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And I will be rash enough — at any rate verbally
— to give my own perspective on what needs
to happen for experimental mathematics and
symbolic computation to blossom in the 21st
century: that is effectively using the pervasive
(parallel) high performance systems of the next
decade.

In that context, I may also discuss the re-
cently funded Canadian Computational Collab-
oratory known as C3.ca. This an ambitious na-
tional Canadian high performance computing
network dedicated to providing broad access
to heterogeneous parallel computing resources
from coast to coast (see http://www.c3.ca).

ABSTRACT. Computation in Mathematics is
fast becoming ubiquitous. My intention is to
discuss ‘“pure and applied experimental com-
putation” from a mathematician’s perspective.
I shall try to illustrate what is currently easy
and what is currently hard, what is possible
and what we aspire to be be able to do. I shall
discuss a few of the underlying philosophical is-
sues and shall also summarize some of the very
demanding exact (hybrid symbolic/ numeric)
computations I have undertaken in the last few
years with David Bailey, David Bradley, David
Broadhurst, Petr Lison&k, Peter Borwein and
others.

o Maple Examples are downloadable at
www.cecm.sfu.ca/ jborwein/talks

as Worksheets and may be tried in a Java
Maple Interface at www.cecm.sfu.ca/projects/JMI
(password protected) or at

www.cecm.sfu.ca/projects/IntegerRelations
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|GAUSS and HADAMARD |

Gauss once confessed,

“T have the result, but I do not yet know how
to get it.”

¢ Issac Asimov and J. A. Shulman, ed., Isaac
Asimov’s Book of Science and Nature Quo-
tations, Weidenfield and Nicolson, New York,
1988, pg. 115.

“The object of mathematical rigor is to sanc-
tion and legitimize the conquests of intuition,
and there was never any other object for it.”

¢ J. Hadamard quoted at length in E. Borel,
Lecons sur la theorie des fonctions, 1928.
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MOTIVATION and GOAL |

INSIGHT — demands speed = parallelism

e For rapid verification.

e For validation; proofs and refutations.

e For “monster barring”.

t What is “easy” changes while HPC and HPN
blur; merging disciplines and collaborators.

e Parallelism = more space, speed & stuff.

e Exact = hybrid = symbolic ‘4’ numeric
(MapleVI meets NAG).

e For analysis, algebra, geometry & topol-
ogy.

[PART of OUR ‘METHODOLOGY']

1. (High Precision) computation of object(s).

2. Pattern Recognition of Real Numbers (In-
verse Calculator and 'RevEng')*, or Se-
quences ( Salvy & Zimmermann's ‘gfun’,
Sloane and Plouffe's Encyclopedia).

3. Extensive use of ‘Integer Relation Meth-
ods’: PSLQ & LLL and FFT.T

e Exclusion bounds are especially useful.

e Great test bed for “Experimental Math" .

4. Some automated theorem proving (Wilf-
Zeilberger etc).

*ISC space limits: from 10Mb in 1985 to 10Gb today.

fTop Ten “Algorithm’s for the Ages,” Random Sam-
ples, Science, Feb. 4, 2000.

' COMMENTS |

Towards an Experimental Mathodology —
philosophy and practice.

e Intuition is acquired — mesh computation
and mathematics.

e Visualization — three is a lot of dimensions.

e “Caging” and “Monster-barring” (Lakatos).

— graphic checks: compare
2/y—yand yIn(y), 0<y<1

— randomized checks: equations, linear al-
gebra, primality

[FOUR EXPERIMENTS |

e 1. Kantian example: generating ‘“the
classical non-Euclidean geometries (hyperbolic,
elliptic) by replacing Euclid's axiom of parallels
(or something equivalent to it) with alternative
forms.”

e 2. The Baconian experiment is a contrived
as opposed to a natural happening, it “is the
consequence of ‘trying things out’ or even of
merely messing about.”

e 3. Aristotelian demonstrations: “apply elec-
trodes to a frog’s sciatic nerve, and lo, the leg
kicks; always precede the presentation of the
dog’s dinner with the ringing of a bell, and lo,
the bell alone will soon make the dog dribble.”



e 4. The most important is Galilean: “a crit-
ical experiment — one that discriminates be-
tween possibilities and, in doing so, either gives
us confidence in the view we are taking or
makes us think it in need of correction.”

o It is also the only one of the four forms which
will make Experimental Mathematics a serious
enterprise.

e From Peter Medawar’'s Advice to a Young
Scientist, Harper (1979).

I: GENERAL EXAMPLES|

1. TWO INTEGRALS|

o A. m#£ %;.

