18> X

oo
Ay Gy f (pl+|m1 mz\)
X z o pmax (m1,ma2)s Z ’
mi,m2=

The contribution corresponding to m; = ma in the above double summation is

(3.11) Z Z f2

m= 0
and the contribution corresponding to my 75 my is

- 9 Z am;n‘jznzzf (pttmi—m2)
ma<mi
m+km x~ f (P f frk
= QZZG(JfZ)SZ (p )
m=0 k=1 p
(3.12) _ 22{2 amp+kam} {Z fp l+k)}}%'
m=0

Now (3.6) follows from (3.10), (3.11) and (3.12). O
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On applying Lemma 3.1 to (3.2) and (3.4) and using (2.2), we have
(828735 1022725 4 21=5 1 1)¢(s — 2)¢%(s — 1)((s)
(14 21-5)¢(25 — 2) ’

Ra (8) =64

and

(3226728 —3.2375 1 1)((s — 6)(%(s — 3){(s)
(14 23-5)¢(2s — 6) '

Therefore, we have completed the proof of the following Theorem.

Rs(s) = 256

Theorem 3.2. We may write

_ (4¢(s)L-a(s))? .
Ra(s) = A+2 9)C@s) R(s) > 1;

(823735 — 1022725 4+ 2175 4 1)((s — 2)¢%(s — 1)((s)

Ra(s) =64 072905 - 2) ,  R(s) >3
(17 —32-27%) (s —4) L2 4(s — 2)((s)
Ro(s) =16 (1—16-2-25) g(2s4— 1)
128 L_4(s—4)(?(s —2)L_4(s) )
T A+4-20) : C(2s — 4) = R(@)>5
and
Rs(s) = 256 (32-26725 —3.237% + 1)((s — 6)(*(s — 3)¢(s) R(s) > 7.

(1+23-3)¢(2s — 6)

Since €((1 +€) — 1 as € — 0, the value of the lim._,oeRN(N — 1 + €) at its
largest pole is, respectively:

lim €R4(3 + €) = 96¢(3) = 3W,s
€—>

lim R (5 + €) = 240¢(5) = 5Ws
e—

and

4480
17 ¢

The formulae for Ry (s) in Theorem 3.2 enable us to estimate the average order of

r%:(n) for N = 2,4,6,8. Following from Sierpinski’s result on the circle problem
(cf. Satz 509 of [17])

lim €Rg(7 + €) = (7) = TWs.

(3.13) > ra(n) =7z +0(z'/?),
n<z
we have
(3.14) Z r2(n) = 4zlogz + 4azx + O(z/?)
n<lz

where a 1= 2y + 2L’ (1) — 55¢'(2) + 5 log2 — 1 = 2.0166216 - - - . Indeed, one can
prove (3.14) as follows. Let

(3.15) i han™% := {4¢(s)L_4(s)}* = (i r2(n)n_s> .
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By the hyperbola method and (3.13), one has

H(z) := zhn: Z r2(m)ra(d)

n<lz m,d>1
md<z
2
= 2 Z r2(m) Z ra(n) — Z r2(n)
m<Vz n<z/m n<Vz
z z'/3 1/2 1/6\12
= 2 Z\/_rg(m) m +0 vl —{rx/* +0(x/°)}
m<z

= 7lzlogz + Ciz + O(z*?),

for some constant Cy. Now by (2.5) we have

Ra(s) = i ra(n)n=°% = i hmm™2 i Ipn™?
n=1 m=1 n=1

where h,, is given (3.15) and
DT = (142772 = ) (—1)7279° ) u(k)k
n=1 =0 k=1

has abscissa of absolute convergence 1/2 and

Z ln] = O(z'?log ).

n<lz

Here p(n) is the Mobius function. Now by an elementary convolution argument

Y o) = Y lLH(z/n)

n<lzx n<lz
2/3
_ 2T x x x
(3.16) = dzlogz + Cox + O(*/?)

for some constant C3. To evaluate the value of Cs, we first note that for any o > 1,
we have
2 T
r3(n) _ - 2
E v —/l_u dg r5(n)

and hence from (3.16) and letting £ — +00, we get

o0 2(n) — 4ul -C
/ (Engu@(n) ulogu zu) du+ : 4 + 4+0'CQ-
1

Ra(0) =0 wo+l o—1)2 oc—1

The above integral converges when ¢ —» 17 and hence

4
m}(a—l)—4+C2.

