## Counting even and odd partitions

## Martin Klazar

1. Introduction. It is a lovely fact that $[n]=\{1,2, \ldots, n\}, n \geq 1$, has as many subsets $X$ with an even cardinality $|X|$ as those with an odd cardinality, namely $2^{n-1}$ of both. To prove it, pair every subset $X$ with $X \pm 1$ where $X \pm 1$ is $X \backslash\{1\}$ if $1 \in X$ and $X \cup\{1\}$ if $1 \notin X$. Then $X \mapsto X \pm 1$ is an involution that changes the parity of $|X|$ and the result follows.

More generally, in enumerative combinatorics one often has a family $\mathcal{S}_{n}$ of objects on $[n]$ such that every object $X$ has a natural size $s(X) \in \mathbf{N}_{0}$ of some kind. Then besides the total number of objects $S_{n}=\left|\mathcal{S}_{n}\right|$ one can consider also

$$
S_{n}^{ \pm}=\sum_{X \in \mathcal{S}_{n}}(-1)^{s(X)},
$$

the surplus of the objects with an even size over those with an odd size. For subsets of $[n]$ and $s(X)=|X|$ we have $S_{n}^{ \pm}=0$ for every $n \geq 1$ (but $S_{0}^{ \pm}=1$ ). In this note we present to the reader four examples of the described situation. We investigate the corresponding numbers $S_{n}^{ \pm}$by means of generating functions, an analytic continuation argument, and, again, the involution trick. Our first example is a classics but the other three are much less known.
2. Integer partitions. $\mathcal{S}_{n}$ consists of the partitions $X$ of $n$ into distinct parts, $n=a_{1}+a_{2}+\cdots+a_{k}$ where $a_{1}>a_{2}>\ldots>a_{k} \geq 1$ are integers, and $s(X)=k$ is just the number of parts.

Theorem 1. (L. Euler, 1748) For integer partitions with distinct parts, $S_{n}^{ \pm}=(-1)^{m}$ if $n=\frac{1}{2} m(3 m \pm 1)$ and $S_{n}^{ \pm}=0$ else.

This is Euler's celebrated pentagonal identity which can be written equivalently as

$$
\prod_{n=1}^{\infty}\left(1-x^{n}\right)=\sum_{m=-\infty}^{\infty}(-1)^{m} x^{m(3 m+1) / 2}
$$

Franklin's famous 1881 proof using the involution trick is reproduced in the book [1] of Andrews or in Hardy and Wright [4].
3. Noncrossing set partitions. A (set) partition of $[n]$ is a collection $X=$ $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ of nonempty disjoint subsets of $[n]$, called blocks, whose
union is [n]. It is crossing if there are four numbers $1 \leq a<b<c<d \leq n$ and two distinct blocks $A, B \in X$ such that $a, c \in A$ and $b, d \in B$. Else $X$ is a noncrossing partition. $\mathcal{S}_{n}$ consists of the noncrossing partitions of [ $n$ ] and $s(X)=k$ is just the number of blocks. Kreweras [5] proved that $S_{n}=\left|\mathcal{S}_{n}\right|=\frac{1}{n+1}\binom{2 n}{n}$, the $n$th Catalan number. The survey [10] of Simion contains much information on the combinatorics of noncrossing partitions.

Theorem 2. For noncrossing set partitions, $S_{n}^{ \pm}=(-1)^{m+1} \frac{1}{m+1}\binom{2 m}{m}$ if $n=$ $2 m+1$ and $S_{n}^{ \pm}=0$ if $n=2 m$.