/1 (1—z)*2* 22
0 1422 ¢

e B. The sophomore’s dream.
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“If I can give an abstract proof of something,
I'm reasonably happy. But if I can get a con-
crete, computational proof and actually pro-
duce numbers I'm much happier. I'm rather
an addict of doing things on the computer,
because that gives you an explicit criterion of
what's going on. I have a visual way of think-
ing, and I'm happy if I can see a picture of
what I'm working with.”

e Consider the following images of zeroes of
0/1 polynomials
www.cecm.sfu.ca/MRG/INTERFACES .html

o But symbols are often more reliable than pic-
tures.

On to the examples ...
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[2. TWO INFINITE PRODUCTS]

e A. a rational evaluation:

© p3_1 2

n£12713-+-1 - 3

e B. and a transcendent one:

® p2_1 . T

1 n24+1  sinh(xr)

n=2
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3. HIGH PRECISION FRAUD |

and CONTINUED FRACTIONS

> [ntanh(w)] 2 1
2 on 81

n=1
is valid to 268 places; while

i [ntanh(g)] ;i
=1 10™ 81

is valid to just 12 places.

e Both are actually transcendental numbers.

o Correspondingly the simple continued frac-
tions for tanh(w) and tanh(7) are respectively
[0,1,267,4,14,1,2,1,2,2,1,2,3,8,3,1]

and

[0,1,11,14,4,1,1,1,3,1,295,4,4,1,5,17,7]
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e The partial fraction decomposition gives:

1
p]_(-’L') = —
X
1 1 1
pa(z1,20) = — +—- ————,
rl x2 x1+ T2
1 1 1
p3(r1,x0,23) = — + - +—
Tl x2 r3
1 1 1
1+ x2+w3 T+ 73
1
r1 + zo+ 23

So we predict the ‘same’ for N =4 and
CONJECTURE. For each Ne N

N
pN(xla"'axN) = /01 (1_i1;[1(1_txi)>cit

is convex, indeed 1/concave.
e Check N < 5 via large symbolic Hessian.
PROOF. A year later, joint expectations gave:

R’_}_ 1 Tn
[See SIAM Electronic Problems and Solutions.]
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4. PARTIAL FRACTIONS & CONVEXITY|

e \We consider a network objective function py
given by

)

N . N
@ = Y (] —e® ey 1

N N
oSy i=125=i% () =1 2j=io(j)
summed over all N! permutations; so a typical
term is

N N
(Il = .)(Z

L)
=1 L= =1 =i
o For N = 3 this is

1 1 1
Q1q2q3(cn + a2+ qs)(qz + q3)(g)
1 1 1
+2).

X
g1+ +93 gq+4q93 g3
e \We wish to show pjy is convex on the positive
orthant. First we try to simplify the expression

for py.
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5. CONVEX CONJUGATES and NMR]

The Hoch and Stern information measure, or
neg-entropy, is defined in complex n—space by

n
H(z) = ) h(zj/b),
Jj=1
where h is convex and given (for scaling b) by:

h(z) 2 |2|In (|z| +V1+ |z|2) 1412

for quantum theoretic (NMR) reasons.

e Recall the Fenchel-Legendre conjugate
f*(y) = suply, ) — f(x).

e Our symbolic convex analysis package (stored
at www.cecm.sfu.ca/projects/CCA/) produced:

h*(z) = cosh(|z|)
o Compare the Shannon entropy:
(zInz —2)* = exp(z).
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6. SOME FOURIER INTEGRALS|

o I'd never have tried by hand!
Recall the sinc function

e Efficient dual algorithms now may be con- sinc(z) 1= sin(z)
structed. z
Consider, the seven highly oscillatory integrals

*
o Knowing ‘closed forms’ helps: below.

(expexp)*(y) = yIn(y) — y{W(y) + W(y)~*}

where Maple or Mathematica knows the com-
plex Lambert W function

I; = i dr = —
= sinc = —,
1 /O (z) dz

oo xT iy
I ::/ sinc(x)sinc (—) der = —,
2= o (@) 3) T2

o0
W ()" (@) =z, I3 = / sinc(z)sinc (E) sinc (£> de ==,
0 3 5 2
Thus, the conjugate’s series is
12,13 34,85 6
C14(In(y) — 1) y— 2+ 43—yt 4540 (4°). o0
+n(w) )y 2 +3y g’ +15y + (y ) Ig ::/ sinc(z)sinc <E> ---sinc <£> dm:z,
0 3 11 2
Coworkers: Marechal, Naugler, --- , Bauschke, Iy = /oo sinc(z)sinc (f) .. sinc <i> p—
Fee, Lucet 0 3 13 2

*These are hard to compute accurately numerically.

