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Abstract. The notion of shuffle on trajectories is a natural gener-
alization of many word operations considered in the literature. For
a set of trajectories T', we define the notion of a T-code and exam-
ine its properties. Particular instances of T-codes are prefix-, suffix-,
infix-, outfix- and hyper-codes, as well as other classes studied in the
literature.
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1 Introduction

The theory of codes is a fundamental area of formal language the-
ory, with many important applications. The class of prefix codes is a
particularly important subclass of codes, and is fundamentally linked
to the nature of catenation as the underlying operation. Further re-
search in codes has considered the subclasses of codes which arise
from replacing catenation with other, related operations, most no-
tably shuffle (the hypercodes) and insertion (the outfix codes).

In this paper, we generalize these results by considering T-codes. A
T-code is any language L satisfying the equation (Lwz X1T)NL =0,
where i is a word operation defined by shuffle on trajectories.
Shuffle on trajectories (see Section 2 for definitions) was defined by
Mateescu et al. [35] and generalizes many word operations considered
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in the literature, including shuffle, insertion and concatenation. Thus,
we consider the natural extension of codes to all operations defined
by shuffle on trajectories, and examine the properties of these classes
of languages.

The idea of studying general classes of codes has received much
attention in the literature (see, e.g., Shyr and Thierrin [39], Jirgensen
et al. [23] and Jirgensen and Yu [24]). Further, the definition of a T-
code which we present can also be formulated in dependency theoretic
terms (see, e.g., Jurgensen and Konstantinidis [22] for a survey of
dependency theory). Some of the results we have obtained can be
proven by appealing to dependency theory, however, our proofs are
simpler in our restricted situation.

In addition, there are works in the literature which consider the
problem of defining codes based on arbitrary binary relations, see,
e.g., the work of Jirgensen et al. [23] on codes defined by binary
relations and Shyr and Thierrin [39] for work on so-called strict binary
relations. We will see that we can also view T-codes as anti-chains
under the natural binary relation defined by T'.

With this research in mind, we nonetheless feel the framework of
T-codes is useful in that it helps us to see results relating to codes
defined by shuffle on trajectories in a new way. The restriction of
considering only those codes defined by shuffle on trajectories gives
us new insight into these classes, including prefix-, suffix-, bi(pre)fix-,
infix-, outfix-, shuffle- and hyper-codes, by focusing our attention to
classes of codes which are specific enough to allow reasoning on the
associated sets of trajectories, but general enough to encompass all
of the above interesting and much-studied classes of codes.

We also feel that introducing the notion of T-code will allow more
unified results to be obtained on the various classes of codes, since
specific conditions on sets of trajectories (i.e., languages) will be eas-
ier to obtain than more general conditions on arbitrary relations. In
particular, we have obtained results which do not appear to have
been considered before in the more general framework of dependency
theory or binary relations.

Further, we note that the idea of T-codes is useful elsewhere in the
study of iterated shuffle and deletion along trajectories, for instance,
in analyzing the shuffle-base of certain languages. Finally, the study
of T-codes, much like the study of shuffle on trajectories in general,
allows us to examine what assumptions must be made on an operation
in order for certain results to follow. We find that even when these
assumptions have been studied in the literature, the proofs obtained
for the specific cases of shuffle on trajectories are often simpler.
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We obtain several interesting results on 7-codes. We generalize a
result relating outfix and hyper-codes and the notion of (embedding-)
convexity to all T-codes. Further, the known closure properties of
shuffle on trajectories allow us to easily conclude positive decidabil-
ity results for the problem of determining membership in classes of
T-codes (including maximal T-codes), which were previously deter-
mined by ad-hoc constructions in the literature.

We note that recently, a more general concept than T-codes has
been independently introduced by Kari et al. [27], motivated by the
bonding of strands of DNA and DNA computing. Their framework,
called bond-free properties, is also a general setting which involves
shuffle on trajectories. Generally, the motivations for our work and
those of the work by Kari et al. are different, and the decidability
results which are similar are noted below.

2 Definitions

For additional background in formal languages and automata theory,
please see Yu [44] or Hopcroft and Ullman [16]. Let X' be a finite set
of symbols, called letters. Then X* is the set of all finite sequences of
letters from X, which are called words. The empty word € is the empty
sequence of letters. The length of a word w = wywg -+ -w, € XN*,
where w; € X, is n, and is denoted |w|. Note that € is the unique
word of length 0. A language L is any subset of X*. By L, we mean
X* — L, the complement of L. If Ly,...,L; C X* are languages, we
use the notation Hle Li = L1Ly--- Lg. If L is a language and k is
a natural number, then we denote L=F = {uiug---u; = i <k,uj €
LV1<j<i}.

We refer the reader to Rozenberg and Salomaa [36] for the defi-
nitions of the regular, linear context-free, context-free and recursive
languages; these are denoted by REG, LCF, CF and REC, respectively.

We denote by N the set of natural numbers: N = {0,1,2,... }.
If we wish to refer to the positive numbers, we will use the notation
Nt ={1,2,...,}. Let I C N. If there exist ng,p € N, p > 0, such that
for all > ng, i € I <= i+ p € I, then we say that I is ultimately
periodic. For n,m € N, we use the notation m | n to denote that m
is a divisor of n, that is, there exists k € N such that n = km.

Given alphabets X', A, a morphism is a function h : X* — A*
satisfying h(zy) = h(z)h(y) for all z,y € X*. Given a morphism
h:X* — A* and a language L C X*, then the image of L under A is
given by h(L) = {h(z) : = € L}, while if L' C A*, the inverse image
of L' under h is defined by h=!(L') = {z € X¥* : h(z) € L'}.



4 Michael Domaratzki

Given an word w € X* and ¢ € ¥, |w|, is the number of oc-
currences of a in w. For an alphabet ¥ = {aj,a9,...,a,} with a
specified order a; < ag < --- < ay, the Parikh mapping is given by
¥ — N, as follows:

¥ (w) = (|wla;)is-

It is extended to ¥ : 2% — 2V ag expected.

Recall that a language L C X* is bounded if there exist k € N and
wi, Wy, ..., wy € X* such that L C wiwj -+ wjy. If L is not bounded
we say that it is unbounded.

The shuffle on trajectories operation is a method for specifying the
ways in which two input words may be combined to form a result.
Each trajectory t € {0,1}* with |t|op = n and |t|; = m specifies the
manner in which we can form the shuffle on trajectories of two words
of length n (as the left input word) and m (as the right input word).
The word resulting from the shuffle along ¢ will have a letter from the
left input word in position i if the i-th symbol of ¢ is 0, and a letter
from the right input word in position ¢ if the i-th symbol of ¢ is 1.

We now recall the formal definition of shuffle on trajectories, orig-
inally given by Mateescu et al. [35]. Shuffle on trajectories is defined
by first defining the shuffle of two words x and y over an alphabet X
on a trajectory ¢t € {0,1}*. We denote the shuffle of z and y along
trajectory t by z i, y.

If z = az', y = by’ (with a,b € ¥) and ¢t = et’ (with e € {0,1}),
then

~ Ja(r'wp by') if e=0;
T Y= blaa’ wy o) if e = 1.

Ifz=az' (a€X),y=cand t =et' (e € {0,1}), then

e a(z' iy €) if e = 0;
Tet' €= ¢ otherwise.

Hz=¢c,y=by (b€ X) and t =et’ (e € {0,1}), then

_ Jblewpy)ife=1;
Ctler Y = { 0 otherwise.

We let 2wy = 0 if {z,y} # {€}. Finally, if z =y = ¢, then ey e = €
if t = € and () otherwise.
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It is not difficult to see that if ¢ = J[I_, 011 for some n > 0 and
Ji ki > 0 for all 1 <14 < n, then we have that

n n n
sy ={[ [z + =]]zuy =[] v
i=1 =1 i=1

with |z;| = ji, |yi| = ki for all 1 < i <n}

if |z| = |t|o and |y| = |t|1 and zwy = 0 if |z| # |t|o or |y| # |t]1.
We extend shuffle on trajectories to sets T' C {0, 1}* of trajectories
as follows:

TWryY = U Tl Y.
teT

Further, for L, Ly C X*, we define

L1L|_|TL2 = U rury.

x€Ly

yEL>
We will also require the following definition, introduced indepen-
dently by the author [6] and Kari and Sosik [28], called deletion along
trajectories, which models deletion operations controlled by a set of
trajectories. Let z,y € X* be words with z = az/, y = by’ (a,b € X).
Let ¢ be a word over {i,d} such that ¢t = et’ with e € {i,d}. Then we
define z ~»; g, the deletion of y from z along trajectory ¢, as follows:

a(:z:' Ay byl) ife = ’i;
T Yy = q;"\»t/yl ife:dandGZb;
0 otherwise.

Also, if z = az’ (a € X)) and t = et’ (e € {i,d}), then

oo € — a(z' ~yp €) if e = i
PR 0 otherwise.

If z # €, then x ~». y = (). Further, € ~; y = € if t = y = €. Otherwise,
e~y =0.
Let T' C {4,d}*. Then

T~ Y = U T~ t Y-
teT
We extend this to languages as expected: Let L1, Lo C X* and T C
{i,d}*. Then

Ly ~7 Ly = U T ~aT Y.

€l
yELy
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We now come to the main definition of the paper. Let L C X+
be a language. Then, for any 7" C {0, 1}*, we say that L is a T-code
if L is non-empty and (Liup 1) N L = . If X is an alphabet and
T C {0,1}*, let Pr(X) denote the set of all T-codes over X. If X' is
understood, we will denote the set of T-codes over X' by Pr.