Proof. Let

$$
F=F(x, y)=\sum_{n \geq 0} \sum_{X \in \mathcal{S}_{n}} x^{n} y^{s(X)}=1+x y+x^{2}\left(y+y^{2}\right)+\cdots .
$$

We are interested in

$$
G=G(x)=\sum_{n \geq 0} S_{n}^{ \pm} x^{n}
$$

Clearly, $G(x)=F(x,-1)$. We show that

$$
\begin{equation*}
F=1+x y F+x F(F-1) \tag{1}
\end{equation*}
$$

The empty $X$ is represented by 1 . Now let $X$ be a noncrossing partition of [ $n$ ], $n \geq 1$, and $A, 1 \in A$, be its first block. Either $|A|=1$ or $|A|>1$. In the former case, $A=\{1\}$ and after peeling off $A$ we obtain a noncrossing partition whose length and size is by 1 smaller. This is captured by the term $x y F$. In the latter case, we let $a$ denote the second element of $A$ and decompose $X$ into two partitions $X_{1}$ and $X_{2}$, where $X_{1}$ is induced by $X$ on the interval [ $2, a-1]$ and $X_{2}$ is induced on $[a, n]$. Both $X_{i}$ are noncrossing. $X_{1}$ may be empty but $X_{2}$ is nonempty. Since no block intersects both intervals, $s\left(X_{1}\right)+s\left(X_{2}\right)=s(X)$. This decomposition is captured by the last term $x F(F-1)$.

Setting in (1) $y=-1$ and rearranging, we get the equation $x G^{2}-(1+$ $2 x) G+1=0$. Thus $(G(0)=1)$

$$
G(x)=1+\frac{1}{2 x}\left(1-\sqrt{1+4 x^{2}}\right) .
$$

Binomial expansion yields the stated formula for $S_{n}^{ \pm}$. Note that setting in (1) $y=1$, we recover the result of Kreweras.

Is there a proof using involutions?
4. All set partitions. Now $\mathcal{S}_{n}$ consists of all partitions of $[n]$ and $s(X)=k$ is again the number of blocks. The total numbers $S_{n}$ are the Bell numbers

$$
1,2,5,15,52,203,877,4140,21147,115975,678570,4213597, \ldots
$$

forming sequence A000110 of [11]. They grow superexponentially, $\log S_{n}=$ $n(\log n-\log \log n+O(1))$. See de Bruijn [2, p. 108] or Lovász [6, Problem 1.9b] for more precise asymptotics. We show that $S_{n}^{ \pm}$remain superexponential.

Theorem 3. For all set partitions, if $c>0$ is any constant then $\left|S_{n}^{ \pm}\right|>c^{n}$ for some (in fact, infinitely many) $n \in \mathbf{N}$.

Proof. We begin with the classical expansion (see, for example, Stanley [12, p. 34])

$$
G_{k}(x)=\sum_{n \geq 0} S(n, k) x^{n}=\frac{x^{k}}{(1-x)(1-2 x) \ldots(1-k x)}
$$

where $S(n, k)$, the Stirling number of the second kind, is in our language simply the number of $X \in \mathcal{S}_{n}$ with $s(X)=k$ blocks. Thus

$$
F(x)=\sum_{n \geq 0} S_{n}^{ \pm} x^{n}=\sum_{k \geq 0}(-1)^{k} G_{k}(x)=\sum_{k \geq 0} \frac{(-x)^{k}}{(1-x)(1-2 x) \ldots(1-k x)} .
$$

Considering the action of the substitution $x:=x /(1-x)$ on this expansion, we obtain the equation

$$
\begin{equation*}
F(x)=1-\frac{x}{1-x} F(x /(1-x)) . \tag{2}
\end{equation*}
$$

Substituting now $x:=x /(1+x)$ and solving the resulting equation for $F(x)$, we obtain the second equation

$$
\begin{equation*}
F(x)=\frac{1}{x}(1-F(x /(1+x))) . \tag{3}
\end{equation*}
$$

If $\left|S_{n}^{ \pm}\right|<c^{n}$ for all $n \in \mathbf{N}$ for a constant $c>0$, the series $F(x)$ has radius of convergence $r \geq 1 / c>0$ and defines in the disc $|z|<r$ an analytic function $F(z)$. However, we show that $r>0$ is contradicted by the equations (2) and (3). Thus $\left|S_{n}^{ \pm}\right|<c^{n}$ holds for no $c>0$ and our theorem follows.

