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At this point, there are more additions than errors to report...
1.2. The Golden Mean. The cubic irrational χ = 1.8392867552... is mentioned

elsewhere in the literature with regard to iterative functions [1, 2, 3] (the four-numbers
game is a special case of what are known as Ducci sequences) and geometric construc-
tions [4, 5].

1.3. The Natural Logarithmic Base. A proof of the formula
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appears in [6]; Hurwitzian continued fractions for e1/q and e2/q appear in [7, 8, 9, 10].
Define the following set of integer k-tuples

Nk =


(n1, n2, . . . , nk) :

k∑
j=1

1

nj
= 1 and 1 ≤ n1 < n2 < . . . < nk


 .

Martin [11] proved that

min
(n1,n2,...,nk)∈Nk

nk ∼
e

e− 1
k

as k→∞, but it remains open whether

max
(n1,n2,...,nk)∈Nk

n1 ∼
1

e− 1
k.

Croot [12] made some progress on the latter: He proved that n1 ≥ (1+o(1))k/(e−1)
for infinitely many values of k, and this bound is best possible. Also, define f0(x) = x
and, for each n > 0,

fn(x) = (1 + fn−1(x)− fn−1(0))
1

x .

This imitates the definition of e, in the sense that the exponent → ∞ and the base
→ 1 as x→ 0. We have f1(0) = e = 2.718...,

f2(0) = exp
(
− e

2

)
= 0.257..., f3(0) = exp

(
11−3e
24

exp
(
1− e

2

))
= 1.086...
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and f4(0) = 0.921... (too complicated an expression to include here). Does a pattern
develop here?

1.5. Euler-Mascheroni Constant. Vacca’s series was, in fact, anticipated by
Nielsen [13]. The following series [14] suggest that ln(4/π) is an “alternating Euler
constant”:

γ =
∞∑
k=1

(
1

k
− ln

(
1 +

1

k

))
= −

1∫
0

1∫
0

1− x

(1− xy) ln(xy)
dx dy,

ln
(
4

π

)
=

∞∑
k=1

(−1)k−1
(
1

k
− ln

(
1 +

1

k

))
= −

1∫
0

1∫
0

1− x

(1 + xy) ln(xy)
dx dy.

Sample criteria for the irrationality of γ appear in [15, 16, 17]. Long ago, Mahler
attempted to prove that γ is transcendental; the closest he came to this was to prove
the transcendentality of the constant [18, 19]

πY0(2)

2J0(2)
− γ

where J0(x) and Y0(x) are the zeroth Bessel functions of the first and second kinds.
(Unfortunately the conclusion cannot be applied to the terms separately!)

1.8. Khintchine-Lévy Constants. If x is a quadratic irrational, then its con-
tinued fraction expansion is periodic; hence limn→∞M (n, x) is easily found and is
algebraic. For example, limn→∞M(n,ϕ) = 1, where ϕ is the Golden mean. Gol-
ubeva [20, 21] studied the set S of values limn→∞ ln(Qn)/n taken over all quadratic
irrationals x. She proved that S ⊆ [ln(ϕ),∞) and that π2/(12 ln(2)) is an accumu-
lation point of S. It is likely that S has a structure similar to the Markov spectrum
(section 2.31) in the sense that a left hand portion of S probably consists only of
isolated points and a right hand portion of S is much denser.

1.11. Chaitin’s Constant. Calude & Stay [22] suggested that the uncom-
putability of bits of Ω can be recast as a uncertainty principle.

2.1. Hardy-Littlewood Constants. Fix ε > 0. Let N(x, k) denote the number
of positive integers n ≤ x with Ω(n) = k, where k is allowed to grow with x. Nicolas
[23] proved that

lim
x→∞

N (x, k)

(x/2k) ln(x/2k)
=

1

4Ctwin

=
1

4

∏
p>2

(
1 +

1

p(p− 2)

)
= 0.3786950320....

under the assumption that (2+ ε) ln(ln(x)) ≤ k ≤ ln(x)/ ln(2). More relevant results
appear in [24].



Errata and Addenda to Mathematical Constants 3

2.2. Meissel-Mertens Constants. See [25] for more occurrences of the con-
stants M and M ′. Higher-order asymptotic series for En(ω), Varn(ω), En(Ω) and
Varn(Ω) are given in [26].