There has been much research into the idea of T-codes for partic-
ular T' C {0, 1}*, including

(a) prefix codes, corresponding to 7' = 0*1* (catenation);

(b) suffix codes, corresponding to T' = 1*0* (anti-catenation);

(c) biprefix (or bifix) codes, corresponding to T = 0*1* 4+ 0*1* (bi-
catenation);

(d) outfix and infix codes, corresponding to 7" = 0*1*0* (insertion)
and T = 1*0*1*, (bi-polar insertion) respectively;

(e) shuffle-codes, corresponding to bounded trajectories such as

(e-i) T = (0*1*)" for fixed n > 1 (prefix codes of index n);

(e-ii) T = (1*0*)™ for fixed n > 1 (suffix codes of index n);
(e-iii) T = 1*(0*1*)™ for fixed n > 1 (infix codes of index n);
(e-iv) T = (0*1*)™0* for fixed n > 1 (outfix codes of index n);

(f) hypercodes, corresponding to 7' = (0+1)* (arbitrary shuffle); and

(g) k-codes, corresponding to T' = 0*1*0=F (k-catenation, see Kari
and Thierrin [29]) for fixed & > 0.

(h) for arbitrary k& > 1, codes defined by the sets of trajectories
PP, = 0* + (0*1*)k~10*1+, PS, = 0* 4+ 170*(1*0*)*~!, PI;, =
0* + (1*0%)k1*, SI;, = 0* + 1+(0*1*)k, PB, = PP, U PS; and
BIy = PI, U SIy, see Long [32], or Ito et al. [20] for PI;, S1;.

For a list of references related to (a)—(f), see Jirgensen and Konstan-
tinidis [22, pp. 549-553]. In this paper, we let H = (0+1)*, P = 0*1*,
S =1%0*1=1*0"1*,0=0*"1"0"and B=P+ S.

Recall that a non-empty language L is a code if uiug - Uy =
v1v2 - - - vy, Where u;,v; € L for 1 <4 <m and 1 < j < n implies that
n =m and u; = v; for 1 <14 < n. For background on codes, we refer
the reader to Berstel and Perrin [1], Jiirgensen and Konstantinidis
[22] or Shyr [37].

3 General Properties of T-codes

We can give two alternate characterizations of T-codes in terms of
its left and right inverses (in the sense of Kari [26]). These are given
via the morphisms 7,7 : {0,1}* — {4, d}* defined by 7(0) =i, 7(1) =
d, 7(0) = d and 7(1) = i. We can easily prove the following two
equalities by appealing to results relating shuffle and deletion along
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trajectories (see the work of the author [6] or Kari and Sosik [28]).
In particular, we have for all 7" C {0,1}*, and all ¥,

Pr(X) ={L : (L~ X NL =0}, (1)
Pr(¥)={L : L~y L C{e}}. (2)

For some particular 7', these characterizations are well-known, e.g.,
(1) for T'= 0*1* is given by Berstel and Perrin [1, Prop. II.1.1.(ii)].

We now note that the term T-code is somewhat of a misnomer:
some T-codes are not codes. However, we feel that the use of the
term appropriately encapsulates a sufficiently similar notion in terms
of the language equation involved. In particular, note the following
example:

Ezample 1. Let T = (01)*. Then wy corresponds to perfect shuf-
fle (also known as balanced literal shuffle). Then note that L =
{aa, bb, aabb} is a T-code: there is no way to perfectly shuffle aa (resp.,
bb) and any other word of length 2 to get aabb. However, L is not a
code: aa - bb = aabb.

On the other hand, we shall see in Corollary 1 below that if T D
0*1*, then all T-codes are codes.

The following states that more restrictive sets of trajectories (po-
tentially) result in more languages being T-codes; the proof is imme-
diate:

Lemma 1. Let Ty C Ty C {0,1}*. Then for all X, Pr, (X) 2 Pp,(X).

By the fact that all prefix codes are codes, we conclude the fol-
lowing, which complements Example 1:

Corollary 1. Let T' D 0*1*. Then every T'-code is a code.

Let Pcopr denote the set of all codes. We now show that for all
T C {0,1}*, Pr # Peope- We will require the following well-known
characterization of two element codes (see, e.g., Berstel and Perrin
[1, Cor. 2.9]):

Theorem 1. Let L = {1,259} C 7. Then L is not a code iff there
erist z € X1, 4,5 € NT such that z; = 2* and z9 = 27.

Lemma 2. Let T' C {0,1}*. Then Pr(X) # Poope(X) for all X with
| > 1.
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Proof. Let T C {0,1}*. If T C 0* + 1*, then Py = Py = 2% — {0}
(the first equality will become clear after Theorem 3 below), which
is clearly not the set of codes.

Thus, we can assume that there is some t € T' with |¢|, |t|o > 0.
Let n = [t|p. Consider that ¢ € 0" {0,1}", thus L = {¢,0"} is not
a T-code.

If L is not a code, then ¢ and 0™ are powers of the same word, i.e.,
t € 0*. This contradicts our choice of ¢. Thus, L is a code. O

We also observe that Pr, N Pr, = Pryur,.- We note that the dual
case does not hold. In the case of P ~7,, we have the inclusion P, N
Pr, C Prynm,. But of course equality does not hold in general. For
example, with 77 = 0*1* and Ty = 1*0*, Py, = Po41+ = Py =
25" — {0} (the second equality will be established in Theorem 3
below). However, Pr, N Pr, = Pr,ur,, the set of biprefix codes.

We can also ask if 71 C Ty (C denotes proper inclusion) implies
that P, D Pr,. The answer is yes, as long as the difference between
Ty and T3 contains non-unary words.

Theorem 2. Let T) C Ty be such that (T, —Ty) N0* + 1* # 0. Then
for all X with |X| > 2, Pp,(X) D Pr,(X).

Proof. Let t € (Ty —T1) N 0* + 1*. Let tg,t; be defined by ty = oltlo
and ¢; = 1/*1. Then note that o, t; # ¢, by our choice of t. Thus, we
have that {t,%o} C {0,1}*. We claim that L; = {t,ty} € Pr, — Pr,.

To see that L; ¢ Pr,, note that ¢ € tguut1. As t € Ty and ¢; # e,
Ly is not at Th-code. Assume that L; is not a Ti-code. As |t| > |to], the
only way that L; can fail to be a Tj-code is if there exists z € {0,1}T
such that ¢ € touir, . By definition, this implies that x = ¢;. But
t € tour, t1 only if ¢ € Th, which is not the case. 0O

Theorem 3. Let Ty C Ty and Ty — Ty C 1*+0*. Then for all X with
| X >1, Py (X) = P (2).

Proof. Assume, contrary to what we want to prove, that L C X is
a T1-code which is not a Th-code. As L is not a Ts-code, there exist
2,2 € L,y € X" and t € Ty such that z € zuy; y. As L is a Tj-code,
z ¢ v y. Thust ¢ T. By assumption, this implies that ¢ € 1*+0*.

If ¢ € 1*, then by definition of wr, z € zwy implies that z =
€, contrary to our choice of L. If ¢ € 0*, then by definition, y =
€, contrary to our choice of y. In either case, we have arrived at a
contradiction. 0O

Thus, we have completely characterized when a restriction in tra-
jectories corresponds to an increase in languages which are codes. In
particular, we note the following corollary:
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Corollary 2. Let T1,T5 C {0,1}* be regular sets of trajectories. Then
it is decidable whether Pr, = Pr,.

Proof. We note that Py, = Pp, iff (17 —T3) U (T, —T1) C 0* 4+ 1%,
Since Ty, T, are regular, so is (T} —T5) U (T, — T1), and the inclusion
is decidable. O

We now examine further questions of decidability.

Lemma 3. Let T C {0,1}* be a fized CF set of trajectories. Then
given a regular language L, it is decidable whether L is a T-code.

Proof. Since L is regular and T is a CFL, Liwp X, and (Lwr X7T)N
L are CFLs. Thus, we can test whether (Liur X%) N L = (), which
precisely defines L being a T-code. 0O

This result can also be proved using dependency theory. As every
T C {0,1}* defines a 3-dependence system, and in particular every
context-free T defines a dependence system whose associated sup-
port can be accepted by a 3-tape PDA, the problem of determining
membership in Pr is decidable; see Jiirgensen and Konstantinidis
[22, Sect. 9] for details. Further, Kari et al. [27, Thm. 4.7] establish a
similar decidability result in their framework of bond-free properties.
When translated to our setting, it states that given T, R regular, we
can decide if R € Pr.

A class of languages C is said to have decidable membership prob-
lem if, given L C X* with L € C, it is decidable whether x € L for an
arbitrary z € X*. We have the following positive decidability result:

Lemma 4. Let C be a class of languages with decidable membership.
Let T C {0,1}* be a set of trajectories such that T € C. Then given
a finite language F, it is decidable whether F € Pr.

Proof. Let F C X7 be a finite set. Let n = max{|z| : = € F}.
Since membership in T is decidable, we can test all t € {0,1}<"
for membership in 7. Thus, we can effectively compute T<" = T N
{0,1}=". Tt is easily observed that F N (Flir<n L) = F N (Fwy L)
for all L.

Since F,T<", XT are regular, we can test F N (F i<, X7) = 0.
Thus, the result follows. O

We conclude with the following method of constructing a T-code
from an arbitrary language.

Lemma 5. Let T C {0,1}*. Let L C X% be a non-empty language.
Then Ly = L — (Lt X1) € Pp(X).
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Proof. As Ly C L and 7 is a monotone operation, (Loiur X1) C
(Lwp XF). Thus, Ly N (Lowr K1) C Lo N (Lwr X7T) and Lo N
(L X7) = 0 by definition of Lg. O

4 The Binary Relation defined by Trajectories

We can also define T-codes by appealing to a definition based on
binary relations. In particular, for T' C {0,1}*, define wr as follows:
for all z,y € X%,

Twry <= yE€rwypX*.

