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ABSTRACT

This paper discusses how to count and generate strings that are 
distinct� in two

senses� p�distinct and b�distinct� Two strings x on alphabet A and x� on alphabet A�

are said to be p�distinct i they represent distinct 
patterns�� that is� i there exists no

��� mapping A � A� that transforms x � x�� Thus aab and baa are p�distinct while

aab and ddc are p�equivalent� On the other hand� x and x� are said to be b�distinct i

they give rise to distinct border �failure function� arrays� thus aab with border array

��� is b�distinct from aba with border array ���� The number of p�distinct �respectively�

b�distinct� strings of length n formed using exactly k dierent letters is the �k� n� entry in

an in�nite p� �respectively� b�� array� Column sums p�n� and b�n� in these arrays give the

number of distinct strings of length n� We present algorithms to compute� in constant

time per string� all p�distinct �respectively� b�distinct� strings of length n formed using

exactly k letters� and we also show how to compute all elements p��k� n� and b��k� n��

These ideas and results have application to the e�cient generation of appropriate test

data sets for many string algorithms�

� INTRODUCTION

When is a string 
distinct� from another� The answer to this question depends on

how we intend to process the string� For some purposes we might choose to regard

x � abbcc and x� � bccaa as distinct� if� however� we regard the letters of the alphabet

as interchangeable so that x and x� can be seen as conforming to the same 
pattern�

�



This would be true� for example� if we were generating test data for an algorithm which

recognized no ordering of the alphabet �say� an algorithm to compute all repetitions

�ML��� in a string�� in this case� if the algorithm executed correctly on input x� it

would do so also on input x��

To make this idea precise� let

x � x���x��� � � � x�n� � x����n�� x� � x����x���� � � �x��n� � x�����n�

denote arbitrary �nite strings of length jxj � n � �� We say that x is p�equivalent to x�

if and only if� for all integers i and j satisfying � � i � j � n�

x�i� � x�j� � x��i� � x��j��

Clearly p�equivalence is an equivalence relation� breaking down the strings of length n

into equivalence classes� Strings that are not p�equivalent are said to be p�distinct�

Another interpretation of 
distinctness� is possible� Recall that a string x is said

to have border u if and only if u is a proper pre�x and su�x of x� For example�

x � abaabaab has borders u � � �the empty string�� ab and abaab� of lengths �� � and

�� respectively� The border array �n � �����n� corresponding to xn � x����n� is a string

de�ned on the integer alphabet f�� �� � � � � n � �g in which� for every integer j � ���n�

��j� is the length of the longest border of xj � x����j�� ���j� is also referred to as the


failure function� of xj �AHU�����

We say that two strings are b�equivalent if and only if they give rise to identical

border arrays� Strings that are not b�equivalent are said to be b�distinct� Thus� for

example� even though x� � ababb and x�� � ababc are p�distinct� we �nd that they are

nevertheless b�equivalent since both correspond to the border array �� � ������ On

the other hand� x� and x��� � abacb are b�distinct since they give rise to distinct border

arrays ����� and ������ respectively� It is clear then that each distinct valid border

array determines an equivalence class of b�equivalent strings� Observe that two b�distinct

strings are necessarily also p�distinct �so that p�equivalent strings are necessarily also

b�equivalent�� as we have just seen� the converse is not true�

In this paper we consider the two kinds of distinctness described above� for each� and

for all positive integers k and n� we show how to

� generate �in only constant time per string� all distinct strings of length n formed

using exactly k letters�

� count the number of all such strings�

In particular� we shall see that the number of p�distinct patterns of length n formed

using exactly k letters is
�
n
k

�
� a Stirling number of the second kind� a fact apparently
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not previously observed� We shall see therefore �equation ������ that the total number

of p�distinct strings of length n using at most k letters is reduced by an asymptotic

factor of ��k� from the number of such strings that are distinct in the ordinary sense�

Moreover� the computation of b�distinct patterns leads to a sequence of integers that is

apparently new �S���� and that represents a decline� by a further exponential factor� from

the number of p�distinct patterns �Theorem ����f� and equation ������� Algorithms for

generating distinct strings have been implemented in a software package for the testing

of string algorithms �L����

� DISTINCT PATTERNS

In this section we discuss p�distinct strings� how to count them and how to generate

them� In order to do so� it is convenient to identify a unique representative of each p�

distinct equivalence class� We therefore introduce a countably in�nite standard alphabet

� � f��� ��� � � � � �k� � � � �g� � � � �����

with subalphabets �k � f��� ��� � � � � �kg for every integer k � �� We suppose the letters

of � to be naturally ordered according to �� � �� � � � � � �k � � � � �� Then� given any

string x � x����n� on any alphabet A� we de�ne the p�canonical string x� corresponding

to x to be the lexicographically least string on � that is p�equivalent to x� It is clear

that x� satis�es the following property�

�P� For every positive integer j� the �rst occurrence �if any� of �j in x� precedes the

�rst occurrence of �j���

We �rst concern ourselves with the problem of counting the number p��k� n� of p�

canonical strings x� of length n formed using exactly the letters of �k� We imagine

these values to be laid out in an in�nite two�dimensional array called the p� array�

Theorem ��� For any positive integers n and k�

�a� p���� n� � ��

�b� if k � n� p��k� n� � ��

�c� p��k� k� � ��

�d� if k � � and n � �� p��k� n� � p��k � �� n� �� � kp��k� n� ���

Proof �a� For k � �� the only p�canonical string is x� � �n� �

�b� By property �P�� no p�canonical string x� can contain a letter �k� k � n�

�c� Again by property �P�� there exists exactly one p�canonical string of length

k formed using exactly k distinct letters� x� � ���� � � ��k�

�d� Let �� � p��k � �� n � �� denote the number of distinct p�canonical strings

of length n� � that include exactly the k � � letters of �k��� Denote these

strings by

S� � fx�� x�� � � � � x��g�
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Then for every integer i satisfying � � i � ��� each string

xi�k � � � �����

is distinct and p�canonical�

Similarly� let �� � p��k� n � �� denote the number of distinct p�canonical

strings of length n� � on exactly k distinct letters �k� Denote these strings

by

S� � fy�� y�� � � � � y��g�

Then for every integer i satisfying � � i � ��� the k strings

fyi��� yi��� � � � � yi�kg � � � �����

must all be distinct and p�canonical� Further� since the distinct �nal letter

occurs at least twice in each string� each of these strings is distinct from any

of the strings ������ Thus p��k� n� � p��k � �� n� �� � kp��k� n� ���

Suppose now that x� is a p�canonical string of length n formed using exactly

the letters �k� Let x� � y��i� If �i occurs in y�� then y� � S� and therefore

x� is one of the strings ������ Otherwise� by property �P�� �k cannot occur

in y� either� and so i � k� y� � S�� and x� is one of the strings ������ We

conclude that p��k� n� � p��k � �� n � �� � kp��k� n � ��� and so the result is

proved�

The recurrence relation of Theorem ����d� is well�known� with the initial values

speci�ed by Theorem ����a���c�� it de�nes the Stirling numbers
�
n
k

�
of the second kind

��K���� �PTW����� Hence

p��k� n� �

�
n

k

�
� � � �����

for all positive integers n and k� In fact� as we illustrate with an example� the cor�

respondence between classical Stirling numbers and our p��k� n� values can be made in

another way� A common de�nition �PTW��� of
�
n
k

�
is the number of ways that a set S

of n elements can be decomposed into k nonempty nonintersecting subsets whose union

is S� To see how this de�nition corresponds to p��k� n�� consider the case n � �� k � ��

If we write down the seven strings counted by p���� �� and collect into k � � subsets the

indices of identical letters in these strings� we �nd that each pair of subsets is a unique