2.4. Artin’s Constant. Let ι(n) = 1 if n is square-free and ι(n) = 0 otherwise.
Then [27, 28]

lim
N→∞

1

N

N∑
n=1

ι(n)ι(n+1) =
∏
p

(
1−

2

p2

)
= 0.3226340989... = −1+ 2(0.6613170494...),

that is, the Feller-Tornier constant also arises with regard to consecutive square-free
numbers.

2.5. Hafner-Sarnak-McCurley Constant. In the “Added In Press” section
(pages 601—602), the asymptotics of coprimality and of square-freeness are discussed
for the Gaussian integers and for the Eisenstein-Jacobi integers. More about sums
involving 2ω(n) and 2−ω(n) appears in [73]. Also, the asymptotics of

∑N
n=1 3

Ω(n), due
to Tenenbaum, are mentioned in [26].

2.7. Euler Totient Constants. Let f(n) = nϕ(n)−1−eγ ln(ln(n)). Nicolas [30]
proved that f(n) > 0 for infinitely many integers n by the following reasoning. Let
Pk denote the product of the first k prime numbers. If the Riemann hypothesis is
true, then f(Pk) > 0 for all k. If the Riemann hypothesis is false, then f (Pk) > 0 for
infinitely many k and f (Pl) ≤ 0 for infinitely many l.

Let U(n) denote the set of values ≤ n taken by ϕ and vn denote its cardinality; for
example [31], U(15) = {1, 2, 4, 6, 8, 10, 12} and v(15) = 7. Let ln3(x) = ln(ln(ln(n)))
and ln4(x) = ln(ln3(x)) for convenience. Ford [32] proved that

v(n) = n

ln(n)
exp

{
C[ln3(n)− ln4(n)]

2 +D ln3(n) − [D + 1
2
− 2C] ln4(n) +O(1)

}
as n→∞, where

C = − 1
2 ln(ρ)

= 0.8178146464...,

D = 2C (1 + ln(F ′(ρ))− ln(2C))− 3
2
= 2.1769687435...

F (x) =
∞∑
k=1

((k + 1) ln(k + 1)− k ln(k)− 1) xk

and ρ = 0.5425985860... is the unique solution on [0, 1) of the equation F (ρ) = 1.
Also,

lim
n→∞

1

v(n) ln(ln(n))

∑
m∈U(n)

ω(m) =
1

1− ρ
= 2.1862634648...

which contrasts with a related result of Erdös & Pomerance [33]:

lim
n→∞

1

n ln(ln(n))2

n∑
m=1

ω(ϕ(n)) =
1

2
.
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These two latter formulas hold as well if ω is replaced by Ω. See [34] for more on
Euler’s totient.

2.8. Pell-Stevenhagen Constants. The constant P is transcendental via a
general theorem on values of modular forms due to Nesterenko [35, 36].

2.10. Sierpinski’s Constant. Sierpinski’s formulas for Ŝ and S̃ contained a few
errors: they should be [37, 38, 39, 40, 41, 42]

Ŝ = γ + S −
12

π2
ζ ′(2) +

ln(2)

3
− 1 = 1.7710119609... =

π

4
(2.2549224628...),

S̃ = 2S −
12

π2
ζ ′(2) +

ln(2)

3
− 1 = 2.0166215457... =

1

4
(8.0664861829...).

Also, in the summation formula at the top of page 125, Dn should be Dk.
2.13. Mills’ Constant. Let q1 < q2 < . . . < qk denote the consecutive prime

factors of an integer n > 1. Define

F (n) =
k−1∑
j=1

(
1−

qj
qj+1

)
= ω(n)− 1−

k−1∑
j=1

qj
qj+1

if k > 1 and F (n) = 0 if k = 1. Erdös & Nicolas [43] demonstrated that there exists

a constant C ′ = 1.70654185... such that, as n→∞, F (n) ≤
√
ln(n)−C ′+ o(1), with

equality holding for infinitely many n. Further, C ′ = C + ln(2) + 1/2, where [43, 44]

C =
∞∑
i=1

{
ln

(
pi+1
pi

)
−

(
1 −

pi
pi+1

)}
= 0.51339467...,

∞∑
i=1

(
pi+1
pi
− 1

)2
= 1.65310351...,

and p1 = 2, p2 = 3, p3 = 5, ... is the sequence of all primes.
2.15. Glaisher-Kinkelin Constant. Ehrhardt [45] proved Dyson’s conjecture

regarding the asymptotic expansion of E(s) as s→∞. In the last paragraph on page
141, the polynomial q(x) should be assumed to have degree n.