Then it is clear that L is a T-code iff L is an anti-chain under wr
(i.e, z,y € L and = wy y implies z = y).

We note that the relation analogous to wr for infinite words and w-
trajectories was defined by Kadrie et al. [25], and its properties were
briefly investigated. Kadrie et al. do not investigate the analogous
relation with the same amount of detail as below and do not appear
to be motivated by coding theory.

We now recall some of the properties of the binary relations wr
that will be useful. The proofs may be found in the companion paper
by the author [7]. In what follows, we will refer to 7" having a property
P iff wr has property P.

Anti-symmetry

We note that wr always gives an anti-symmetric binary relation:

Lemma 6 [7]. Let T C {0,1}*. The relation wr is anti-symmetric.

ST-Strictness

Shyr and Thierrin [39] define the concept of a strict binary relation.
To avoid confusion with the concept of a strict ordering (see, e.g.,
Choffrut and Karhumaiki [3, Sect. 7.1]), we will call a binary relation
p on X* ST-strict if it satisfies the following four properties:

(a) p is reflexive;

(b) p is positive (i.e., € pu for all u € X* [7]);

(c) for all u,v € X*, u pv implies |u| < |v;

(d) for all u,v € X*, u pv and |u| = |v| implies u = v.

Lemma 7 [7]. Let T C {0,1}*. Then T is ST-strict iff 0* +1* C T
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Corollary 3. Given a CF set T C {0,1}* of trajectories, it is decid-
able whether T is ST-strict.

Corollary 4 [7]. Let T1,T> C {0,1}* be ST-strict. Then Pr, = Prp,
i T = To.

Cancellativity

A binary relation p on X* is said to be left-cancellative (resp., right-
cancellative) if uv p ux implies v p = (resp., vu p xu implies v p x) for
all u,v,z € X*. The relation p is cancellative if it is both left- and
right-cancellative.

Given T C {0, 1}*, we define two sets of trajectories, s(T"),p(T) C
{0,1}*, as follows:

p(T) = {117 : t1ty € T,0 < j < |to]},
s(T) = {19ty : ity € T,0<j < |t1]}.

Lemma 8 [7]. Let T C {0,1}*. Then T is left-cancellative (resp.,
right-cancellative) if s(T) C T (resp., p(T) C T).

Corollary 5 [7]. Let T C {0,1}*. If s(T) U p(T) C T, then T is
cancellative.

We now consider a condition of Jirgensen et al. [23]. Say that a
binary relation p on X* is leviesque if uv p xy implies that u p x or
v py, for all u,v,z,y € X*.

Lemma 9 [7]. Let T C {0,1}*. If s(T) Up(T) C T, then T is
leviesque.

Compatibility

Let p be a binary relation on X*. Then we say that p is left-compatible
(resp., right-compatible) if, for all u,v,w € X*, u p v implies that
uw pvw (resp., wu p wv). If p is both left- and right-compatible, we
say it is compatible.

Lemma 10 [7]. Let T C {0,1}*. Then T is right-compatible (resp.,
left-compatible) iff TO* C T (resp., 0*T CT).

Corollary 6 [7]. Let T C {0,1}*. Then T is compatible iff 0*T0* C
T.
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Let Pp,Ps,Po be the class of prefix, suffix and outfix codes. We
can conclude the following corollary about positive 7" which satisfy
compatibility conditions. Parts (a) and (b) of the following result
have been established for all partial orders by Jirgensen et al. [23];
the proofs are immediate in our case:

Corollary 7. Let T C {0,1}* be positive. Then the following hold:

(a) if T is left-compatible, then Pr C Pp;
(b) if T is right-compatible, then Pr C Ps;
(c¢) if T is compatible, then Pr C Po.

Furthermore, in each case equality of the classes holds iff it holds for
the sets of trajectories involved.

Proof. We prove (b); the rest are similar. If T is positive then 1* C T'.
If T is right compatible, then 70* C T. Thus, § = 1*0* C T. The
inclusions thus hold by Lemma 1; for the equalities, we note that
P,S,0 are ST-strict and for each of (a),(b) and (c), T' is also ST-
strict. O

Transitivity

We now consider conditions on T which will ensure that wr is a
transitive relation. Transitivity is often, but not always, a property
of the binary relations defining the classic code classes. For instance,
both bi-prefix and outfix codes are defined by binary relations which
are not transitive, and hence not a partial order.

Consider that if {T; };c is a family of transitive sets of trajectories,
then set N;c7T; is also transitive. Thus, we can define the transitive
closure of a set T' of trajectories as follows: for all 7' C {0,1}*, let
tr(T) ={T' C{0,1}* : T CT', T transitive}. Note that tr(T) # 0,
as {0,1}* € tr(T) for all T C {0,1}*. Define T' as

T = ﬂ T

T'etr(T)

Then note that 7' is transitive and is the smallest transitive set of
trajectories containing 7. The operation - : 200,137 5 2{01}" g in-
deed a closure operator (much like the closure operators on sets of
trajectories constructed by Mateescu et al. [35] for, e.g., associativity
and commutativity) in the algebraic sense, since T' C T, and * pre-
serves inclusion and is idempotent. Thus, we can, for instance, note
the following result:
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Lemma 11. If T D O (= 0*1*0%), then T = H (= {0,1}*).

Proof. The result follows, since it is known (and easily observed) that
O = H (see, e.g., Ito et al. [20, Rem. 3.2]). O

For particular instances of Lemma 11, see Thierrin and Yu [42,
Prop. 2.3] or Long [33, Thm. 2.1].

Let D = {z,y,z} and @,0,v : D* — {0,1}* be the morphisms
given by

o(r) =0,0(z) =0,9%(z) =0,
e(y) =0,0(y) =1,9(y) =1,
pz) =1,0(2) =€, P(2) =1

Consider the operator 27 : 2{0:1}" — 2{0.1}" given by
Or(T') = TUT' U p(o™"(T) N o™ (T")). Q

Then the following equality holds [7]:

T = | 2-(T). (4)

>0

Monotonicity

A binary relation p on X* is said to be monotone (see, e.g, Ehren-
feucht et al. [, p. 315]) if zpy and upv implies zupyv for all z,y, u,v €
27*. Occasionally, the concept of monotonicity is included as a require-
ment in compatibility, but we separate the two concepts here for clar-
ity. We note that monotone here is a condition on 7', rather than the
monotonicity of the operation i (i.e., that Ly C Lo, Ly C Ly, and
T, C Ty imply that Ly g Ly C Lo, Ly), which holds for all T'.

Lemma 12 [7]. Let T C {0,1}*. Then T is monotone iff T?> C T iff
T=T".

Recall that B = 0*1* 4+ 1*0* and Pp corresponds to the set of
biprefix codes.

Lemma 13. Let T C {0,1}*. If T is ST-strict and monotone, then
Pr C Pg. Further, equality between Pr and Pp holds iff T = B.
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5 Convexity and Transitivity

Let T again represent the transitive closure of 7. We now examine the
relationship between T'-codes and T-codes for arbitrary 7" C {0, 1}*.

We call a language L C X* T-convex if, for ally € X* and z, z € L,
z wr y and y wr z implies y € L. The notion of T-convexity was
considered by the author in a companion paper [7].

Theorem 4. Let X' be an alphabet and T C {0,1}*. For all languages
L C X7, the following two conditions are equivalent:

(i) L is a T-code;

(#i) L is a T-convez T-code.

Proof. (i) = (ii): Let L C X7 be a T-code. Then as T C T, L is
a T-code as well. Assume that v wp v wp w, with u,w € L. As T is
transitive, by definition, v w; w. Thus, u = w, as u,w € L. Now, by
the antisymmetry of T, vwpw = u and v wyp v imply v = u € L.
Thus, L is T-convex. A
(ii) = (i): Let L C Xt be a T-code, as well as being T-convex.
Recall the operator 27 given by (3). Let T; = £24(T). Then T' =
U;>0T;, by (4). We establish (by induction) that L is a Tj-code for all
1 > 0. The result will then follow. To see this, assume L is a T;-code
for alli > 0. Let z,y € L be such that zw;y. Then there exists ¢t € T

such that y € zu; z for some z € X*. Ast € T, there exists i > 0
such that ¢t € T;, Thus, z wr, y and = = y, as required.

We now establish by induction on 7 > 0 that L is a T;-code. For
1 =0,Ty =T. Thus, L is a T-code by assumption.

Let 7+ > 0 and assume that L is a T;_i-code. Let z,y € L be
chosen so that z wr; y. Thus, there exist ¢ € T; and z € X* such
that y € zwyz. We have that t € T, = 2p(T;—1) = TUT;—1 U
Yo Y(Ti—y) N HTi—1)). If t € TUT;_y, then, as y € zu; 2, by
induction z = y.

Consider then the case when t € ¥(c }(T;—1) N ¢ 1(T;—1)). Let
to,t1 € Tj—1 be such that ¢ € ¥(o 1(t1) N ¢ *(to)). By definition of
1, g, @, we know that we can write

n
to = H 0%k 17k
k=1

for some n € N and ig,j, € N for all 1 < k < n, as well as t; =
[15_1 sk where |sg| =i for all 1 < k < n. Further,

n
t= H Skljk.
k=1
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As y € zwyz, we can write z = [[p_, zx, 2 = [[}_; akfBk, where
Tk, o, P € X satisty |zk| = |sklo, |k| = [sk[1 and |Bg| = ji for all
1 < k < n. Further, let y = [[}_; 70k where v € 5115, o for all
1<k<n.