17 18
However, If we let
Ig = /OO sinc(z)sinc (E) ..-sinc (i) dx Cny ={(xzp,x3,- - ,zny) : =1 <2, < 1,2 < k< N},
0 3 15
then
_ 4678079247134407386965378644697T o LVOZ(PN>
935615849440640907310521750000 N — 2a1 7Vol(CN)'

~ 0.4999999999926467. e Thus, the value drops precisely when the

constraint 25:2 apzry < a1 becomes active and

e When a researcher, using a well-known com- bites into the hypercube Cpy. That occurs

puter algebra package, checked this he — and when

the makers — concluded there was a “bug” in N

the software. Not so! kZQ ap > aj.

o Our analysis, via Parseval’'s theorem, links In the above example, 3+ %+ -+ {5 < 1,

the integral but on the addition of the term f, the sum
S ) ) exceeds 1, the volume drops, and the identity

I, ::/0 sinc(ayx)sinc (asx) - - -sinc (anz) dx Iy = Z no longer holds.

with the volume of the polyhedron Py given

by e A somewhat cautionary example for too en-

thusiastically inferring patterns from seemingly

N compelling symbolic or numerical computation.

{(xo, 23, yzn) 1 Y apzy < ag, ey < 1,2 <k < N}

k=2 Coworkers: D. Borwein, Mares

19 20



7. MINIMAL POLYNOMIALS]
of COMBINATORIAL MATRICES

Consider matrices A, B,C, M:

Apj = (_l)kH@Z ~ 2)

By = (~1)F (2" T,

k-1
= (Y

(k,7=1,...,n) and
|M:=A+B-C|
e In earlier work on Euler Sums we needed to
prove M invertible: actually
M+1
5

M 1=

e The key is discovering
(1) A2 = C?=1
B? = CA,AC = B.

21

8. PARTITIONS and PATTERNS|

e The number of additive partitions of n, p(n),
is generated by

[Ta-gt

n>1
¢ Thus p(5) = 7 since
5=441=342=34+14+1=2+2+41

=24141+4+1=1+4+14+14141.

QUESTION. How hard is p(n) to compute —
in 1900 (for MacMahon), and 2000 (for Maple)~?

e Euler’'s pentagonal number theorem is

H (1-¢") = io: (_1)nq(3n+l)n/2‘

n>1 n=-—o00

o We can recognize the triangular numbers in
Sloane’s on-line ‘Encyclopedia of Integer Se-
quences’'. And much more.

23

e It follows that B3 = BCA = AA = I, and
that the group generated by A,B and C is S3.

o Once discovered, the combinatorial proof of
this is routine — either for a human or a com-
puter (‘A = B*, Wilf-Zeilberger).

e One now easily shows using (?77)

M2 M =21
as formal algebra since M = A+ B - C.

e The truth is I started with instances of
‘minpoly(M, z)’

and then emboldened I typed
‘minpoly(B, z)’

in Maple ...!

e Random matrices have full degree minimal
polynomials.

1t Jordan Forms uncover Spectral Abscissas.

22

9. ESTABLISHING INEQUALITIES I

and the MAXIMUM PRINCIPLE

e Consider the two means

-1 o r—Yy
£ (x’y)'_m(m)_m(y)
and
33 + 43
M(z,y) = T

e An elliptic integral estimate reduced to the
elementary inequalities

L(M(z,1),VE) < L(z,1) < L(M(z,1),1)]
for 0 <z < 1.

o We first discuss a method of showing

E(x) :=L(xz,1) — L(M(x,1),/x) >0

on0<x<1.
24



A. Numeric/symbolic methods I

o lim _ 4+ &(x) = oco.

e Newton-like iteration shows that £(z) > 0
on [0.0,0.9].

e Taylor series shows E£(x) has 4 zeroes at 1.

e Maximum Principle shows there are no more
zeroes inside C:={z: |z — 1| = +}:
1 U 1
— == E(0); C
273 /c £ #( (0): @)

e \When we make each step effective.

25

BERLINSKI|

“The computer has in turn changed the very
nature of mathematical experience, suggest-
ing for the first time that mathematics, like
physics, may yet become an empirical disci-
pline, a place where things are discovered be-
cause they are seen.”

“The body of mathematics to which the calcu-
lus gives rise embodies a certain swashbuckling
style of thinking, at once bold and dramatic,
given over to large intellectual gestures and in-
different, in large measure, to any very detailed
description of the world. It is a style that has
shaped the physical but not the biological sci-
ences, and its success in Newtonian mechan-
ics, general relativity and quantum mechanics
is among the miracles of mankind. But the
era in thought that the calculus made possible
is coming to an end. Everyone feels this is so
and everyone is right.”
27

B. Graphic/symbolic methods|

Consider the ‘opposite’ (cruder) inequality

F(z) i = L M(2,1),1) — L(z,1) >0

e Then we may observe that it holds since
— M is a mean; and

— L is decreasing.

26

1. 7 and FRIENDS |

A: (A quartic algorithm.) Set ag = 6 — 4v/2
and yo = /2 — 1. Iterate

1—(1—yhl/*

14 (1 —yhlt/4

Ye+1 =

ap+1 = ap(l+ypp1)?
2263y, (1 g1 + y13+1)

Then a; converges quartically to 1/x.

e Used since 1986, with Salamin-Brent scheme,
by Bailey, Kanada (Tokyo).

