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Abstract

Generating trees describe conveniently certain families of combinatorial objects� each
node of the tree corresponds to an object� and the branch leading to the node encodes the
choices made in the construction of the object� Generating trees lead to a fast computation of
enumeration sequences �sometimes� to explicit formulae as well� while providing e�cient ran�
dom generation algorithms� In this paper� we investigate the relationship between structural
properties of the rules de�ning such trees and the rationality� algebraicity� or transcendence
of the corresponding generating functions�

R�esum�e

Certaines m�ethodes d	�enum�eration d	objets combinatoires utilisent des arbres in�nis� ou
arbres de g�en�eration� qui r�esument dans leurs branches et leurs noeuds les choix faits lors de
la g�en�eration des objets� Les arbres de g�en�eration conduisent 
a des algorithmes de calcul des
suites de d�enombrement ainsi que de g�en�eration al�eatoire qui sont rapides� Nous �etudions
les liens entre les propri�et�es structurelles de tels arbres� ou plut�ot des syst
emes de r
egles
associ�es� et la nature �rationnelle� alg�ebrique ou transcendante� de la s�erie g�en�eratrice qui
leur correspond � cette s�erie �enum
ere les n
uds de niveau donn�e de l	arbre� i�e�� les objets
de taille donn�ee�

� Introduction

Only the simplest combinatorial structures � like binary strings� permutations� or pure involu�
tions �i�e�� involutions with no �xed point� � admit product decompositions� In that case� the
set �n of objects of size n is isomorphic to a product set� �n

�	 
�� e�� � 
�� e�� � � � � � 
�� en��
Two properties result from such a strong decomposability property� �i� enumeration is easy�
since the cardinality of �n is e�e� � � �en
 �ii� random generation is e�cient since it reduces to
a sequence of random independent draws from intervals� In that case� a simple in�nite tree�
called the uniform generating tree is determined by the ej � the root has degree e�� each of its
e� descendents has degree e�� and so on� This tree describes the sequence of all possible choices
and the objects of size n are then in natural correspondence with the branches of length n�
or equivalently with the nodes of generation n in the tree� The generating tree is thus fully
described by its root degree �e�� and by rewriting rules� here of the special form�

�ej�� �ej��� �ej��� � � ��ej��� � �ej���
ej �

where the power notation is used to express repetitions� For instance binary strings� permuta�
tions� or pure involutions are determined by

S � 
���� ���� ��� ����
P � 
���� f�j�� �j � ��jgj���
I � 
���� f��j � ��� ��j � ���j��gj����
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A powerful generalization of this idea consists in considering unconstrained generating trees
where any set of rules

� 	 
�s��� f�k�� �e��k� �e��k� � � � �ek�k�g� ���

is allowed� Here� the axiom �s�� speci�es the degree of the root� while the productions list the
degrees of the k descendents of a node labelled k� Obviously� much more leeway is available and
there is hope to describe a much wider class of structures than those corresponding to product
forms and uniform generating trees�

The idea of generating trees that we have just described has surfaced occasionally in the
literature� West introduced it in the context of enumeration of permutations with forbidden
subsequences 
��� ���
 this idea has been further exploited in closely related problems 
�� �� �� ����
A major contribution in this area is due to Barcucci� Del Lungo� Pergola� and Pinzani 
�� ��
who systematized the method under the name of ECO�systems �ECO stands for �Enumerating
Combinatorial Objects��� while showing that a fairly large number of classical combinatorial
structures are amenable to such descriptions by generating trees�

A form equivalent to generating trees is well worth noting at this stage� Consider the
set of walks on the integer half�line that start at point �s�� and such that the only allowable
transitions are those speci�ed by �� Then� clearly� the set of such walks of length n is in bijective
correspondence with branches of the tree� Thus� the model of generating trees is equivalent to
walks of the form ���� The walks are only constrained by the consistency requirement of trees�
namely� that the number of outgoing edges from point k on the half�line has to be exactly k�
Such an alternative presentation in terms of walks implies that objects that admit generating
trees can be enumerated in cubic time� given the rules in tabular form� and provided the ei�k are
bounded linearly in k� �See below for details��

Example �� ����avoiding permutations� The method of �local expansion� sometimes gives good
results in the enumeration of permutations avoiding speci�ed patterns� Consider for example the set
Sn����� of permutations of length n that avoid the pattern ���� there exist no integers i � j � k
such that ��i� � ��j� � ��k�� For instance� � � ���� belongs to S������ but � � ���� does not� as
���� � ���� � �����

Observe that if � � Sn�������� then the permutation � obtained by erasing the entry n � � from �
belongs to Sn������ Conversely� for every � � Sn������ insert the value n�� in each possible place �this
is the local expansion�� For example� the permutation � � ��� gives ����� ���� and ����� by insertion of
� in �rst� second and third place respectively� The permutation ����� resulting of the insertion of � in the
last place� does not belong to S������� This process can be described by a generating tree whose nodes
are the permutations avoiding ���� the root is �� and the children of any node � are the permutations
derived as above� Figure ��a� presents the �rst four levels of this tree�

Let us now label the nodes by their number of children� we obtain the tree of �gure ��b�� It can be
proved that the k children of any node labelled k are labelled respectively k � �� �� �� � � �� k� Thus the
generating tree can be de�ned by giving only the value of the label of the root and the succession rule
just de�ned� This can be written �after re�ordering the labels� as

����� f�k�� ������ � � � �k � ���k��k � ��gk���� ���

The equivalence with paths then implies that ����avoiding permutations are equinumerous with �walks
with returns� on the half�line� themselves isomorphic to �Lukasiewicz codes of general trees� Thus� ����
avoiding permutations are counted by Catalan numbers� �

The main question addressed in this paper is the relationship between structural properties
of the rules de�ning generating trees on the one hand� and properties of generating functions on
the other hand� Since generating trees are associated with fast random generation algorithms
and with enumeration sequences of relatively low computational complexity� there is an obvious
interest in delineating as precisely as possible which combinatorial classes admit a generating tree
speci�cation� Generating functions that condense structural information in a simple analytic
entity are prime candidates to be examined�

In the course of their investigations� Pinzani and his coauthors made a number of observations
that were presented to us as conjectures in March ����� This paper is devoted to bringing
complete proofs of several of Pinzani�s conjectures� Our main results are as follows�
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Figure �� The generating tree of ����avoiding permutations� �a� nodes labelled by the permu�
tations� �b� nodes labelled by the numbers of children�

� Rational systems� Systems satisfying strong regularity conditions lead to rational gen�
erating functions �Section ��� This covers systems that have a �nite number of allowed
degrees� as well as systems like �a�� �b�� �c�� and �d� in Example � below where the labels
are constant except for a �xed number of labels that depend linearly and �uniformly� on
k�

� Algebraic systems� Systems of a �factorial� form� i�e�� where a �nite modi�cation of the
set f�� � � � � kg is reachable from k� lead to algebraic generating functions �Section ��� This
includes in particular cases �f� and �g� in Example ��

� Transcendental systems� One possible reason for a system to give a transcendental series is
the fact that its coe�cients grow too fast� so that its radius of convergence is zero� Tran�
scendental generating functions are also associated with systems that are too �irregular�
�Section ��� Instances are cases �e� and �h� of Example ��

Example �� Particular generating tree systems� Here is a list of examples recurring throughout this
paper�

�a� � ����� f�k�� ���k���k � ���k � ���k � ��g� �b� � ����� f�k�� ���k����k � ��g�
�c� � ����� f�k�� ���k���� � �k mod ����k � ��g� �d� � ����� f�k�� ���k����� �k mod ����k � ��g�
�e� � ����� f�k�� ���k����� ��p �k � �p���k � ��g� �f� � ����� f�k�� ������ � � � �k � ���k��k � ��g�
�g� � ����� f�k�� ������ � � � �k � ���k � ��g� �h� � ����� f�k�� �������k � ��k��g�

�In �e�� we make use of Iverson	s brackets� �P � equals � if P is true� � otherwise�� �

Notations� From now on� we adopt functional notations for rewriting rules� systems will be
of the form


�s��� f�k�� �e��k�� �e��k�� � � ��ek�k��g�

where s� is a constant and each ei is a function of k� Moreover� we assume that all the values
appearing in the generating tree are positive�

In the generating tree� let fn be the number of nodes at level n and sn the sum of the labels
of these nodes� �By convention� the root is at level �� so that f� 	 ��� In terms of walks� fn is
the number of walks of length n� The generating function associated to the system is

F �z� 	
X
n��

fnz
n�

Remark that sn 	 fn��� and the fn�s are nondecreasing�



Now let fn�k be the number of nodes at level n having label k �or the number of walks of
length n ending at position k�� The following generating functions will be also of interest�

F �z� u� 	
X
n�k��

fn�kz
nuk and Fk�z� 	

X
n��

fn�kz
n�

We have F �z� 	 F �z� �� and F �z� 	
P

k�� Fk�z�� Furthermore� the Fk �s satisfy the relation

Fk�z� 	 
k 	 s�� � z
X
i��

�i�kFi�z�� ���

where �i�k 	 jfj � i � ej�i� 	 kgj denotes the number of one�step transitions from i to k� This
is equivalent to the following recurrence for the quantities fn�k �

f��s� 	 � and fn���k 	
X
i��

�i�kfn�i� ���

that results from tracing all the paths that lead to k in n � � steps�

Counting and random generation� The recurrence ��� gives rise to an algorithm that
determines the successive values of the array fn�k by �forward propagation�� For each n� i� prop�
agate the contribution fn�i to fn���k whenever ej�i� 	 k� Consider for this discussion �linearly
bounded systems� where the states reachable in m steps have an index �a label� dominated by
a linear function of m� �Systems where forward jumps are bounded by an absolute constant
are for instance of this type�� Clearly� the forward propagation algorithm provides a counting
algorithm of arithmetic complexity that is at most cubic� In that case� random generation can
also be achieved in polynomial time� as we now show�

Let gk�n be the number of walks of length n that start from state k taken as axiom� The
gk�n are then determined by a �backward� recurrence� gk�n 	

P
j gej�k��n��� that traces all the

possible continuations of a path given its initial step� Obviously� fn 	 gs��n� with s� the axiom�
The gk�n form an array that is dual to the fn�k and� for a linearly bounded system� they can be
determined in time O�n��� like before� Random generation is then achieved as follows� In order
to generate an object of size n starting from state k� pick up a transition j with probability
gej�k��n���gk�n� and generate recursively an object of size n � � starting from state ej�k�� The

recursive procedure needs to set up the array gk�n� which represents a preprocessing cost of O�n
��

time and O�n�� storage� The cost of a single random generation is then O�n�� if a sequential
search is used over the O�n� possibilities of each of the n random drawings
 the time complexity
goes down to O�n logn� if binary search is used� but at the expense of an increase in storage
complexity of O�n�� �arising from O�n�� arrays of size O�n� that binary search requires��

� The rational case

We give in this section four criteria implying that the generating function of a given ECO�system
is rational� All the systems studied here have the following property� A bounded number of ei�s
grow at most linearly in k� and the others are bounded by a constant�

Among these systems� the simplest ones are those in which all the ei�s are bounded�

Proposition � If �nitely many labels appear in the tree� then F �z� is rational�

Sketch of Proof� Only a �nite number of Fk �s are nonzero� and they are de�ned by linear
equations like Equation ��� above� �

Example �� Fibonacci sequence� The system ����� f�k� � �k�k����k mod �� � ��g�� which can be also
written as ����� f���� ���� ��� � ������g�� leads to F �z� � �

��z�z� � � � z � �z� � �z� � �z� � � � �� the
well�known Fibonacci generating function� �



None of the systems of Example � satisfy directly the assumptions of Proposition �� However�
the proposition that follows can be applied to systems �a� and �b��

Proposition � Let ��k� 	 e��k� � e��k� � � � � � ek�k�� If � is an a�ne function of k� say
��k� 	 �k � �� then the series F �z� is rational� More precisely�

F �z� 	
� � �s� � ��z

�� �z � �z�
�

Proof� Let n � � and let k�� k�� � � �kfn denote the labels of the fn nodes at level n� Then

fn�� 	 sn�� 	 ��k� � �� � ��k� � �� � � � �� ��kfn � ��

	 �sn � �fn 	 �fn�� � �fn�

We know that f� 	 �� The result follows� �

Example �� Bisection of Fibonacci sequence� The system ����� f�k� � ���k���k � ��g� gives F �z� �
��z

���z�z� � � � �z � �z� � � � �� the generating function for every odd entry in the Fibonacci sequence�

�Changing the axiom to ��� leads to the other half of the Fibonacci sequence�� Systems ����� f�k� �
���k����k�g�� as well as ����� f�k�� ���k����� �k mod ����k� �k mod ���g� and ����� f�k�� ���k�����
�k is prime���k � �k is prime��g� lead to the same function F �z� since ��k� � �k � � and s� � � in all
cases� However� the generating trees are di�erent� as are the bivariate functions F �z� u�� �

Proposition � can be slightly generalised� For example� let us consider a system having the
following properties� �i� the system can be decomposed into two productions� one for even k
and one for odd k� such that the corresponding functions �� and �� are a�ne and have the same
leading coe�cient �� say ���k� 	 �k � �� and ���k� 	 �k � ��
 �ii� there exists a constant c
such that exactly c odd labels occur in the right�hand side of each rule� An argument similar to
the proof of Proposition � leads to the following result�

Proposition � If a system satis�es properties �i� and �ii� above� then

F �z� 	
� � �s� � ��z � �s� � �s� � ���z

�

�� �z � ��z� � c��� � ���z�
�

For example� system �c� in Example � can be rewritten 
���� f��k�� ����k�������k���� ��k�
��� ����k�������k� ��g�� It satis�es properties �i� and �ii� above with � 	 �� �� 	 ��� �� 	 �
and c 	 �� Consequently� its generating function is F �z� 	 ��z

���z�z��z� �
System �d�� although very close to �c�� does not satisfy property �ii� above� so that Propo�

sition � does not apply� We then consider systems of the form


�s��� f�k�� �c��k���c��k�� � � ��ck�K�k���k� a��
���k � a��

�� � � ��k � am�
�mg� ���

where � � a� � a� � � � � � am and the ci�k� are uniformly bounded by a constant C � s��

Proposition � Consider the system ���� and let �i�k 	 jfj � i � ej�i� 	 kgj� If all the seriesX
j��

�j�k tj

for k � C are rational� then so is the series F �z��

Sketch of Proof� We form an in�nite system of equations de�ning the series Fk�z� by writing
��� for all k � �� The bottom part of the system �k � C� is diagonal� and the solution of the
corresponding equations yields� for k � ��

Fk�z� 	
CX
i��

Pi�k�z�Fi�z� ���



where the Pi�k are polynomials in z de�ned by the following recurrence� for all i � C�

Pi�k�z� 	

�����

k 	 i� if k � C�

z
mX
���

	�Pi�k�a��z� if k � C�
���

with the convention Pi�k 	 � if k � ��

Using ���� we �nd

F �z� 	
X
k��

Fk�z� 	
CX
i��

Fi�z�

��X
k��

Pi�k�z�

�� �
According to ����

P
k�� Pi�k�z�t

k is a rational function in z and t� of denominator �� z
P

� 	�t
a� �

At t 	 �� it is rational in z� Hence� to prove the rationality of F �z�� it su�ces to prove the
rationality of the Fi�z�� for i � C�

Let us go back to the C �rst equations of our system
 using again ���� we �nd� for k � C�

Fk 	 
k 	 s�� � z
CX
i��

Fi�z�

��X
j��

Pi�j�z��j�k

�� �
Again� we can prove that

P
j�� Pi�j�z��j�k is a rational function of z �the Hadamard product of

two rational series is rational�� Thus the series Fk�z�� for k � C� satisfy a linear system with
rational coe�cients� they are rational themselves� as well as F �z�� �

Examples �a�� �c�� �d� and �e� of Example � have the form ���� The proposition above implies
that the �rst three have a rational generating function� System �e� will be discussed in Section ��

� The algebraic case

In this section� we consider systems that are of a �factorial� form� By this� we mean infor�
mally that the rules giving the successors of �k� are a �nite modi�cation of the integer interval
f�� �� � � � � kg� As was detailed in the introduction� generating tree rules can be rephrased in
terms of walks over the integer half�line� We thus consider the marginally more general problem
of enumerating walks over the integer half�line such that the allowed moves from point k is a
�nite modi�cation of the integer interval 
�� k�� Precisely� a factorial walk is de�ned by its moves
from point k � � that are of the form

�k�� ������ � � ��k � c� ���k� d���k � d�� � � ��k � dm�� ���

with c � � and �c � d� � d� � � � � � dm � �� In other words� a �nite number of forward
jumps are allowed and all backward jumps of length at least c � � are possible when moving
from point k�

The collection of factorial generating trees is then de�ned as those systems that� up to a
possible shift of indices� correspond to factorial walks� The rules are then

�k � r��� �r���r�� �� � � ��k � r� � c� ���k� r� � d���k� r� � d�� � � ��k� r� � dm��

that is�

�k�� �r���r� � �� � � ��k � c� ���k� d���k� d�� � � ��k � dm�� for k � r� � ��

Such systems must also obey the consistency principle of generating trees� viz�� a node labelled
k has exactly k successors
 here this implies the further restriction r� � c 	 m� For instance�
Systems �f� and �g� of Example � are factorial�



We prove here that any system of walks of type ��� has an algebraic generating function� The
result thus applies to generating trees given by factorial rules� We consider again the generating
function F �z� u� 	

P
n�k�� fn�kz

nuk� where fn�k is the number of walks of length n ending at
point k� We also let fn�u� be the coe�cient of zn in this series� The �rst idea is based on
introducing a linear operator M such that

fn���u� 	 Mfn�u��

This operator is constructed in stages by means of an operator L that records symbolically all
possible moves� and then� by modifying L in order to take into account the boundary conditions
that forces the walk to be always nonnegative� Let fb�� b�� � � �g 	 fdj � dj � �g be the set of
allowed forward jumps� Similarly� let fa�� a�� � � �g 	 
�� c�n f�dj � dj � �g be the set of irregular
backward jumps�

� The set of moves from k to all the positions �� �� � � � � k� � is described by an operator L�

that maps uk to u� � u� � � � �� uk�� 	 ��� uk����� u�� Consequently� let

L�
f ��u� 	
f���� f�u�

�� u
�

� The fact that transitions near k are modi�ed� with those of type k � bj �with bj � ��
allowed and those of type k � aj �with � � aj � c� disallowed is expressed by a Laurent
polynomial�

P �u� 	 B�u� �A�u� with B�u� 	
X
j

ubj � A�u� 	
X
j

u�aj � ���

Then� the operator
L
f ��u� �	 L�
f ��u� � P �u�f�u�

plays the r�ole of a generating operator for a single step of the walk�

� The modi�ed operator M is given by

M 
f ��u� 	 L
f ��u�� fu��gL
f ��u��

where fu��gf is the sum of all the monomials in f that involve negative exponents� This
is nothing but L stripped of negative exponent monomials that correspond to noncombi�
natorial situations�

Assume for simplicity that the initial point of the walk is �
 other cases follow by the same
argument� The linear relation fn���u� 	 M 
fn��u�� together with f��u� 	 � yields

F �z� u� 	
X
n��

fn�u�z
n 	 � � z

�	F �z� ��

�� u
�
F �z� u�

�� u
� P �u�F �z� u�� fu��g

X
n��

znL
fn��u�


A �

����
One has fu��gLfn�u� 	

Pc��
j�� cj�u�


j
ufn���� where cj�u� is a Laurent polynomial with monomials

whose degrees belong to 
j � c� � � � ����� Thus� equation ���� implies our main equation�

F �z� u�

�
� �

z

�� u
� zP �u�

�
	 ��

z

�� u
F �z� ��� z

c��X
j��

cj�u�

j
uF �z� ��� ����

Therefore� the bivariate generating function F �z� u� satis�es a functional di�erential equation�
The quantities that appear in the functional equation are all explicit� For instance� the

moves
�k�� ������ � � ��k � ���k� ���k � ���k��k� ���k � ���



lead to A�u� 	 u�� � u�� and B�u� 	 u� � u	 � u
� with P �u� 	 B�u� �A�u�� In general� the
degree of P is d �	 dm� the size of the largest forward jump
 the smallest degree occurring in P

is c� the size of the largest disallowed backward jump�
The second ingredient is sometimes known as the kernel method�� This consists in forcing

the left hand�side of the fundamental functional equation ���� to be zero by coupling z and
u so that the coe�cient of the �unknown� quantity F �z� u� is zero� This constraint de�nes u
as one of the branches of an algebraic function of z� If enough branches can be substituted
analytically� then enough relations will be generated so that one can solve for the �unknown�
quantities appearing on the right� namely� F �z� �� and the 
juF �z� �� that are then obtained as
algebraic functions� From there� an expression for F �z� u� also results in the form of a bivariate
algebraic function�

One de�nes here the kernel K as

K�u� z� �	 �uc��� u�

�
� �

z

�� u
� zP �u�

�
� ����

which is nothing but the numerator of the coe�cient of F �z� u� in ����� There are c � d � �
solutions in u of this equation� which are algebraic functions of z� The classical theory of
algebraic functions and the Newton polygon construction enable us to expand the solutions near
any point as Puiseux series �that is� series involving fractional exponents�� The c�d�� solutions
around � can be classi�ed as follows�

� the �unit� branch� denoted by u�� which tends to � as z � �


� c �small� branches� denoted u�� � � � � uc� which grow like z��c at z 	 �


� d �large� branches� denoted by v�� � � � � vd� which grow like z���d at z 	 �


In particular� there are exactly c�� �nite branches� the unit branch u� and the c small branches
u�� � � � � uc� An elementary argument shows that F �z� �� is an analytic function of z at the origin�
so that there are in total c� � branches that can be substituted� Luckily� c � � is the number
of unkown quantities� F �z� �� and 
juF �z� �� on the right hand�side of �����

De�ne the entire form of the right hand�side of �����

Q�u� z� �	 �uc��� u�

�	� � z

�� u
F �z� ��� z

c��X
j��

cj�u�

j
uF �z� ��


A �

The quantities K and Q are by construction polynomials in u� The roots u�� u�� � � � � uc of K are
also roots of Q which is monic with u�degree equal to c� �� so that Q admits the factorization�

Q�u� z� 	
cY

i��

�u� ui��

Let ld �	 
ud�P �u� be the the multiplicity of the largest forward jump� One has similarly�

K�u� z� 	 �zld

c�dY
i��

�u� ui��

Finally� the equation de�ning F �z� u� is K �F �z� u� 	 Q and so that the factorizations above
give

F �z� u� 	
Q�u� z�

K�u� z�
	

Qc
i���u� ui�

�zld
Qc�d

j���u� uj�
	

�

�zld
Qd

i���u� vi�
� ����

This specializes to give F �z� �� which is the generating function of all walks taken irrespective
of the value of their end point�

�The kernel method belongs to mathematical folklore since the �����s� e�g�� it has been used by combinatori�
alists 	
� ��� and probabilists 	���
 There is also some recent work which makes a deep use of it 	�� �� ���




Proposition � A factorial walk� hence also a factorial system of generating trees� has an alge�
braic generating function� In particular� the generating function for all walks is

F �z� �� 	 �
�

z

cY
i��

��� ui��

where the product is over all branches u�� � � � � uc �nite at z 	 � of the algebraic function given
by the equation K�u� z� 	 �� the kernel K being de�ned by �����

The kernel method can also be applied �with some subtleties� to slightly more general sys�
tems� where backward steps leading to a �xed �nite subset C of points near the origin are
forbidden� The system is then �k�� f�� � � � � k � �g n 
C � k �B� � k �A and the generating
function is still algebraic� An example is the system �k�� ��������������� � � ��k � ���k��k� ���

Classically� one de�nes excursions by the constraint that their end point is �� The excursion
generating function is then found directly from ����� With lc 	 
uc�P �u�� one has�

F �z� �� 	
����c��

lcz

cY
i��

ui�

Proposition � was �rst obtained in March ���� �see 
���� independently of 
�� ��� to which
the present treatment is closely related�

Example �� Catalan numbers� This is the simplest factorial walk� �k� � ������ � � � �k��k � ��� which
corresponds to System �f� of Example �� The characteristic operator is�

L�f ��u� �
f��� � f�u�

�� u
� �� � u�f�u��

The kernel is K�u� z� � ���� u�� z � z��� u��� � u� � u� �� u�z� hence u��z� �
��p���z

�z � so that

F �z� �� �
�� u�
�z � � � �z � �z� � ��z� � ��z� � ���z� � O�z���

the generating function of the Catalan numbers �sequence M������� This result could be expected�
given the well�known relation between these walks and �Lukasiewicz codes� �

Example �� Motzkin numbers� This example� due to Pinzani et al�� is derived from the previous one by
forbidding �forward� steps of size zero� The rule is then

�k�� ��� � � � �k � ���k � ���

The characteristic operator is

L�f ��u� �
f��� � f�u�

�� u
� uf�u��

The kernel is K�u� z� � ���� u�� z � z��� u�u� leading to

F �z� �� �
�� z �p

�� �z � �z�

�z�
� � � z � �z� � �z� � �z� � ��z� �O�z���

the generating function for Motzkin numbers �sequence M������ �

Example �� Schr�oder numbers� This example� presented by Pinzani et al�� corresponds combinatorially
to �k�� ��� � � � �k � ���k��k � ���� One �nds from Proposition � that

F �z� �� �
�� �z �p

�� �z � z�

�z�
� � � �z � ��z� � ��z� � ���z� � � � � �

The coe�cients are the Schr�oder numbers �M����� Schr�oder	s second problem�� A higher order gener�
alization that appears to be new is presented in the table of at the end of this paper �Fig ��� �

�The numbers Mxxxx are identi�ers of the sequences in The Encyclopedia of Integer Sequences 	���




The examples obtained so far are all quadratic� It is however clear from our treatment that
algebraic functions of arbitrary degree can be obtained� it su�ces that the set of �exceptions�
around k have a span greater than �� We list here a few more examples� Veri�cation is easy
given a computer algebra system that handles algebraic functions and elimination�

Example �� Ternary trees� dissections of a polygon� and t�ary trees� The system with axiom �s�� � ���
and rules

�k�� ������ � � � �k��k � ���k � ��

is equivalent to the walk
�k�� ������ � � � �k��k � ���k � ���

and leads to
F �z� �� � � � �z � �z� � ��z� � ���z� � �� z� � � � � �

that is� ternary plane rooted trees where the root has exceptional degree �� This corresponds to sequence
M����� If the axiom is taken to be �s�� � ���� we get the �tricatalan� numbers