Let @ = [[p_q ak, B = [[j—1 Bk and v = [[;_; k- Then we note
that

Y € Yty Bs
Y € Ty, Q.

As to,t1 € Ty_1 C T, we conclude that = wr,_, Ywr,_, Y, as well as
T wj Y wi Y, and thus v € L, by the T—convexity of L.

Finally, we note that v w7, , y implies that v = y, as L is a
T;—1-code by induction. Similarly, x wr; , v implies that v = z. We
conclude that z = y and, since z,y € L were chosen arbitrarily, L is
a T;-code. O

Theorem 4 was known for the case O = 0*1*0*, which corresponds
to outfix codes, see, e.g., Shyr and Thierrin [38, Prop. 2]. In this case,
O=H = (0 + 1)*, which corresponds to hypercodes. Theorem 4
was known to Guo et al. [11, Prop. 2] in a slightly weaker form for
B = 0*1* + 1*0*. In this case, B=1= 1*0*1*, and the convexity is
with respect to the factor (or subword) ordering. See also Long [33,
Sect. 5] for the case of shuffle codes.

6 Closure Properties

We now consider the closure properties of Pr.

We note immediately that Pr is closed under intersection with
arbitrary languages, provided the intersection is non-empty. Further,
it is clear that Pr is closed under union only if 7" C 0* + 1*.

6.1 Closure under Catenation

Theorem 5. Let T' C {0,1}* be a set of trajectories such that s(T)U
p(T) CT. Then Pr is closed under catenation.

Proof. Let L; € Py for i = 1,2. Assume that
(L1L2 L7 !L') n L1L2 7é @

for some x € X*. We will demonstrate that z = e. Let oy, 8; € L; for
1 = 1,2 be such that

B1P2 € arag T T
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Let t € T be such that 8106y € 1oy z. Let £ = z1z9 and t = t1ty
be chosen so that £102 € (a1 1y, z1)(ag1iy, x2). We distinguish two
cases:

(a) |aa| + |z1] > |B1|- Then there exists v € X* such that

/817 € Qi Ly 21,
B2 € y(aziiy, T2).
Let t, = 171ty and !, = yxo. Then, as |y| < |t1], th € s(T) C T
and thus By € gy zh, implies that zf, = e. In particular, zo =
v=c¢€ Asy=¢, i € aiuwy z1. Note that t; € p(T) C T. Thus,

L, a T-code implies that x1 = € and hence z = z129 = €.
(b) |a1| + |z1| < |B1]- Let v € X be such that

B € (aiwy, z1)7;
VB2 € gLy, To.

Let t) = t11"l € p(T) C T, as |y| < |t2|, and let 2} = z;7. Then
B € (a1 gt z}). As Ly is a T-code, x| = e. This contradicts that
v e Xt

Thus, z = € and L1 L9 is a T-code. O

We note that Theorem 5 can also be proven as follows: as p(T') U
s(T) C T, T is both cancellative and leviesque. By Jurgensen et al.
[23, Prop. 10], this implies that Pr is closed under catenation.

6.2 Closure under Inverse Morphism

We now turn to inverse morphism. Let n > 1. Let T C (0*1*)"
be a bounded regular language such that there exist a;, b;,¢;, d; for
1 <4 < n such that

T = ﬁ 0% (0%)*1 (1%)*, (5)
=1

(We assume throughout that T C (0*1*)"; similar proofs follow if,
e.g., T C (0*1*)"0*). Let

Ij={aj +bjm:m>0} V1I<j<m;
K;j={cj+dim:m >0} V1<j<n.

Let I} = I;\ {0} for all 1 <j <n.
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Let ¢ : A* — X* be a morphism. We define [], [p~!] : N — 2N
as follows:

[pl(m) = {la] =« €p(X™)}
[~ )(m) = {lz] : =€ 1(Z™)}.
We extend these functions naturally to operate on 2N as, e.g., [¢](S) =
Useslel(s)-

We now prove a generalization of a result on infix and outfix codes
established by Ito et al. [20, Prop. 6.5].

Theorem 6. Let T C (0*1*)" be a bounded regular set of trajectories
as given by (5). Let ¢ : A* — X* be a morphism satisfying

(a) D # [o~1(I;) C I  for all1 < j <n.

(b) there exists j with 1 < j < n such that () # [(,0_1]([]’-) cI.
(c) [e](I;) C I; for all1 < j <n.

(d) [p|(K;) C K for all 1 < j < n.

Then Pr is closed under o~ iff
n
{le] : zee M} n | [[ K —{0}" | =0. (6)
7j=1

Proof. Assume that (6) fails. Let z; for 1 < j < n be such that
rj € ¢~ !(e) and |z;| € K;. By (6), z = [, 7; # €. Let k;j = |z;]| for
1<j<n.

By (a), let i; € I; be such that [p='](i;) # 0 for all 1 < j < n,
and such that there exists jo satisfying 1 < jo < n, i, # 0 and
[¢71](ij,) contains a non-zero element, by (b). Thus, p~!(X%) # 0.
Let uj € X% be such that there exist v; € ¢~ !(u;) for all 1 < j < n.
As ij, # 0, u = [[}_, uj # ¢, and as we can choose v, € 0™ H(ujo)
to be a non-empty word, v = H;-LZI vj # e. Further, by (a), |v;| € I;.
Let £; = |vj| for1<j<n.

Consider ¢ = [[_, 0%1%i. As £; € I; and k; € K;, t € T. We now
define a T-code L C X1 such that ¢ (L) is not a T-code.

Consider L = {u} C X7T. Trivially, L is a T-code. Let w =
[17=; vjz;. Note that p(v) = @(v1) - ¢(vn) = u1---u, = u, and
that p(w) = [[7_; p(vj)e(z;) = [T, uj-e = u. Thus,v,w € o 1(L).
Further, v # € implies that w # e.

The fact that ¢~'(L) is not a T-code now follows, since w €
e (L) N (vwyz) € o~ (L) N (L) wr AT).

For the reverse implication, let L C X* be a T-code such that
@ (L) is not a T-code. Then there exist ¢t € T, u,v € ¢ (L) and
x € AT such that v € uiirz. As p(u),p(v) € LC Xt u,v € At.
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Consider t = H;-L:l 0%1%i for some i; € I; and kj € K for 1 < j <
n. Then v = [[;_, ujz;. for |u;| =45, |z;| = kj, 1 < j < n. Consider
that

=1

o(u) =[] oluy),
=1

o(z) = [ o(=)-
=1

Let £; = |p(u;)| and m; = |p(z;)| for 1 < j < n. By assumptions (c)
and (d), ¢; € I; and m; € K. Thus,

t' = f[ 0%1™i € T.
j=1
Then we may easily observe that
p(v) € o(u)wy o(z).
As ¢(v),p(u) € L, a T-code, p(x) = €, and, in particular, p(z;) =€

for all 1 < j < n. Thus, recalling that k; = |z;| and z # €, we note
that

n
(k1= o kn) € {Jz| = zep (3" n | [] K5 —{0}"
j=1
This completes the proof. O

6.3 Closure under Reversal

For a word w = wyws---w,, where w; € X, its reversal, denoted
w?, is given by wf = wyw,_1---wy. If L C X* is a language, then
its reversal is L® = {w® : w € L}. For a class of languages C, let
CE={L® . Lec}.

Lemma 14. For oll T C {0,1}*, the following equality holds: Prr =
PE.
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Proof. Tt suffices to show that Ppr C PE.

Let L € Prr. Then we have that L N (Liupr K1) = (. Assume
that L ¢ PE and thus LE ¢ Pr. Let z,y € LE, t € T and z € X+
be such that = € yu; 2. Then we note (see, e.g. Mateescu et al. [35,
Rem. 4.9(ii)]) that z% € y®1,r 2. But as 2%, y® € L, t® € TE, and
2 € X this contradicts that L is a T¥-code. Thus, L € PE. O

Corollary 8. Let T C {0,1}*. Then PE =Pr iff T = TE.

7 Maximal T-codes

Let T' C {0,1}*. We say that L € Pr(X) is a maximal T-code if, for
all L' € Pp(X), L C L' implies L = L'. Denote the set of all maximal
T-codes over an alphabet X by M7 (X). Note that the alphabet X
is crucial in the definition of maximality. By Zorn’s Lemma, we can
easily establish that every L € Pr(X) is contained in some element
of ./\/IT(Z1 )

Again, the proof is a specific instance of a result from dependency
theory. Dependency theory is also able to prove the following result;
the result is also clear in our case:

Lemma 15. Let Ty C Ty. Then for all ¥, M, (X) C M, (X).

7.1 Decidability and Maximal T-Codes

Unlike showing that every T-code can be embedded in a maximal
T-code, to our knowledge, dependency theory has not addressed the
problem of deciding whether a language is a maximal code under
some dependence system. We address this problem for T-codes now.
We first require the following technical lemma, which is interesting
in its own right (specific cases were known for, e.g., prefix codes [1,
Prop. 3.1, Thm. 3.3] and hypercodes [38, Cor. to Prop. 11]). Let
7:{0,1}* — {4,d}* be again given by 7(0) =i and 7(1) = d.

Lemma 16. Let T C {0,1}*. Let X' be an alphabet. For all L €
Pr(X), L € Mp(X%) iff

LU (Lwyp ZF)U (L~ 7)) = 27, (7)

Proof. Let L € Pp(X) — Mp(X). Then there exists z € X such
that L U {z} € Pr(X), but z ¢ L. Thus, assume, contrary to what
we want to prove, that z € (Luwg XF) U (L~ oy ZT).