o—1+

(3.17) lim {R2 (o) —
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Now in view of (2.5), R2(s) has a pole at s = 1 of order 2. So the limit in (3.17) in
fact is the residue of Ra(s) at s = 1 which can be evaluated by the method in §5
below and it is equal to
4 (27 irw-Bee s 11og2) .
™ s 3
This completes the proof of (3.14)

It is also worth to note that Sierpinski’s result has been slightly improved and
so the error term in (3.14) could be improved accordingly. For example, the term
O(x%/?) can be replaced by O(x284/429) if we employ Nowak’s result in [19] which
replaces the term O(x'/3) in (3.13) by O(x139/429),

We now consider the case N = 4. In view of Theorem 3.2, R4(s)/((s — 2) is
equal to the product of a finite Dirichlet series and the five Dirichlet series ((s —
1),¢(s—1),¢(s),(7 (25— 2) and (1+2'7%)~1, each of which has the property that
the coefficient of n=% is O(n). Hence from the formula for R4(s) in Theorem 3.2,

Rals) = (s =) 3 g™,

where |g,| = O(nds(n)) and di(n) is the number of ways of expressing n in the

form n = nying - - - ng with ny,ne, - - -, ng positive integers. It follows that
2rim) = Y gn 3w
n<z n<z m<z/n
1 rx\3 T
- Zo(i(D o))
= 3 \n
— ﬁ i In +0 3 In +0 2 M
- 3 3 z n3 z n2
n=1 n>z n<lz

because )", .. dr(n) ~ Py (log x) for some polynomial Pj(X) of degree k — 1 (see
Chapter XII in [26]). Now since
oo
In — lim Ra(s)/C(s —2) = lim €R4(3 +¢) = 3W,
—3 —0

3 =
n + €
n=1 s

so we have
Z r2(n) = Waz® + O(2? log® ).
n<z
The cases for N = 6 and N = 8 can be treated in the same manner as

e’} bn e’} cn
Ro(s) =Cls=4) Y L+ La(s =4 —
n=1 n=1
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and
S~ dn

ns
n=1

Rs(s) = ((s — 6)

where b, and ¢, are < n?ds(n) and d,, is < n®ds(n). Therefore, we have

(3.18) > ri(n) = WaaV !+ 0(zV?)
n<z
for N = 6,8 with Wy given by (1.3).

For N # 2,4,6,8, lacking the closed forms for Ry (s), we can’t follow the argu-
ment above to estimate the average order for r3 (n). However, as suggested by the
referee, the asymptotic value for }°, 73 (n), at least for N > 5, can be obtained
from the singular series formula for 7y (n) given by Hardy (see p.342 of [12] or p.155
of [11]), which may be written as

N
(3.19) rn(n) 7(:1\\;//22 1-N/2 _ Z Z ( ) e=2mihn/k | O(pl-N/4)

k=1 1<h<k
(h,k)=1

where G (h, k) = Zle e2mihi*/k ig the standard quadratic Gauss sum. In fact, using
a well-known result on quadratic Gauss sum (e.g. p.138 of [11])

Vk ifk=1 (mod?2);
(3.20) |G(h,k)| =140 ifk=2 (mod4);

V2k ifk=0 (mod 4);

for (h,k) =1, we have

R D M L

k<zl/2 1<h<k
- (h,k)=1

= P(n) + Oz N4
for N > 5 and n < z. By (3.20), we have |P(n)| < 1 and hence

N
) e—27rz'h,n/k +O(.Z’1_N/4)

7FN
rn(n)* = anvﬂp(n)ﬁ + 0N/,
It follows that
7TN
(3.21) ZTN(”) = T Z”N 2 P(n)[? + O(&3N/4).

n<z n<lz

It remains to estimate the sum > . n®"2|P(n)|? which is equal to

n<m

(3.22)

) ) (G(hkllakl)>N (W) S g2 o 2min(FE—32)

1<ki,ko<z!/2  1<hi<k; n<z
(hi ki)=1,i=1,2
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We now note that when Z_I #+ Z—z, we have

Z e—27rin(:—i—:—§) < kyks

n<z

and hence the contribution for those terms ’“ % h2 to (3.22)