2.16. Stolarsky-Harboth Constant. Given a positive integer n, define s21 to
be the largest square not exceeding n. Then define s22 to be the largest square not
exceeding n − s21, and so forth. Hence n =

∑r
j=1 s

2
j for some r. We say that n is a

greedy sum of distinct squares if s1 > s2 > . . . > sr. Let A(N ) be the number of such
integers n < N , plus one. Montgomery & Vorhauer [46] proved that A(N)/N does
not tend to a constant, but instead that there is a continuous function f (x) of period
1 for which

lim
k→∞

A(4 exp(2k+x))

4 exp(2k+x)
= f(x), min

0≤x≤1
f (x) = 0.50307... < max

0≤x≤1
f(x) = 0.50964...
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where k takes on only integer values. This is reminiscent of the behavior discussed
for digital sums.

2.18. Porter-Hensley Constants. Lhote [47] developed rigorous techniques
for computing certain variances to high precision, for example, 4λ′′1(2).

2.20. Erdös’ Reciprocal Sum Constants. A sequence of positive integers
b1 < b2 < . . . < bm is a Bh-sequence if all h-fold sums bi1 + bi2 + · · ·+ bih, i1 ≤ i2 ≤
. . . ≤ ih, are distinct. Given n, choose a Bh-sequence {bi} so that bm ≤ n and m is
maximal; let Fh(n) be this value of m. It is known that Ch = limsupn→∞ n−1/hFh(n)
is finite; we further have [48, 49, 50, 51, 52, 53]

C2 = 1, 1 ≤ C3 ≤ (7/2)1/3, 1 ≤ C4 ≤ 71/4.

More generally, a sequence of positive integers b1 < b2 < . . . < bm is a Bh,g-sequence
if, for every positive integer k, the equation x1+x2+· · ·+xh = k, x1 ≤ x2 ≤ . . . ≤ xh,
has at most g solutions with xj = bij for all j. Defining Fh,g(n) and Ch,g analogously,
we have [53, 54, 55, 56, 57]

4
√
7

7
≤ C2,2 ≤

√
21

2
, 3

√
2

4
g1/2 + o(g1/2) ≤ C2,g ≤ min

{
7

2
g − 7

4
, 17g

5

}1/2

as g →∞.
2.21. Stieltjes Constants. If dk(n) denotes the number of sequences x1, x2, ...,

xk of positive integers such that n = x1x2 · · · xk, then [58, 59, 60]

N∑
n=1

d2(n) ∼ N ln(N) + (2γ0 − 1)N (d2 is the divisor function),

N∑
n=1

d3(n) ∼
1

2
N ln(N)2 + (3γ0 − 1)N ln(N) + (−3γ1 + 3γ2

0
− 3γ0 + 1)N,

N∑
n=1

d4(n) ∼
1

6
N ln(N )3 +

4γ0 − 1

2
N ln(N)2 + (−4γ1 + 6γ2

0
− 4γ0 + 1)N ln(N )

+(2γ2 − 12γ1γ0 + 4γ1 + 4γ3
0
− 6γ2

0
+ 4γ0 − 1)N

as N →∞. More generally,
∑N

n=1 dk(n) can be asymptotically expressed as N times
a polynomial of degree k − 1 in ln(N ), which in turn can be described as the residue
at z = 1 of z−1ζ(z)kN z. See also [26] for an application of {γj}

∞
j=0 to asymptotic

series for En(ω) and En(Ω).
2.25. Cameron’s Sum-Free Set Constants. Erdös [61] and Alon & Kleitman

[62] showed that any finite set B of positive integers must contain a sum-free subset
A such that |A| > 1

3
|B|. See also [63, 64, 65]. The largest constant c such that
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|A| > c|B| must satisfy 1/3 ≤ c < 12/29, but its exact value is unknown. Using
harmonic analysis, Bourgain [66] improved the original inequality to |A| > 1

3
(|B|+2).

Green [67] demonstrated that sn = O(2n/2), but the values co = 6.8... and ce = 6.0...
await more precise computation.