If z € Lwy X, then certainly x € (L U {z})wr YT, by the
monotonicity of tup . But this contradicts that L U {z} is a T-code.
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If £ € L ~,(7) &, then by the monotonicity of ~ (1), z €
(L U{z}) ~7ry XT. But this contradicts that L U {z} is a T-code,
by (1) ThllS, xz ¢ LU (Lu_|T Z+) U (L MT(T) Z+)

For the reverse implication, assume that L € Mp(X). Then for
all z € Xt with z ¢ L, there exist y € L,z € X such that either
Tz € ywrz or y € rwr z. The second membership is equivalent to
& €y~ 2. Thus, we have z € (Lwr X7) U (L~ () Z7) for all
x € X — L. The result then follows. O

Corollary 9. Let T C {0,1}* be a reqular set of trajectories. Given
a regular language L C X7 it is decidable whether L € Mr(X).

Proof. By Lemma 3, we can decide whether L € Pr(X). If not, then
certainly L ¢ My (X). Otherwise, since T, L are regular, then the
languages L, Liup X%, L~y X% and LU (L ) U (L~
3'1) are regular. Thus, the equality (7) is decidable. O

Similar results were also obtained by Kari et al. [27, Sect. 5].

We now consider the decidability of being a maximal T-code for
finite languages. Our goal is to give a class of sets of trajectories larger
than REG such that for any 7" in our class, it is decidable whether an
arbitrary finite language is a maximal T-code.

We first introduce some notation. Let 7' C {0, 1}*. For any n > 0,
let n,(T) ={t €T : |t|o = n}. Clearly, Up>on,(T) =T.

Before we begin, we require some preliminary lemmas. Recall that
a semilinear set over N¥ is a finite union of sets of the form {u +
Yoiicivi ¢ ¢ € N} where u,v; € NE. The following lemma can be
found in Ginsburg [10, Cor. 5.3.2]:

Lemma 17. Let T C wijw} for wy,wy € {0,1}*. Then T is a CFL
iff {(m,n) : wlwh € T} is a semilinear set.

Lemma 18. Let T' C wiw} for wi,wy € {0,1}*. If wi, wy are given
and T is an effectively given CFL, then for all n > 1, n,(T) is an
effectively reqular language.

For example, let T = {0™1™ : m > 0} C 0*1*. Then n,(T) =
{0"1"} for all n > 0. If T = (01)*1*, then 7, (T) = (01)"1*. We note
that we cannot relax the conditions of Lemma 18 to T' C wiwjws,
since, e.g., T = {1"0™1" : n,m > 0} C 1*0*1*, but n,(T) =
{1™0™1™ : n > 0}, which is not regular.

Proof. Let T C wjws for wi,ws € {0,1}*. Let S be the semilinear
set such that wi'wy? € T iff (a1, a2) € S. Since the union of regular
languages is regular, we can assume without loss of generality that S
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is linear, i.e., there exist m, k1, ko > 0 and p1,r; > 0foralll1 <i<m
such that

S ={(k1,k2) + > _mi(pi,rs) : (na,...,nm) €N}

i=1

We assume without loss of generality that (p;,r;) # (0,0) for all
1 < j < m, otherwise, we can simply remove this index from our set
without affecting S. We distinguish between four cases:

(a)
(b)

wiwg € 1* + 0*. In this case, as T is a unary CFL, it is known
that T' is a regular language. Thus, so is n,(T) =T N (1*0)"1*.
wy € 1*. By case (a), we can assume that wy ¢ 1% i.e., that
lwalo # 0.
As wq € 1%, there exists a > 0 such that

T = {10+ X mpa) Rt R ) e N
Let I C N™ be defined so that

m
I= {(nl, - ,nm) : |w2|0(k2 + anr,) = n}

i=1

From this, we can see that
nn(T) = {10‘(k1+22n=1”ii"i)wsﬁzﬁlnm : (n1,y...,nm) € T}
By reordering if necessary, let 0 < m' < m be the index such
that for all j < m/, r; # 0 and for all m' < j < m, r; = 0. Let
@ : I — N™ be given by o(n1,n2,...,nm) = (n1,n2,...,7m).
Note that ¢ ~1(¢(I)) = I as we have that if (ny,...,n,) € I, for
all m' < j <m,
(nlanQa s anj—lan‘ljanj-kla s 7nm) el

for all n; € N.
Further, note that ¢(I) is finite, since for all (ni,...,ny) € p(I)
and all j <m/, n; satisfies

1 n
().
i \|walo

Thus, we can conclude that

a(T) ={10 2 (T (107) ™ P25
i=m/+1
: (nla e anml) € SD(I)}
and that 7, (7T) is regular.
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(c) we € 1*. By (a), wy ¢ 1*. Thus, consider that n,(T%) = n,(T)~.
As TR C (wlt)*(wl)*, by (b), n.(TE) is regular. As the regular
languages are closed under reversal, 0, (T') is regular.

(d) wy,wq ¢ 1*. Let I C N™ be defined by

I:{(nl,...,nm) e N"

m m
twilo(ky+ Y mapi) + [walo(ks + Y nari) = n}.
i=1 i=1
Note that I is finite, as |wi]o, |w2|o 7# 0 and (p;,7;) # (0,0) for all
1 <4 < m. Further, we have that

nn(T) — {wllfl-f-zi:l nipiw12€2+2i:1 n;T; . (nl, o 1nm) € I}

From this, we note that 7, (T) is finite.

Thus, 1, (T) is regular. O
We are now ready to give our positive decidability result:

Theorem 7. Let T C {0,1}* be an effectively given CFL such that
T C wiws for wi,we € {0,1}*, where w1, ws are given. If F' is an
effectively given finite set, then we can decide whether F is a mazimal
T-code.

Proof. Let T" C wiwj be a CFL. Let F' be our finite set and let
LF)={|z| : z € F} and ¢p = max{f : £ € {(F)}. First, we note
that we can effectively find 7<% =T N {0,1}=<%, and that

F/\’)’T'(T) It = FMT(TSZF) Z+>

which is thus an effectively regular language, since F, St 7(T<¢r)
are, as well.

Second, we note that 7(T) = Upegr)ne(T) is an effectively regu-
lar language, since £(F') is effectively finite, and 7,(T") is effectively
regular by Lemma 18. Further, we note that

Fup Xt = F oy T,

which is a regular language, by the regularity of F, X and n(T).

Thus, we conclude that F U (F ~s ) Z1) U (Fwr X7) is an
effectively regular language, and thus, we can determine whether this
language is equal to XT. Thus, by Lemma 16, we can determine
whether F' is a maximal T-code. O
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7.2 Transitivity and Embedding T -codes

Given a class of codes C, and a language L € C of given complexity,
there has been much research into whether or not L can be embedded
in (or completed to) a maximal element L' € C of the same complex-
ity, i.e., a maximal code L' with L C L’. Finite and regular languages
of these classes of codes are of particular interest. For instance, we
note that every regular code can be completed to a maximal regu-
lar code, while the same is not true for finite codes or finite biprefix
codes.

We now show an interesting result on embedding T-codes in max-
imal T-codes, while preserving complexity. For example, we will show
that if T" is transitive and regular and L is a regular T-code, then we
can embed L in a maximal T-code which is also regular.

Our construction is a generalization of a result due to Lam [31].
In particular, we define two transformations on languages. Let T
be a set of trajectories and L C YT be a language. Then define
Ur(L),Vp(L) C X7 as

Ur(L) = 2% — (Lwr BT U L~y 57);
V(L) = Ur(L) — (Up(L)wr Z7).
First, we note the following two properties of Ur (L), Vp(L):

Lemma 19. Let T C {0,1}* be a set of trajectories and L € Pr(X).
Then L C Up(L) and L C Vp(L).

Proof. We establish first that L C Up(L). Let x € L, but assume
that z ¢ Ur(L). Then z € Luigp Xt or £ € L~y . In the
first case, we have L N (Liup X) # 0, contradicting that L is a T-
code. The second case also contradicts that L is a T-code, since then
LN (L~spry 1) # 0, contradicting (1).

We now establish L C Vr(L). Assume not, then as L C Ur(L),
we must have that LN (Up(L) up X1) # 0. Assume that y € Ur(L),
z € X% and z € L are chosen so that = € yLut z. Therefore, we have
that y €  ~> () 2 C L~ () X, contradicting that y € Ur(L).
Thus, L C Vp(L). O

Theorem 8. Let T C {0,1}* be transitive. Let X' be an alphabet.
Then for all L € Pr(X), the language V(L) contains L and V(L) €
Mp(X).
Proof. By Lemma 19, L C Vp(L). That Vp(L) is a T-code follows
from Lemma 5 applied to Ur(L). Thus, it remains to show that for
all z € Xt with z ¢ Vp(L), Vp(L) U{z} is not a T-code.

Let z ¢ V(L) be arbitrary. We distinguish two cases:
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(a) if z ¢ Ur(L), then z € (Luwgp Zt) U (L ~py &) If 2 €
Lup Xt C VT(L) L E+, then VT(L) U {Z} ¢ PT(Z) If z €
L~y X1 C V(L) ~qry £, then again (this time by (1)),
Vr(L) U {z} ¢ Pr(X).