(Z g2 N/2

k<zl/2

Using this, (3.22) and (3.21), we have
N

> rnn)? = (N — 7)r(N/2) ( ) N+ 0N 42N
k<:1:1/2
N-—

n<lz

N
= N DI(N/2)2 (Z ) O(@"=2 + 2N/
where
2N
1<h<k
(h,k)=1

Note that when N = 6, we have a better error term in (3.18). The function
k — B(k) is multiplicative in k (see p.156 of [11]) and from (3.20), B(1) = 1, B(2) =
0,B(2") = 2~ NU-D(2") for any I > 2 and B(p’) = p Nig(p?) for any j > 1 and
odd prime p. It then follows from the Euler product formula that

- 1 ((N-1)
;B(k) ) lﬂl_p 0 - {T-2-N) (V)

p>3

We finally conclude that
Theorem 3.3. We have
Z r2(n) = 4zlogz + 4ax + O(z*?)

n<lz

Z r2(n) = Waz® + O(2? log® )

n<az
and
> ré(n) = Wez® + O(a*)
n<e
For N >5,N #6 and z > 1, we have
ZTN =WrnaVN 1+ Oz 2 +;U3N/4).
n<az

Here a =2y + 8L (1) — 12¢(2) + 1log2 — 1 = 2.0166216 - - -.
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This proves Wagon’s conjecture for N > 4. Theorem 3.3 can also be found in
[8] and it contains the same basic arguments for getting the error bounds on r%(n)
summatory for N > 5. The estimate O(z™¥~2) in fact is the best possible as will
be discussed elsewhere.

4. CLOSED FORMS FOR DIRICHLET SERIES OF QUADRATIC FORMS

There is a rich parallel theory of L-functions over imaginary quadratic fields. In
this vein, let 75 p(n) be the number of solutions to z? + Py? = n (again counting
sign and order). Denote

— 2 _
Lo p(s E ro,p(n)n™%,  Rap(s E ro,p(n)°n=°.

It is known that when the quadratic form x? + Py? has disjoint discriminants (that
is, it has exactly one form per genus), then one has the following formula (see (9.2.8)
in [3])

[,2,13 = 21_tZL€uH(S)L—4PGM/M(s)
ulP

(41) > ey () (SAet)

n=1 ulP

where P is an odd square-free number, ¢ is the number of distinct factors of P and

o ().

Explicitly, (4.1) holds for all type one numbers. These include and may comprise:
P =5,13,21,33,37,57,85,93,105,133,165,177,253,273, 345, 357, 385, 1365.

It is known that there are only finitely many such disjoint discriminants. We call
such P solvable. Using (4.1), we have

o = B [ ()] ) (<)
= o 3 S (fa) o (Tl ) [ [ () o () [

pipe| P n=1

We now notice that Ro p(s) is a sum of Dirichlet series in the form of Theorem 2.1.
We may apply Theorem 2.1 on letting

)= (22), i) = (Ze),

n n
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for i =1,2. Then

Lf1fz(3) - i (Eulﬂl) (6H2N2) -

n=1

(e ¢] *, %
_ Z Cuiuy M1 n—"°
n

n=1
(n,(p1,p2))=1

Eptus MM\ _
= Leguuin(®) |1 (1_ (%)p 3)

pl(p1,p2)

where p¥ := p;/ (1, p2) and len denotes the product over all prime factors of n.
Similarly, we have

TSI AT
Lgig2(8) = Leygusning (9) H (1 - (%) p S) ;

Pl [u1 .uzl

—4Peuus /15,
Lpig(s) = L‘“’%I@/u?u; (s) H (1 - <$ b ;

plui

Lf291 (3) = L—4P€”;y§/lﬁu§ (S) H (1 - (

plus

_4P€u’{u; /NTH;) p_s>
b

and

L1 129192 (8) = ((5) H (1-p7%).

p|2P
Our basic Theorem 2.1 gives

_ 92(1—t 2 2 —1
Ra,p(s) = 22070 7 Le s ugmins L ape e juyus (8)6(28)
p1,p2|P

* ok -1
% H {1+ [( u1u2,U1N2> + <_4P6uiu§/ﬂlﬂz>]ps} _
p

p|2P

We have similar closed forms of L-functions for the quadratic form z2 + 2Py?