2.30. Pisot-Vijayaraghavan-Salem Constants. Compare the sequence {(3/2)n},
for which little is known, with the recursion x0 = 0, xn = {xn−1+ ln(3/2)/ ln(2)}, for
which a musical interpretation exists. If a guitar player touches a vibrating string at
a point two-thirds from the end of the string, its fundamental frequency is dampened
and a higher overtone is heard instead. This new pitch is a perfect fifth above the
original note. It is well-known that the “circle of fifths” never closes, in the sense
that 2xn is never an integer for n > 0. Further, the “circle of fifths”, in the limit as
n→∞, fills the continuum of pitches spanning the octave [68, 69].

2.32. De Bruijn-Newman Constant. Further work regarding Li’s criterion,
which is equivalent to Riemann’s hypothesis and which involves the Stieltjes con-
stants, appears in [70].

2.33. Hall-Montgomery Constant. Let ψ be the unique solution on (0, π) of
the equation sin(ψ) − ψ cos(ψ) = π/2 and define K = − cos(ψ) = 0.3286741629....
Consider any real multiplicative function f whose values are constrained to [−1, 1].
Hall & Tenenbaum [71] proved that, for some constant C > 0,

N∑
n=1

f (n) ≤ CN exp



−K

∑
p≤N

1 − f (p)

p



 for sufficiently large N,

and that, moreover, the constant K is sharp. (The latter summation is over all prime
numbers p.) This interesting result is a lemma used in [72]. A table of values of sharp
constants K is also given in [71] for the generalized scenario where f is complex,
|f | ≤ 1 and, for all primes p, f (p) is constrained to certain elliptical regions in C .

3.6. Sobolev Isoperimetric Constants. In section 3.6.1,
√
λ = 1 represents

the principal frequency of the sound we hear when a string is plucked; in section
3.6.3,

√
λ = θ represents likewise when a kettledrum is struck. (The square root was

missing in both.) The units of frequency, however, are not compatible between these
two examples. More relevant material is found in [73, 74].

3.15. Van der Corput’s Constant. We examined only the case in which f is
a real twice-continuously differentiable function on the interval [a, b]; a generalization
to the case where f is n times differentiable, n ≥ 2, is discussed in [75, 76] with some
experimental numerical results for n = 3.

4.3. Achieser-Krein-Favard Constants. While on the subject of trigonomet-
ric polynomials, we mention Littlewood’s conjecture [77]. Let n1 < n2 < . . . < nk be
integers and let cj, 1 ≤ j ≤ k, be complex numbers with |cj| ≥ 1. Konyagin [78] and
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McGehee, Pigno & Smith [79] proved that there exists C > 0 so that the inequality

1∫
0

∣∣∣∣∣∣
k∑

j=1

cje
2πinjξ

∣∣∣∣∣∣ dξ ≥ C ln(k)

always holds. It is known that the smallest such constant C satisfies C ≤ 4/π2;
Stegeman [80] demonstrated that C ≥ 0.1293 and Yabuta [81] improved this slightly
to C ≥ 0.129590. What is the true value of C?

4.7. Berry-Esseen Constant. Significant progress on the asymptotic case (as
λ→ 0) is described in [82, 83, 84]. A different form of the inequality is found in [85].

5.4. Golomb-Dickman Constant. Let P+(n) denote the largest prime factor
of n and P−(n) denote the smallest prime factor of n. We mentioned that

N∑
n=2

ln(P+(n)) ∼ λN ln(N)− λ(1− γ)N,
N∑
n=2

ln(P−(n)) ∼ e−γN ln(ln(N)) + cN

as N →∞, but did not give an expression for the constant c. Tenenbaum [86] found
that

c = e−γ(1 + γ) +

∞∫
1

ω(t)− e−γ

t
dt+

∑
p


e−γ ln

(
1 −

1

p

)
+

ln(p)

p− 1

∏
q≤p

(
1 − 1

q

)
 ,

where the sum over p and product over q are restricted to primes. A numerical
evaluation is still open.

The longest tail L(ϕ), given a random mapping ϕ : {1,2, . . . , n} → {1, 2, . . . , n},
is called the height of ϕ in [87, 88, 89] and satisfies

lim
n→∞

P

(
L(ϕ)√

n
≤ x

)
=

∞∑
k=−∞

(−1)k exp
(
−k

2x2

2

)

for fixed x > 0. For example,

lim
n→∞

Var

(
L(ϕ)√

n

)
=

π2

3
− 2π ln(2)2.

