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Abstract

A hypergraph H � �Hi � i � I� with the vertex set
S
i�I Hi �

�n� � f�� �� � � � � ng contains another hypergraph H� � �H �
i � i � I ��

with the vertex set �m� �m � n� if there is a subsequence � � v� � v� �

� � � � vm � n of �n� and an injection f � I � � I such that� for every
r � �m� and i � I �� r � H �

i implies that vr � Hf�i�	 We investigate the
extremal functions He�F � n� and Hi�F � n� de
ned as the maximum
size e�H� � jHj � jIj� resp	 weight i�H� �

P
i�I jHij� of a simple H

with n vertices if H does not contain F 	 We determine both functions
exactly if F has only disjoint singleton edges or if i�F� � � �there are
�� such F�	 We give enumerative formulas for the numbers of both
simple and all H with i�H� � n and derive two identities analogous
to Dobinski�s formula for Bell numbers	 In the extremal problem we
derive� by means of Davenport�Schinzel sequences� two general almost
linear bounds	 We consider the forbidden ��path F�� � ��� ��� ��� ��
introduced by F�uredi and prove that He�F��� n� and Hi�F��� n� are
O�n log� n log log� n�	 �F�uredi proved in the bipartite graph case the
O�n logn� bound	�

� Introduction and motivation

Let us begin by stating a typical example of the extremal problems which we
shall investigate in our article� IfH is a simple hypergraph with the vertex set
�n� � f�� �� � � � � ng and such that for no four vertices � � a � b � c � d � n

�



and for no two distinct edges A�B � H the four incidences a� c � A and
b� d � B occur� what is the maximum number of edges jHj and what is the
maximum weight

P
H�H jHj� Among other results we prove that the former

maximum is �n�� and that the latter is 	n��� 
n � ��� Actually we proved
it already in Klazar �����

A hypergraph H � 
Hi � i � I� is a nite list of nite nonempty subsets Hi

of N � f�� �� � � �g� called edges� Simple hypergraphs have no repeated edges�
The elements of

SH �
S
i�I Hi � N are called vertices� Our hypergraphs

have no isolated vertices� Let H � 
Hi � i � I� and H� � 
H �
i � i � I �� be

two hypergraphs� If there exists an increasing 
with respect to the standard
linear ordering of N� injection F �

SH� � SH and an injection f � I � � I
such that the implication v � H �

i �� F 
v� � Hf�i� holds for every v � SH�

and i � I �� we say that H contains H� and write H � H�� Else we say that
H is H��free and write H �� H�� The subsets F 


SH�� and f
I �� form the
H��copy in H� For example� H is 
f�g�� f�g���free i� its edges are pairwise
disjoint� that is� H is a set partition� The initial example corresponds to
H��freeness for H� � 
f�� �g� f�� �g�� If F and f are bijections 
remember
that F is increasing� and the equivalence v � H �

i �� F 
v� � Hf�i� holds for
every v � SH� and i � I �� we say that H� and H are isomorphic�

The order v
H� of H � 
Hi � i � I� is the number of vertices v
H� �
jSHj� the size e
H� is the number of edges e
H� � jHj � jIj� and the
weight i
H� is the number of incidences between the vertices and the edges
i
H� �

P
i�I jHij� Trivially� v
H� � i
H� and e
H� � i
H��

We associate with every hypergraph F 
the letter F is for �forbidden��
two 
extremal� functions He
F�� Hi
F� � N� N dened by

He
F � n� � maxfe
H� � H �� F � H is simple � v
H� � ng
Hi
F � n� � maxfi
H� � H �� F � H is simple � v
H� � ng�

It is clear that in the denition H must be simple� 
For F of the form

f�g�� f�g�� � � � � f�gk� the simplicity may be dropped but not for any other
F �� On the other hand� F may be any hypergraph� not necessarily simple�
In Sections � and � we work also with the graph version Ge
F � n� of He
F � n�
in which H runs through graphs 
jEj � � for every E � H� and with the
unordered versions Hu

e 
F � n� and Gu
e 
F � n� in which the vertex injection F

is not required to be increasing� Thus for a graph F the function Gu
e 
F � n�

equals to the classical graph extremal function ex
F � n�� The reversal F is
obtained from F by reverting the linear order of

SF � Obviously� He
F � n� �
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He
F � n� and Hi
F � n� � Hi
F � n�� It is also obvious that� for every n � N

and F � He
F � n� � �n � � and Hi
F � n� � n�n�� but much better bounds
can be given� In the forthcoming sections we investigate the behaviour of
He
F � n� and Hi
F � n� for various xed F and n running through N �
f�� �� � � �g� We considered He
F � n� and Hi
F � n� implicitly already in �����
Except this article� as far as we know� our extremal setting is new and was
not investigated before� We stress again its two not so usual features� the
containment is an ordered one 
the vertex injection F is increasing� and H
may have edges of any sizes 
even if the forbidden F is a mere graph��

Before summarizing our results we say few words about our motiva�
tion and about connections to other results in extremal set systems the�
ory� In this branch of combinatorics 
see� for example� surveys of Frankl
����� F�uredi �	�� and Tuza ���� ��� or the collection ����� one is interested in
the maximum number of edges in set systems subject to some restrictions�
These may restrict intersections of edges or they may exclude some forbidden

sub�congurations� Almost always the underlying universum of vertices is
supposed to be unordered� We know of only one systematic study of a class
of �ordered� extremal problems 
for set systems� we are not speaking here
of posets� words etc��� the work of F�uredi and Hajnal ��� that deals with
simple bipartite graphs with ordered parts� 
In ��� the equivalent language
of ��� matrices is used� So is in Anstee� Ferguson and Sali ���� see also fur�
ther references thereof� but their extremal problems are �unordered��� One
our aim is just to explore the properties of He
F � n� and Hi
F � n� and the
possibilities which open here� Other aim is to apply results and techniques
from the theory of Davenport�Schinzel sequences which deals with extremal
problems for words� necessary denitions and references will be given in Sec�
tion �� Also� we want to extend some results of ��� from ��element edges to
edges of arbitrary cardinality�

In Section � we consider hypergraphs Sk which consist of k disjoint sin�
gleton edges� 
For the containment of Sk the order of vertices is irrele�
vant�� Theorems ��� and ��� determine He
Sk� n� and Hi
Sk� n� exactly�
We describe all extremal hypergraphs as well� In Theorem ��� we prove
that if F �� Sk then He
F � n� is a strictly increasing function� Trivially�
He
F � n� � Hi
F � n� for every n � N and F � Theorem ��� states that if
F has no two edges of which one completely precedes the other� then for
every n � N also Hi
F � n� � cHe
F � n� where c � � depends only on F �
Theorem ��� gives a trivial polynomial upper bound on He
F � n�� In Section
� we precisely determine He
F � n� and Hi
F � n� for each of the �� F with
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� � i
F� � �� Section � is enumerative� In Theorem ��� we give formulas for
the number of hypergraphs� both simple and all� with prescribed numbers of
edges of a given cardinality� We use the formulas to calculate the total num�
bers of hypergraphs� both simple and all� of weight n for n � ��� In Corol�
lary ��� two identities similar to Dobi�nski�s formula are given� 
Dobi�nski�s
formula deals with set partitions and our identities deal with hypergraphs��
In Section � we apply generalized Davenport�Schinzel sequences to obtain
two almost linear bounds in which �
n�� the inverse Ackermann function�
is involved� In Theorem ��� we prove that for every xed set partition F
for every F �free H the weight i
H� is bounded almost linearly in e
H�� An
example is given showing that the superlinearity is inevitable� Theorem ���
gives an almost linear upper bound on Ge
F � n� 
H has only two�element
edges� in the case that F is a forest whose components are stars which have
all centers smaller than all leaves� An example shows that the superlinearity
is again genuine� In Section � we investigate the case when F is a forest
such that one part of the bipartition of F is smaller than the other 
it is
easy to see that for other F we have He
F � n� 	 n� � � � ��� Theorem ���
gives a method for deriving good upper bounds on He
F � n� from those on
Ge
F � n�� We give three applications� Theorem ��� extends the classical

easy� unordered graph result ex
F � n�
 n if F is a forest to hypergraphs�
Hu

e 
F � n� 
 n for every forest F � Theorem ��� extends the almost lin�
ear graph bound of Theorem ��� to hypergraphs� He
F � n� is almost linear
whenever F is a star forest� In the last Theorem ��� we prove the bound
He
F � n� 
 n
logn��
log logn�� if F � 
f�� �g� f�� �g� f�� �g� f�� �g�� This
forbidden path was investigated rst by F�uredi who in ��� and ��� proved
graph bounds n logn 
 Ge
F � n� 
 n logn 
for ordered bipartite graphs��
Section � contains some open problems�

We need few more denitions� Notation f
n� 
 g
n� is synonymous
to the f
n� � O
g
n�� notation� If m�n � N and m � n� then �n� �
f�� �� � � � � ng and �m�n� � fm�m � �� � � � � ng� The degree deg
v� � degH
v�
of v in H � 
Hi � i � I� is the number of the edges Hi containing v� The
simpli�cation of H is a simple hypergraph H� obtained by keeping from each
family of repeated edges of H just one member� The deletion of Hj from
H gives the hypergraph 
Hi � i � I �� where I � � Infjg� The deletion of
a � SH from H gives the hypergraph 
Hinfag � i � I� where we omit � if
Hi � fag 
this operation in general destroys simplicity�� We may also delete
a only from some specied edges� A �connected� component H� of H is the
minimal subhypergraph H� of H such that every H � HnH� is disjoint with
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every H� � H��

� Singleton hypergraph Sk

In this section F � Sk � 
f�g� f�g� � � � � fkg�� We give exact formulas for
He
Sk� n� and Hi
Sk� n�� For k � � both extremal functions are undened�

Theorem ��� Let k � � and Sk � 
f�g� f�g� � � � � fkg�� Then

He
Sk� n� �
�

�n � � � � � � � n � k
�k�� � � � n � k�

In particular� for k � � the function He
Sk� n� has the global maximum
He
Sk� k � �� � �k�� � ��

Proof� The rst formula is clear� For k � � and n � k we have He
Sk� n� �
�k��� because of the hypergraph 
�n�� X � � �� X � �k � ���� We prove by
induction on k that for n � k also He
Sk� n� � �k��� For k � � this holds
because He
S�� n� � � for every n � N� Let n � k � � and H be simple� Sk�
free� and