�because each string is distinct� decomposition of f�� �� �� �g into nonempty �because

each of the k letters occurs� nonintersecting �because each position contains exactly one

letter� subsets�

����
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aaab f�� �� �g f�g

aaba f�� �� �g f�g

aabb f�� �g f�� �g

abaa f�� �� �g f�g

abab f�� �g f�� �g

abba f�� �g f�� �g

abbb f�g f�� �� �g

The unions of the pairs of sets in the righthand column exhaust all the possible ways of

forming S � f�� �� �� �g from k � � nonempty nonintersecting subsets�

Theorem ����d� provides an iterative method of computing p��k� n� and various for�

mul� for direct computation are available in the literature �R���� Observe that� for any

�xed value of k� the partial column sum
Pk

i�� p
��i� n� is the number of p�distinct strings

of length n formed from at most k letters� Since for n large with respect to k almost all

of these strings contain exactly k letters� it follows that

lim
n��

�
kX
i��

p��i� n�

�
kn

k�

�
� �� � � � �����

In the usual meaning of distinctness in strings� the number of distinct strings of length

n formed from at most k letters is kn� Thus ����� tells us that using p�distinct strings

on an alphabet of �xed size k reduces the number of strings that need to be generated

by an asymptotic factor of ��k�� Of particular interest is the case

p�n� �
nX
i��

p��i� n��

the number of p�distinct strings of length n� known in the literature as Bell numbers

�S���� These numbers also can be computed directly or iteratively in various ways �R���

PBM���� in particular using

p�n� �

n��X
j��

�
n� �

j

�
p�j�� � � � �����

p��� � �� that avoids any reference to the p� values� The �rst few Bell numbers are

p��� � �� p��� � �� p��� � �� p��� � ��� p��� � ��� p��� � ���� By contrast� there are

������ distinct �in the ordinary sense� strings of length � on an alphabet of � letters�

We conclude this section with a discussion of the generation of p�canonical strings�

It is clear from the proof of Theorem ����d� that� in order to generate all the strings

counted by p��k� n�� we
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� append �k to the strings counted by p��k � �� n� ���

� append ��� ��� � � � � �k to the strings counted by p
��k� n� ���

This observation gives rise to straightforward recursive algorithms to generate either

all the p�canonical strings x� counted by p��k� n� or else pseudorandom strings x�� The

generation of each pseudorandom string will necessarily require ��n� time� but the

generation of all p�canonical strings of length n can actually be accomplished in constant

time per string by making use of a rooted tree structure Tn of height n� as described

below�

The nodes of Tn may be thought of as pairs ��� k�� where � is a letter of � and k is

the number of distinct letters � found in the nodes which lie on the path to the current

node from the root� T� consists of the single root node ���� ��� and for every integer

n � �� Tn is formed by adding the following children to every leaf node ��� k� of Tn���

���� k�� ���� k�� � � � � ��k� k�� ��k��� k � ���

It is easy to see that Tn has exactly p�n� leaf nodes and that the letters found on the

paths to these nodes from the root give exactly the p�n� p�canonical strings x� of length

n� Thus the generation of these strings x� is accomplished simply by generating Tn�

Observe that� for every integer n � �� Tn is formed from Tn�� by appending p�n� leaf

nodes� a task requiring ��p�n�� time� Since by ����� p�n� � �p�n� ��� it follows that Tn
can be constructed in ��p�n�� time�

Theorem ��� For every positive integer n� all p�n� p�canonical strings of length n can

be computed in ��p�n�� time and represented in ��p�n�� space�

We may establish a similar result for the generation of all p�canonical strings counted

by p��k� n�� In this case we generate only the subtree of Tn whose paths of length n

terminate at a vertex whose label is ��� k� for any letter �� these paths represent exactly

the p��k� n� p�canonical strings of length n which contain exactly k letters� Thus in this

case only the nodes on these paths need to be computed� and so we have

Theorem ��	 For all positive integers k and n � k� all p��k� n� p�canonical strings of

length n formed using exactly k letters can be computed in O�kp��k� n��

time and represented in O�kp��k� n�� space�

Proof The recurrence relation of Theorem ����d� implies that� in order to compute the

strings counted by p��k� n�� k diagonal entries

p��k� n� j�� p��k � �� n� j � ��� � � � � p���� n� j � k � ��

need to be computed for every integer j � �� �� � � � � n�k� For every such integer

j� let

Dk�n�j �

k��X
i��

p��k � i� n � i� j�

�



denote the sum of the terms in the �n � j�th diagonal� Observe that� since

p��k� n � j� is the largest element in its diagonal� kp��k� n � j� � Dk�n�j � with

equality if and only if j � n� k� Further� it follows from the recurrence relation

that

p��k� n� j� � kp��k� n� j � �� � Dk�n�j���

provided n� j � �� Hence

n�kX
j��

Dk�n�j � kp��k� n� � p��k� n��� � ��k � � � �� ��kn�k���

� �k � ��p��k� n��

and the result follows�

We remark �nally that the tree Tn may be traversed in various ways corresponding

to various orderings of the p�canonical strings� For example� preorder traversal of Tn

�or any subtree of it generated by p��k� n�� yields the strings in lexicographic order� so

also does postorder traversal if the empty letter is assumed to sort largest� In fact� if

each string of Tn can be discarded after generation� then the strings determined by Tn

can actually be generated using only ��n� storage� corresponding to either preorder or

postorder traversal of Tn� Since by ����� p�n� � �n� this reduces the storage requirement

to ��log p�n���

	 DISTINCT BORDER ARRAYS

In this section we consider how to generate and how to count b�distinct strings� We

begin with a series of lemmas that show how b�distinct strings of length n � � can be

derived from those of length n�

Among any class of b�equivalent strings� it will again be convenient to identify one

b�canonical string x� as a representative of its class� as with p�canonical strings� we

choose this string to be the lexicographically least among those strings on the standard

alphabet that are in the class� Every class of b�equivalent strings on � is of in�nite

cardinality� but we can simplify matters without loss of generality by restricting such

classes only to strings that are also p�canonical� Then� for example� the class of p�

canonical b�equivalent strings on � corresponding to �� � ������ is

S� � f������������� ������������� ������������� ������������g�

with b�canonical element x�� � �������������

In order to establish a recurrence to compute a b�canonical string x�n�� � x�����n���

from a b�canonical string x�n � x�����n�� we need to understand how �n�� is computed
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from �n� Let �i�n�� i � �� denote ���i���n��� where ���n� � n� We state without proof

a lemma on which the standard failure function algorithm �AHU��� is based�

Lemma 	�� Let �n denote the border array of some string xn of length n � �� and let

k � n be the least integer such that �k�n� � �� Then for integers i � ���k�

�a� the borders of xn are exactly x�i�n	 � x�����i�n���

�b� for any string xn�� with proper pre�x xn� �n�� � �n��n� ��� where

��n� �� � f�� �i�n� � �g�

This result describes the values that may possibly be assumed by ��n � ��� given

�n � �����n�� We now prove a much stronger result� that the set of values actually

assumed by ��n� �� is independent of the underlying string xn�

Lemma 	�� For n � �� the values assumed by ��n��� depend only on �n and the size

of the alphabet�

Proof Suppose that there exist two strings xn and yn� both de�ned on alphabets of