28



e In 1997, Kanada computed over 51 billion
digits on a Hitachi supercomputer (18 itera-
tions, 25 hrs on 210 cpu’s). His present world
record is 236 digits in April 1999.

o A billion (239) digit computation has been
performed on a single Pentium II PC in under
9 days.

o 50 billionth decimal digit of « or% is 042 !
And after 18 billion digits 0123456789 has fi-
nally appeared (Brouwer's famous intuitionist
example now converges!).

Details at: www.cecm.sfu.ca/personal/jborwein/
pi_cover.html.

29

e Their discovery and proof both used enor-
mous amounts of computer algebra (e.g., hunt-
ing for ‘3> = [’ and 'the modular machine’)

t Higher order schemes are slower than quartic.
e Kanada's estimate of time to run the same
FFT/Karatsuba-based « algorithm on a serial

machine: “infinite”.

Coworkers: Bailey, P. Borwein, Garvan, Kanada,
Lisongék
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B: (A nonic (ninth-order) algorithm.) In 1995
Garvan and I found genuine n-based m-th order
approximations to .

o Set
ag=1/3, 70 =(V/3-1)/2, so= {1 —13

and iterate

t = 1 + 27"k
u = [9r(1 g + I3
v = t2 -l—tu-l—u2
- 27(1 +sk+s%)
v
ap4+1 = may+ 32k_1(1 —m)
(1—rp)3
Skl = (t + 2u)v
rpe1 = (1—sp)l/3

Then 1/a;, converges nonically to .

30

C: (‘Pentium farming’ for binary digits.) Bai-
ley, P. Borwein and Plouffe (1996) discovered
a series for = (and some other polylogarithmic
constants) which allows one to compute hex—
digits of @ without computing prior digits.

e The algorithm needs very little memory and
does not need multiple precision. The running
time grows only slightly faster than linearly in
the order of the digit being computed.

e The key, found by 'PSLQ" (below) is:

X 1Nk, 4 2 1 1
W:kgo(m) (k41 eh+a shts site

e Knowing an algorithm would follow they spent
several months hunting for such a formula.

o Once found, easy to prove in Mathematica,
Maple or by hand.
32



¢ A most successful case of

REVERSE
MATHEMATICAL
ENGINEERING

e (Sept 97) Fabrice Bellard (INRIA) used a
variant formula to compute 152 binary digits
of =, starting at the trillionth position (1012).
This took 12 days on 20 work-stations working
in parallel over the Internet.

e (August 98) Colin Percival (SFU, age 17) fin-
ished a similar “embarassingly parallel” compu-
tation of five trillionth bit (using 25 machines
at about 10 times the speed). In Hex:

07E45733CCT790B5B5979

The binary digits of « starting at the 40 tril-
lionth place are

00000111110011111.

33

D: (Other polylogarithms.) Catalan’'s constant
G:i= ), L GaDAN 5
=, (2k+ 1)
is not proven irrational.

e In a series of inspired computations using
polylogarithmic ladders Broadhurst has since
found — and proved — similar identities for con-
stants such as ¢(3), ¢(5) and G. Broadhurst's
binary formula is

< 1 1 1
G—3,§02.16k { (8k+1)2 (8k+2)2

1 1
T 2(8k+3)2 22(8k+5)2
1 1

35

22(8k+6)2 23(8k + 7)2}

e (September 00) The quadrillionth bit is ‘0’
(using 250 cpu years on 1734 machines from
56 countries).

Starting at the 999,999, 999,999,997th bit of
7 one has:

111000110001000010110101100000110

34

© 1 1 1
2 go 8. 163k { (8k + 1)2 + 2(8k + 2)2
1 1

+ 23(8k +3)2 26(8k + 5)2
1 1

27(8k+6)2 29(8k + 7)2}
e Why was G missed earlier?

e He also gives some constants with ternary
expansions.

Coworkers: BBP, Bellard, Broadhurst, Perci-
val, the Web, ---
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A MISLEADING PICTURE]

37

o Lehmer’s conjecture ('32) is that

if and only if n is prime.

“A problem as hard as existence of odd
perfect numbers.”

e For these conjectures the set of prime factors
of any counterexample n is a normal family.

o We exploited this property aggressively in our
(Pari/Maple) computations

e Lehmer's conjecture had been variously ver-
ified for up to 13 prime factors of n. We ex-
tended and unified this for 14 or fewer prime
factors.

39

1Il. NUMBER THEORY|

1. NORMAL FAMILIES |

1 High—level languages or computational speed?

e A family of primes P is normal if it contains
no primes p,q such that p divides ¢ — 1.