SH � �n�� We can suppose that 
i� deg
v� � � for every v � SH
and 
ii� there is an H � H with jHj � � and an a � H such that Hnfag �� H�

If 
i� is false� there is a vertex a and an edge H such that a � H and a lies
in no other edge of H� We delete H from H and obtain a simple hypergraph
H� that must be Sk���free because any Sk���copy inH� can be extended by H
and a to Sk�copy in H� By induction� e
H� � e
H���� � 
��k���������� �
�k��� Suppose that 
ii� is false� Let a � SH be arbitrary and H � H� a � H�
be such that jHj is as small as possible� If jHj � �� we take b � H� b �� a�
and the negation of 
ii� gives Hnfbg � H� contradicting the minimality of
jHj� Thus jHj � � and fag � H� We obtain that fag � H for every vertex
a of H but this implies the contradiction H � Sk 
n � k��

We can assume that 
i� and 
ii� hold� Let a and H be as in 
ii�� Let
H � � H be such that a � H �� H � �� H� and� if possible� jH �j � �� We
dene H� by deleting H � from H and then a from HnfH �g� Some edges
may get duplicated and we set H�� to be the simplication of H�� By 
i��
v
H��� � v
H��� � n�� � k��� Since any Sk���copy inH�� can be extended
by H � and a to an Sk�copy in H� H�� is Sk���free� Also� e
H�� � �e
H���� �
because� by 
ii�� Hnfag is not duplicated in H�� Notice that � �� H�� because
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we have deleted fag as H �� By induction 
now we use the stronger upper
bound on e
H�����

e
H� � e
H�� � � � 
�e
H���� �� � � � �e
H��� � �  ��k����� � �k���

�

He
Sk� n� has the strange feature of being independent of n� We show that
the other functions He
F � n� are increasing� as one expects�

Theorem ��� If F �� Sk then He
F � n� � He
F � n� �� for every n � N�

Proof� Let F �� Sk and
SF � �m�� We say that fug � F is an isolated

singleton of F if deg
u� � �� Let l be the maximum number such that
f�g� f�g� � � � � flg are isolated singletons of F � Since F �� Sk� � � l � m�
Clearly� any other isolated singleton of F is preceded by at least l�� vertices�

We proceed by induction on n� The inequality holds for every n � m� �
because then He
F � n� � �n � �� Let n � m � � and let H attain the value
He
F � n�� If a � H � H and fag �� H� we replace H by fag� The new hyper�
graph is simple� F �free� and it has the same number of edges and vertices as
H� order does not decrease because else we would have contradiction with the
inductive assumption� Repeating the replacements we obtain a simple F �free
hypergraph H� such that e
H�� � e
H� � He
F � n�� SH� �

SH � �n�� and
fag � H� for every a � �n�� We dene H�� by inserting in H�� between l and
l � �� a new singleton edge fug� H�� is simple and satises v
H��� � n � �
and e
H��� � e
H�� � � � He
F � n� � �� We show that H�� is F �free� This
gives He
F � n � �� � e
H��� � He
F � n�� The new edge fug would have to
participate in every F �copy inH��� It cannot play the role of any of the initial
l isolated singletons of F because f�g� f�g� � � � � flg � H� and we would have
already F � H�� It cannot play the role of any other isolated singleton of F
either because those are preceded in F by at least l � � vertices but fug is
preceded in H�� by only l vertices� Thus H�� �� F � �

Theorem ��� Let k � � and Sk � 
f�g� f�g� � � � � fkg�� Then

Hi
Sk� n� �
���
��

n�n�� � � � � � n � k
n � 
k � ���k�� � � � k � n � �k�� � �

k � ��n� 
k � �� � � � n � max
k� �k�� � ���

Note that Hi
Sk� k � �� � Hi
Sk� n� for k � n � max
k� �k��� �k � ���
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Proof� The formula is clear for � � n � k� We suppose that n � k � � and
that H is a simple hypergraph with

SH � �n�� Its dual H� is dened by

H� � 
H�
i � i � �n�� where H�

i � fH � H � i � Hg�
Thus e
H�� � v
H� � n� Let �
X� � �H
X� be for X � �n� dened by

�
X� �

�����
�
i�X

H�
i

����� � jfH � H � H �X �� �gj�

By the defect form of P� Hall�s theorem 
Lov�asz ���� Problems ��� and ������
applied on H�� H is Sk�free if and only if

max
X��n�

jXj � �
X� � n� k � ��

Thus if H is Sk�free� there exists a set X � �n� of cardinality l� n� k � � �
l � n 
�
X� � ��� intersected by only at most l� n� k� � edges of H� And
contrarywise� every such a hypergraph is 
trivially� Sk�free� Hence

i
H� � 
l � n� k � ��n� 
l � n� k � �� � 
n� l��n�l�� � f
l� k� n�

and this bound is attained�
The rst di�erence of f
l� k� n� with respect to l is the increasing function

f
l � �� k� n�� f
l� k� n� � n� �� 
n� l � ���n�l���

Therefore f
l� k� n� attains its maximum in one of the endpoints l � n�k��
and l � n 
or in both�� The corresponding values are f
n � k � �� k� n� �
n � 
k � ���k�� and f
n� k� n� � 
k � ��n� 
k � ��� These values are equal
for n � �k�� � �� For n � �k�� � � the former value dominates and for
n � �k�� � � the latter� We obtain the other two formulas� Maximum
weights are attained by H� or by H� where the edges of H�� respectively of
H�� are �n� together with all nonempty subsets of some 
k � ���element set
Y � �n�� respectively �n� together with some k � � distinct 
n � ���element
subsets of �n�� �

It follows from the proof that H� and H� are the only types of extremal
hypergraphs for n � k� For � � n � k the maximum weight is attained only
by the complete hypergraph� We conclude that the number of simple Sk�free
hypergraphs having order n and the maximum weight is � if � � n � k and
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�k�n
�

n
k��

�
if n � k� where for k � �� �� � always �k�n � � and for k � � we

have �k�n � � if n �� �k�� � � and �k��k���� � ��
By means of P� Hall�s theorem one can give a quick proof of Theorem ���

as well� The number of H attaining He
Sk� n� is seen to be � for n � k and

�k��
�

n
k��

�
for n � k�

Two subsets X and Y of N are separated if maxX � minY or maxY �
minX� Below we can assume that e
F� � � because for F with just one
edge He
F � n� and Hi
F � n� are easy to determine exactly�

Theorem ��� Suppose that F has no two separated edges� p � v
F�� and
q � e
F� � �� Then for every n � N

Hi
F � n� � 
�p� ��
q � ��He
F � n��
Proof� Let H attain Hi
F � n�� We transform H in a new hypergraph H�

by keeping all edges with less than p vertices and replacing every edge H �
fv�� v�� � � � � vsg ofH with s � p� where v� � v� �    � vs� by t � bjHj�pc new
p�element edges fv�� � � � � vpg� fvp��� � � � � v�pg� � � � � fv�t���p��� � � � � vtpg� H� may
not be simple and we setH�� to be the simplication ofH�� Two observations�

i� no edge of H� repeats q or more times and 
ii� H�� is F �free� If 
i� were
false� there would be q distinct edgesH�� � � � � Hq inH such that jTq

i	�Hij � p�
But this implies the contradiction F � H� As for 
ii�� note that any F �copy
in H�� may use from every H � H only at most one new edge and so it is
an F �copy in H as well� The observations and the denitions of H� and H��

imply

Hi
F � n� � i
H� � 
�p� ��i
H��

p
� 
�p� ��
q � ��i
H���

p

� 
�p� ��
q � ��e
H���

� 
�p� ��
q � ��He
F � n��
In the last innocently looking inequality we use Theorem ���� �

The same idea gives for He
F � N� a trivial polynomial bound�

Theorem ��� If F is a hypergraph with p � v
F� and q � e
F�� then for
every n � N

He
F � n� � 
q � ��

	
n

p



�

	
n

p� �



�   �

	
n

�



�

	



Proof� Let H attain He
F � n�� We put in H� every H � H with jHj � p
and� for every H � H with jHj � p� a p�element subset H � � H� Since no
p�element edge of H� repeats more than q � � times 
else H � F� and other
edges do not repeat at all� we have

He
F � n� � e
H� � e
H�� � 
q � ��

	
n

p



�

	
n

p� �



�   �

	
n

�



�

�

For F � 
�p��� �p��� � � � � �p�q� this bound is best possible�

� One hundred and ten extremal functions

The table below lists extremal functions of the �� nonempty forbidden F
with i
F� � �� In the proofs we refer to F according to the numbers in
column �� Star indicates that the reversal F is nonisomorphic to F and is
not listed� because it has the same extremal functions� F are visualized in
column �� Hypergraphs F with i
F� � �� �� �� and � occupy lines �� ����
����� and ������ respectively� Empty circle � denotes a vertex that is a
singleton edge and full circle � a vertex that is not a singleton edge� Two�
element edges are indicated by arcs and larger edges by ovals� Concentric
circles or arcs sharing both endpoints 
F��� indicate edge multiplicities� For
example� F�
 � 
f�g�� f�g�� f�� �g� and F�� � 
f�� �� �g� f�g�� Columns �
and � list functions He
F � n� and Hi
F � n�� The formulas given hold for all
n � N if not said otherwise� The extremal functions for hypergraphs F�� and
F�� were determined already in ���� but we give the arguments here again
for the sake of completeness�

Theorem ���

no� picture of F He
F � n� Hi
F � n�

� c not dened not dened

� ch n n

� c c �� �� � � � n

�



no� picture of F He
F � n� Hi
F � n�

� s s n n

� chm j
�n
�

k
�n 
n � ��

� ch c n �n� �

� c c c �� �� �� �� � � � �n� � 
n �� ��

	 c s n �n� �

� c s s �n� � �n� �

�� s c s� �
�n� � �n� �

�� s s s�
�

�
�

�
n��
�

�
n�

�� chm��
��

�n 
n � �� �n 
n � ��

�� chm c �n� �
j
��n���

�

k
� �

�� ch ch n� � 
n � �� �n� �

�� ch c c n� � 
n � �� �n� �

�� c hc c n� � 
n � �� �n� �

�� c c c c �� �� �� �� �� � � � �n� � 
n �� ��

�	 ch s �n� � �n� � 
n � ��

�� ch s s �n� � �n� �

��



no� picture of F He
F � n� Hi
F � n�

�� s c s� �h �n� � �n� �

�� c c s �n� � �n� �

�� c s c �n� � �n� �

�� c c s� �
�n� � �n� �

�� c c n �n� �

�� c c s s �n� � 
n � �� 	n� �� 
n � ��

�� c s c s� �
�n� � 
n � �� 	n� �� 
n � ��

�� c s s c �n� � 
n � �� 	n� �� 
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Proof� H is a generic simple F �free hypergraph with
SH � �n�� n � N� H

is full if fag � H for every a � SH� If a � H � H and fag �� H� we can
replace H by fag� 
We used this replacement in the proof of Theorem �����
Our hypergraph remains simple and F �free� and its size has not changed 
but
order might decrease and weight decreases�� Repeating this operation� we
replace H by a full H� with e
H�� � e
H� and v
H�� � n� � v
H� � n� If
e
H�� � f
n�� for a nondecreasing function f � we have also e
H� � e
H�� �
f
n�� � f
n�� This little trick helps us to obtain upper bounds on He
F � n�

it does not help for no� �� ��� ������ and �� where F has no singleton� but it
does not work for Hi
F � n�� When determining He
F � n� we assume� without
repeating it every time� that H is replaced by a full H� with

SH� � �n���
For obtaining upper bounds on Hi
F � n� we use induction and!or other

replacement arguments� To simplify the situation� we get rid of a large edge
H � H by replacing H by some sets Hi� usually 
but not always� see F���
subsets of H� For the resulting hypergraph H� one has to check three things�
H� remains simple 
Hi �� H for every i�� i
H�� � i
H� 


P
i jHij � jHj��

and H� remains F �free 
the reason is usually that any F �copy may use at
most one of the new edges Hi and therefore� since Hi � H� H� � F implies
the contradiction H � F�� For each particular replacement these three
conditions are easy to check and we leave it to the reader� Repeating the
replacements� we eliminate all large edges�

�� No such H exists� �� H is a set partition� �� H has one edge� �� H
has only singleton edges�

�� Recall that H� is full� Therefore edges with jHj � � must be mutually
disjoint and He
F � n� � n � bn��c� which is easy to attain� The value
Hi
F � n� � �n for n � � is clear� Hi
F � �� � ��

��



�� H� besides singletons has no other edges and He
F � n� � n� which
is easy to attain� As for the weight� we have 
in H� deg
a� � � for every
a � �n� ��� and equality for an a implies deg
n� � �� Hence deg
a� � � for
an a � n implies i
H� � �n� Even i
H� � �n � � because deg
a� � � for
every a � �n� is impossible 
H is simple�� In the other case when deg
a� � �
for every a � n again i
H� � �n� � because then deg
n� � n� In both cases
i
H� � �n � �� attained by H � 
�n�� �n � ��� and H � 
fi� ng� fng � i �
�n� ����

�� Particular case of Theorems ��� and ���� Hi
F � �� � ��
	� He
F � n� � n for the same reason as in �� As for Hi
F � n�� every

component H� of H consists of several edges which pairwise intersect in one
common vertex that is their largest vertex� Thus i
H�� � �v
H�� � � and
Hi
F � n� � �n� �� attained by H � 
fi� ng� fng � i � �n� ����

�� In H�� jHj � � for every edge and jHj � � implies � � H� Hence
He
F � n� � n � 
n� ��� attained by H � 
f�g� f�� ig� fig � i � ��� n��� As for
Hi
F � n�� we eliminate all edges with jHj � � by replacing H by two�element
sets fa� bg where a � minH and a � b � H� Since � � H for every two�
element edge� Hi
F � n� � n � �
n � ��� attained by the already mentioned
H�

��� Use arguments similar to �� Allowed two�element edges are now
fi� i� �g�

��� H has only edges of cardinalities � and �� Thus He
F � n� �
�
n
�

�
�
�
n
�

�
and Hi
F � n� �

�
n
�

�
� �

�
n
�

�
�

��� If jHj � � for an H � H�� then H� �� H� for some H� � H with jH�j �
�� Replacing H by H�� we get rid of all edges with three and more vertices�
Every vertex is then contained in at most two two�element edges� Therefore
He
F � n� � n� n� attained for n � � by H � 
fig� fi� i� �g � i � �n�� 
taken
modulo n�� For n � �� � we have He
F � n� � �� �� The value Hi
F � n� � �n
for n � � is clear� for n � �� � we have Hi
F � n� � �� ��

��� We eliminate from H� all edges with three and more vertice as in
��� Two�element edges may intersect only in the very last vertex n�� Thus
He
F � n� � n � 
n � ��� attained by H � 
fig� fng� fi� ng � i � �n � ���� As
for Hi
F � n�� let n � � and v be the rst vertex with deg
v� � � 
if v does
not exist� i
H� � �n�� If deg
v� � �� i
H� � �n� � because deg
w� � � for
every w � v and �n cannot be attained� If deg
v� � �� necessarily v � n and
deg
w� � � for w � n� Hence Hi
F � n� � �
n � �� � � � 
n � �� � bn��

�
c�

attained by H � 
fi� ng� f�j��� �j� ng� fng � i � �n���� j � �bn��
�
c�� for odd

��



n � � and the same H plus fn� �g for even n � ��
��� Recall that H� is full� Besides singletons it may have at most one

other edge and He
F � n� � n � �� which is easy to attain� He
F � �� � �� To
determine Hi
F � n�� notice that� in H� deg
w� � � implies that deg
v� � �
for every other vertex v� Then i
H� � �n � �� Otherwise deg
w� � � for
every w and i
H� � �n� Since deg
w� � deg
v� � � implies that w and v
lie in the same three edges� weights �n and �n � � cannot be attained but
�n� � can� by H � 
�n�� �n� ��� ��� n���

��� H� has no edges H with jHj � � and may have only one two�element
edge� fn���� n�g� Thus� for n � �� He
F � n� � n��� which is easy to attain�
He
F � �� � �� H � 
�n�� �n � ��� ��� n�� shows that Hi
F � n� � �n � �� We
prove the opposite inequality by considering deg
�� in a general H� Case
deg
�� � � is impossible because it implies that H � F � So does deg
�� � �
if an H � H exists with � �� H� Thus deg
�� � � implies that e
H� � � and
i
H� � �n � �� If deg
�� � �� we delete the two edges containing � from
H and obtain i
H� � n � 
n � �� � 
n � �� � �n � � because the resulting
hypergraph does not contain F�� If deg
�� � �� we proceed by induction on
v
H�� Let H � H with � � H� If H� � Hnf�g �� H� we delete � 
simplicity
is preserved� and use induction� If H� � H and jH�j � �� we delete � and H�

and use induction� If H� � H and jH�j � �� let �� u� v� and w be the rst four
vertices of H 
in this order�� If both sets H� � H�nfug and H� � H�nfvg
are edges of H� we have H � F since u � H � H�� v � H�� and w � H��
Hence one of the sets� say H�� is not an edge and we can again use induction�
deleting � from H and u from H��

��� He
F � n� is handled similarly to ��� H � 
�n�� �n � ��� ��� n�� shows
that Hi
F � n� � �n� �� We prove the opposite inequality� Let n � � and let
u � ��� n��� have the maximum degree in H among the vertices in ��� n����
If deg
u� � �� then i
H� � deg
���deg
n��n� � � n�n�n� � � �n� ��
If deg
u� � �� then H � F � which is a contradiction� The same holds if
deg
u� � � and an edge H exists with u �� H� Thus deg
u� � � implies
e
H� � � and i
H� � �n� �� Let deg
u� � �� If deg
�� � � and deg
n� � ��
we have again H � F or e
H� � �� Thus� say deg
�� � �� If deg
�� � �� we
delete the edge containing � and obtain i
H� � n � �
n � �� � � � �n � �
because the rest of H does not contain F�� If deg
�� � �� we delete H � H
such that � � H and jHj � n � �� The rest again does not contain F� and
thus i
H� � n� � � �n� � � �n� ��

��� Particular case of Theorems ��� and ���� Hi
F � �� � ���
�	� In H�� two nonsingleton edges may intersect only in the common last

��



vertex� which implies that e
H�� � �v
H�� � � holds for every component
H� of H�� Hence He
F � n� � �n� �� attained by H � 
fig� fi� ng� fng � i �
�n� ����

As for Hi
F � n�� consider anH with
SH � �n�� SinceH �� F � deg
�� � ��

We delete � from H and obtain H�� H� has at most two duplicated edges�
Let H� � H� be one of the duplications� If jH�j � �� we delete H� fromH�� If
jH�j � �� we delete from H� its last vertex� This creates no new duplication

else H � F�� In this way we remove from H� both possible duplications
and obtain a simple H� with

SH� � ��� n� and i
H� � � � i
H��� We have
the inductive inequality i
H� � � � Hi
F � n � ��� Note that deg
�� � �
and thus for induction we may as well delete � instead of � and that if
one of f�g� f�g� and f�� �g is an edge of H� we obtain the streghtening
i
H� � ��Hi
F � n� ��� Note also that deg
v� � � implies that v is the last
vertex of every H � H� v � H�

We prove that for n � �� �� �� �� �� � we have Hi
F � n� � �� �� 	� ��� ��� �	
and that Hi
F � n� � �n � � for n � �� The rst two values are trivial� By
the inductive inequality� Hi
F � �� � � � � � 	� Weight 	 is attained by H �

f�g� f�� �g� f�� �g� ����� Let n � � and

SH � ���� Clearly� deg
��� deg
�� � ��
Let rst deg
�� � � and p be the number of edges intersecting both ���
and ��� ��� Clearly� p � �  �� Since no edge can contain both � and ��
deg
���deg
�� � p�� � � and i
H� �

P�
� deg
i� � ���� � ��� If deg
�� �

�� let p be the number of edges H � H such that � � H and H���� �� �� Then
p � He
F� �� � �� deg
�� � ��p � �� and i
H� �

P�
� deg
i� � � ��� � ���

Weight �� is attained by H � 
f�g� fi� �g� ��� � i � ����� Thus Hi
F � �� � ���
By the inductive inequality� Hi
F � �� � ���� � �� and weight �� is attained
by H � 
f�g� fi� �g� f�j � �� �j� �g � i � ���� j � �����

It remains to show that H
F � �� � �	 and not ���� � ��� H
F � �� � �	
due to H � 
f�g� fi� �g� f�� �� �g� f�� �� �� �g � i � ����� We elaborate the
argument for n � �� Let