(b) if z € Up(L) — Vp(L), then z € Up(L) wr XT. Let y € Up(L) be
a shortest word such that z € ywy 1. We claim that y € Vp(L).
If this were not the case, then as y € Up(L) — Vr (L), we have that
y € Ur(L)wr X7F, by definition of Vp(L). Let v/ € Ur(L) be such
that y € ¢/ Lup X+, Thus, we have that ¥’ wrywr 2. By transitivity
of T, y'wrz,ie., z € yur X*. As|y'| < |y| < |z|, we certainly have
that z € y'up X in particular. But as |y| < |y|, this contradicts
our choice of y. Thus, y € Vp(L). But y,z € Vp(L) U {z} and
z € ywr X imply that Vp(L) U {z} ¢ Pr(X).

Thus, Vr(L) is a maximal T-code. O

There are several important consequences of Theorem 8. We note
only one important corollary:

Corollary 10. Let T C {0,1}* be transitive and regular. Then every
regular (resp., recursive) T-code is contained in a mazimal regular
(resp., recursive) T-code.

Corollary 10 was given for T = 1*0*1* and regular 7T-codes by
Lam [31, Prop. 3.2]. Further research into the case when T is not
transitive is necessary (for example, the proofs of Zhang and Shen
[45] and Bruyére and Perrin [2] on embedding regular biprefix codes
are much more involved than our construction, and do not seem to
be easily generalized).

We can extend our embedding results to finite languages with one
additional constraint on T'. Recall that T is said to be complete if for
all n1,n9 € N, there exists ¢t € T such that |t|o = n1 and |t|; = no.
The following technical lemma, is easily proven:

Lemma 20. Let T C {0,1}* be complete. Then for all y € X* and
for all m < |y|, there exists z € X™ such that y € zwp X*. Further,
ifm <ly|, y € zup X7

We now show that for transitive and complete sets of trajectories
T, finite T-codes can be completed to finite maximal T-codes.

Corollary 11. Let T C {0,1}* be transitive and complete. Let ¥
be an alphabet. Then for all finite F € Pr(X), there exists a finite
language F' € Mp(X) such that F C F'. Further, if T is effectively
reqular, and F is effectively given, we can effectively construct F'.
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Proof. Let F be a finite language and n = max{|z| : x € F}. As
F € Pr(X), n # 0. We first establish the following claim: for all
y € X1 with |y| > n, there exists u € Urp(F) such that y € uiup 7.

Let y € X be such that |y| > n. Then by Lemma 20, there
exists z such that |z| = n and y € zwr Xt. Note that as n # 0,
z € Xt If z € Urp(F), we have established the claim with u = 2.
Thus, assume that z ¢ Ur(F). By definition of Ur(F'), we have that
z € (Fuur XT) U (F ~pqy XF). However, |z| < n holds for all
x € F~or(p X*. Thus, we have that z € Fup X+ C Up(F)wr X,
the inclusion being valid by Lemma 19. Let u € Up(F') be such that
z € ur X, Then uwr z and zwry. Thus, by transitivity, uwry. As
|u| < |y|, this implies that y € wwz X, Thus, our claim is proven.

We now establish that Vp(F) is finite. Let y be an arbitrary word
such that |y| > n. By our claim, y € Up(F)wr X7. But by definition
of Vr(F), this implies that y ¢ Vp(F). Thus, Vy(F) C X<". Thus,
the conditions of the corollary are met by Vp(F'). This completes the
proof. O

In practice, the condition that 7' be complete is not very restric-
tive, since natural operations seem to typically be defined by a com-
plete set of trajectories.

In Section 8.3 below, we will give alternate conditions on T that
ensure that every regular T-code can be embedded in a finite maximal
T-code. However, this result will be a trivial consequence of the fact
that for such T, all T-codes are finite.

We now show the existence of T' which are not transitive, and
for which the above results do not hold. It is known, for example,
that there exist finite biprefix codes which cannot be embedded in a
maximal finite biprefix code (see, e.g., Bruyére and Perrin [2, Sect.
3]). We present the following two examples, as well; in the first case,
T is regular but not transitive, and for all finite T-codes L, L cannot
be embedded in any maximal CF T-code. In the second example, T'
is not complete, and no finite T'-code can be embedded in a maximal
finite T'-code.

Ezample 2. Let T = (01)*; then iz is known as perfect or balanced
literal shuffle. Clearly, T' is not transitive. Let X' = {a}. We claim
that for all regular languages L C a*, L is not a maximal T-code.

Let L C a* be regular. As L is a unary regular language, it is well-
known that L corresponds to an ultimately periodic set of natural
numbers. That is, there exist ng,p € N with p > 0 such that for all
n > ng, a” € L iff a®*P € L.

Let r = min{kp : k > 1,kp > ng}. Then we have two cases:
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(a) if a” € L, then a®" € L as well. Thus, as " € a" 1 a", L is not
a T-code.

(b) if a” ¢ L, as 7 > ng, a®* ¢ L as well. Thus, consider L U {a®"}. If
L is a T-code, then as a®" ¢ Lwra™ and LN (a* wrat) =0, we
have that LU {a?'} is a T-code as well. Thus, L is not a maximal
T-code.

Thus, there are no regular languages in Mp({a}) (and hence, no
context-free languages in My ({a}), since the unary context-free and
unary regular languages coincide). Thus, e.g., the T-code {a} cannot
be embedded in any regular (or context-free) maximal 7T-code.

We note in passing that one maximal T-code containing {a} is
given by L = {a" : n > 1} where {¢;}n>1 = {1,3,4,5,7,9,11,... }
is the lexicographically least sequence of positive integers satisfying
m € {cp} <= 2m ¢ {c,}. This sequence has received some atten-
tion in the literature, and has connections to the Thue-Morse word.
We point the reader to A003159 in Sloane [40] for details and refer-
ences. Clearly, L is not regular.

Ezample 3. Let T = {071%07 : i,j > 0}. Then wir is the balanced
insertion operation. Note that T is transitive, but not complete. Let
X be an alphabet and let L, = {z € ¥* : |z] =1 (mod 2))}. Then
for all L € Pp(X), LUL, € Pr(X). Thus, there are no finite maximal
T-codes.

8 Finiteness of T-codes

In this section, we investigate 7' C {0,1}* such that all Py codes are

finite. It is a well-known result that all hypercodes (T" = {0, 1}*) are

finite, which can be concluded from a result due to Higman [15].
We define the following classes of sets of trajectories:

Sr={T €{0,1}* : PrNREG C FIN};
Sc={T € {0,1}* : Prncr C FIN};
g ={T €{0,1}* : Pr C FIN}.

The class §g is of particular importance. If T' is a partial order
and T € Fg, then T is a well partial order'. This is a subject of
tremendous research, not only in the larger theory of partial orders
(see the survey of Kruskal [30]), but also within formal language
theory as well. Without trying to be exhaustive, we note the work of
Jullien [21], Haines [12], van Leeuwen [43], Ehrenfeucht et al. [8], Ilie

! Recall that we say that T has property P iff wr has property P.
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[17,18], Ilie and Salomaa [19] and Harju and Ilie [13] on well partial
orders relating to words. We also refer the reader to the survey of
results presented by de Luca and Varricchio [5, Sect. 5].

To begin, we give conditions on 7' which ensure all regular (or
context-free) T-codes are finite.

8.1 Finiteness of Regular T-codes

Let T' C {0,1}*. Define the insertion behaviour of T', denoted ib(T),
as

Zb(T) = {(nl,nz,ng) € NS . Qu1mz(ns € T}.

Say that T' is REG-pumping compliant if, for all ,j,k € N (5 > 0),
there exists j' with 0 < 5 < j such that
(i) if 7' = 0, then ib(T)N{(i+jm1, jme, k+jm3s) : my,mz > 0,mg >
0} # 0.
my > 0, mg, m3 > 0} 7'é 0.

Lemma 21. Let T C {0,1}*. If T is REG-pumping compliant, then
T € Jr.

Proof. Let R € REG be an infinite regular language over Y. By the
pumping lemma for regular languages, there exist u,v,w € X* such
that v # € and wv*w C R. Let i = |ul, j = |v| and k = |w|. Note that
j # 0. Let j' be the natural number implied by the REG-pumping
compliance condition.

If 3/ = 0, then let m1, ms, m3 be chosen so that m,m3 > 0, mo >
0 and (i + jmy, jme, k + jm3) € ib(T). Let t = 0 tim11im2pk+ims,
By definition, ¢t € T. Consider z = uv™!t™3yw € R and y = v™2. As
mg # 0 and v # ¢, y # €. We note that

m2 m1+ma+ms3 w

Twey D uv™ v "™ w = v

Thus, (Rwr Xt)NR # 0 and R ¢ Pr.
If1 <j' < j, let m; > 0, mg, m3 > 0 be chosen so that
(i + j' + jma, jma, k — §' + jms) € ib(T),
and hence t = ¢+ Timi1im2pk+(-3)+i(ms=1) ¢ T Let v; € I* be
the prefix of v of length j' and let v = vv, for some vy € X*.
Consider z = uv™ ™y € R and y = (vov1)™? # €. Then
)mz m3—1

m1+ma+mg w

zwry D uwv™ vy - vg(vivg Loy - vgw

Again, (Rwr X)) N R # § and thus R ¢ Pr. Thus, Pr contains no
infinite regular languages. O

w = uv
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The condition of being REG-pumping compliant is not very re-
strictive. Clearly, if 7' D 0*1*0*, then T' is REG-pumping compliant
(in this case, Lemma 21 is a corollary of a result on outfix codes due
to Ito et al. [20]). For a broader class of examples, we can consider
immune languages [9]. Let C be a class of languages. A language L is
C-immune if L is infinite and for all infinite subsets L' C L, L' ¢ C.

Lemma 22. Let T C {0,1}* be a set of trajectories such that T N
0*1*0* is REG-immune. Then T is REG-pumping compliant.