A: Three Conjectures:

¢ Giuga’s conjecture ('51) is that

n—1
Y k" l=n—1 (mod n)
k=1

if and only if n is prime.

e Agoh's Conjecture ('95) is equivalent:

nB,_1 = -1 (mod n)‘

if and only if n is prime; here B, is a Bernoulli
number.
38

o We also examined the related condition

known to have 8 solutions with up to 6 prime
factors (Lehmer) : 2, Fp,---,F4 (the Fermat
primes and a rogue pair: 4919055 and

6992962672132095.

e We extended this to 7 prime factors — by dint
of a heap of factorizations!

e But the next Lehmer cases (15 and 8) were
way too large. The curse of exponentiality!

40



B. Counterexamples to the Giuga conjecture
must be Carmichael numbers*

(r-1) | (C-1)
p

and odd Giuga numbers: n square-free and

zl—niez

pln P pin

when p | n and p prime. An even example is
1

1 1 1
23T 307!
o RHS must be '1" for N < 30. With 8 primes:
554079914617070801288578559178
=2x3x 11 x 2331 x 47059

x2259696349 x 110725121051.

t The largest Giuga number we know has 97
digits with 10 primes (one has 35 digits).
*Only recently proven an infinite set!

41

2. DISJOINT GENERA|

Theorem. There are at most 19 integers not
of the form of zy + yz + xz with z,y,z > 1.

The only non-square-free are 4 and 18. The
first 16 square-free are
1,2,6,10,22,30,42,58,70,78,102
130,190, 210,330,462.

which correspond to “discriminants with one
quadratic form per genus”.

e If the 19th exists, it is greater than 101

which the Generalized Riemann Hypothesis (GRH)

excludes.

e The Matlab road to proof & the hazards of
Sloane’s Encyclopedia.

Coworker: Choi
43

t Guiga numbers were found by relaxing to a
combinatorial problem. We recursively gener-
ated relative primes forming Giuga sequences
such as

1 1
5x 17 296310

1 1 1 1
St tot ot

e We tried to ‘use up' the only known branch
and bound algorithm for Giuga's Conjecture:
30 lines of Maple became 2 months in C4+
which crashed in Tokyo; but confirmed our lo-
cal computation that a counterexample n has
more than 13,800 digits.

Coworkers: D. Borwein, P. Borwein, Girgen-
sohn, Wong and Wayne State Undergraduates

42

3. KHINTCHINE’'S CONSTANT |

1 In different contexts different algorithms star.

A: The celebrated Khintchine constants Ko,
(K_1) — the limiting geometric (harmonic) mean
of the elements of almost all simple continued
fractions — have efficient reworkings as Rie-
mann zeta series.

o Standard definitions are cumbersome prod-
ucts.

e The rational ¢ series we used was:

< ¢(2n) -1 1

INnKpgin2= >

n=1

1 1
1——4+——..
( 2+3 +

Here

() =), —.

44

2n— 17"



e \When accelerated and used with “recycling”
evaluations of {¢(2s)}, this allowed us to com-
pute K to thousands of digits.

e Computation to 7,350 digits suggests that
Kp's continued fraction obeys its own predic-
tion.

o A related challenge is to find natural con-
stants that provably behave ‘normally’ — in
analogy to the Champernowne number

.0123456789101112---

which is provably normally distributed base ten.

45

A TASTE of RAMANUJAN|

e For M = -1 (mod 4)

1
EAN+3 (627rk — 1)

C(AN+3)=-2>"

k>1

—+—

™

{4N AN FT (an4a)- 3 C(4R)C(AN+a- 4k)}

k=1
where the interesting term is the hyperbolic
trig series.

e Correspondingly, for M =1 (mod 4)

(rk + N)e2™ — N
C(AN+1) = —— Z k4N+1(627rk —1)2

1
+—{(2N+1)C(4N+2)+Z%£1(—1)k2kC(2k)C(4N+2—2k) }
2N«

a7

B. Computing ((N)

o ‘((2N) = BQN‘ can be effectively computed
in parallel by

e multi-section methods - these have space
advantages even as serial algorithms and
work for poly-exp functions (Kevin Hare);

e FFT—enhanced symbolic Newton (recycling)

f sinh
methods on the series cosh -

¢|C(2N + 1).| The harmonic constant K_; needs

odd (-values.

e \We chose to use identities of Ramanujan et
al ...

46

e Only a finite set of ¢(2N) values is required
and the full precision value €™ is reused through-
out.

o The number e™ is the easiest transcendental
to fast compute (by elliptic methods). One
“differentiates” e °" to obtain = (the AGM).

e For ((4N + 1) I've lately decoded ‘“nicer”
series from a few PSLQ cases of Plouffe. It is
equivalent to:

_ > coth(km)
{2-(-4 N}kzz:l KANF1

tanh(kw)
2N
_( 4) 2_:1 k4N+1

(2) = Qn x 7 NFL,

48



¢ The quantity Qu in (?7?) is an explicit ratio-
nal:

_ 2FY Banyo_owBor
() Qn: = kgo (4N + 2 — 2k)!1(2k)!

