Counting even and odd partitions

Martin Klazar

1. Introduction. It is a lovely fact that [n] = {1,2,...,n}, n > 1, has as
many subsets X with an even cardinality | X | as those with an odd cardinality,
namely 2" ! of both. To prove it, pair every subset X with X £ 1 where
X+1is X\{1}ifl € X and XU {1} if 1 ¢ X. Then X — X £1 is an
involution that changes the parity of |X| and the result follows.

More generally, in enumerative combinatorics one often has a family &,
of objects on [n] such that every object X has a natural size s(X) € Nj
of some kind. Then besides the total number of objects S, = |S,| one can

consider also
Sni — Z (_1)S(X),
X€ESn

the surplus of the objects with an even size over those with an odd size. For
subsets of [n] and s(X) = |X| we have S* = 0 for every n > 1 (but Si = 1).
In this note we present to the reader four examples of the described situation.
We investigate the corresponding numbers S& by means of generating func-
tions, an analytic continuation argument, and, again, the involution trick.
Our first example is a classics but the other three are much less known.

2. Integer partitions. S, consists of the partitions X of n into distinct
parts, n = a; + as + - - - + ap where a; > ay > ... > ar > 1 are integers, and
s(X) = k is just the number of parts.

Theorem 1. (L. Euler, 1748) For integer partitions with distinct parts,
SE=(-1)™if n = sm(3m + 1) and S = 0 else.

This is Euler’s celebrated pentagonal identity which can be written equiva-
lently as

H(l . xn) — Z (_l)mxm(3m+1)/2.
n=1 m=—00

Franklin’s famous 1881 proof using the involution trick is reproduced in the
book [1] of Andrews or in Hardy and Wright [4].

3. Noncrossing set partitions. A (set) partition of [n] is a collection X =
{Bi, By,..., By} of nonempty disjoint subsets of [n], called blocks, whose
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union is [n]. It is crossing if there are four numbers 1 <a <b<c<d<n
and two distinct blocks A, B € X such that a,¢c € A and b,d € B. Else
X is a noncrossing partition. S, consists of the noncrossing partitions of
[n] and s(X) = k is just the number of blocks. Kreweras [5] proved that

Sn = |8u] = %H(Qg), the nth Catalan number. The survey [10] of Simion
contains much information on the combinatorics of noncrossing partitions.
Theorem 2. For noncrossing set partitions, S;F = (—1)"1“#“(27?) if n =
2m + 1 and SE =0 if n = 2m.
Proof. Let
F=F(x,y) = Z Z x”ys(X) =1+ay+22(y+y?) +---.

n>0 XSy,

We are interested in
G=Gx)=) SEam,
n>0
Clearly, G(z) = F(x,—1). We show that
F=1+ayF +zF(F —1). (1)

The empty X is represented by 1. Now let X be a noncrossing partition of
[n], n > 1, and A, 1 € A, be its first block. Either |[A| =1 or |[A] > 1. In
the former case, A = {1} and after peeling off A we obtain a noncrossing
partition whose length and size is by 1 smaller. This is captured by the
term xyF. In the latter case, we let a denote the second element of A and
decompose X into two partitions X; and Xs, where X; is induced by X on
the interval [2, a—1] and X is induced on [a, n|. Both X; are noncrossing. X,
may be empty but X, is nonempty. Since no block intersects both intervals,
s(Xy) + s(X2) = s(X). This decomposition is captured by the last term
xF(F —1).

Setting in (1) y = —1 and rearranging, we get the equation xG? — (1 +
2¢)G + 1 =0. Thus (G(0) =1)

G(m):1+%<l—m>.

Binomial expansion yields the stated formula for S;*. Note that setting in
(1) y = 1, we recover the result of Kreweras. O

2



Is there a proof using involutions?

4. All set partitions. Now S, consists of all partitions of [n] and s(X) = k
is again the number of blocks. The total numbers S, are the Bell numbers

1,2,5,15,52,203, 877, 4140, 21147, 115975, 678570, 4213597, . ..

forming sequence A000110 of [11]. They grow superexponentially, log S, =
n(logn — loglogn + O(1)). See de Bruijn [2, p. 108] or Lovasz [6, Problem
1.9b] for more precise asymptotics. We show that S remain superexponen-
tial.

Theorem 3. For all set partitions, if ¢ > 0 is any constant then |SE| > ¢"
for some (in fact, infinitely many) n € N.