�n
n

�
���n � ��� that is�

sequence M����� that counts ternary trees�
The �tetracatalan� numbers


�n
n

�
���n� �� are obtained by the rule

�k�� ��� � � � �k��k � ���k � ���k � ���

and axiom ���� This is sequence M	��� that starts as �� �� ��� ���� ��� and is described as �dissections
of a polygon��

More generally� the system with axiom �t� and production rules

�k�� �t� � � � �k��k � ���k � �� � � � �k � t� ��

yields the t�Catalan numbers�


tn
n

�
���t � ��n � �� that count t�ary trees� The basic generating function

derived from the kernel method is de�ned by the familiar equation y � � � zyt� �

� The transcendental case

One possible reason for a system to give a transcendental series is the fact that its coe�cients
grow too fast� so that its radius of convergence is zero� This is the case for the last system of
Example ��

Proposition � Consider a system such that�

	� only a �nite number of the functions ei
s are bounded�

�� for all k� there exists a forward jump from k �i�e�� ei�k� � k for some i��

Then the �ordinary� generating function F �z� has radius of convergence zero�

Sketch of Proof� It is easy to prove that the coe�cients of F �z� grow like a factorial� �

Example 	� Arrangements� The system �k� � �k��k � ��k�� with axiom �s�� � ��� generates the
sequence that starts with �� �� �� ��������� �M������ It is not hard to see that the triangular array fn�k
is given by the arrangement numbers k!



n
k

�
� so that the exponential generating function of the sequence

is ez���� z�� This system satis�es the conditions of Proposition �� accordingly� one has fn � e n!� so that
the ordinary generating function has radius of convergence � and cannot be algebraic� �

Algebraic generating functions are strongly constrained in their algebraic structure �by a
polynomial equation� as well as in their analytic structure �in terms of singularities and asymp�
totic behaviour�� In particular� algebraic functions have a �nite number of isolated singularities
that are algebraic numbers with local asymptotic expansions that may involve only rational ex�
ponents� A contrario� a generating function that has in�nitely many singularities �e�g�� a natural
boundary� or that involves a transcendental element �e�g�� a logarithm� in a local asymptotic
expansion is by necessity transcendental
 see 
��� for a discussion of such transcendence criteria�
In the case of generating trees� this means that the presence of a condition involving a transcen�
dental element is expected to lead to a transcendental generating function� An instance that we
examine now is system �e� of Example � where the rules are modi�ed at powers of ��



Example �
� The Fredholm case� Case �e� of Example ��� involves the �Fredholm series� h�z� ��P
m�� z

�m � which is well�known to admit the unit circle as a natural boundary� �This can be seen by way

of the functional equation h�z� � z� � h�z��� from which there results that h�z� is in�nite at all iterated
square�roots of unity�� Then� the Fk	s satisfy the following equations�

z � �z � ��F��z� �

�
z

��� z��
�

h�z�

z�
� �

�
F��z� � �� zF��z� �

�
z

�� z
� h�z�

z�

�
F��z� � ��

Fk�z� � zk��F��z� for k � ��

Solving for F� and F�� then summing �F � F� � F����� z��� we get

F �z� �
z��� z��h�z�

��� �z���� z��h�z� � z�
�

Now� the functions h�z� and F �z� are rationally related� so that F �z� is itself transcendental� Its radius
of convergence is determined by the cancellation of the denominator� it is �nite and nonzero� its value is
easily determined numerically and found to be about ��������� �

In the transcendental case� one can also discuss the holonomic character of the generating
function F �z�� �A series is said to be holonomic� or D��nite 
���� if it satis�es a linear di�erential
equation with polynomial coe�cients in z�� Holonomic functions include algebraic functions�
and have a �nite number of singularities� Example � is holonomic� while Example �� is not� as
it has in�nitely many singularities�

Amongst the simplest systems are those that involve moves from k of the form k	 � and k�
Such systems are naturally associated to continued fractions� Many of them lead to holonomic
functions �of the Hermite� Laguerre� or arrangement type
 see also Figure ��� However� despite
their simplicity� the following two systems lead to nonholonomic generating functions�

Example ��� Stirling polynomials� The system ��� �k�� �k�k���k���� gives rise to the Stirling numbers
of the second kind

�
n
k

�
�the number of ways one can group n objects into k nonempty subsets�� The

recursion
�
n��
k

�
�
�

n
k��
�
� k
�
n
k

�
entails that

eF �z� u� �
X
n��

�
nX

k	�

�
n

k

�
uk

�
zn

n!
� exp�u�exp�z�� ����

At u � �� the exponential generating function
P

fnz
n�n! specializes to

eF �z� �� � exp�exp�z� � ��� � � � �z � �
z�

�!
� ��

z�

�!
� ��

z�

�!
� ���

z�

�!
� � � �

the exponential generating function of the Bell numbers� This function is an entire function that is
nonholonomic since its growth �a tower of two exponentials� is too large to be compatible with that at
an irregular singular point of the solution to a di�erential equation with polynomial coe�cients� Hence�eF �z� �� as well as F �z� �� are nonholonomic� �

Example ��� Bessel histories� This is given by the system with axiom ��� and productions �k� �
�k � ���k�k���k � ��� with the �rst rule ��� � ��� adjusted for consistency of degrees in ecosystems�
Consider the corresponding paths ����� �k� � �k � ���k�k�k � ���� with bivariate generating function
F �z� u�� This generating function satis�es the functional di�erential equation

F �z� u�


�� z � z�u� u���

�� zu
�

�u
F �z� u� � � � z��� u���F �z� ���

whose processing is not obvious� Instead� the classical combinatorial theory of continued fractions provides
for a direct representation�

F �z� �� �
�

�� z � z�

�� z � z�

�� �z � z�

�� �z � � � �

� � � z � �z� � �z� � �z� � � � � �



System Name Id� Generating Function
Rational GF
s �ogf�

���� �k�� �k�k����k mod �� � �� Fibonacci M���� �
��z�z�

���� �k�� ���k���k � �� odd Fibonacci M���� ��z
���z�z�

���� �k�� ���k���k � �� even Fibonacci M���� �
���z�z�

Algebraic GF
s

���� �k�� ��� � � � �k � ���k � �� Motzkin numbers M�� � ��z�
p
���z��z�
�z

���� �k�� ��� � � � �k��k � �� Catalan numbers M���� ���z�p���z
�z

���� �k�� ��� � � � �k��k � ��� Schr�oder numbers M� � ���z�z��
p
���z�z�

�z

���� �k�� ��� � � � �k��k � ��� M���� ��
z�z��p���z��z�
�z

�t���� �k�� �t��� � � � �k��k � ��t
���tz�z�zt�

p
���z�tz����z

�tz

���� �k�� ��� � � � �k � �� Ternary trees M���� equation� F � � � zF �

���� �k�� ��� � � � �k � �� Dissection of a polygon M�� � equation� F � � � zF �

�t�� �k�� �t� � � � �k � t� �� t�ary trees equation� F � � � zF t

Transcendental GF
s �egf�

���� �k�� �k � ��k���k � �� Involutions M���� ez�
�

�
z�

���� �k�� �k � ��k���k��k � �� Switchboard problem M���� e�z�
�

�
z�

���� �k�� �k��k � ��k�� Arrangements M���� ez���� z�

���� �k�� �k � ��k���k � ��� Bicolored involutions M��� e�z�z
�

���� �k�� �k � ��k Factorial numbers M���� ����� z�
���� �k�� �k � ��k���k � �� Increasing subsequences M���� ez����z����� z�

Nonholonomic GF
s

���� �k�� �k�k���k � �� Bell numbers M�� � ee
z��

���� �k�� �k�k���k � ��� Values of Bell poly� M���� e��e
z���

���� �k�� �k � ���k�k���k � �� Bessel numbers M���� "

Figure �� A catalog of some ecosystems of combinatorial interest�

in which only the �rst level is anomalous� Comparison with ���� shows that

F �z� �� �
�

�� z � z�B�z�
where B�z� � � � z � �z� � �z� � ��z� � ��z� � ���z� � � � �

is the generating function of �Bessel numbers�� that is� sequence M����� From ����� we know that

�� z�B��z� � z
J��z�����
J��z���

�

with J� the Bessel J�function of order �� It remains to check that F �z� u� is nonholonomic� The fast
increase of �zn�B�z� entails

�zn�F �z� �� � �zn���B�z��

and the known asymptotic form ���� of �zn�B�z� that is recognizably of nonholonomic type �see ���� for
admissible types� entails in turn that F �z� �� is nonholonomic� �

Conclusion� To conclude� we present in Fig� � a small catalog of rules de�ning generation
trees that lead to sequences of combinatorial interest� Several examples are detailed in the
paper
 others are due to West 
��� ��� or Barcucci� Del Lungo� Pergola� Pinzani 
�� �� �� ��� or
are folklore� Each of them is an instance of application of our criteria
 the generating function
entries correspond to ordinary generating functions �ogf�s� in the rational and algebraic cases�
to exponential generating functions �egf�s� in the �transcendental� case� �Note� however� that
our terminology catalogs as �transcendental� the sequence n�� though its exponential generating
function is rational�� The last three examples of the table are nonholonomic�
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