Suppose, for the contradiction, that $r>0$. We can assume that $r \leq 1$ (certainly $\left|S_{n}^{ \pm}\right| \geq 1$ infinitely often). Let $\alpha \in \mathbf{C},|\alpha|=r$, be a singularity of $F(z)$ on the circle of convergence. If $|\alpha /(1-\alpha)|<r$, we use (2) to continue $F(z)$ analytically to a neighborhood of $\alpha$, which contradicts the definition of $\alpha$. Clearly, $|\alpha /(1-\alpha)|<r$ is equivalent to $\operatorname{Re}(\alpha)<r^{2} / 2$ and therefore for $\operatorname{Re}(\alpha)<r^{2} / 2$ we have a contradiction. Similarly, if $|\alpha /(1+\alpha)|<r$, which is equivalent to $\operatorname{Re}(\alpha)>-r^{2} / 2$, we use (3) to obtain the same contradiction. (Since $\alpha \neq 1$ in the former case, $\alpha \neq-1$ in the latter case, and always $\alpha \neq 0$, the bad arguments $z=-1,0,1$ do not bother us.) For every location of $\alpha$ (2) or (3) leads to a contradiction. (In the strip $|\operatorname{Re}(z)|<r^{2} / 2$ one can use both equations.) Hence $r=0$.

The numbers $S_{n}^{ \pm}, n \geq 1$,

$$
-1,0,1,1,-2,-9,-9,50,267,413,-2180,-17731,-50533,110176, \ldots
$$

form sequence A000587 of [11]. Recently their asymptotics was investigated by Yang [15] (see [11] for more references on them) who mentions that Subbarao and Verma proved that in fact $\lim \sup \log \left|S_{n}^{ \pm}\right| /(n \log n)=1$. Is $S_{n}^{ \pm}$ zero infinitely often? This question is in [15] atributed to H. S. Wilf. Is $S_{n}^{ \pm}$ ever zero besides $n=2$ ?
5. Matchings and crossings. Perhaps the lack of cancelation was caused by the rapid growth of $S_{n}$ ? Our last example shows that $S_{n}^{ \pm}$can be small even if $S_{n}$ are superexponential. Now $\mathcal{S}_{n}$ consists of all partitions $X$ of [2n] into $n$ two-element blocks. We call such $X$ matchings and their blocks edges. The size $s(X)$ is the number of crossing pairs $A, B$ of the edges of $X$ (we have defined crossing in the second example). It is easy to see that $S_{n}=(2 n-1)!!=1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1): S_{n}=(2 n-1) S_{n-1}$ because one has $2 n-1$ ways to place the end of the new first edge in the spaces of an $X \in \mathcal{S}_{n-1}$. So $\log S_{n}=n(\log n+O(1))$. But $S_{n}^{ \pm}$are very small.

Theorem 4. For matchings whose size is measured by the number of crossings, $S_{n}^{ \pm}=1$ for every $n \in \mathbf{N}$.

Proof. For a matching $X \in \mathcal{S}_{n}$ the crucial pair is the pair of edges $A, B \in X$ such that $\min A+1=\min B$ and $\min A$ is as small as possible. Notice that the crucial pair is unique and that every $X$ has it except $X^{*}=$ $\{\{1,2\},\{3,4\}, \ldots,\{2 n-1,2 n\}\}$. Switching $\min A$ and $\min B$ in $X$ produces


Figure 1: The involution $\Phi$.
the maching $X^{\prime}$ - see Figure 1. It is clear that $A, B$ remains the crucial pair of $X^{\prime}$ and that $s(X)-s\left(X^{\prime}\right)= \pm 1$ because the set of crossing pairs of $X$ and that of $X^{\prime}$ differ exactly in the pair $A, B$. So $\Phi: X \mapsto X^{\prime}$ is an involution that changes the parity of $s(X)$. It pairs even and odd matchings except $X^{*}$ and $s\left(X^{*}\right)=0$ is even.