The longest rho-path R(ϕ) is called the diameter of ϕ in [90] and has moments

lim
n→∞

E

[(
R(ϕ)√

n

)p]
=

√
πp

2p/2Γ((p+ 1)/2)

∞∫
0

xp−1(1− eEi(−x)−I(x)) dx

for fixed p > 0. Complicated formulas for the distribution of the largest tree P (ϕ)
also exist [88, 89, 91].
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5.6. Otter’s Tree Enumeration Constants. Higher-order asymptotic series
for Tn, tn and Bn are given in [26]. Also, the asymptotic analysis of series-parallel
posets [92] is similar to that of trees. See [93, 94] for more about k-gonal 2-trees, as
well as a new formula for α in terms of rational expressions involving e.

5.7. Lengyel’s Constant. Constants of the form
∑∞

k=−∞ 2−k
2

and
∑∞

k=−∞ 2−(k−1/2)
2

appear in [95, 96].
5.10. Self-Avoiding Walk Constants. Hueter [97, 98] rigorously proved that

ν2 = 3/4 and that 7/12 ≤ ν3 ≤ 2/3, 1/2 ≤ v4 ≤ 5/8 (if the mean square end-to-end
distance exponents ν3, v4 exist; otherwise the bounds apply for

νd = liminf
n→∞

ln(rn)

2 ln(n)
, νd = limsup

n→∞

ln(rn)

2 ln(n)

when d = 3,4). She confirmed that the same exponents apply for the mean square
radius of gyration sn for d = 2, 3, 4; the results carry over to self-avoiding trails as
well [99].

5.12. Hard Square Entropy Constant. McKay [100] observed the following
asymptotic behavior:

F (n) ∼ (1.06608266...)(1.0693545387...)2n(1.5030480824...)n
2

based on an analysis of the terms F (n) up to n = 19. He emphasized that the form of
right hand side is conjectural, even though the data showed quite strong convergence
to this form.

5.14. Digital Search Tree Constants. The constant Q is transcendental via
a general theorem on values of modular forms due to Nesterenko [35, 36]. A correct
formula for θ is

θ =
∞∑
k=1

k2k(k−1)/2

1 · 3 · 7 · · · (2k − 1)

k∑
j=1

1

2j − 1
= 7.7431319855...

(the exponent k(k − 1)/2 was mistakenly given as k + 1 in [101], but the numerical
value is correct). Also, the constant α appears in [102] and the constant Q−1 appears
in [96].

5.15. Optimal Stopping Constants. When discussing the expected rank Rn,
we assumed that no applicant would ever refuse a job offer! If each applicant only
accepts an offer with known probability p, then [103]

lim
n→∞

Rn =
∞∏
i=1

(
1 +

2

i

1 + pi

2 − p+ pi

) 1

1+pi

which is 6.2101994550... in the case when p = 1/2.
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Suppose that you view successively terms of a sequence X1, X2, X3, ... of inde-
pendent random variables with a common distribution function F . You know the
function F , and as Xk is being viewed, you must either stop the process or con-
tinue. If you stop at time k, you receive a payoff (1/k)

∑k
j=1Xj. Your objective is

to maximize the expected payoff. An optimal strategy is to stop at the first k for
which

∑k
j=1Xj ≥ αk, where α1, α2, α3, ... are certain values depending on F . Shepp

[104, 105] proved that limk→∞ αk/
√
k exists and is independent of F as long as F has

zero mean and unit variance; further,

lim
k→∞

αk√
k
= x = 0.8399236756...

is the unique zero of 2x−√2π (1 − x2) exp (x2/2)
(
1 + erf(x/

√
2)
)
.

Also, consider a random binary string Y1Y2Y3 . . . Yn with Pr(Yk = 1) = 1−Pr(Yk =
0) independent of k and Yk independent of the other Y s. Let H denote the pattern
consisting of the digits

1000...0︸ ︷︷ ︸
l

or 0111...1︸ ︷︷ ︸
l

and assume that its probability of occurrence for each k is

Pr (Yk+1Yk+2Yk+3 . . . Yk+l = H) =
1

l

(
1− 1

l

)l−1

∼ 1

el
=

0.3678794411...

l
.