with discriminant —8P (see (9.2.9) in [3]):

Loop =271 Z Le,u(8)L_gpe, /u(5)-
ulP

We deduce from Theorem 2.1, in the same way, that

Razp(s) = 22070 Z L 5 (s )Lzspeplug/uluz( 8)¢(25)

€t ul BIns

LT —8P¢,«, = * ok -1
% H {1+ [(eulhplhﬂz) +( €u1;2/u1u2>]p_s}

for the type two integers
P=1,3,511,15,21,29,35,39, 51,65,95,105,165, 231.
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We note that 210 = 2 x 105 yields the invariant which Ramanujan sent to Hardy
in his famous letter.

We may reprise with the following theorem:

Theorem 4.1. Let P be a solvable square-free integer and let t be the number of
distinct factors of P. We have for P respectively of type one and type two:

(42) Rapp(s) =270 Y quiuﬁp;u;(5)L2—4Pe”;”§/u;u;(S)C(zs)_l

p1,p2| P
. et * —4APe. .« * )k -1
x H {1+ |:<61—L1N2/J’1/"’2>+( 6”1“2/u1u2>:|p—3} ,
pl2P p p
and
Raap(s) = 22070 Z LEHTNEM;;L; (S)Lz—spe}q”;/u;u;(S)C(QS)_I
p1,p2| P
o S 8P, s [ 1 -
% H {1+ |:(€I//1H2/J’1M2> n ( euluz/lh,uz)]p_s}
p|2P b P
ahers e = () and i = /G ),
In particular, the prime cases provide:
Corollary 4.2. We have
Roy(s) = 2¢*(s) L2 4,(s) 2L5(s) L2 4(s)
"’ (L+275) 1 +p=)¢(2s) (1 —279)(1+p=5)¢(2s)
for p=5,13,37, while
4¢2(s) L2 4(s
Rua(s) = ACEIa(o)
(142-5)¢(2s)
Similarly,
2¢%(s)L? 4 (s 2L2 (s)L3(s
Raan(s) = ()L, (s) o(8)L5(s)

A+27)(1+p)((2s)  A—29)(A—p)((2s)
for p = 3,11 while
2¢2(5) L2 5, (s) 2L2(5)L24(s)

Raanls) = Aot pc@s) T T=2-)(1— "))

for p=5,29.

Closed forms for £ p(s) are also accessible for some P other than those of type
one or type two. For example, (see Table VI of [10]) one has

(4.3) La3(s) = (2+4"7%) ((s)L-3(s).
and hence by Theorem 2.1 and Lemma 3.1, we obtain

142372 ((s) L_3(s))*
143 C(25)

(44) R2,3($) =1
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We may also derive many formulae for non-square free integers via modular
transformations [3]. We contain ourselves with the simplest example which is

4-2%77 + 242 (((s) L-4(s))?
1+2-3 ¢(2s)
as a consequence of a quadratic transformation leading to
Loa(s) = (271 = 27175 +47%)Lo(s).

There are some simple closed forms of the generating functions for more general
binary quadratic forms found in [10]. Let

R274(8) =

1 > T'(a,b,c) (n)
Laale) = Z (@m? + bmn + cn?)s Z ns
(n,m)#(0,0) n=1

2
and Rq,p,c)(8) := > T(“n# where 7(4,¢) (n) is the number of representations

n=1

of n by the quadratic form az? + bzy + cy®. Then, we have (e.g. (26) of [25])
Y Liape)(s) = w(D)((s)Lp(s)

k(D)
where the sum is taken over the h(D) inequivalent reduced quadratic forms of
discriminant D := b — 4ac and w(—3) = 6,w(—4) = 4 and w(D) = 2 for D < —4.
In particular, for ¢ = 2,3,5,11,17,41, h(D) = 1 and the result is especially simple:

L1,1,6)(8) = 2¢(s)Lp(s).
Hence from Theorem 2.1, we have

_ 4(C(5)Lp(s))?
Ri,1,0(8) = 1+ |D|£)((2s)’

with similar formulae for (a,b,c) = (1,1,1) and (1,0,1).
Thanks to the On-Line Encyclopedia of Integer Sequences
http://wuww.research.att.com/ “njas/sequences/
we discover that the sequence 2, 3,5,11,17,41 is exactly the so-called Euler “lucky”
numbers which are the numbers n such that m — m? —m 4 n has prime values for
m=20,---,n—1.