IR (CENONEHLEA LY
e On substituting

2
and
coth(z) =1+ 2
= exp(2z) — 1

one may solve for

C(4N + 1).

49

IV: INTEGER RELATION EXAMPLES|

(1. The USES of LLL and PSLQ]

e A vector (z1,zo, -+ ,xyn) Of reals possesses an
integer relation if there are integers a; not all
zero with

\0=a1$1+a2$2+---+anmn.\

PROBLEM: Find q; if such exist. If not, ob-
tain lower bounds on the size of possible a;.

e (n =2) Euclid’s algorithm gives solution.

e (n > 3) Euler, Jacobi, Poincare, Minkowski,
Perron, others sought method.

e First general algorithm in 1977 by Fergu-
son & Forcade. Since'77: LLL (in Maple),
HJLS, PSOS, PSLQ ('91, parallel '99).

51

e Thus,

2 X 1
C(5)_ﬁﬂ- +7Zm

72 X
+35 Z 1 (1— e2kﬂ)k5

o Will we ever be able to identify universal for-
mulae like (??) automatically? My solution
was highly human assisted.

Coworkers: Bailey, Crandall, Hare, Plouffe.

50

e Integer Relation Detection was recently ranked
among ‘“the 10 algorithms with the greatest

influence on the development and practice of
science and engineering in the 20th century.”

J. Dongarra, F. Sullivan, Computing in Science
& Engineering 2 (2000), 22—23.

Also: Monte Carlo, Simplex, Krylov Subspace,
QR Decomposition, Quicksort, ..., FFT, Fast
Multipole Method.

/ALGEBRAIC NUMBERS |

Compute « to sufficiently high precision (O(n2))
and apply LLL to the vector

(17 a7a27 e 7an71)'

e Solution integers a; are coefficients of a
polynomial likely satisfied by «.

e If no relation is found, exclusion bounds are
obtained.
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[FINALIZING FORMULAE |

o If we know or suspect an identity exists inte-
ger relations are very powerful.

e (Machin’'s Formula) We try lin dep On

[arctan(1),arctan(1/5),arctan(1/239)]
and recover [1, -4, 1]. That is,

T 1 1
— =4 arctan(—) — arctan(—).
4 (5) (239)

(Used on all serious computations of = from
1706 (100 digits) to 1973 (1 million).)

e (Dase’s Formula). We try lin dep on

[arctan(1),arctan(1/2),arctan(1/5),arctan(1/8)]

and recover [-1, 1, 1, 1]. That is,
T = arctan(l) + arctan(l) + arctan(l)
4 2 5 8”"

(Used by Dase to compute 200 digits of «
in his head.)

53

2. BINOMIAL SUMS and LIN_DEP |

e Any relatively prime integers p and ¢ such
that
2 p 00 (_1)k+1
CBY=" 2 =
ai=1 k()
have ¢ astronomically large (as ‘“lattice basis
reduction” showed).

e But .- PSLQ yields in polylogarithms:
0o (_l)k-l-l
S s = 2(5)
= k5<2kk)
— 3L°+5L%(2) +4L%(3)
L 2n
0 (<2n>5 <2n>4>p

n>0

where L := log(p) and p := (/5 — 1)/2; with
similar formulae for A4, Ag, Ss, Se and Sy.
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|ZETA FUNCTIONS|

e The zeta function is defined, for s > 1, by
X1
n=1
e Thanks to Apéry (1976) it is well known that
Sy:=¢(2) = 3 Z el
1k ( )

5 X (_1)1971
A3i=¢(3) = 5 Y

=T
36 X 1
17 2k
17 =1 k4(k)
¢ These results might suggest that

k—1
Zs = (5)/ Z S
)
is a simple rational or algebralc number.
PSLQ RESULT: If Zg satisfies a polynomial
of degree < 25 the Euclidean norm of coeffi-
cients exceeds 2 x 1037.