You observe sequentially the digits Y1, Y2, Y3, ... one at a time. You know the values
n and p, and as Yk is being observed, you must either stop the process or continue.
Your objective is to stop at the final appearance of H up to Yn. Bruss & Louchard
[106] determined a strategy that maximizes the probability of meeting this goal. For
n ≥ βl, this success probability is

2

135
e−β

(
4 − 45β2 + 45β3

)
= 0.6192522709...

as l→∞, where β = 3.4049534663... is the largest zero of the cubic 45β3 − 180β2 +
90β + 4. Further, the interval [0.367..., 0.619...] constitutes “typical” asymptotic
bounds on success probabilities associated with a wide variety of optimal stopping
problems in strings.

5.18. Percolation Cluster Density Constants. An integral similar to that
for κB(pc) on the triangular lattice appears in [107].

5.21. k-Satisfiability Constants. On the one hand, the lower bound for rc(3)
was improved to 3.42 in [108] and further improved to 3.52 in [109]. On the other
hand, the upper bound 4.506 for rc(3) in [110] has not been confirmed; the preceding
two best upper bounds were 4.596 [111] and 4.571 [112].



Errata and Addenda to Mathematical Constants 10

5.23. Monomer-Dimer Constants. Friedland & Peled [113] revisited Baxter’s
computation of A and confirmed that ln(A) = 0.66279897.... They examined the
three-dimensional analog, A′, of A and found that 0.7652 < ln(A′) < 0.7863.

6.1. Gauss’ Lemniscate Constant. Consider the following game [114]. Players
A and B simultaneously choose numbers x and y in the unit interval; B then pays A
the amount |x− y|1/2. The value of the game (that is, the expected payoff, assuming
both players adopt optimal strategies) is M/2 = 0.59907....

6.5. Plouffe’s Constant. This constant is included in a fascinating mix
of ideas by Smith [115], who claims that “angle-doubling” one bit at a time was
known centuries ago to Archimedes and was implemented decades ago in binary
cordic algorithms (also mentioned in section 5.14). Another constant of interest is
arctan(

√
2) = 0.9553166181..., which is the base angle of a certain isosceles spherical

triangle (in fact, the unique non-Euclidean triangle with rational sides and a single
right angle).

6.6. Lehmer’s Constant. Rivoal [116] has studied the link between the rational
approximations of a positive real number x coming from the continued cotangent
representation of x, and the usual convergents that proceed from the regular continued
fraction expansion of x.

6.9. Minkowski-Bower Constant. See [117, 118] for a generalization of the
Minkowski question mark function.

7.1. Bloch-Landau Constants. In the definitions of the sets F and G, the
functions f need only be analytic on the open unit disk D (in addition to satisfying
f(0) = 0, f ′(0) = 1). On the one hand, the weakened hypothesis doesn’t affect the
values of B, L or A; on the other hand, the weakening is essential for the existence
of f ∈ G such that m(f) =M.

The bounds 0.62π < A < 0.7728π were improved by several authors, although
they studied the quantity Ã = π −A instead (the omitted area constant). Barnard
& Lewis [119] demonstrated that Ã ≤ 0.31π. Barnard & Pearce [120] established
that Ã ≥ 0.240005π, but Banjai & Trefethen [121] subsequently computed that Ã =
(0.2385813248...)π. It is believed that the earlier estimate was slightly in error. See
[122, 123, 124] for related problems.

The spherical analog of Bloch’s constant B, corresponding to meromorphic func-
tions f mapping D to the Riemann sphere, was recently determined by Bonk &
Eremenko [125]. This constant turns out to be arccos(1/3) = 1.2309594173.... A
proof as such gives us hope that someday the planar Bloch-Landau constants will
also be exactly known.

More relevant material is found in [126].
7.5. Hayman Constants. An update on the Hayman-Wu constant appears in

[127].
7.6. Littlewood-Clunie-Pommerenke Constants. The lower limit of sum-
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mation in the definition of S2 should be n = 0 rather than n = 1; that is, the
coefficient b0 need not be zero. Numerical evidence for both the Carleson-Jones con-
jecture and Brennan’s conjecture was found by Kraetzer [128]. Theoretical evidence
supporting the latter appears in [129], but a complete proof remains undiscovered.

8.1. Geometric Probability Constants. The convex hull of random point
sets in the unit disk (rather than the unit square) is mentioned in [130].

8.19. Circumradius-Inradius Constants. The phrase “Z-admissible” in the
caption of Figure 8.22 should be replaced by “Z-allowable”.

Table of Constants. The formula corresponding to 0.8427659133... is (12 ln(2))/π2.
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