5. THE AVERAGE ORDER OF 74 p(n)

We start with the average order of ry p. The results in this section, in fact, can
be obtained by a convolution argument such as we used to prove (3.18) in §3. This,
however, does not seem to yield better error estimates, especially in the power of
N, in Theorem 5.1 and 5.3 below. So we instead apply Perron’s formula. Both
methods would seem to add an unnecessary if unobtrusive ‘c’.

Theorem 5.1. Let P be a solvable square-free integer, x > 1 and € > 0. We have
for either N = P of type one or N = 2P of type two:

Z ro,N(n) = \/LN:C +O((zN)2+e).

where the implicit constants are independent of © and P.

n<lz
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Proof. In view of (4.1), we have for n > 1

(5.1) rg,p(n):21—t2(%)*( 4P€“/“) 203" 09 (n) < 200(n).

u|P ulP
It follows from (1.1) that
= ao(n 1
Larle) € 3 B =40 <
n=1

as 0 — 17. Now in view of Perron’s formula (see Theorem 1 in §1 of Chapter V in
[16]), for any ¢ > 1, € > 0 and z,T > 1 we have

1 c+iT s
(5.2) Z ro,p( =5 / . Eg,p(s)%ds + 0T Ye—1)"2 4zt ter ).
n<lz

In order to evaluate the above integral, we need the following well-known esti-
mates for ((s) and L-functions.

Lemma 5.2. We have

L ifl<o<2and =0
Clo +i€) < { log F1<o and|€] > e
€]2" logl¢]  if0<o<1ande]>e
and
1 log”
m« og" [¢]

if o >1 and |£| > e. If x is a non-principal character modulo q, we have
L(o +i&,x) < log q(|¢| + 2)
for o > 1 while if x is a primitive character modulo ¢ > 3 and 0 < o <1, then

Lo +i€,X) < (q(€] +2))7" log q(l€] + 2).

As usual, we estimate the integral in (5.2) by replacing the integral over the
rectangle R with vertices b + ¢T" and ¢ £ ¢T with b = loéz and then calculate the
residues of the poles of the integrand inside R. In view of (4.2), the only pole of
Ra,p(s)%- inside R is s = 1, which comes from ((s), and its residue at s = 1 is
217t 4p(1)z because lim,_,1 (s — 1){(s) = 1.

For solvable P, i.e, 22 + Py? having one form per genus, the class number equals

the number of genera — which is 2¢ (see p. 198 of [24]). Hence L_4p(1) = 2:;1;”

for type one P and L_gp(1) = 2\72%' for type two P by (4.11) in [11]. Thus, the

residue of Rg p(s)%- at s =1 is 75T

Next, using the estimates in Lemma 5.2 and (4.2), we may prove that for |£| < T,

(P(1e] +2))1-) 10g*(PT) ifb<o <1,

Lo.p(o +i€) <
2,p(0 +i8) {log2(PT) ifl1<o<ec
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It then follows that

1 b+iT s T b
— —d b
ot Jyr La.p(s) 5 s < /_ |La,p( +l£)l|b+ i d§
(5.3) & PTlog?(PT)
and
1 C:tiT ws
— “d
27Tl b+iT £2P(S) S 5
< {/ / }|£2p U:I:lT)|—do‘
< P(log PT)? / ()" do+ 1 (logPT)Q/cx"da
b pPT 1
(5.4) & T 'log?(PT)log .

Now by choosing ¢ =1 + and T = (z/P)%, we get from (5.2)—(5.4) that

1
logz

Z ro,p(n) = %x + O((zP)=9).

The case for type two P can be proved in the same way. This completes the proof
of Theorem 5.1. [l

n<lz

For any square-free integer N, we define a constant a by:

logp  LL,n(1) 12,
p+1  L_yn(l) =2

(5.5) a(N) =27+ ) (2) -1

where v is Euler’s constant and 3, is the summation over all prime factors of n.