Sp:=¢(4) =
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e A less known formula for ¢(5) due to Koecher
suggested generalizations for {(7),¢(9),¢(11)....

o Again the coefficients were found by integer
relation algorithms. Bootstrapping the earlier
pattern kept the search space of manageable
size.

e For example, and simpler than Koecher:

_ § 00 (_1)k+1
(4) 4(7) B 2k:l k7(2kk)

0 (_1\k+1 k-1
+ 2?5 3 (-1) 1

k=1 k3<2kk) j:lj_4

e We were able — by finding integer relations for
n=12...,10 — to encapsulate the formulae
for ((4n+3) in a single conjectured generating
function, (entirely ex machina):
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THEOREM. For any complex z,

io: C(4n + 3)2*"

n=1
ad 1
() =Y s
k2=:1 k3(1 — 24/k%)
_ 5 io: (—1)k-1 k=19 + 424 /m*
2 k=1 k3<2kk>(1 - Z4/k4> m=1 1- Z4/m4
¢ The first ‘="' is easy. The second is quite

unexpected in its form!

e z = 0 yields Apéry’s formula for {(3) and the
coefficient of z% is (77).
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e T his identity was recently proved by Almkvist
and Granville (Experimental Math, 1999) thus
finishing the proof of (??7) and giving a rapidly
converging series for any ((4N 4+ 3) where N
is positive integer.

¢ And perhaps shedding light on the irrational-
ity of ((7)? Recall that ((2N+1) is not proven
irrational for N > 1.

1 Paul Erdos, when shown (?7) shortly before
his death, rushed off. Twenty minutes later he
returned saying he did not know how to prove
it but if proven it would have implications for
Apéry’'s result (‘¢(3) is irrational’).
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'HOW IT WAS FOUND |

¢ The first ten cases show (?7) has the form
5 v (D1 P(2)
> 2k 4 /1.4
for undetermined Pj; with abundant data to
compute

k—1 l+4z4/m4
P& = 1 T

m=1

e We found many reformulations of (?7), in-
cluding a marvelous finite sum:

no2on? [[IC(4k* +i%) 2n
Z k2 : = ( n )

6 =
© k=1 Mg, joep (B* — i)

¢ Obtained via Gosper's (Wilf-Zeilberger type)
telescoping algorithm after a mistake in an elec-
tronic Petrie dish (‘infty’ # ‘infinity’).
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'3. MULTIPLE ZETA VALUES and LIN DEP |

e Euler sums or MZVs (“multiple zeta values”)
are a wonderful generalization of the classical
¢ function.

e For natural numbers 31,0, ...,
C(it, i, .., i) 1=
1
(7)

) 11,12 i
n1>no>nE>0 Ny Mo »+ Ny,

o Thus ((a) = X,>1n"* is as before and
< 1+ 5+ + iy
() =Y —2 (=)

n=1

na
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e The integer k is the sum’s depth and
i1 + i+ - 44 IS its weight.

e Definition (??) clearly extends to alternat-
ing and character sums. MZVs have recently
found interesting interpretations in high energy
physics, knot theory, combinatorics ...
e MZVs satisfy many striking identities, of which
€(2,1) =<¢(3)
4¢(3,1) =¢(4)

are the simplest.

o Euler himself found and partially proved the-
orems on reducibility of depth 2 to depth 1 (’s
(¢(6,2) is the lowest weight ‘irreducible’).
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¢ My favourite conjecture (open for n > 2) is

8" C({~2,1}n) = ¢({2,1}n).

Can just n = 2 be proven symbolically as is the
case for n =17

e Our simplest conjectures (on the number
of irreducibles) are beyond present proof tech-
nigues. Does ¢(5) or G € Q7

o Dimensional conjectures sometimes involve
finding integer relations between hundreds of
quantities and so demanding precision of thou-
sands of digits — often of hard to compute ob-
jects.

e Bailey and Broadhurst have recently found a
polylogarithmic ladder of length 17 (a record)
with such “ultra-PSLQIing".

Coworkers: B%4, Fee, Girgensohn, Lison&k, oth-
ers.
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© A high precision fast (-convolution (EZFace/Java)

allows use of integer relation algorithms lead-
ing to important dimensional (reducibility) con-
jectures and amazing identities.

e We illustrate with a conjecture of Zagier first
proved by Broadhurst et al:

1
C({3,1}n) = WC({Q}%)
2ﬂ.4n
(8) ( = ZZ;tFEST)

where {s}, is the string s repeated n times.

t The unique non-commutative analogue of
Euler’'s evaluation of {(2n).
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[4. MULTIPLE CLAUSEN VALUES]|

e We are now studying Deligne words for mul-
tiple integrals generating Multiple Clausen Val-
ues at w/3 such as

sin(ng

pa,b) = Y

n>m>0
and which seem quite fundamental.

)
nambd

o Thanks to a note from Flajolet which led to
prove results like S3 = Zu(2) — 3¢(3),

s 1 19 2

1 4r 3341 4 2
%‘1 ) = 3 #(& 1)+ 5520(6) = 2¢(3)°

Coworkers: Broadhurst & Kamnitzer
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“The issue of paradigm choice can never be
unequivocally settled by logic and experiment
alone.

in these matters neither proof nor error is at is-
sue. The transfer of allegiance from paradigm
to paradigm is a conversion experience that
cannot be forced.”
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3. There are different versions of proof
or rigor. Standards of rigor can vary
depending on time, place, and other
things. The use of computers in formal
proofs, exemplified by the computer-
assisted proof of the four color theo-
rem in 1977, is just one example of
an emerging nontraditional standard of
rigor.