Proof. Let i > 0,5 > 0,k > 0 be arbitrary. Consider

To = To(i, 4, k) = 0°(0/)* (17)*(¢/)"0".
As T, is a regular language, T} is not a subset of 7'M 0*1*0*. Thus,
ToN(T N 0*1*0*) = ToN(TUO*T*0*) # 0. As Tp C 0*1*0*, this implies
that Ty N T # 0. Thus, there exist m1 > 0, mg > 0 and m3 > 0 such
that 0FHimi1imegktims ¢ T ie., (i 4+ jmy,jme, k + jm3) € ib(T).

Thus, the REG-pumping compliant conditions are met with j' = 0.
O

Next, we show that if T' C 0*1*0*, then REG-pumping compliance
is necessary to ensure that there are no infinite regular languages in

Pr.

Lemma 23. Let T C 0*1*0* be not REG-pumping compliant. Then
Pr(X) contains an infinite regular language for all X' with |X| > 1.

Proof. Let i,j,k € N be arbitrary such that 1 > 0,5 > 0,k > 0,
ib(T) N{(i + jma, jma, k + jm3) : mi,mg > 0,my >0} = 0.
and for all 1 < j' < 4,

ib(T) N {(i +jl + jmq, jma, k —j, +jms3) : mq > 0,m9,m3 >0}
= 0.

Let a,b € X be distinct letters and R = a(b’)*a*. We claim that
R € Pp(X). Assume not. Then there exist £ > £5 > 0 such that

a'h ok € a2 qk LT 2

for some z € {a,b}*. By observation, z = b7(1=2), Thus, let t € T
be chosen so that

a'bhgk € oibit gk Ly pila—6),
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Then as T C 0*1*0*, t = 0i+adts' 13(l—£2)(i—i")+H{l2—a—1)j+k for some
a and j' with either 0 < a < /lyand jy =00or 0 < a < 5 — 1 and
1<j <j.Ifj =0, then (i + aj,j(fy — b)),k + (b3 — )j) € ib(T)
while if 5/ # 0, then (14 j' + «j, j(l1 — £2), k — 7' + (b2 — ) j) € ib(T),
which are both contradictions. O

8.2 Finiteness of Context-free T-codes

Let T C {0,1}*. Define the 2-insertion behaviour of T, denoted
2ib(T), as follows:

2ib(T) = {(n1,n2,...,n5) € N° : "11"2Q"314("s € T}.

We use 2ib(T') to define the notion of CF-pumping compliance. The
idea is the same as REG-pumping compliance, but with more cases. In
particular, say that T' is CF-pumping compliant if, for all i, j1, j2, &k, £ €
N, with j; + jo > 0, there exist j{,j5 € N such that 0 < j! < j; for
i =1,2 and 2ib(T) N P # (), where P is defined as follows:

(a) if j1 = j5 =0, then

P = {(i+ jra1, 516,k + jrag + joaz, jo 3, £ + jaus)
D am,BEN,(1<m<4),8>0,01 +ag =as+ as}.

(b) if 1 <4} <41 and j5 =0, then P is defined by the set

{G+ 41 +jro1, 518,k — 31 + jraz + joas +71), 428, € + jo(aua + 72))
: amalga7p €N7(1 Sm§4—71 Sps2)a
Byaz > 0,01 +az=az+as+ 1,71 + 72 =1}

(c) if j{ =0 and 1 < j) < jo, then P is defined by the set

{G+ j1(eq +m), 518, k + j5 + ji(az + 72) + jacs, j2B3, € — j5 + jocus)
: ama/Ba’Yp EN’(]- Smg471 Sp§2)’
Byas > 0,01 +as+1=a3+ o,y +7 =1}

(d) if 1 <4} <j1 and 1 < j < jo, then P is defined by the set

{(@ + 71 + jrou, 518, k — j1 + Jo + jrog + joas, j2B, £ — ja + jous)
D am,BEN, (1 <m<4), fag,as > 0,00 + a2 = a3 + ay}.
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Lemma 24. Let T C {0,1}*. If T is CF-pumping compliant, then
TeEJc.

Proof. Let L € CF be an infinite language which is a subset of XT.
Then by the pumping lemma, for CFLs, there exist u,v,w,z,y € X*
such that vz # € and {uv™wz™y : m >0} C L. Let i = |ul, j1 = |v],
k = |w|, jo = |z| and £ = |y|. Let 5], j5, be the natural numbers implied
by the CF-pumping compliance of 7'. We consider the case j; = 0 and
1 < j% < ja. The other cases are similar (the differences are similar
to the differences between the cases in the proof of Lemma 21).

Let o, 8,7 € Nfor1 < m < 4and 1 < p < 2 be such that
2ib(T') contains the element

(G + g1l +m), 18, k + jo + ji(az + 2) + jeas, j2B, £ — jo + jocus).

Further, we have that 8,as > 0, a1 +as+1 = az+ag and y1+72 =1,
i.e., one of 7, = 0 and other is equal to one. Consider that

up@itoeztl, astaq uva1+a2+1+ﬁwma3+a4+ﬂy cL.

Y,
Further, if z = 2129 where 21,29 € X* and |z1| = j), then

uprteetltBy posteathy e oL o0 zay Uﬁ($2$1)ﬁ

where
21 = wot T
29 = V2T 2 gy
23 = Tox™ Ly,

t = oitir(eatm) 51Bgk+iz+ii(aat+y2)+iaas 1528 (l—dy+i20a < .
Note that
212923 = up®i T2 tlygostar, c 1

As vz # e and B> 0, vP(z9z1)? # €. Thus, L ¢ Pr. O

Note that if 7" O 0*1*0*1*0* then T satisfies the conditions of
Lemma 24. This instance of our result is also a corollary of a result
due to Thierrin and Yu [42, Prop. 3.3(2)].
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8.3 Finiteness of T-codes

We now turn to the question of the existence of arbitrary infinite
languages in a class of T-codes. We first show that if 7' is bounded,
then there is an infinite T-code.

Theorem 9. Let T' C {0,1}* be a bounded language. Then for all X
with | X| > 1, Pr(X) contains an infinite language.

Proof. Let T C {0,1}* be a bounded language. Then there exist
k € N and wi,ws,...,wx € {0,1}* such that T C wjw}---wj. By
Lemma, 1, if we can establish that there is an infinite T"-code, where
T' = wi - - - wg, the result will follow. Thus, without loss of generality,
we let T' = wiwj - - - wg.

If wy = wy =+ =wg = ¢, then T = {€}, and thus Pp(X) =
25" _ (0, which clearly contains an infinite language.

Otherwise, there exists iy with 1 <4y < k such that w;, # €. For
all1 <i <k, let o = |w;|. Let a,b € X' be distinct letters, and define
Lt C {a,b}t by

k
Lt = {(H a™b*)a™ : m > 0}.
i=1

We have that Ly C {a,b}" as a;, # 0. We claim Ly € Pr(X).
Assume not. Then there exist my,mo € N with m; > mo, t € T and
z € X1 such that

k k

(H a™b*)a™ € (H a™2b%)a™? Wy z.

i=1 i=1

Thus, we have that z = aftD(m1—m2) Further, let t; € {0,1}* for
1 < i<k +1 be defined so that

k
t = ([ t:0%)tesa,
=1

where |t;|o = mg and |t;|1 =mq —mg forall 1 <i<k+ l.AsteT,
there exist j; € N for all 1 <4 < k such that ¢t = Hle wl*. Thus, we
have that

k

k
Zaiji = (Z [ti| + i) + [te1l,
i=1

i=1
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and so

k k
D i =) [l + .
i=1 =1

Let ¢ with 1 < /¢ < k be the minimal index such that

¢ ¢
> aigi 2 Y|t + o (8)
i=1 i=1

Note that j, > 0, since if j; = 0, then £ — 1 satisfies (8) as well,
contrary to our choice of £ (if £ =1 and j; = 0 then |¢;| = 0, which
is a contradiction to |t1| = my).

Let Uy — Hf;ll tioa", ug = (Hf:l—kl tiOai)t]H_l, S§1 = Hf;% w{’ and
S9 = Hf:u_l wfl Thus, we have that

w1t 0% uy = slwﬁl S9

with |ui| > [s1] and |u1| + [t¢] + ¢ < [s1] + g - je- The situation

is summarized in Fig. 1. Thus, we have that wé‘ contains a block of

Uui tg Qe (%)

S1 ’wié S92

Fig. 1 Two factorizations of ¢.

zeroes of length ay. As j, # 0, this implies that w, = 0%¢. But then
as t is a factor of w}’, we also have that ¢, € 0*. Thus, [t,|; =0, and
mi = meo, a contradiction. O

Further, there exist uncountably many unbounded trajectories T
such that Pr contains infinite-even infinite regular-languages. In-
finitely many of these are unbounded regular sets of trajectories.

Theorem 10. Let T C {0,1}* be a set of trajectories such that there
ezists n > 0 such that T C 0S"1(0+1)*. Then for all X with |X| > 1,
Pr(X) contains an infinite regular language.

Proof. Let n > 0and T = 0="1(0+1)*. By Lemma 1, it suffices to
prove that Prx)(X) contains an infinite regular language. Let a,b €
X be distinct letters. Consider the regular language R, = a™t1b*.
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Assume that Ry, ¢ Ppw)(X). Thus, there exist i > 0, ¢y € T™) and
z € {a,b}T such that (a"*'b'un, 2) N R, # 0. Let tg = 0™1ty for
some n > m > 0 and t2 € {0,1}*. Consider that

an+lbi

an—Hfmbz

Wiy 2 = a" 21 ( L, Z2)

where z = 2129 and z; € {a,b}.