Theorem 5.3. Let P be a solvable square-free integer. Let x > 1 and ¢ > 0. We
have for either N = P of type one or N = 2P of type two:

2
E TQ’N(n)2 = — H P (rlogz + a(N)x) + O(N%+ex%+e)
n<z p|2N

where the implicit constants are independent of both © and P.
Proof. Tt follows from (1.2) and (5.1) that

Ra.p(o <<ZUO A <4(0§<<(0_11)4

as 0 — 17. Similar to (5.2), for any ¢ > 1, ¢ > 0 and z,7 > 1, we have

1 C-‘riT .'L'S
Z ro.p(n)? = =—— Ra,p(s)—ds+ O T (c—1)"* +z'TT7).

=~ 2me Jo_ir s
We estimate the integral in (5.3) by replacing the integral over the rectangle R
with vertices % + 4T and ¢+ 4T and then calculate the residues of the poles of the

]

integrand inside R. In view of (4.2), the only pole of R p(s)%- inside Ris s = 1
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of order 2 which comes from ((s)?2

the double summation of (4.2):

and corresponds to the terms when pu; = p9 in

(5.7) 2207000 (P)((s)* L-4p(5)¢(29) 7" JT (1 +10_3)_1%S = F(s)
p|2P

and its residue at s = 1 is

. d 2
= lim 7 {(s = 1)*F(s)}

= lim(s —1)%F(s) ll_}ﬁ} dis log {(s —1)*F(s)}.

s—1

Since P is solvable, so

lim(s —1)°F(s) = 220 Y0q(P)LZ,p(1)¢2) " [T+ ) e

s—1
p|2P
3 2p
P (H p+1> e

p|2P

In view of (5.5) and (5.7), we have

lim dislog {(s - 12F(s))

s—1

logp LI—4P(1) 12 ,
2y + + 2 - —=({2)=-1+logxz
RO R REUCRIREE

= a(P)+logzx

because lim,_,; (si_l + CCI((;))) = v. Therefore the residue of R27P(S)z—: at s=11s

(5.8) % (H %) (zlogz + a(P)x) .

p|2P Pt
Next using the estimates in Lemma 5.2 and (4.2), one can prove that for |{| < T,

PU-o)te(jg] 4+ 2)20-1og” T if L <o <1,

R +1i€) K
2,p(0 +i€) {Pe logh T if1<o<e

It then follows that

1

T2

1 [atiT ® T 1
R —ds < / R = +if)|=——d
2,p(5)—ds Tl 2,P( Zg)ll%-HEI ¢

(5.9) & PitepiTloghT
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and
1 c+iT s

x
— R = d
27 14T 2’P(S) S y

< {/ / }|R2p aizT)|—da

1+4+e€ T € A ¢ o
< PYT(logT)A /;(PTQ) do + P<T~(log T) /la:da

(5.10) & Pa°T 'logT.
and T = (z/P)%, we get from (5.6) and (5.8)-(5.10)

Now by choosing ¢ =1+
that

1
log z

2 1
Z 'I“Q,p(n)2 = % H b (zlogz + a(P)zx) + O(Pz-i-ew%-i-e)_

n<lz p|2Pp+ 1

The case for type two P can be proved in the same way. This completes the
proof of Theorem 5.3. O

In particular, we have established:

Theorem 5.4. For any x > 1, we have

8
Zrz,p =3 1(azlogx+a(p)a:) +0(zie)

n<z

for p=15,13,37 and

Z T9.95(n)? = pj- 1 (zlogz + a(2p)z) + O(m%—i-e)

n<lz

for p=1,3,5,11,29. Here the implicit constants are again independent of x.
Similarly, in view of (4.3) and (4.4), we have for = > 1,

Z ra3(n) = \/lgx +0(z3t)

n<z
and
(5.11) > r25(n)? = 2(zlogz + asz) + O(z4+)
n<lz
where a3 := 2y — $log2 + Llog3 + 8B L/ ,(1) — 12¢'(2) — 1.
Also
> raaln) = Gz + O@HT)
n<x
and
Zr“ xlogw+a4x)+0(x4+f)
n<lz

where ay =2y — 2log2+ 2L ,(1) - 3¢'(2) -1

Akin to Wagon’s conjecture, we make the following conjecture.
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Quadratic Conjecture. For any square-free P,
Z ro,p(n) ~ T
n<z \/F

and

3 2p
ZTZP(H)2 ~ = H —— | zlogx
n<z P p|2P p+l

as  — 00.