4. Empirical evidence, numerical ex-
perimentation and probabilistic proof all
can help us decide what to believe in
mathematics. Aristotelian logic isn't
necessarily always the best way of de-
ciding.
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e Whatever the outcome of these developments,
mathematics is and will remain a uniquely hu-
man undertaking. Indeed Reuben Hersh's ar-
guments for a humanist philosophy of math-
ematics, as paraphrased below, become more
convincing in our setting:

1. Mathematics is human. It is part of
and fits into human culture. It does not
match Frege's concept of an abstract,
timeless, tenseless, objective reality.

2. Mathematical knowledge is fallible.
As in science, mathematics can advance
by making mistakes and then correct-
ing or even re-correcting them. The
“fallibilism’ of mathematics is brilliantly
argued in Lakatos’ Proofs and Refuta-
tions.
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5. Mathematical objects are a special

variety of a social-cultural-historical ob-

Ject. Contrary to the assertions of cer-

tain post-modern detractors, mathemat-
ics cannot be dismissed as merely a

new form of literature or religion. Nev-

ertheless, many mathematical objects

can be seen as shared ideas, like Moby

Dick in literature, or the Immaculate

Conception in religion.

o From "“Fresh Breezes in the Philosophy of
Mathematics’, American Mathematical Monthly,
August-Sept 1995, 589-594.

e The recognition that “quasi-intuitive” analo-
gies may be used to gain insight in mathemat-
ics can assist in the learning of mathematics.
And honest mathematicians will acknowledge
their role in discovery as well.

We should look forward to what the future will
bring.
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/A FEW CONCLUSIONS| | C3 Computational Inc|

e Draw your own! — perhaps --- [Nationally shared — Internationally competitive]
e Proofs are often out of reach — understand- The scope of the C3.ca is a seven year
ing, even certainty, is not. plan to build computational infrastruc-

ture on a scale that is globally compet-
itive, and that supports globally com-

e Packages can make concepts accessible (Groeb- petitive research and development. The

ner bases). plan will have a dramatic impact on
Canada’s ability to develop a knowl-

e Progress is made ‘one funeral at a time’ edge based economy. It will attract
(Niels Bohr). highly skilled people to new jobs in key

application areas in the business, re-
search, health, education and telecom-
munications sectors. It will provide the
tools and opportunity to enhance their
knowledge and experience and retain
this resource within the country.

e 'You can't go home again’ (Thomas Wolfe).

kKo
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¢ Canadian government has funded/matched
$75 million worth of equipment in the last year.

REFERENCES]

Eight installations in Five Provinces. e D. H. Bailey, J.M. Borwein and R.H. Crandall, “On
the Khintchine constant,” Mathematics of Com-
putation, 66 (1997), 417-431. [CECM Research
Report 95:036]

More to come : long-term commitment.

e J.M. Borwein, P.B. Borwein, R. Girgensohn and
S. Parnes, "Making Sense of Experimental Mathe-

e Good human support at a distance/web matics,” Mathematical Intelligencer, 18, Number
4 (Fall 1996), 12-18. [CECM Research Report

tools are key. 95:032]
e J.M. Borwein, D.M. Bradley and D.J. Broadhurst,
e A pretty large investment for a medium size “Evaluations of k—fold Euler/Zagier sums: a com-
country pendium of results for arbitrary k,” Electronic Jour-

nal of Combinatorics, 4 (1997), R5 (21 pages).
(The Wilf Festschrift) [CECM Research Report 96:067]

e A good model for other such countries? e J.M. Borwein and D.M. Bradley, “Empirically deter-
mined Apéry—like formulae for zeta(4n+3),” Exper-
imental Mathematics, 6 (1997), 181-194. [CECM

. . . Research Report 96:069
e 25% of Memorial University of Newfound- P ]
land’s large Dec Alpha was used for Euler sum
research at a distance in 1997 — 98.
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e Jonathan M. Borwein and Robert Corless, “Emerg-
ing tools for experimental mathematics,” Ameri-
can Mathematical Monthly, 106 (1999), 889—909.
[CECM Preprint 98:110]

e J.M. Borwein and P. Lisongék, “Applications of In-
teger Relation Algorithms,” Discrete Mathematics
(Special issue for FPSAC 1997), in press, 2000.
[CECM Research Report 97:104]

e D.H. Bailey and J.M. Borwein, “Experimental Math-
ematics: Recent Developments and Future Out-
look,” World Mathematical Year 2000 Book, Springer—
Verlag, in press. [CECM Preprint 99:143]

e These and other references are available at
www.cecm.sfu.ca/preprints/

¢ Quotations at jborwein/quotations.html
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