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1.  Introduction 

The Fibonacci sequence arises naturally as the diagonal sums of the binomial coefficient 

array with terms  (where n gives rows, m gives columns).  In order to generalize, the 

following well-known equations are restated in a suitable form.  The Fibonacci sequence 

satisfies 
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while the binomial coefficients satisfy the partial recurrence relation 
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Given some generalization of the binomial coefficients, a straight-forward generalization of 

the Fibonacci sequence is obtained by taking diagonal sums of the generalized binomial array 

(as in [12] for example).  The reverse procedure, that of finding generalized binomial 

coefficients which underlie a generalized Fibonacci sequence, is not so clear cut.  The 
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uniqueness of the standard Fibonacci-binomial relationship and other examples will be 

considered as particular cases. 

 

2.  Generalized binomial coefficients 

An obvious and reasonably broad generalization of the Fibonacci sequence is provided by the 

recurrence relation 
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with initial conditions given for n b−=  to 0.  Also,  is given for  and  is given 

for  with .  It is of course a simple matter to set up an array of coefficients 

 with diagonal sums equal to a given sequence.  For instance, let 
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for  and C  elsewhere.  To avoid such trivial solutions, we shall require the 

underlying generalized binomial coefficients to satisfy a recurrence relation of first order in 

the n dimension and order b in the m dimension, and to have only the same number of free 

boundary values as the generalized Fibonacci sequence has initial values, viz. C  for 

.  With this in mind, let  
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with  elsewhere except for , .  The functions  and C  are 

to be determined with  not equivalent to zero.  Although  does not appear in 

(2), it will also be needed.  Motivated by the foregoing, we form the weighted diagonal sum 
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The boundary conditions on C imply that the upper summation limit in (3) may be reduced to 

.  Substituting (2) into (3) for  and ,  )1/( +bbn  1≥n 1≥m
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with the required identities  
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 (6) may be solved to determine a condition for the form of the generalized binomial 

recurrence relation weight in terms of given functions: 
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We now turn to the boundary values C , .  C)0,(n 0≥n )0(/)1()0,0( wF=  from (3).  The 

derivation leading to (4) can be made valid for bn ≤≤1  by suitable choice of .  From 
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This is well-defined as it involves only terms which may be calculated at earlier stages.  The 
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remaining boundary values for 1+≥ bn  may then be determined from (5), so that 

)0,1()0()0(/)()0,( −+= nCfwngnC , (9)

with initial value  given by (8) for  or by C  when b .  Thus, the only 

“free” boundary values, i.e. those which must be determined directly from the F sequence, 

are , 
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3.  Examples 

Example 1 

The Fibonacci sequence has 0)( =ng , 1=b , 1)1()0( == ff  and , 0)0( =F 1)1( =F .  
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Fibonacci numbers and the binomial coefficients is therefore unique (for the form of the 

partial recurrence relation) up to the weight function . 
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with  and 1)1()0,0( ==VC 10)2()0,1( =−=VC , 112)1,1()3()0,2( =−=−= CVC  from (8) 

while  for  from (9).  Table 1 shows some of these coefficients. 1= 3≥n)0(/)()0,( = wngnC

Example 3 

While the underlying generalized binomial coefficients are unique up to the weight function 

for the given form of the recurrence relation, it is interesting to note that different though 

equivalent generalized Fibonacci recurrence relations lead to different underlying 

coefficients.  For instance, in the previous example an equivalent recurrence relation is given 

by 
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and  for n .  Table 2 shows these coefficients.  It may be verified that both 

recurrence relations given above for 
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Further, the Fibonacci sequence is also generated by 

∑
∞

=

−+=+
1

)(1)1(
i

inFnF  

 



 6

which leads to  for  and m , with C  elsewhere 

except for 
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( =nC , .  These coefficients are shown in Table 3 from which it may be 

seen that diagonal sums give the Fibonacci sequence.  The resulting coefficients have 

combinatorial interpretations [12]. 
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As an example of the use of the weight function, taking  in Example 1 gives 1!)( −= mmw
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with suitable boundary conditions.  This example can clearly be extended to larger values of 

b.  The resulting coefficients also have combinatorial interpretations [12]. 

 

4.  Conclusion 

This paper explores ways of generalizing binomial coefficients and their relation to Fibonacci 

numbers.  Other ways of generalizing the binomial coefficients in this context have included 

that of Jarden [9] who replaced the natural numbers in the binomial coefficients by the 

generalized Fibonacci numbers of Lucas [11].  Hoggatt [7] continued this line of thought by 

developing analogues of Pascal’s triangle for the generalized “Fibonomial” coefficients.  

These triangles were further developed by Gould [6] who generalized all of the 

corresponding results previously found for ordinary and q-binomial coefficients [3] in a 

remarkable sequence of seven theorems.  Gould built on the work of Fontené [5] who 

suggested a generalization of the binomial coefficients by replacing the natural numbers by 

an arbitrary sequence of real or complex numbers.  Such a sequence is called a Raney 

sequence [2], the Fibonacci sequence being a Raney sequence in the Fibonomial coefficients.  
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These Fontené coefficients were rediscovered by Ward [14] in a paper where he developed a 

calculus of sequences which generalized the calculus of Jackson [8]. 

A parallel development was the consideration of the properties of Gaussian binomial 

coefficients by Carlitz [4], Polya and Alexanderson [13] and Alexanderson and Klosinski [1].  

Lee and Phillips [10] went a step further by considering Gaussian multinomial coefficients.  

In the present paper, conditions for non-trivial generalized binomial coefficients which 

correspond to a generalized Fibonacci-type sequence have been derived.  As well as 

answering the fundamental question of the uniqueness of the standard Fibonacci-binomial 

relationship, other generalized relationships have been investigated.  Further exploration in 

this area may be worthwhile. 
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Table 1.  The generalized binomial coefficient array of Example 2 for n = 0 to 8 (  gives 

rows,  gives columns). 

0≥n

0≥mi

k

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 3 4 3 1 0 0 0 0 0 0 0 0 0 0
1 1 2 3 5 7 7 4 1 0 0 0 0 0 0 0 0
1 1 2 3 5 8 12 14 11 5 1 0 0 0 0 0 0
1 1 2 3 5 8 13 20 26 25 16 6 1 0 0 0 0
1 1 2 3 5 8 13 21 33 46 51 41 22 7 1 0 0
1 1 2 3 5 8 13 21 34 54 79 97 92 63 29 8 1

y

{  

 

 

Table 2.  Different generalized binomial coefficients which give the same diagonal sums as 

in Table 1. i

k

1 0 0 0 0 0 0 0 0
1 1 0 −1 0 0 0 0 0
1 2 1 −2 −2 0 1 0 0
1 3 3 −2 −6 −3 3 3 0
1 4 6 0 −11 −12 2 12 6
1 5 10 5 −15 −29 −10 25 30
1 6 15 14 −15 −54 −44 30 84
1 7 21 28 −7 −84 −112 1 168
1 8 28 48 14 −112 −224 −104 253

y

{  

 

 

Table 3.  Alternative generalized binomial coefficients which give the Fibonacci numbers as 

diagonal sums. i

k

1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8
1 1 2 4 7 11 16 22 29
1 1 2 4 8 15 26 42 64
1 1 2 4 8 16 31 57 99
1 1 2 4 8 16 32 63 120
1 1 2 4 8 16 32 64 127
1 1 2 4 8 16 32 64 128

y

{  
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