In view of Theorem 5.3, (3.14) and (5.11), our conjecture is true for solvable P
and for P = 1,3. We have also confirmed it for P = 7 and 15 from the representa-
tions of

Lo(s) = 2(1— 2177 + 2172)(() L1 (s)
and
Lo15(s) = (1 =277 +2'72)((s) L15(s) + (1 + 2" % + 2" 72*) L_3(s)Ls(s)
again given in [10], which leads to
(1-3-2°4222) (((s)L_1(s))*

Ra1(s) = 4 (1+2-5)(1+79) C(QS)

and
2(1—3-275+22725)  ({(s)L_15(s))?
1+251+39)(1+59) ¢(2s)
§14+3-27°+222)  (L_g(s)Ls(s))?
(1-279)(1=37°)(1-57°) ¢(2s) 7
and may be analyzed by the methods above.

Ra,15(s) =

6. SUMS OF THREE SQUARES AND OTHER POWERS

6.1. Three Squares. Odd squares are notoriously less amenable to closed forms.
In this subsection, we primarily record some results for r3(n), the number of rep-
resentations of n as a sum of three squares. Following Hardy, Bateman in [2] gives
the following formula for r3(n). Let

0 if4 % =7 (mod 8);

xz2(n) :=<27¢ if47*n =3 (mod 8);

3-2717% if479,=1,2,5,6 (mod 8)

where a is the highest power of 4 dividing n.
Then

16V (1) xa(n)

(e (-2 () )

p2ln

(6.1) r3(n) =

where 7 = 7, is the highest power of p? dividing n.
The Dirichlet series for r3(n) deriving from (6.1) is not as malleable as those of
(3.1)-(3.4), but we are able to derive a nice expression in terms of Bessel functions.
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Let K, be the modified Bessel function of the second kind. Then we have (see
[27], p. 183)

(6.2) Ky(z) = % (g)s/ooo et %.
By the substitution ¢t = X in (6.2), we get

(6.3) Ky(z) = % (g)/ﬂoo e Tty du.
Let

o0
>

n=-—oo

be the classical Jacobean theta function. In view of the Poisson summation formula,
we have, for t > 0

O5(e ™) =t 2605(e ™).

Since the Mellin transform of e~ for a # 0 is Ms(e ) = I'(s)a"*, so we have
(letting ¢ = e~ ™)

n2

L) =3 T
nm,pEZ

3pstl
= ST R2My ()
F(S+ )nm,pGZ
37rs+1 > n
= 63(q
e (oo
nez

_ 37T5+1 Z / —n 7rt92 77r/t)t5 ]-dt
37Ts+1 Z 27'2 / _n27rt—%ts—1dt

37TS+1
4 e ™ ﬂ'tts 1dt
(6:4) T(s+ 1 Z /

The first term of (6.4) is

6ﬂ.s+1 00 ) (o] / ) o
= n E 7-2 —n 7I't——i ts—ldt

F(S + 1 n:l m=1

67r8+1 - s 2 % n?m2ma—1 t
— —n —-1/z -1 —

s+ 1 )m§:1r2(m)(7rm) E n / e " dx, (z - )

K, (2mny/m)

1275+t &
- T(s+1) Z

=1

3
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by (6.3) and the second term is

(i — 1 ® L e
- ~ogi-lq
F(s + 1) Z n2s—2qs /0 e? s

This proves the following result:
6m 1275t &
. =—((2s —2 _ s(2
(6.5)  L3(s) . ¢(2s )+F(S+1)mz::lr2 Tny/m).

There is a corresponding formula for Y (—1)"rs(n)/n® which corresponds to Madelung’s
constant (see p. 301 in [3]). The second term of (6.5) can be rewritten as

127T3+1 Zk K, 277\/_)Zrz(k/n2)-

n2572
k>0 n2?|k

Moreover, these Bessel functions are elementary when s is a half-integer. Most
nicely, for ‘jellium’, which is the Wigner sum analogue of Madelung’s constant, we
have

1/2) = -7+ 3nw
£a(1/2) Z s1nh 7r\/_
and the exponential convergence is entlrely apparent.

For a survey of other rapidly convergent lattice sums of this type see [3] and [6].