Proof. We begin with the classical expansion (see, for example, Stanley [12,

p. 34])

l‘k

Gr(x) = ZS(n,k)x” = (1—2)(1—2x)...(1 —kx)

n>0

where S(n, k), the Stirling number of the second kind, is in our language
simply the number of X € S, with s(X) =k blocks. Thus

Fle) =3 Spa" = 3 (-1)'Ge@) = > 7=y —(;:f)) (= k)

n>0 k>0 k>0

Considering the action of the substitution x := z/(1 — z) on this expansion,
we obtain the equation

T

F(z) =1 - ——F(c/(1 - x)). 2)

Substituting now x := x/(1 + ) and solving the resulting equation for F'(z),
we obtain the second equation

1
Fa) = (1= Fa/(1+2)). (3)
If |SE| < ¢ for all n € N for a constant ¢ > 0, the series F(z) has
radius of convergence r > 1/c¢ > 0 and defines in the disc |z| < r an analytic
function F'(z). However, we show that r > 0 is contradicted by the equations
(2) and (3). Thus |SE| < ¢ holds for no ¢ > 0 and our theorem follows.
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Suppose, for the contradiction, that » > 0. We can assume that r < 1
(certainly |SF| > 1 infinitely often). Let o € C, |a| = r, be a singularity of
F(z) on the circle of convergence. If |a/(1 — «)| < r, we use (2) to continue
F(z) analytically to a neighborhood of «, which contradicts the definition of
a. Clearly, |a/(1 — a)| < r is equivalent to Re(a) < r?/2 and therefore for
Re(a) < r2/2 we have a contradiction. Similarly, if |a/(1+ «)| < r, which is
equivalent to Re(a) > —7r2/2, we use (3) to obtain the same contradiction.
(Since o # 1 in the former case, & # —1 in the latter case, and always o # 0,

the bad arguments z = —1,0,1 do not bother us.) For every location of «
(2) or (3) leads to a contradiction. (In the strip |Re(z)| < r?/2 one can use
both equations.) Hence r = 0. a

The numbers S;=, n > 1,
-1,0,1,1,—-2,-9,-9, 50,267,413, —2180, —17731, —50533, 110176, . . .

form sequence A000587 of [11]. Recently their asymptotics was investigated
by Yang [15] (see [11] for more references on them) who mentions that Sub-
barao and Verma proved that in fact limsuplog|SE|/(nlogn) = 1. Is ST
zero infinitely often? This question is in [15] atributed to H. S. Wilf. Is S
ever zero besides n = 27

5. Matchings and crossings. Perhaps the lack of cancelation was caused
by the rapid growth of S,? Our last example shows that S can be small
even if S, are superexponential. Now S, consists of all partitions X of [2n]
into n two-element blocks. We call such X matchings and their blocks
edges. The size s(X) is the number of crossing pairs A, B of the edges of
X (we have defined crossing in the second example). It is easy to see that
Spn=0C2n-DN=1-3-5-...-(2n—1): S, = (2n — 1)S,,_; because one
has 2n — 1 ways to place the end of the new first edge in the spaces of an
X €8, 1. SologS, =n(logn + O(1)). But S are very small.

Theorem 4. For matchings whose size is measured by the number of cross-
ings, S* =1 for every n € N.

Proof. For a matching X € S, the crucial pair is the pair of edges A, B € X
such that min A + 1 = min B and min A is as small as possible. No-

tice that the crucial pair is unique and that every X has it except X* =
{{1,2},{3,4},...,{2n—1,2n}}. Switching min A and min B in X produces
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Figure 1: The involution .

the maching X' — see Figure 1. It is clear that A, B remains the crucial pair
of X" and that s(X)— s(X’) = £1 because the set of crossing pairs of X and
that of X’ differ exactly in the pair A, B. So ® : X — X' is an involution
that changes the parity of s(X). It pairs even and odd matchings except X*
and s(X*) =0 is even. O

A remarkable formula for the generating polynomial counting matchings by
crossings was derived by Touchard and Riordan [14, 9] and was later proved
bijectively by Penaud [8]:

5 1 - 2n _
Z T (X) — m Z (_l)k (n N k>$k(k 1)/2‘

XeS, k=—n

The reader is invited for an exercise: recover the above formulas for S,, and
S# from the polynomial by setting x = 1 and z = —1.

6. Concluding remarks. Theorem 2 follows from the equation (1) that
is proved in [10, p. 373]. Our derivation is more condensed. The analytic
argument proving Theorem 3 seems new. So is perhaps the involution proof
of Theorem 4 but the result itself, that S = 1, was found already by Riordan
[9, p. 219]. We conclude by a problem on connected matchings. These are
matchings X with this property: For every two distinct edges A, B € X
there is a chain of edges Ag, Ay,..., Ax of X such that Ay = A, A, = B,
and A;, A;,, is a crossing pair for every ¢+ = 0,1,...,k — 1. So both X
and X' in Figure 1 are disconnected, having two and three components,
respectively. Let S, be the set of all connected matchings on [2n] and s(X)
be again the number of crossings. It is known and not too difficult to prove,
see the articles of Stein [13] and Nijenhuis and Wilf [7], that the numbers
(Sn)n>1 = (1,1,4,7,248,2830,...) (A000699 of [11]) follow the recurrence
S, = (n—1)X""S;S, ;. (For further results on matchings and crossings
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see Flajolet and Noy [3].) Now, as for S&, do we have nice cancelation in
the style of Theorems 1, 2, and 4 or do we have rather erratic behaviour as
in Theorem 37
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