By assumption, a™z1 (a®T1"™b Wy, 20) N R, # 0, so that z; = a.
But now, (a"t1=™b" Ly, 25) Na™ ™b* # (), which is clearly impossible,
since |z|, > n+1—m for all z € a1 b Wy, zp. O

The following corollary holds by Lemma 14.

Corollary 12. Let T C {0,1}* be a set of trajectories such that there
ezists n > 0 such that T C (0+1)*10<". Then for all X with |X| > 1,
Pr(X) contains an infinite regular language.

We now turn to defining sets 1" of trajectories such that all 7-
codes are finite. The following proof is generalized from the case H =
(0 + 1)* found in, e.g., Lothaire [34] or Conway [4, pp. 63—64].

Lemma 25. Let n,m > 1 be such that m | n. Let T, ,, = (0" +

Proof. In what follows, let w = wr,, . Assume that there exists an in-
finite T}, m-code. Then there exists an infinite sequence {x;};>1 which
is w-free, i.e., 4 < j implies z; w x;. As T}, ;, 2 0%, w is reflexive and
we have that z; # ; for all ¢ > 57 > 1.

We now choose (using the axiom of choice) a minimal infinite w-
free sequence as follows: let y; be the shortest word which begins
an infinite w-free sequence. Let yo be the shortest word such that
11, Yo begins an infinite w-free sequence. We continue in this way. Let
{yi}i>1 be the resulting sequence. Clearly, {y; };>1 is an infinite w-free
sequence.

As w is reflexive, y; # y; for all ¢ > j > 1. Therefore, |y;| < n for
only finitely many 7 € N. Furthermore, since there are only finitely
many words of length n, there exist y € X" and {i;};>1 C N such
that y is a prefix of y;; for all j > 1. In particular, for all j > 1, let
u; € 2™ be the word such that y;; = yu;. Consider the sequence

Y = {ylay27y37"' y Yii—1,U1,U2," }

Clearly, as n > 1, |u1| < |yiy|- Thus, Y is an infinite sequence which
comes before {y;};>1 in our ordering of infinite w-free sequences, and
so two words in Y must be comparable under w. By assumption,
Yj, Wy, for all 1 < j1 < jo <41 — 1. Thus, there are two remaining
cases:
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(i) there exist 1 < j <4; —1 and k > 1 such that y; w ug. Thus, let
t € T, m and a € X* be chosen so that uy, € y;1; a. Consider ¢’ =
1"t € Ty m. Then y;, = yuy € y(y; 1 @) = y;y ya. Therefore,
Y; w Yi,- As j < iy — 1 <, this is a contradiction.

(ii) there exist kK > £ > 1 such that u; w ug. Let @ € X* and t € Tj, 4,
be such that u; € usip . Consider ¢ = 0"t € T}, ;. Then y;, =
yug € y(uelp ) = yuglly a = y;, Wy a. Thus y;, wy;,. As £ <K,
this is a contradiction.

We have arrived at a contradiction. O

As another class of examples, Ehrenfeucht et al. [8, p. 317] note
that {17,0}* € Fg for all n > 1 (their other results, though ele-
gant and interesting, do not otherwise seem to be applicable to our
situation).

Note that Th; = {0,1}*. Let T,, = T,,. For all 1 < i < j,
Pr, # Pry, as 0’1 € T; — T;. Thus, by Lemma 2, the classes of
T;- and Tj-codes are distinct.

Corollary 13. There are infinitely many T C {0,1}* which define
distinct classes Pr satisfying Pr C FIN.

Further, the following is immediate:

Corollary 14. Let T' C {0,1}* be such that T, C T for some n > 1.
Then Pp C FIN.

Ilie [18, Sect. 7.7] also gives a class of partial orders which we may
phrase in terms of sets of trajectories. In particular, define the set of
functions

G={9g: N> N : g(0)=0and 1 <g(n) <nforalln>1}.

Then for all g € G, we define

m

m
Ty = {1 JI0%1%) : i, >0VI <k <m; m=g(> ix)}
k=1 k=1

We denote the upper limit of a sequence {sy}n>1 by lim,—y008n.
We have the following result [18, Thm. 7.7.8]:

Theorem 11. Let g € G. Then Ty € Fu < Wn_mﬁ < 00.
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8.4 Decidability and Finiteness Conditions

We now consider decidability of membership in Pr if T' satisfies the
conditions of the previous sections. We have the following positive
decidability results:

Theorem 12. Let T be recursive. If T € Fr (resp., T € §¢, T € 1)
then given a regular (resp., context-free, context-free) language L, it
18 decidable whether L € Pr.

Proof. We establish the result for 7' € §¢. The case T' € Fg is an
instance of this case and the case T' € §r is very similar. Let T' € REC
and T € §¢. Let L € cr. We first check if L is infinite. If it is, then
certainly L ¢ Pr, so we answer no.

If L is finite, then we can effectively find a list of all words in L
(consider putting L in CNF). Let F' = L, where F is some effectively
given finite set. Then by Lemma 4, we can decide whether L = F €
Pr. O

One might hope for an undecidability result of the following type,
which would complement Theorem 3: given a fixed T' € REG (per-
haps with some reasonable assumption, e.g., completeness), then it is
undecidable, given a CFL L, whether L € Pr. Theorem 12 shows us
that we cannot hope for a simple such result, since we need to restrict
ourselves to those T" which do not lie in §¢ in this case. It is an open
problem to determine suitable conditions on 7" € REG such that the
problem of determining membership in Pr for CFLs is undecidable.

8.5 Up and Down Sets

Let L C X* and T C {0,1}* Let bowNy(L),uPr(L) as

DOWNT(L) =1L (T Z*;
UPT(L) = Liur *.

Our notation roughly follows Harju and Ilie [13], where DOWN7 (L) is
denoted DOWN,,,.(L) and UPr(L) is denoted DOWN wy! (L).

Our aim in this section is, given T', to characterize the complexity
uPr(L) and DOWNp(L) for arbitrary L. We will have a particular
interest in those T' € §y which are partial orders. Let Sggo) denote
the class of all trajectories T" in §y which are partial orders.

Haines [12] observed that for T = (0+1)*, upp(L) and DOwNy(L)
are regular languages for all L. There is an elegant generalization of
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Haines’ result due to Harju and Ilie [13]: If we restrict our attention
to those T" in §y which are compatible, then UPy(L) and DOWNy (L)
are still regular languages for all languages L. We recall this in the
following result, which is a specific case of a result due to Harju and
Iie [13, Thm. 6.3]:?

Theorem 13. Let T € §y be compatible. Let L C X* be a language.
Then UPr(L),DOWNT(L) are regular languages.

The following corollary is an interesting consequence:

Corollary 15. Let T € g satisfy 0 C T*. Let L C X* be a lan-
guage. Then UPp«(L), DOWNy« (L) are regular languages.

Proof. If 0* C T* then T is clearly compatible by Corollary 6. Fur-
ther, as T' C T, we have T* € Fg. The result now follows by Theo-
rem 13. O

We now consider arbitrary T € Sgo) and seek to characterize
the complexity of UPr (L), DOWNy(L). By the same proofs as given
for H = (0 + 1)* (see, e.g., Harrison [14, Sect. 6.6]), we have the
following results:

Lemma 26. Let T C §%°). Let L C X*. Then

(a) there exists a finite language F' C X* such that upp(L) = upp(F).
(b) there ezists a finite language G C X* such that DOWNp(L) =
urr(Q).

Let C1,Co be classes of languages. Then let C4 ACo = {L1 N Lo :
L; €Ci,i=1,2} and co-C; = {L : L e€C}.

We now characterize the complexity of Upr(L) and DOWNr (L) for
all L, based on the complexity of T":

Theorem 14. Let C be a cone. Let T € 3550) be an element of C.
Then for all L C X*, upp(L) € C and DOWNy (L) € co-C.

Proof. Let L C X*. Then there exists F' C X* such that upp(L) =
upr(F) = Fuwr X*. By the closure properties of cones under wir,
upp(L) € C. A similar proof shows that DOWN7 (L) € co-C. O

2 Note that what Harju and Ilie call monotone, we call compatible.
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8.6 T-Convezity and Mazimality Revisited

We now turn to the complexity of T-convex languages:

Theorem 15. Let C be a cone. Let T € 3%0) be an element of C.
Then every T-convex language is an element of C N\ co-C.

Proof. Let T € 3%’0). As T is a partial order, it is reflexive. Thus, if
L is a T-convex language, we have that L = upp(L) N DOWNy(L) [7,
Cor. 4.1]. Thus, by Theorem 14, the result follows. O

The following corollary is immediate, based on the closure prop-
erties of the recursive and regular languages:

Corollary 16. Let T € REG (resp., REC) be such that T € 3550). If
L is a T-convez language, then L € REG (resp., REC).

Corollary 16 was known for the case of H = (0+1)* and L € REG,
see Thierrin [41, Cor. to Prop. 3]. Further, we can also establish the
following result:

Theorem 16. Let T' € §y be compatible. Then every T-convex lan-
guage is reqular.

Consider the sets E, = {0,1"}*. As noted by Ehrenfeucht et al.
8], En € §u. As E, = E} and 0* C E,,, E, is compatible. Thus, we
have that every E,-convex language is regular.

9 Conclusions

We have introduced the notion of a T-code, and examined its prop-
erties. Many results which are known in the literature are specific
instances of general results on T-codes. However, the notion of a 7'-
code is not so general as to prevent interesting results from being
obtained. We feel that the framework of T-codes is very suitable for
further analysis of the general structure of the many classes of codes
which it generalizes. Further research into this area should prove very
useful.
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