SH � ���� Clearly� deg
��� deg
�� � � and deg
�� �
�� If deg
�� � �� no edge intersects both ��� and ��� �� and i
H� � �Hi
F � �� �
��� If deg
�� � �� we delete � fromH� If this creates a duplication� one of f�g�
f�g� and f�� �g is an edge ofH and by the above remark i
H� � ��Hi
F � �� �
�	� If no duplication arises� again i
H� � deg
�� � Hi
F � �� � �	� So
deg
�� � �� Let k � deg
��� Let rst k � � and p be the number of edges
intersecting both ��� and ��� �� 
none of them contains ��� The edges for which
� is the last vertex contribute by at least k�� to deg
���deg
���deg
�� � �
and thus k � � and p � �� 
k��� � ��k� If deg
�� � �� deg
���deg
�� �
p � � � � � k 
no edge contains both � and �� and i
H� �

P�
� deg
i� �

��



�  � � k � � � k � ��� If deg
�� � �� we have deg
�� � � � p � � � k
and i
H� � �  � � k � � � k � ��� Thus k � deg
�� � � and we have
deg
i� � � for every i � ���� If deg
�� � � we set again p to be the number
of H � H intersecting both ��� and ��� ��� We have p � �  � � 	 and
deg
�� � deg
�� � p � � � ��� Thus i
H� �

P�
� deg
i� � �  � � �� � �	� If

deg
�� � �� let p be the number of H � H intersecting ��� and containing
�� Then p � He
F� �� � � and deg
�� � � � p � 	� We have again
i
H� � �  � � 	 � �	� Thus Hi
F � �� � �	�

Finally� using induction starting at n � � and the inductive inequality
we see that for n � � we have Hi
F � n� � �n� �� The opposite inequality is
proved by the hypergraph H � 
fi� n� �g� fi� ng� fn� �g� fng � i � �n� ����

��� Let v be the rst vertex in H� with deg
v� � �� If deg
v� � �� H�

has at most one nonsingleton edge and e
H�� � n � �� If deg
v� � �� every
nonsingleton edge has two vertices and starts in v� Thus He
F � n� � �n� ��
attained by H � 
f�g� f�� ig� fig � i � ��� n��� This hypergraph shows that
Hi
F � n� � �n � �� To prove the opposite inequality� we take a general
H and argue as in ��� If deg
�� � �� jHj � � for every edge of H and
jHj � � implies � � H� Thus i
H� � �n � �� If deg
�� � �� we delete
the two edges containing �� Since the rest does not contain F�� we have
i
H� � n � 
n � �� � 
n � �� � �n � �� If deg
�� � �� let H and H� be
given by � � H � H� and H� � Hnf�g� If H� �� H or jH�j � �� we delete �
and� if necessary� H�� and use induction� If H� is an edge and jH�j � �� then
H� � H�nfug� where u � minH�� is not an edge 
else H � F�� We delete �
from H and u from H� and use induction�

��� In H�� for every two nonsingleton edges H� �� H� we have H� � H�

or H� � H�� 
H� � H� means that x � y for every x � H�� y � H���
Therefore H� has at most n � � such edges� He
F � n� � �n � �� attained
by 
fi� i � �g� fig� fng � i � �n � ���� This hypergraph shows also that
Hi
F � n� � �n � �� We prove the opposite inequality by induction� Let
H have

SH � �n� with n � �� If deg
v� � � for every v � ��� n � ��
then i
H� � deg
�� � deg
n� � n � � � �n � �� If deg
v� � � for some
v � ��� n � ��� we split H into H� and H� where H� takes the edges of H
lying to the left of v� H� takes those lying to the right� and if fvg � H
then fvg � H�� no edge lies on both sides of v because H �� F � We have
v
H�� � v
H�� � n � �� If v
H�� � v
H�� � n� then by induction i
H� �
i
H��� i
H�� � �v
H������v
H���� � �n��� If v
H���v
H�� � n���
we note that i
H�� � �v
H��� � because now v � min

SH� and fvg �� H��
Again by induction i
H� � i
H�� � i
H�� � �n � �� The last case is if

��



deg
v� � � for some v � ��� n � ��� Let H� and H� be the edges containing
v� If no edge jumps over v we split H and proceed as before� Else we have�
say� minH� � v � maxH�� We delete v from H� Since H�nfvg �� H� the
only duplication that may arise is when v � minH� 
case v � maxH� is
similar� and H� � H�nfvg � H� We cancel this duplication by deleting from
H� its last vertex� No new duplication then arises 
H �� F� and we have by
induction that i
H� � � � �
n� ��� � � �n� ��

��� He
F � n� � �n � � follows from the fact that� in H�� jHj � � for
every edge and jHj � � implies � � H� The bound is attained by H �

f�g� fig� f�� ig � i � ��� n��� This hypergraph shows also that Hi
F � n� �
�n � �� To prove the opposite inequality� consider deg
�� in a general H�
If deg
�� � �� delete the edge containing �� The rest does not contain F


and thus i
H� � n � �
n � �� � � � �n � �� If deg
�� � �� delete an edge
H such that jHj � n � � and � � H� The rest does not contain F�� 
F


would do here but not in the next argument ���� so i
H� � n� �� �n� � �
�n � �� If deg
�� � �� we delete � from H� In the resulting hypergraph H�

only singletons may be duplicated and every component H� of H� satises
i
H�� � �v
H�� since the only intersection in H� is the common last vertex
v 
and fvg may be duplicated�� Thus i
H�� � �
n � ��� 
Hnf�g � � �
H � H� H �� f�g� is a simple and F���free� even F
�free� hypergraph� Hence
deg
�� � � �He
F��� n� �� � n� In total� i
H� � n � �
n� �� � �n� ��

��� The arguments are very similar to those in ���
��� H� has no edge H with jHj � � and no two�element edge skipping one

or more vertices� Again He
F � n� � �n��� attained by the same hypergraph
as in ��� This hypergraph shows also that Hi
F � n� � �n � �� We prove
the opposite inequality by induction on v
H� � n� It is easy to check that
deg
�� � � impliesH � F � Let deg
�� � �� The rst case is when jHj �� � for
both edges containing �� Deletion of � fromH gives then a simple hypergraph
and we have i
H� � � � �
n � �� � � � �n � �� If jHj � � for exactly one
of them� we set H� � H� and if both have two elements� we set H� to be
the longer one� Deletion of H� from H and � from the rest gives a simple
hypergraph and i
H� � � � � � �
n� ��� � � �n� �� Let now deg
�� � �
and � � H � H� If jHj � �� we delete H and use induction� Let jHj � ��
If H� � Hnf�g is not an edge� we delete � from H and use induction� If
H� � H� let u � minH�� Clearly� H�nfug is not an edge 
else H � F�� We
delete � from H and u from H� and use induction�

��� As in �� H� has no nonsingleton edge and thus He
F � n� � n� As for
weights� notice that every component H� of H either consists of at most two

��



edges or the only intersection in H� is one vertex common to all edges� Both
cases give bound i
H�� � �v
H��� � and thus Hi
F � n� � �n� �� attained
by H � 
fi� ng� fng � i � �n� ����

��� We remark that in ����	 He
F � �� � Hi
F � �� � �� H� has no edge
H with jHj � �� every three�element edge must contain � and �� and two�
element edges must start in � or in �� Thus� for n � ��He
F � n� � n�
n����
�
n� ��� attained by the hypergraph H� � 
f�g� fig� f�� ig� f�� jg� f�� �� jg �
i � ��� n�� j � ��� n��� H� shows that� for n � �� Hi
F � n� � 	n � ��� To
prove the opposite inequality� we consider a general H with v
H� � �� If
jH� ��� n�j � � for every H � H� i
H� � i
H�� � 	n���� Let jH� ��� n�j � �
for an edge H� If deg
��� deg
�� � � then H � F � So� say� deg
�� � � 
case
deg
�� � � is similar�� We delete from H the edges containing � and observe
that the rest avoids F�� Hence i
H� � n�n����
n����� � �n�� � 	n���

n � ���

��� jHj � � for every edge ofH�� allowed three�element edges are f�� b� b�
�g 
n � � edges� and allowed two�element edges are f�� bg and fb� b � �g

�n � � edges�� Thus He
F � n� � �n � � 
n � �� and it is clear which
hypergraph attains this value� We show that the same hypergraph attains
also the maximum weight 	n���� If deg
�� � �� we delete from H the edges
containing � and conclude� since the rest avoids F��� that i
H� � n�n���
�
n����� � �n�� � 	n��� 
n � ��� Let deg
�� � �� We delete � fromH�
Consider two edges H� and H� of the resultingH�� H� � H� implies jH�j � �

else H � F� and no edge of H� has higher multiplicity than �� If H� �� H�

and neither Hi is a singleton� then H� � H� or H� � H� 
else H � F�� Thus
i
H� � deg
��� i
H�� � 
��n� ��n� ��� �
n� �� �
n� ��� � 	n� ���

��� Similar to ��� Only the interval ��� n� is replaced by ��� n� ���
�	� In H� no edge has more than three elements� three�element edges

must consist of consecutive vertices� and two�element edges must be of the
form fa� a��g and fa� a��g� Again He
F � n� � n��
n����n�� � �n���
which is attained if we take all decribed edges 
and singletons�� To prove
Hi
F � n� � 	n � ��� which is attained by the same hypergraph� we show
that other edges can be eliminated using induction on n� If an H � H exists
with jHj � �� let u� v � H be two distinct vertices� none of them the end
of H� If deg
u� � deg
v� � �� u or v may be deleted from H 
one of these
deletions does not create duplication� and induction applies� If deg
u� � �
and deg
v� � �� we can delete v from H unless deg
u� � � and Hnfvg � H�
But then we can delete u from H� Similarly if deg
u� � � and deg
v� � �� If
deg
u� � � and deg
v� � �� both inequalities must be equalities and u� v lie in

�	



the same two edges� Either of u and v can be deleted and induction applies�
Thus we can assume that jHj � � for every H � H� If H � fa� b� cg� � H
and c � b � � 
case a � b � � is similar�� then deg
b� � � and deg
b� � �
implies that b and b � � lie in the same edge� It is easy to see that b can
be deleted� We may assume that every edge H with jHj � � is of the form
H � fa� a � �� a � �g� Finally� if fa� bg � H and a � b � �� it is clear that
b � � and b � � have degree � and lie in the same edge� Either one of them
can be deleted� We can assume that fa� bg� � H implies b � a � ��

��� We delete the last vertex from every H � H� jHj � �� The resulting
sets are mutually disjoint and lie in �n���� Thus He
F � n� � n�
n��� and
Hi
F � n� � n�
n����
n���� attained byH � 
fig� fng� fi� ng � i � �n�����

��� If H � H with jHj � �� we replace H by the two�element set of the
rst two vertices of H� Thus� for bounding He
F � n� from above� we may
assume that jHj � � for every edge� It is clear that two�element edges form
a triangle�free graph on at most n vertices� By a special case of Tur�an�s
theorem 
see ���� Problem �������� it has at most bn�

�
c edges� The value of

He
F � n� is attained by 
fig� fj� kg � i � �n�� j � �bn��c�� k � �bn��c � �� n���
We show that the maximum weight is attained by the same hypergraph
with the exception n � � when Hi
F � �� � 	 
and not ��� Large edges
H � fa�� a�� � � � � atg� with t � � are eliminated by the replacement H �
fa�� at��g� fa�� at��g� � � � � fat��� at��g� If t � � and a� � n� we eliminate H
by H � fa�� a�g� fa�� ng� Similarly if � � a�� Let k be the number of the
troublesome edges f�� a� ng� No two�element edge is incident with any of the
as and they form a triangle�free graph on at most n� k vertices� By Tur�an�s

theorem� Hi
F � n� � n��b �n�k��
�

c��k where the bound is attained� For n �
� this is maximized for k � � 
and k � � for n � �� Hi
F � �� � �� is attained
by 
fig� f�� �g� f�� �g� f�� �g� f�� �g� and 
fig� f�� �g� f�� �� �g� f�� �� �g� where
i � ���� and for n � � by k � �� Indeed� 
fig� f�� �g� f�� �� �g� is better than

fig� f�� �g� f�� �g� where i � ����

��� No two distinct edges of H intersect in two or more vertices� Hence
every H � H with jHj � � may be replaced by its two�element subsets�

this works for both size and weight� Therefore He
F � n� �
�
n
�

�
�
�
n
�

�
and

Hi
F � n� �
�
n
�

�
� �

�
n
�

�
� as in ���

��� As for He
F � n�� we eliminate from H all edges with jHj � � by
replacing H by the two�set of its rst two elements� So jHj � � for every
H � H� Let a � � be the rst vertex that is the last point of a two�element
edge or the middle point of a three�element edge� H consists of singletons�

��



of a bipartite graph with parts �a� and �a � �� n�� and of edges of the form
fb� a��g� fa��� cg� and fb� a��� cg where b � �a�� c � �a��� n�� other edges
would create F or they would contradict the minimality of a��� We see that
He
F � n� � n��a
n� �� a�� 
n� ��� which is attained and maximized by
a � b
n�����c� The same hypergraph attains the maximum weight because
large edges H � fa�� a�� � � � � atg� can be eliminated by the replacement H �
fa�� a�g� fa�� a�� a�g if t � �� � and by H � fa�� a�g� fa�� a�g� � � � � fa�� at��g
if t � �� Counting the weight instead of size� we obtain the second formula�

��� First� we bound the number of two�element edges in H� Let H � G
be a 
F �free� graph with the vertex set �n�� The sets Xi � fx � �i � �� n� �
fi� xg � Gg� i � �n���� are subsets of ��� n� and 
G �� F� maxXi � minXi���
Thus e
G� �

Pn��
i	� jXij � n � � � n � � � �n � �� Hence H has at most

�n�� two�element edges� We delete from every H � H� jHj � �� its rst and
last vertex� If two of the resulting sets intersect� we have two distinct edges
H�� H� � H and ve not necessarily distinct vertices u�� u� � v � w�� w� such
that fu�� v� w�g � H� and fu�� v� w�g � H�� Moreover� we can assume that
u� �� u� or w� �� w� because H� �� H�� But this implies H � F � Thus the
resulting sets� subsets of ��� n � ��� are mutually disjoint� We conclude that
e
H� � n��n���n�� � �n�� and i
H� � n��
�n�����
n��� � 	n����
These bounds are attained by H � 
f�g� fng� f�� ng� f�� ig� fi� ng� f�� i� ng �
i � ��� n� ����

��� It is easily checked that the argument bounding the number of edges
with more than � elements works here as well� We prove by induction on n
that the number of two�element edges is again at most �n��� Let H � G be
a 
F �free� graph with the vertex set �n�� If deg
�� � �� we have by induction
that e
G� � � � �n� � � �n� �� For deg
�� � �� if f�� ng � G let m be the
second largest neighbour of � and if f�� ng �� G let m be the largest neighbour
of �� Clearly� m � n and every edge of G� except possibly only f�� ng� lies
either in �m� or in �m � �� n�� By induction� e
G� � � � �m � � � �
n �
m � ��� � � �n � �� Thus again e
H� � �n � � and i
H� � 	n� ��� The
extremal hypergraph is� for example� H � 
f�g� fng� f�� ng� fig� f�� ig� fi� i�
�g� f�� i� i� �g � i � ��� n� ����

��� We have jHj � � for every H � H�� Thus He
F � n� �
�
n
�

�
�
�
n
�

�
� As

for the weight� if H � H with jHj � �� we replace H by the two�element sets
fa� bg where a � minH and a � b � H� Thus we may suppose that jHj � �

for every H � H and we conclude that Hi
F � n� �
�
n
�

�
� �

�
n
�

�
�

��� Same argument as in ���

��



��� In H�� jHj � � for every edge and jHj � � implies � � H� Thus

He
F � n� �
�
n
�

�
�
�
n
�

�
�
�
n��
�

�
� As for the weight� we get rid of all H with

jHj � � by the same replacements as in ��� If H with jHj � � is present�

again � � H� Thus Hi
F � n� �
�
n
�

�
� �

�
n
�

�
� �

�
n��
�

�
�

�	� Same argument as in ��� Allowed three�element edges are now H �
fa� a� �� bg� and we have again � � � �   � 
n� �� �

�
n��
�

�
of these�

��� Clearly� He
F � n� �
�
n
�

�
�
�
n
�

�
�
�
n
�

�
and Hi
F � n� �

�
n
�

�
��
�
n
�

�
��
�
n
�

�
�
�

We do not have ��� distinct extremal functions and not even close to
�	� Hypergraphs F with � � i
F� � � have �	 distinct extremal functions
He
F � n� andHi
F � n� 
included the �undened function��� Of these �� di�er
for innitely many arguments� The formulas for He
F � n� and Hi
F � n� hold
for n � v
F� with the exception of F�F��� F�
� and F�� but only the initial
values of Hi
F�
� n� caused some troubles� We conclude this section by a nice
geometric derivation of the formula for He
F��� n� 
crossing pattern� due to
Attila P�or� Put the vertices �� �� � � � � n in this order clockwise on a circle in the
plane and consider the convex hulls Ci � conv
Hi�� Hi � H� The condition
H �� F�� is equivalent to the condition that the relative interiors of Ci do not
intersect� So it is clear that we may have at most n�� edges H with jHj � ��
maximized by the triangulations� and at most �n� �� 
n� �� � �n� � two�
element edges because these form a planar graph with a big outer face� Thus
He
F��� n� � n� � � �n� � � n � �n� ��

� Enumerative intermezzo

Besides the extremal problems for F �free hypergraphs there is also the enu�
merative problem to count them� Let

h�v�n 
F� � jfH � H is simple � H �� F �
SH � �n�gj

be the number of simple nonisomorphic F �free hypergraphs H with v
H� �
n� Let h�i�s�n 
F� and h�i�n 
F� be the analogous counting functions with i
H� �
n in the place of v
H� � n and with the simplicity of H dropped in h�i�n 
F��
For example� for F� � 
f�g�� f�g�� all three counting functions equal to the
nth Bell number Bn that counts partitions of �n��

��



The enumerative problem to determine or to bound� for F xed and
n��� the three counting functions is already for i
F� � � much more dif�
cult than the extremal problem� In Klazar ���� we found the ordinary gen�
erating functions F�
x�� F�
x�� and F�
x� of h�v�n 
F�� h�i�s�n 
F�� and h�i�n 
F��
respectively� for the crossing pattern F�� � 
f�� �g� f�� �g�� F�� F�� and F� are
algebraic over Z
x� of degrees �� �� and �� respectively� and their coe"cients
grow roughly like 
�������� � � ��n� 
������� � � ��n� and 
�����		 � � ��n where the
bases of the exponentials are algebraic numbers of degrees �� ��� and ��� re�
spectively� We did not succeed in enumerating F���free hypergraphs where
F�� � 
f�� �g� f�� �g� and we believe it is a problem that deserves interest�

In this article we drop the condition of F �freeness and we determine the
total numbers h�v�n � h�i�s�n � and h�i�n � that is� the number of simple H with
v
H� � n� the number of simple H with i
H� � n� and the number of all
H with i
H� � n� The numbers h�v�n have been already investigated before�
in the slightly di�erent terminology of set covers� but the remaining two
problems seem new� We review the known formulas for h�v�n � derive a new
recurrence for them� and then we proceed to h�i�s�n and h�i�n �

Write sn for the number of simple set systems on �n�� which are 
possibly
empty� sets of nonempty subsets of �n�� Clearly� sn � ��

n�� and

sn � ��
n�� �

nX
j	�

	
n

j



h
�v�
j 
��

because set systems ��� correspond to simple H with
SH � �n�� Hence we

can easily calculate h�v�n starting by h
�v�
� � � and continuing by the recurrence

h�v�n � ��
n�� �

n��X
j	�

	
n

j



h
�v�
j 
��

given in Hearne and Wagner ����� Using exponential generating functions
F 
x� �

P
n�� snx

n�n# and H
x� �
P

n�� h
�v�
n xn�n# we invert relation 
�� by

noting that it amounts to F 
x� � exH
x�� Thus H
x� � e�xF 
x� and we
have the explicit formula

h�v�n �
nX

j	�


���n�j
	
n

j



��

j�� 
��

that can be found in Comtet ��� p� ���� and that was derived independently
by Macula �����

��



We show that for n � � also

h
�v�
n�� � �

X
��k�l�n

h
�v�
k h

�v�
l n#


k � l � n�#
n� k�#
n� l�#
� h�v�n � 
��


The actual summation range is max
k� l� � n � k � l�� We take a simple
H�

SH � �n���� and decompose it into H� and H� where H� consists of the
sets Hnf�g such that � � H � H 
we omit the � if f�g � H� and H� consists
of the remaining edges of H� We relabel the vertices so that