size 	� and both giving rise to border array �n� Suppose further that for some

letter �� xn�� � xn� gives rise to border array �n�� � �nm� but that there

exists no letter 
 such that yn�� � yn
 gives rise to �n��� Then ��n� �� � m

is one of the values speci�ed in Lemma ����b��

First consider the case m � �i�n� � � for some integer i � ���k� Since m does

not occur for any yn��� it follows that

y��i�n� � �� � y��i
�

�n� � ��

for some least i� � i� while on the other hand

x��i�n� � �� 	� x��i
�

�n� � ���

Let n� � �i
�

�n�� Then

y�n� � �� � y��i
��

�n�� � ���

where i�� � i� i�� so that ��n� � �� � ���i
��

�n�� � ��� However� since

x�n� � �� 	� x��i
��

�n�� � ���

we conclude ��n� � �� 	� ���i
��

�n�� � ��� a contradiction since we assumed that

both xn and yn gave rise to �n� Thus the lemma holds for every m � �i�n� � ��

Now suppose that m � �� Then every one of the 	 possible choices y�n��� � 


yields a unique value ��n��� 	� �� while at least one choice x�n��� � � gives rise

to ��n��� � �� Hence there exists m� � � such that y�n��� yields ��n��� � m�

while x�n��� does not yield ��n��� �m�� in contradiction to the previous case�

�



We conclude that �n�� is a border array of some xn�� if and only if it is a border

array of some yn���

This fundamental result raises the possibility� discussed below� that �n�� can be

computed from �n without reference to any speci�c string� We can use the result im�

mediately� however� to show that every b�canonical string x�n�� must have a b�canonical

string as a pre�x�

Lemma 	�	 For n � �� every b�canonical string x�n�� � x�n�� where x
�
n is also b�

canonical and � is some letter of the standard alphabet�

Proof Suppose x�n�� � xn� with associated border array �n��� where xn is a string of

length n that is not b�canonical� Suppose that xn has border array �n� Then

there exists a string yn � xn with border array �n� Hence by Lemma ��� there

also exists yn�� � yn�
� with border array �n��� where yn�� � x�n��� But then

x�n�� is not b�canonical� a contradiction�

It is thus clear that all of the b�canonical strings x�n�� can be formed from b�canonical

strings x�n  no other strings need be considered� This foreshadows a tree structure

similar to that of Section �� where strings x�n�� are children of strings x
�
n� The next

lemma provides more exact information about how to generate distinct border arrays

�n�� from a given �n� and also about the form of the associated b�canonical strings

x�n���

Lemma 	�
 Suppose a border array �n corresponds to a b�canonical string x�n on the

standard alphabet �� Then �n gives rise to exactly � distinct border

arrays �n�� if and only if x�n�� is a b�canonical string that corresponds to

�

��
n�� � �n��

Proof Suppose �rst that xn�� � x�n�� is b�canonical and has only the empty border�

Then� since every b�canonical string corresponding to a given border array must

be lexicographically least� it follows that there exists no �i� i � �� such that

x�n�i has only the empty border� that is� for every i � ����� �� every x
�
n�i has

a distinct nonempty border�

Now suppose that for some integer i � �� the b�canonical string x�n�i has a

longest border of length m � �� so that �n�� � �nm� �Note that in fact� since

m � i � � � �� m � ��� It follows from Lemma ��� that x�n has a b�canonical

pre�x x�m � x�m���i for some b�canonical string x
�
m��� Moreover� since x

�
n��

has only the empty border� it follows that the pre�x x�m���� also has only the

empty border� Then for some positive integer �� � �� x�m����� is a b�canonical

string with only the empty border while x�m���i� i � ��� is a b�canonical string

with a nonempty border� In other words� we have reduced an instance of a

problem for �nite positive integers n and � to an instance of exactly the same
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problem for �nite positive integersm�� and ��� This reduction can therefore be

continued inde�nitely� an impossibility which persuades us that there exists no

i � � such that x�n�i has a nonempty border� Thus there are exactly � distinct

border arrays �n��� and su�ciency is proved�

To prove necessity� suppose that there exist exactly � distinct border arrays

�n��� But then one of them must be �n� and� as we have just seen� must

correspond to x�n���

It is noteworthy that Lemma ��� does not necessarily hold on a �nite alphabet �k�

in other words� it holds only if the alphabet is su�ciently large� For example� on the

alphabet �� � f��� ��� ��g� the b�canonical string x�� � �������������� has border

array �� � �������� but there is no x� � x��� on �� with border array � � ���������

Lemmas ������� suggest an algorithm for generating all b�canonical strings of length

n� for every integer j � �� �� � � � � n � �� append to each b�canonical string x�j single

standard letters ��� ��� � � � �� until for some integer � � �� x�j�� has only the empty

border� Then the strings x�j��� x
�
j��� � � � � x

�
j�� will be exactly the b�canonical strings

derived from x�j �

To implement this algorithm� we generate a rooted tree T �n� similar to the tree em�

ployed in Section �� Here each node of T �n is a pair ��� ��� where � � � and � denotes

the border array entry for � in the string de�ned by the labels in the nodes on the path

from the root of T �n to the current node� Thus T
�
� consists of the root node ���� ��� and

for every integer n � �� T �n is formed by adding the children

���� ���� ���� ���� � � � � ���� ��

to every leaf node of T �n��� Hence each node of T
�
n determines a b�canonical string

together with its border array� Denoting by b�n� the number of b�canonical strings of

length exactly n� we see that T �n has exactly b�n� leaf nodes� Thus all b�n� b�canonical

strings �and their corresponding border arrays� can be represented simply by appending

b�n� children to the leaf nodes of T �n��� a task requiring ��b�n�� time since the border

array element contained in each new child can be computed in amortized constant time

using the standard failure function algorithm �AHU���� Since by Lemma ��� every non�

leaf node of T �n has at least two children� it follows that the number of nodes in each

level of T �n exceeds the number of nodes in all previous levels� hence that T
�
n�� contains

fewer than b�n� nodes� and so can be constructed in O�b�n�� time� We have then the

analogue to Theorem ����

Theorem 	�� For every positive integer n� all b�n� b�canonical strings of length n can

be computed in ��b�n�� time and represented in ��b�n�� space�

��



We remark that trivial modi�cation to the algorithm outlined above yields an algo�

rithm to compute all the b�canonical strings of length n de�ned on �k� in computing

the children of each node� it is necessary only� as indicated above� to ensure that every

child ���� �� � ��k��� �� is omitted from the tree� Note also that it is straightforward�

using the tree T �n� to compute b�canonical strings that are 
random� in the sense that�

at each step� a child x�j of x
�
j�� is pseudorandomly selected�

It is clear from Lemma ��� that there always exist at least two border arrays �

��
n�� �

�n� and �

m���
n�� � �n�m���� where m � ��n�� The next result shows how to determine

whether or not there exists �

i�
n��� � � i � m� and so provides a basis for an algorithm

which� given all distinct border arrays �n� computes all distinct border arrays �n��

without any knowledge of x�n� Thus Theorem ��� establishes the interesting and nonob�

vious fact that distinct border arrays of length n can be computed by constructing a

tree T ��n whose nodes contain border array elements only� In fact� as observed by a ref�

eree� T ��n can like T
�
n be constructed in ��b�n�� time� but only at a cost of introducing an

extra pointer into each node i� Thus no storage is saved using T ��n and it turns out that

the algorithm for its construction is considerably more complicated than the one given

above for T �n� The algorithm is therefore not described here in detail� In the following

theorem� the notation j� 
 j is used to mean that �i�j�� � j for some i � ��

Theorem 	�� Letm � ��n� � �� For every integer i � ���m� there exists a valid border

array �
i�n�� � �ni if and only if the following conditions all hold�

�a� ��m� �� 	
 i�

�b� ��m�
 i � ��

�c� there exists no integer i� 
 i such that �

i��
n�� � �ni

� is valid�

Proof To prove the necessity of the three conditions� suppose �rst that �ni is a valid

border array� Then there exists a b�canonical string x�n�� � x�n� with a longest

border x�i � x�����i�� where x�n has a longest border x
�
m � x�����m�� m � i� Thus