There is a corresponding formula for Ln(s), for all N > 2, in which we obtain a
Bessel-series in ry_1(m):

rn(n) 2NT(s — 8=3) ws
_ n) _ V1T 2 — N +1
‘CN(S) Z ns F(S-{-l) w2 C( $ + )
n>0
4N gott m2® 1 (m) n'a
. K _~-3(2 .
(6.6) + T+ 1) mz>0 = ;} el S s (2nmy/m)

There is an equally attractive integral representation (see [27] p. 172) for:

_(2\°T(s+1/2) [* cos(at)
o= (2) Sipr ), e

at least when z > 1/2. This leads to

11 *® Cs g t
27375_?):2L_4(s+§a§) Z”(m)/ %dt

n>0 m>0

where
Co(a) = z cos(f;sr ne)
n>0
is a Clausen-type function. For s = 2k, even integer, this evaluates to
(27T)2k
(—1)k—12(2k)!

where By, is a Bernoulli polynomial.

Cor(z) = Bsy(x)
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Obviously this also extends to reworkings of (6.6). For example, the N = 2 case
yields

167r1+5 ady, l(n
3
2

11
4L -, =)((2s —
4(3+ 272)C( $ S+]. ns—

K,y 1(2nm) = 4((s)L_4(s).
This in turn, with s = 2, becomes

473 203(n)e_2"" (1 + 31 + 3 L) 1 271'2(} - §C(E‘»),

2nr 40272 ) n 3 2

where G := -, 5,(—1)" (2n + 1)~2 is Catalan’s constant.
There is a puissant formula for 85 due to Andrews [1] (given with a typographical
error in [3] p. 286). It is

co 2n
1%‘(]4"+ n 2 (. 2
©0 o =8 23 (i)t on

n=0 j=0

Lamentably we have not been able to use it to study Rs, or even L3 any further
than was achieved in [6].

6.2. Twelve and Twenty-four Squares. Explicit ‘divisor’ formulae for r15(n)
and ro4(n) are also known (e.g. p. 200 of [20] and §9 of Chapter 9 in [15]): they
are

7.12( n IZ d+n/dd5+16w(n)

and

16 128 o 1

where a7, (n) = 32, d"" if n is odd and of, (n) = 34, (=1)%d"" if n is even,

roa(n) =

q((1-P)1—g"Y1-¢%-)? =) wn)g"
n=1
and
((1—g)(1—g)(1—¢%) )" =) r(n)g".

Here 7(n) is the famous Ramanujan’s 7-function.

We have recorded these representations because, while N = 12 and N = 24 (due
to Ramanujan, see Chapter IX of [13]) are the next most accessible even cases,
neither directly lead to an appropriate closed form for £ let alone for Ry. This is
thanks to the impediment offered by w and 7 respectively: which encode knowledge,
via the Jacobi triple-product, of all the representations of n as a sum of 4 or 8
squares. The divisor functions do produce appropriate L-function representations.
Thus, using Ramanujan’s {-function

924(8) := Z ng) = H (1—r(p)p * +p11725)—1 ’
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which is discussed in detail in Chapter X of [13], it transpires that 7 is multiplicative,
with the preceding lovely Euler product. Additionally,

. ro4(n 16 _9s s
Loa(s) = % = @(212 2217 4 1)¢(s)¢(s — 11)
n=1
128 4—s 12-2s
+ o (2594 745 2071 4250 2172 gu (s).
Similarly with gi2(s) :== Y 00| % one has
L) = 30 72 = 51— 99 2)(5)¢(5 — 5) + 16g10().
n=1

We also note that the analysis in [13], due to Rankin (see [22]), provides an
‘almost closed form’ for

1) = S 8 ] (1472 e - RO

Rankin studied the above function f(s) in [22] and showed that f(s) has an analytic
continuation to a meromorphic function on C with the only poles at s = 12 and at
the complex zeros of {(2s — 22), all lying to the left of R(s) = 12. In [22], Rankin
proved his famous result that 7(n) = O(n?%/%). His proof depends on a functional
equation of f(s), namely,

(2m) 2 T(s)T(s — 11)¢(2s — 22) f(s) =
(2m)2 467 (23 — 5)T'(12 — 5)((24 — 25) f(23 — 5).

is invariant as s — 23 — s. Finally, we note that a recent paper by Ewell [9] has a
new divisor like recursion for 7.
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