SH� � �k� andSH� � �l�� It is clear that H� and H� are simple and that k� l � n� To invert
the decomposition� we rst select two simple H� and H� of order k and l�
which can be done in h

�v�
k h

�v�
l ways� We unite their vertex sets so that n

vertices arise� This can be done in
�

n
k�l�n�n�k�n�l

�
ways by choosing� from n

vertices� k� l�n� n�k� and n� l vertices lying in
SH��SH�� only in

SH��
and only in

SH�� respectively� We append to every edge in H� a new least
vertex �� and obtain a simple H with n � � vertices� Finally� the possible
addition of f��g to H 
we always loose edge f�g when decomposing� gives
two further options� except for H� � � when f��g must be always added�
This explains the factor � and the subtraction of h�v�n in 
���

By means of any of 
��� 
��� and 
�� one nds that


h�v�n �n�� � 
�� �� ���� ������ ����������� �����������������	�� � � ���

This quite quickly growing sequence is entry A������ of Sloane �����
We turn to counting hypergraphs� both simple and all� by weight� Inspec�

tion of the long table in Section � reveals that 
h�i�s�n �n�� � 
�� �� �� �	� � � ��
and 
h�i�n �n�� � 
�� �� ��� ��� � � ��� What comes next$

Recall that a partition � � �a��a� � � � lal of n � N� where ai � � are
integers and usually al � �� is the decomposition n � � � � �   � � � � �
   � � �    � l �    � l with the part i appearing ai times 
parts i with
ai � � may be ommited�� Thus

P
iai � n� We write brie%y � � n� If H has

weight n and ai edges of cardinality i� the maximum edge cardinality being
l� then � � �a��a� � � � lal � n and we say that H has edge type �� We derive
formulas for numbers of hypergraphs with a given edge type�

Theorem ��� Let � � �a��a� � � � lal � n where al � �� The number of simple
hypergraphs with weight n and edge type � is

nX
j	l

	�
j
�

�
a�


	�
j
�

�
a�



� � �

	�
j
l

�
al



nX

m	j


���m�j
	
m

j




��



and the number of all hypergraphs with weight n and edge type � is

nX
j	l

	�
j
�

�
� a� � �

a�


	�
j
�

�
� a� � �

a�



� � �

	�
j
l

�
� al � �

al



nX

m	j


���m�j
	
m

j



�

Proof� Consider the polynomials

Wn � Wn
x�� x�� � � � � xn� �
X
H

nY
i	�

x
e�i�H�
i

where we sum over all simple H with
SH � �n� and e
i�H� is the number of

i�element edges in H� Rening 
�� we have

nY
i	�


� � xi�

n
i� �

nX
j	�

	
n

j



Wj

where on the left is a polynomial 
analogous to Wn� counting simple set
systems on �n� according to the edge cardinalities� In terms of exponential
generating functions�

X
n��

nY
i	�


� � xi�

ni�  y

n

n#
� ey X

n��

Wny
n

n#
� 
��

Thus� as in 
���

Wn
x�� � � � � xn� �
nX

j	�


���n�j
	
n

j


 jY
i	�


� � xi�

ji��

The number of simple H with i
H� � n and edge type � � �a��a� � � � lal � n
is the coe"cient at xa�� � � � xall in Wl �Wl�� �   �Wn which is

nX
m	l

mX
j	�


���m�j
	
m

j



lY

i	�

	�
j
i

�
ai



�

nX
j	l

lY
i	�

	�
j
i

�
ai



nX

m	j


���m�j
	
m

j



�

Derivation of the second formula is almost identical� only Wn becomes a
power series and � � xi is replaced by 
�� xi�

�� because now any i�element
edge may come in arbitrary many copies� �

We give for illustration the distribution of hypergraphs with weight n � �
according to their edge types 
the rst entry is the number of simple H and
the second� given only if di�erent� is the number of all H��

��



�� ���� ���� ���� �� ������ ���� ��

� �� �� ��� �� ��� �� ��� ��� ��� ��� ��

���� ���� ��

��	� ��� ��� ��� �� ��

Collecting the numbers over all edge types we obtain formulas for h�i�s�n

and h�i�n �

Corollary ��� The numbers of hypergraphs with weight n� simple and all�
are �� � �a��a� � � � lal with al � ��

h�i�s�n �
X
��n

nX
j	l

lY
i	�

	�
j
i

�
ai



nX

m	j


���m�j
	
m

j




��

h�i�n �
X
��n

nX
j	l

lY
i	�

	�
j
i

�
� ai � �

ai



nX

m	j


���m�j
	
m

j



� 
��

Using 
��� 
��� and computer algebra system MAPLE we have found that


h�i�s�n �n�� � 
�� �� �� �	� ���� ���� ���	� ������ ������� �������� � � ��


h�i�n �n�� � 
�� �� ��� ��� ���� ����� ��	�� ������ �	����� �������� � � ���

As of May ����� these sequences were absent in �����
From the point of view of complexity theory formulas 
�� and 
�� are

inferior compared to those for h�v�n � While any of 
��� 
��� and 
�� needs only
polynomially many 
in n� operations to turn the input n into the output
h�v�n � 
�� and 
�� require roughly ncp
n� operations where p
n� � jf� � � �
ngj� Numbers p
n� grow superpolynomially because by the famous Hardy�

Ramanujan�Uspensky asymptotics p
n� � 
n  �p����  exp
	
q
�n��� if n�

�� 
An elementary proof was given by Erd&os ��� who proved that p
n� �
cn��  exp
	

q
�n��� and by Newman ��	� who showed that c � 
�

p
����� A

simpler complex�analytical proof was given later by Newman ����� See also
Newman�s book ���� chapter ���� On the other hand� p
n� is subexponential
and thus formulas 
�� and 
�� are nontrivial in the sense that the numbers
of operations which they require are substantially smaller than h�i�s�n and h�i�n
themselves 
obviously h�i�s�n � h�i�n � �n for n � ��� A polynomial algorithm
generating h�i�s�n and h�i�n can be given by means of the recurrence approach
that we used to derive 
���

��



For any rational polynomial P 
m� � Q�m� we have
P�

m	� P 
m��m# � e q
where e � ����	�	 � � � is Euler number and q � Q� This follows simply
by expressing P 
m� as a Q�linear combination in the basis f�� m�m
m �
��� m
m� ��
m� ��� � � �g� Dobi�nski�s formula 
���� Problems ���a and �����
and ��� p� ����� belongs to this family of identities and has P 
m� � mn and
q � Bn where Bn is the nth Bell number� Setting in 
��� respectively in the
analogous equation for all hypergraphs� y � � and xi � xi and comparing
coe"cients at xn we obtain two identities of this type�

Corollary ��� For every n � N we have the identities �� � �a��a� � � �mam

with am � � allowed�

�X
m	�

�

m#
X
��n

mY
i	�

	�
m
i

�
ai



� e 

�X
i�H�	n

�

v
H�#

�X
m	�

�

m#
X
��n

mY
i	�

	�
m
i

�
� ai � �

ai



� e  X

i�H�	n

�

v
H�#

where e � ����	�	 � � � and the star indicates that the sum is over simple H
only�

For n � �� �� �� and � the factors at e in the rst identity are �� �� ��
�
� and �




and in the second identity �� �� ��
�
� and 
�



�

� Two applications of Davenport�Schinzel se�

quences

We begin with reminding a bound from the theory of generalized Davenport�
Schinzel sequences� A sequence v � a�a� � � � al � �n�� over the alphabet �n� is
k�sparse if ai � aj� i � j� implies j � i � k� The length of v is denoted jvj�
If u� v � �n�� are two sequences and v has a subsequence that di�ers from
u only by an injective renaming of symbols� we say that v contains u� For
example� v � ������� contains u � ���� but v does not contain u � �����
We write u
k� l� to denote the sequence

u
k� l� � �� � � � k�� � � � k � � � �� � � � k � �k��

with l segments �� � � � k� In Klazar ���� we proved that if v � �n�� is k�sparse
and does not contain u
k� l�� where k � � and l � �� then for every n � N

jvj � n  �k�kl��
��k����n�kl���
��n�kl��


	�

��



where �
n� is the inverse Ackermann function� 
If k � � or l � �� it is not
di"cult to prove that jvj � O
n���

Recall that �
n� � minfm � A
m� � ng where A
n� � Fn
n�� the
Ackermann function� is the diagonal function of the hierarchy of functions
Fi � N � N� i � N� starting with F�
n� � �n and continuing by the rule
Fi��
n� � Fi
Fi
� � � Fi
�� � � ��� with n iterations of Fi� Thus F�
n� � �n and
F�
n� is the tower function

F�
n� � ��
�

�

�

�
�
n�

We write 

k� l� n� to denote the factor at n in 
	�� Thus



k� l� n� � �k�kl��
��k����n�
kl���
��n�kl��

� 
��

We utilize 
	� in another approach to bounding Hi
F � n� from above in
terms od He
F � n�� Recall that H is a set partition if it has disjoint edges�

Theorem ��� Suppose that F is a set partition with p � v
F�� q � e
F� � �
and H is a F�free hypergraph with v
H� � n� not necessarily simple� Then

i
H� � 
q � ��n� 

q� �p� e
H��  e
H�

where 

k� l� n� is de�ned in ����

Proof� Let
SH � �n� and the edges of H be H�� H�� � � � � He where e � e
H��

We set for i � �n�
Si � fj � �e� � i � Hjg

and consider the sequence v � I�I� � � � In where Ii is an arbitrary permutation
of Si� Clearly� v � �e�� and jvj � i
H�� The sequence v may not be q�sparse�
because of the transitions IiIi��� but it is easy to see that by deleting at most
q � � terms from the beginning of every Ii� i � �� one can obtain a q�sparse
subsequence w with length jwj � jvj � 
q � ��
n � ��� It is also easy to
see that if w 
or v� contains u
q� �p� then H contains F � which is forbidden�

Note that the subsequence aab in v forces the rst a and the b to appear in
two distinct segments Ii and thus it gives incidences of Ha and Hb with two
distinct vertices�� Hence w does not contain u
q� �p� and we can apply 
	��

i
H� � jvj � 
q � ��n� jwj � 
q � ��n� 

q� �p� e�  e�

��



�

For xed numbers k� l the function 

k� l� n� grows to innity extremly slowly
and for all practical purposes it is bounded� We give an example showing
that in the last theorem some unbounded factor at e
H� is necessary�

Hart and Sharir ���� constructed sequences v � �n�� which are ��sparse�
do not contain sequence ������ and have length jvj 	 n�
n�� See Sharir and
Agarwal ���� for more information� We take such a sequence v� consider the
subsequence w of v consisting of the rst and last appearances of symbols
i � �n� in v� and decompose v into segments

v � I�I� � � � Im

where every Ii ends by a term from w and contains no other term of w�
Clearly� n � m � jwj � �n 
we may assume that v uses every i � �n��� Note
that jI�j � jImj � �� If an Ij contains a symbol a � �n� twice� we have in Ij a
subsequence aba� b �� a� because v is ��sparse� By the denition of segments�
the rst b appears in v before Ij and the last b after Ij or on its end and v
is forced to have the forbidden babab subsequence� Thus every Ij must be a
permutation of a set Sj � �n� and we can dened the hypergraph

H � 
Hi � i � �n�� where Hi � fj � �m� � i � Sjg�
Clearly�

SH � �m� and n � v
H� � �n� e
H� � n� and i
H� � jvj 	 n�
n��
It is also clear that H is F���free where F�� is the set partition

F�� � 
f�� �� �g� f�� �g� � s s s s s
� 	

� 
�
�

�
�

� � �

For F � F�� the factor at e
H� in Theorem ��� must be 	 �
n��
Taking in Theorem ��� a simple H with the maximum weight� we obtain

as a corollary for every set partition F 
p � v
F� and q � e
F� � �� case
q � � is trivial� the inequality

Hi
F � n� � 
q � ��n � 

q� �p�He
F � n�� He
F � n��
But here Theorem ���� when it applies� gives better bound�

In the second application of 
	� we obtain an almost linear bound on
He
F � n� in the case when F is a star forest � These are simple graphs G

�	



which have no two separated edges and such that deg
v� � � whenever
v � maxH� H � H� Thus every component of a star forest is a star and
every centre of a star is smaller then every leaf� We begin with the graph
case�

Theorem ��� Let F be a star forest with r � � components and p vertices
and Ge
F � n� be the maximum number of edges in a simple graph G such that
G �� F and v
G� � n� Then

Ge
F � n� � 
r � ��n� n  

r� �
p� r � ��� n�

where 

k� l� n� is the almost constant function de�ned in ����

Proof� Let G attain Ge
F � n� and SG � �n�� We consider the sequence

v � I�I� � � � In � �n��

where Ij is any permutation of the set fi � �n� � fi� jg � G� i � jg� As
in the previous proof� we select an r�sparse subsequence w of v with length
jwj � jvj � 
r � ��
n � ��� It is not hard to see that if w 
or v� contains
the sequence u
r� �
p � r � ��� then G � F � Thus w does not contain
u
r� �
p� r � ��� and we can apply 
	��

Ge
F � n� � e
G� � jvj � 
r � ��n� n  

r� �
p� r � ��� n��

�

For r � � component we have Ge
F � n�
 n� We extend the bound of Theo�
rem ��� from graphs to hypergraphs by means of a more generally aplicable
technique in the next section� We conclude the present section by an example
showing that in general Ge
F � n� is superlinear for star forests�

Let v � �n�� be the same ������free sequence as in the previous example
for F�� and let

v � I�I� � � � Im

be the same decomposition into segments containing no repeated symbol�
n � m � �n� We rename the symbols in v so that if i � j then the rst
appearance of j in v precedes that of i� 
This does not a�ect the ������
freeness�� We dene the simple bipartite graph G with

SG � �n �m� by

fi� jg � G �� i � �n� � j � �n � �� n�m� � i appears in Ij�n�

��



Then e
G�s � jvj 	 n�
n� and �n � v
G� � �n� We show that G �� F��

where F�� is the star forest

F�� � 
f�� �g� f�� �g� f�� �g� f�� �g� � s s s s s s
� �� 	� 
� �

�

Suppose for the contrary that F�� � G and a� � a� � � � � � a� are the vertices
of a F���copy in G� By the denition of G� z � a�a�a�a� is a subsequence of
v� with terms appearing in Ia��n� � � � � Ia��n� respectively� But since a� � a��
an a� must appear in v before z starts and v contains a subsequence of the
type ������ which is forbidden� So G is F���free and shows that Ge
F��� n�	
n�
n��

� Orderly bipartite forests

H is an orderly bipartite forest 
OBF� if it is a simple graph which has no cycle
and such that minH � maxH � holds for every two edges H�H � � H� Star
forests are OBF� Orderly bipartite forests with some singleton edges 
which
may repeate� form the largest class of F for which one can hope for linear
or close to linear extremal functions� 
Since every OBF with singletons is
contained in an OBF without singletons� it is enough to consider only OBF��
We state this simple but important observation as a theorem�

Theorem ��� If the hypergraph F is not an orderly bipartite forest with
singletons� then there is a constant � � � such that He
F � n�	 n��

Proof� If F is not an OBF with singletons� then F has 
i� an edge with more
than two elements or 
ii� two separated two�element edges or 
iii� a two�path
isomorphic to 
f�� �g� f�� �g� or 
iv� a repeated two�element edge or 
v� an
even cycle of two�element edges 
odd cycles are subsumed in 
iii��� In the
cases 
i��
iv� it is easy to see that He
F � n� 	 n� 
cf� the results for F���
F��� F��� and F�� in Section ��� An application of the probabilistic method

Erd&os ���� provides an unordered graph that has n vertices� 	 n����k edges�
and no even cycle of length k� Thus He
F � n�	 n����k in case 
v� if F has
an even cycle of length k� �

In the unordered case it is well known that Gu
e 
F � n� � ex
F � n� 
 n i� F

is a forest� and if F is not a forest then ex
F � n� 	 n� for some � � � 
by

��



the aforementioned result�� In the ordered case the class OBF enjoys much
larger variety of linear and close to linear extremal functions�

We say� for k � N� that a graph G � is a k�blowup of a graph G if for
every edge coloring � � G � � N that uses every color i � N at most k times�
there exists a subgraph in G � which is isomorphic to G and whose edges have
totally di�erent colors 
no color is repeated on the subgraph�� For example�
it is not di"cult to construct for every OBF G and k � N an OBF G � that is
a k�blowup of G� For k � N and a graph G we write B
k�G� to denote the
set of all k�blowups of G� The following theorem shows how to derive bounds
for hypergraphs from the graph case�

Theorem ��� Suppose that F is a graph with p � v
F� and q � e
F� � ��
If f � N� N is a nondecreasing function such that

Ge
B

�
p
�

�
�F�� n� � n  f
n�

holds for every n � N� then

He
F � n� � q Ge
F � n� He
F � �f
n� � �� 
���

holds for every n � N�

Proof� Let H attain He
F � n� and
SH � �n�� We put in H� every edge

with more than � and less than p vertices and for every H � H with jHj � p
we put in H� an arbitrary subset H � � H� jH �j � p� No edge of H� repeats
more then q � � times for else H � F � Let H�� be the simplication of H��
So e
H� � n� 
q � ��e
H���� Let G be the simple graph consisting of all the

edges E such that E � H for some H � H��� Observe that if F � � B

�
p
�

�
�F��

meaning that F � is a
�
p
�

�
�blowup of F � and F � � G� then F � H�� and thus

F � H� 
For the edges E � G lying in an F ��copy consider the coloring

�
E� � H � H�� where E � H�� Hence F � � G for no F � � B

�
p
�

�
�F�� Let

v
G� � n�� n� � n� We have

e
G� � Ge
B

�
p
�

�
�F�� n�� � n�  f
n���

There exists a vertex v� � SG such that

d � degG
v�� � �f
n�� � �f
n��

��



Fix an arbitrary E�� v� � E� � G� Let X � �n� be the union of all
H � H�� with E� � H and m be the number of such edges in H��� We have
the inequalities

m � He
F � jXj� and jXj � d� ��

Thus 
He
F � n� is increasing by Theorem ����

m � He
F � jXj� � He
F � d� �� � He
F � �f
n� � ���

We see that the two�element set E� is contained in at least one but less than
He
F � �f
n� � �� edges of H��� Deleting those edges we obtain a subhyper�
graph H��

� of H�� on which the same argument can be applied� That is� a
two�element set E� exists such that E� � H for at least one but less than
He
F � �f
n���� edges H � H��

� 
clearly E� �� E��� Continuing this way until
the whole H�� is exhausted� we dene a mapping

F � H�� � fE � E � �n�� jEj � �g

such that
F 
H� � H and jF��
E�j � He
F � �f
n� � ��

holds for every H � H�� and every E � �n�� jEj � �� Let G � be the simple
graph G � � F 
H���� Let v
G �� � n�� n� � n�

The containment F � G � implies� by the denition of G �� that F � H��

and thus F � H� which is forbidden� We have 
it is easy to see that Ge
F � n�
is increasing�

e
G �� � Ge
F � n�� � Ge
F � n��
Putting it all together� we obtain 
Ge
F � n� � n� � if q � ��

He
F � n� � e
H� � n � 
q � ��  e
H���

� n � 
q � �� He
F � �f
n� � ��  e
G ��
� q He
F � �f
n� � �� Ge
F � n��

�

Recursive inequality 
��� is nontrivial only if f
n� � o
n� and thus it
has any value only if F is an OBF 
or perhaps if F is an even cycle�� If

F is an OBF and in Theorem ��� we replace B

�
p
�

�
�F� by some subclass

B � B

�
p
�

�
�F� � OBF� the number of colors

�
p
�

�
can be replaced by p � ��

��




Because for jHj � p every p two�element edges E � H contain a cycle but
now no F � � B has a cycle�� Note that the ordering of vertices was not used
in the proof 
it is crucial only for obtaining linear or close to linear bounds
on Ge
F � n� and Ge
B� n�� and therefore Theorem ��� holds in the unordered
case as well� We make use of this in the rst of its three applications�

Theorem ��� Let F be an unordered forest� Its unordered hypergraph ex�
tremal function satis�es

Hu
e 
F � n�
 n�

Proof� Let v
F� � p and e
F� � q � � 
case q � � is trivial�� It is
not hard to prove that Gu

e 
F � n� � ex
F � n� � 
q � ��n 
e�g� Bollob�as
��� Exercise �� in IV����� It is also easy to dene a large forest F � with
Q � e
F �� � 

p� ��
q � �� � ��e
F� � 
pq � p� q � ��q � pq
q � �� edges
that is a 
p����blowup of F � We set B � fF �g and use 
��� with the bounds
Gu

e 
F � n� � 
q���n� f
n� � Q�� 
since Gu
e 
B� n� � Gu

e 
F �� n� � 
Q���n��
and Hu

e 
F � n� � �n 
trivial��

Hu
e 
F � n� � q
q � ��  n  ��Q�� �

�
q
�

�
�pq�q���  n�

�

One can prove this bound also directly without using Theorem ��� by adapt�
ing the proof of ex
F � n� � 
q � ��n to the hypergraph case�

In the second application of Theorem ��� we extend the bound of Theo�
rem ��� to hypergraphs�

Theorem ��� Let F be a star forest with r � � components� p vertices� and
q edges� Let t � 
p� ��
q � �� � �� Then

He
F � n�
 n  

r� �t
p� r� � �� n��

where 

k� l� n� is the almost constant function de�ned in ����

Proof� We replace F by the star forest F � in which every edge fi� jg � F �
i � j� is replaced by t edges fi� j
��g� � � � � fi� j
t�g where i � j
�� �    � j
t�
and the set fj
��� � � � � j
t�g is slightly blowned up leaf j� that is� j� � j�
implies j�
a� � j�
b� for all � � a� b � t and all leaves j�� j� of F � It is easy
to see that F � � B
p� ��F��

��



We set B � fF �g and use 
��� with the bounds Ge
F � n�
 n 

r� �
p�
r� � �� n� 
Theorem ��� for F�� f
n� 
 

r� �t
p � r� � �� n� 
Theorem ���
for F ��� and He
F � n�
 np 
Theorem �����

He
F � n�
 n  

r� �t
p� r� � �� n�p���

Feeding in 
��� this improved upper bound on He
F � n�� the second applica�
tion of Theorem ��� gives

He
F � n�
 n  

r� �t
p� r� � �� n��  

r� �t
p� r� � �� c

  ��p��

where c � � is a constant� Since 

r� �t
p� r� � �� c

r� �t
p� r� � �� n�� �


r� �t
p� r�� �� n����p��� for every su"ciently large n� we obtain the stated
bound� �

By Theorem ���� for Hi
F � n� we have the same bound�
Our third and last application of Theorem ��� is to the graph

F�� � 
f�� �g� f�� �g� f�� �g� f�� �g� � s s s s s
� �� � �

�

It arises from F�� by identifying � and � but it is more important to note
that the starting points of the two edges ending in � emanate two noncrossing
edges ending to the right of �� F�� is an OBF but it is not a star forest� F��

in its matrix form 	
� �
� �





conguration C� of ���� was introduced by F�uredi ��� in order to prove that
every convex n�gon has O
n logn� diagonals with unit length� 
Recently
simpler proof was given by Bra' and Pach ����� In ��� he proved that

n logn
 Ge
F��� n�
 n logn�


The proof was given for ordered bipartite graphs but it works without
changes for all ordered graphs�� For our purposes we need somewhat stronger
version of the upper bound� which we prove 
by the same argument of ���� in
Lemma ���� For completeness� we reproduce here the construction proving
the lower bound� as given in ��� Construction �����

We dene inductively bipartite graphs Gn� n � N� with parts ��n� and
��n � �� �n���� G� � 
f�� �g� f�� �g� f�� �g�� Let A � ��n�� B � ��n � �� �n����

��



C � ��n����� �n����n�� and D � ��n����n��� �n���� Gn�� consists of two
copies of Gn� one on the parts A� C and the other on B� D� and a matching
between B and C� An easy induction shows that e
Gn� � 
n � ���n���
v
Gn� � �n��� and Gn �� F��� Thus Ge
F��� n�	 n logn�

For k � N consider graphs G with the following structure�
SG � �k �

� � a � b�� a� b � k� and G has �k� � k edges� fi� k � �g � G for i � �k� and
every i � �k� is connected by k edges to �k � �� k � � � a� and by k edges to
�k���a� k���a� b�� Thus deg
k��� � k and deg
i� � �k�� for i � �k��
We write F��
k� to denote the set of all such graphs�

Lemma ��� The sets of graphs F��
k�� k � N� are as de�ned above�

�� F��
�k � �� � B
k�F���� In particular� F��
��� � B

�

�

�
�F����

	� Ge
F��
k�� n�
k n logn�

Proof� Let K � �k � � and G � F��
K� be edge colored so that each color
appears at most k times� We select two edges fi� K � �g and fj�K � �g�
i � j � K � �� with di�erent colors� There are K edges fi� lg and K edges
fj� l�g such that K � � � l� � l holds for every two vertices l� and l� Because
in each of the two K�tuples we have at least � di�erent colors� we can select
vertices l� and l so that the colors of fi� K � �g� fj�K � �g� fj� l�g� and fi� lg
are all di�erent� Since i � j � K � � � l� � l� this subgraph is isomorphic
to F���

Let n � � and G be a simple graph with
SG � �n� which contains no

F � F��
k�� For every xed i � �n�� we list the endpoints j of fi� jg � G�
i � j� i � j� � j� �    � jt�� � n� Let s � bt�
k � ��c� We keep only
the edges with endpoints j�i����k���� i � �� �� � � � � s� 
If t � k � �� we keep
no edge fi� jg�� The graph G � obtained satises e
G �� � e
G��
�k � ��� kn
and for every two edges fi� jg� fi� j �g � G �� i � j � j �� there are at least k
edges fi� lg � G� j � l � j �� and at least k edges fi� lg � G� l � j �� Now we
proceed as in ���� We say that fi� jg � G �� i � j� has type 
j�m� if there are
two edges fi� lg and fi� l�g of G � such that j � l � l� and l � j � �m � l� � j�
Consider the partition G � � G��G� where G� is formed by edges with at least
one type and G� by edges without type� It follows from the denitions that
if k edges of G� have the same type� then F � G for some F � F��
k�� The
number of types is less than n
� � log� n�� Thus jG�j � kn � kn log� n� Let
i � �n� and i � j� � j� �    � jt�� � n be the endpoints j� j � i� of the
edges incident with i which have no type� Let dr � jr � jr��� r � �t � ���

��



and D � d� �    � dt�� � jt�� � j�� If d� � D��� then d� � �m � D for
some m � N� and fi� j�g has type 
j�� m� because of fi� j�g and fi� jt��g�
Thus d� � D�� and D � d� � D��� For similar reason d� � 
D � d���� and
D� d� � d� � D��� In general � � D� d� �    � dr � D��r for r � �t� ���
We obtain that t � blog�Dc � � � � � log� n� jG�j � �n � n log� n� and
jG �j � jG�j� jG�j � 
k � ��n log� n� Therefore

e
G� � kn� 
�k � ��e
G �� � 
�k � ��
k � ��n log� n�

�

Theorem ��� Let F�� � 
f�� �g� f�� �g� f�� �g� f�� �g�� Then
n  logn
 He
F��� n�
 n  
logn��  
log logn���

Proof� The lower bound holds already in the graph case and was proved
above� To prove the upper bound� we set B � F��
��� and apply 
��� of

Theorem ��� with the bounds f
n� 
 logn 
because Ge
B

�

�

�
�F���� n� �

Ge
B� n�
 n logn by Lemma ����� Ge
F��� n�
 n logn 
��� or from the pre�
vious bound by Ge
F��� n� � Ge
B� n��� and He
F��� n�
 n 
Theorem ����
we could as well start with the completely trivial bound He
F��� n� � �n��

He
F��� n�
 n  
logn���
Using this bound� the next application gives

He
F��� n�
 n  
logn��  
log logn���
The third application gives

He
F��� n� 
 n  
logn��  
log logn��  
log log logn��

 n  
logn��  
log logn���

�

By Theorem ����

Hi
F��� n�
 n  
logn��  
log logn��

as well�

��



� Concluding remarks

We mention possible directions for further research� As for Theorem ����
singleton hypergraphs Sk show that Hi
F � n� 
 He
F � n� is not always
true� We conjecture that Sk are the only exceptions� if F �� Sk� then
Hi
F � n� � cHe
F � n� holds with a constant c � � depending only on F

but cf� Theorem ��� and the example with F���� One may try to extend
the precise results of Section �� say to the case when F is a graph with � or
� edges� One may try to explain the repetitions of functions He
F � n� and
Hi
F � n�� such as for no� �� ��� and ����� or for no� ����	� ��� and ���

An interesting question is about the order of magnitude of the hypergraph
counting functions considered in Section �� We can prove that log
h�i�s�n � and
log
h�i�n � are equal to n logn�n log logn�O
n� but more precise asymptotics
are desirable� The ratio h�i�n �h�i�s�n seems to tend to a limit lying between ���
and ���� What is this limit$ Which partition � � n maximize the number of

simple or all� hypergraphs with weight n and edge type �$

As for the class OBF 
orderly bipartite forests�� we dene a hierarchy of
three subclasses of OBF

LIN � ALIN � CLIN � OBF�

LIN contains F with linear extremal function� He
F � n�
 n� ALIN contains
F with almost linear extremal function� He
F � n�
 n  f
�
n�� where �
n�
is the inverse Ackermann function and f
n� is primitively recursive� CLIN
contains F with close to linear extremal function� He
F � n� 
 n  
logn�c
where c � � is a constant depending only on F � 
If F is a hypergraph and
He
F � n� 
 n  
logn�c� then by Theorem ��� F must be an OBF�� The
rst two inclusions are sharp� we have seen that F�� � ALINnLIN and that
F�� � CLINnALIN� Is it true that CLIN�OBF$ If not� what general upper
bound can one give for He
F � n� if F is an OBF$ As for Theorem ���� what
is the exact asymptotics of He
F��� n�$

A basic but di"cult question is to determine which OBF lie in LIN� which
in ALIN� and which in CLIN� We summarize brie%y our knowledge� Here we
have proved that the four OBF with e
F� � �� namely F��F���F��� and F���
are in LIN� A more general result is given in ���� Theorem ����� for every
k � N the star forest

N 
k� � 
fi� �k � i� �g� fi� �k � ig � i � �k��

��




�k� is matched with �k��� �k� decreasingly and with ��k��� �k� increasingly�
is in LIN� 
In ���� the linear bound is proved only for the graph case but
blowing up the leaves of N 
k� and using Theorem ��� we can extend it to
hypergraphs�� We have proved here that every star forest is in ALIN� the
containment of F�� forces it to be in ALINnLIN� As for CLINnALIN� it
contains F�� and some modications of it but we do not know any large
subfamily�
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