� � x��n� �� � x��i� while � 	� x��m� ��� since otherwise it would follow that

x�n�� would have a longest border x
�
m��� We conclude that x

��m � �� 	� x��i��

from which �a� follows�

To prove �b�� observe �rst that for i � �� �b� is true� Suppose therefore that

i � �� But then the fact that � � x��i� leads to the conclusion that x��n� �

x��m� � x��i� ��� hence that ��m�
 i� ��

To prove �c�� suppose on the contrary that for some i� 
 i� �ni� is a valid

border array� But then in order to form a border x�i of x
�
n��� a longer border x

�
i�

is necessarily formed� contradicting the assumption that �ni is a valid border

array� Thus �c� also must be true�

��



To prove su�ciency� suppose that �a�� �b� and �c� all hold� Since ��m�
 i� ��

we may choose � � x��i� to ensure that x�n�� has a border of length at least i�

Since ��m��� 	
 i� we are assured that x��m��� 	� x��i�� hence that x�n�� does

not have a border of length m� Since by �c� i is a leaf node in Bn��� we are

further assured that x�n�� has no border longer than i� Thus �

i�
n�� � �ni is a

valid border array� as required�

We turn now to consideration of a b� array analogous to the p� array of Section �� for

positive integers k and n� b��k� n� denotes the number of b�canonical strings of length n

formed using exactly the k standard letters of �k� Then the already�de�ned quantities

b�n� are the column sums in the b� array�

b�n� �
X
k��

b��k� n��

As we shall see below �Theorem ����a��� all terms in the nth column of the b� array

are zero for k � dlog��n � ��e� that is� the k
th letter of the alphabet does not appear

in b�canonical strings of length n � �k��� For k � log��n � ��� computation of the

elements b��k� n� requires generation of a tree T ���n in which each node takes the form

of a triple ��� �� i�� where as in Section � the additional term i counts the number of

distinct letters in the b�canonical string represented by the path from the root� Using

T ���n a straightforward algorithm allows b
��k� n� to be computed in O�b�n�� time�

In general� it appears to be much more di�cult to �nd well�known expressions for the

elements of the b� array than for those of the p� array� However� the following theorem

provides enough information to allow useful upper bounds to be stated on b��k� n� and

b�n�� It also illustrates the di�culty of expressing these values in closed form�

Theorem 	�	 Given positive integers k and n�

�a� b��k� n� � �� k � dlog��n� ��e�

�b� b���� n� � b��k� �k��� � ��

�c� b���� n� � p���� n� � �n�� � ��

�d� Let !b�k� n� denote the number of strings counted by b��k� n� which

contain �k only in position n� Then

!b��� n� � �dn��e����bn��c�� � �� � �n��

bn��c��X
j��

!b��� j � �����j

for every n � ��

�e� Let "b�k� n� � b��k� n�� !b�k� n�� Then for every k � � and n � ��

"b�k� n� � �b��k� n� �� � b��k� n� ���

��



with equality holding for k � � and � � n � ��

�f� For every nonnegative integer j�

b��k� �k�� � j� � p��k� k � j��

with equality holding for � � k � ��

Proof �a� The proof is by induction� Observe that the result holds for n � �� We

suppose then that it holds for every n satisfying �k�� � n � �k � � for some

positive integer k� and we show that therefore it must hold for values n�

satisfying �k � n� � �k�� � ��

By the de�nition of the b� array� the inductive assumption is equivalent to

supposing that over the range of values n� at most k letters ��� ��� � � � � �k

�in ascending order� are required in order to form the b�canonical string xn

corresponding to every border array �n� Thus the letter �k�� does not occur

in any position less than �k of any b�canonical string x�n� � n� � �k�

We need to show that for every n� satisfying �k � n� � �k�� � �� no b�

canonical string x�n� contains �k��� Suppose on the contrary that some such

x�n� contains �k�� as its �nal letter� x�n� � x�n����k��� This can occur only

if each of the strings

fx�n������ x
�
n������ � � � � x

�
n����k��g

is b�canonical and has a nonempty border� In particular� let x�n� � x�n����k���

and let j denote the position of the �rst occurrence of �k�� in x�n� � By the

inductive hypothesis� j � �k� and so the length of the longest border of x�n�

must exceed n���� But this implies that x�n� �j��n��j�� � �k��� contradicting

the assumption that j is the �rst occurrence of �k��� We conclude that

x�n����k�� cannot have a nonempty border� hence by Lemma ��� that no

b�canonical string x�n� contains �k��� as required�

�b� b���� n� � � corresponding to the strings �n� � while b
��k� �k��� � � correspond�

ing to the strings

f��� ����� ��������� ����������������� � � �g�

�c� Follows from the observation that for n � � every p�canonical string is also

b�canonical�

�d� To improve readability we make the substitution fa� b� cg � f��� ��� ��g�

Then observe that every b�canonical string x�n�� � ab � a gives rise to a b�

canonical string x�n � x�n��c� �Here ab � a denotes a string with pre�x ab�

��



su�x a� and zero or more 
don#t�care� letters in between�� There are �n��

such b�canonical strings�

For any integer j � �� let yj denote a substring of length j on fa� bg� Then

observe further that every b�canonical string x�n�� � ay�b � ay� gives rise to

a b�canonical string x�n � x�n��c� there are ���
n��� such strings�

Next consider x�n�� � ay�b � ay� giving rise to x�n � x�n��c� Here y� can take

the values aa� ab and bb� but not ba� since the string ab � a has already been

counted� Thus in this case there are ��� � ���n� new distinct b�canonical

strings� Similarly for x�n�� � ay�b � ay�� here y� omits the values baa and

bba� again since ab�a has already been omitted� Thus we count �������n���

new distinct strings�

We see in general that corresponding to each x�n�� � ayjb � ayj � there are

��j � !b��� j � ����n��j��

distinct b�canonical strings which give rise to x�n � x�n��c� Thus

!b��� n� �

bn��c��X
j��

��j � !b��� j � ����n��j���

a sum which after simpli�cation reduces to the form given in the statement

of the theorem�

�e� Observe that the b�canonical strings counted by "b�k� n� include at least the

following�

� strings x�n���� and x
�
n����� where x

�
n�� is a b�canonical string counted by

b��k� n� ���

� strings x�n������� where x
�
n�� is a b�canonical string counted by b

��k� n����

It is straightforward to verify that equality holds in the cases claimed�

�f� A consequence of �a� and the fact that every b�canonical string is also p�

canonical�

These results provide us with some capability to estimate the size of the entries in

the b� array� It appears from Theorem ����d� that exact computation of these entries

is in general extremely complicated� Theorem ����f� shows that� for every �xed k �

�� the entries b��k� n� are asymptotically less� by a factor exponential in k� than the

corresponding entries p��k� n�� This result can easily be applied to yield an upper bound

on b�n� expressed in terms of entries in the p� array� for every positive integer n�

b�n� �

k�X
k��

p��k� n� �k � k�� � � � �����

��



where k� � dlog��n � ��e� Note that by reducing the value of k
�� we can also use �����

to bound the partial column sums in the b� array�

We conclude by displaying some of the smaller values in the b� array�

Non�Zero Elements b��k� n�� n � ��

� � 	 
 � � �  � ��

� � � � � � � � � � �

� � � � �� �� �� ��� ��� ���

	 � � � �� �� �� ��� �!b��� n��

� � �� ��� ��� ��� �"b��� n��


 � � � �!b��� n��

� � �"b��� n��

b�n� � � � � �� �� ��� ��� ��� ����

Table 	��


 CONCLUSION

In this paper we have shown how 
distinct� strings of length n formed using ex�

actly k letters can be e�ciently computed and counted� according to two de�nitions of

distinctness� Both of these de�nitions lead to algorithms that are considerably more

economical than the computation or counting of ��kn� strings�
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