A remarkable formula for the generating polynomial counting matchings by crossings was derived by Touchard and Riordan $[14,9]$ and was later proved bijectively by Penaud [8]:

$$
\sum_{X \in \mathcal{S}_{n}} x^{s(X)}=\frac{1}{(1-x)^{n}} \sum_{k=-n}^{n}(-1)^{k}\binom{2 n}{n-k} x^{k(k-1) / 2} .
$$

The reader is invited for an exercise: recover the above formulas for $S_{n}$ and $S_{n}^{ \pm}$from the polynomial by setting $x=1$ and $x=-1$.
6. Concluding remarks. Theorem 2 follows from the equation (1) that is proved in [10, p. 373]. Our derivation is more condensed. The analytic argument proving Theorem 3 seems new. So is perhaps the involution proof of Theorem 4 but the result itself, that $S_{n}^{ \pm}=1$, was found already by Riordan [9, p. 219]. We conclude by a problem on connected matchings. These are matchings $X$ with this property: For every two distinct edges $A, B \in X$ there is a chain of edges $A_{0}, A_{1}, \ldots, A_{k}$ of $X$ such that $A_{0}=A, A_{k}=B$, and $A_{i}, A_{i+1}$ is a crossing pair for every $i=0,1, \ldots, k-1$. So both $X$ and $X^{\prime}$ in Figure 1 are disconnected, having two and three components, respectively. Let $\mathcal{S}_{n}$ be the set of all connected matchings on [2n] and $s(X)$ be again the number of crossings. It is known and not too difficult to prove, see the articles of Stein [13] and Nijenhuis and Wilf [7], that the numbers $\left(S_{n}\right)_{n \geq 1}=(1,1,4,7,248,2830, \ldots)$ (A000699 of [11]) follow the recurrence $S_{n}=(n-1) \sum_{i=1}^{n-1} S_{i} S_{n-i}$. (For further results on matchings and crossings
see Flajolet and Noy [3].) Now, as for $S_{n}^{ \pm}$, do we have nice cancelation in the style of Theorems 1, 2, and 4 or do we have rather erratic behaviour as in Theorem 3?

Acknowledgment. I was supported by the project LN00A056 of the Ministry of Education of the Czech Republic. I am grateful to M. Noy for his comments.

## References

[1] G. Andrews, The Theory of Partitions, Addison-Wesley Pub. Co., Reading, Mass., 1976.
[2] N. G. de Bruijn, Asymptotic Methods in Analysis, Dover Publications, New York, 1981.
[3] P. Flajolet and M. Noy, Analytic combinatorics of chord diagrams, Proceedings of FPSAC'00, Moscow 2000, (D. Krob, A. A. Mikhalev and A. V. Mikhalev, ed.), Springer, Berlin, 2000, pp. 191-201.
[4] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, UK, 1979.
[5] G. Kreweras, Sur les partitions non croisées d'un cycle, Discrete Math. 1 (1972) 333-350.
[6] L. Lovász, Combinatorial Problems and Exercises, Akadémiai Kiadó, Budapest, 1993.
[7] A. Nijenhuis and H. S. Wilf, The enumeration of connected graphs and linked diagrams, J. Comb. Theory, Ser. A 27 (1979) 356-359.
[8] J.-G. Penaud, Une preuve bijective d'une formule de TouchardRiordan, Discrete Math. 139 (1995) 347-360.
[9] J. Riordan, The distribution of crossings of chords joining pairs of $2 n$ points on a circle, Math. of Computation 29 (1975) 215-222.
[10] R. Simion, Noncrossing partitions, Discrete Math. 217 (2000) 367-409.
[11] N. J. A. Sloane (2001), The On-Line Encyclopedia of Integer Sequences, published electronically at http://www.research.att.com/~njas/sequences/
[12] R. P. Stanley, Enumerative Combinatorics, Volume I, Wadsworth \& Brooks/Cole, Monterey, California, 1986.
[13] P. R. Stein, On a class of linked diagrams, I. Enumeration, J. Comb. Theory, Ser. A 24 (1978) 357-366.
[14] J. Touchard, Sur un problème de configurations et sur les fractions continues, Canad. J. Math. 4 (1952) 2-25.
[15] Y. Yang, On a multiplicative partition function, Electr. J. of Comb. 8 (2001) R 19, 14 pages.

Department of Applied Mathematics (KAM), Charles University, and Institute for Theoretical Computer Science (ITI), Malostranské náměstí 25, 118 00 Praha, Czech Republic
klazar@kam.ms.mff.cuni.cz

