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Abstract

A hypergraph H = (H; : ¢ € I) with the vertex set ;c; H; =
n] = {1,2,...,n} contains another hypergraph H' = (H! : i € I')
with the vertex set [m] (m < n) if there is a subsequence 1 < v; < vp <
-+ < vy < nof [n] and an injection f : I’ — I such that, for every
r€[m]and i € I', r € H; implies that v, € Hy(;. We investigate the
extremal functions H.(F,n) and H;(F,n) defined as the maximum
size e(H) = |H| = |I|, resp. weight i(H) = ;o7 |Hi|, of a simple H
with n vertices if 7 does not contain F. We determine both functions
exactly if F has only disjoint singleton edges or if i(F) < 4 (there are
55 such F). We give enumerative formulas for the numbers of both
simple and all H with 4(H) = n and derive two identities analogous
to Dobinski’s formula for Bell numbers. In the extremal problem we
derive, by means of Davenport—Schinzel sequences, two general almost
linear bounds. We consider the forbidden 4-path Fyo = 13,15,23,24
introduced by Firedi and prove that H.(Fjo,n) and H;(Fy2,n) are
O(nlog? nloglog®n). (Fiiredi proved in the bipartite graph case the
O(nlogn) bound.)

1 Introduction and motivation
Let us begin by stating a typical example of the extremal problems which we

shall investigate in our article. If H is a simple hypergraph with the vertex set
[n] ={1,2,...,n} and such that for no four vertices 1 <a<b<c<d<n
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and for no two distinct edges A, B € H the four incidences a,c € A and
b,d € B occur, what is the maximum number of edges |H| and what is the
maximum weight Y ycy |H|. Among other results we prove that the former
maximum is 4n —5 and that the latter is 8n —12 (n > 1). Actually we proved
it already in Klazar [15].

A hypergraph H = (H; : i € I)is a finite list of finite nonempty subsets H;
of N ={1,2,...}, called edges. Simple hypergraphs have no repeated edges.
The elements of UH = U;c; H; C N are called vertices. Our hypergraphs
have no isolated vertices. Let H = (H;: i € I) and H' = (H]: i € I') be
two hypergraphs. If there exists an increasing (with respect to the standard
linear ordering of N) injection F' : UH' — UH and an injection f : I' — [
such that the implication v € H] = F(v) € Hy; holds for every v € UH'
and i € I', we say that H contains H' and write H DO H'. Else we say that
H is H'-free and write H 2 H'. The subsets F(UH') and f(I') form the
H'-copy in H. For example, H is ({1}, {1}2)-free iff its edges are pairwise
disjoint, that is, H is a set partition. The initial example corresponds to
H'-freeness for H' = ({1,3},{2,4}). If F and f are bijections (remember
that F' is increasing) and the equivalence v € H] <= F(v) € Hy(; holds for
every v € UH' and i € I’, we say that H' and H are isomorphic.

The order v(H) of H = (H; : i € I) is the number of vertices v(H) =
|UH]|, the size e(H) is the number of edges e(H) = |H| = |I], and the
weight i(H) is the number of incidences between the vertices and the edges
i(H) = Yier | Hi|- Trivially, v(H) < i(H) and e(H) < i(H).

We associate with every hypergraph F (the letter F is for “forbidden”)
two (extremal) functions He(F), H;(F) : N — N defined by

H.(F,n) = max{e(H): H pF & H is simple & v(H) = n}
Hi(F,n) = max{i(H): H pF & H is simple & v(H) = n}.

It is clear that in the definition H must be simple. (For F of the form
({1}1,{1}s,...,{1}x) the simplicity may be dropped but not for any other
F.) On the other hand, F may be any hypergraph, not necessarily simple.
In Sections 5 and 6 we work also with the graph version G(F,n) of H.(F,n)
in which ‘H runs through graphs (|E| = 2 for every E' € H) and with the
unordered versions HY(F,n) and G¥(F,n) in which the vertex injection F'
is not required to be increasing. Thus for a graph F the function G¥(F,n)
equals to the classical graph extremal function ex(F,n). The reversal F is
obtained from F by reverting the linear order of |J F. Obviously, H,(F,n) =



H,(F,n) and H;(F,n) = H;(F,n). It is also obvious that, for every n € N
and F, H,(F,n) < 2" — 1 and H;(F,n) < n2"! but much better bounds
can be given. In the forthcoming sections we investigate the behaviour of
H.(F,n) and H;(F,n) for various fixed F and n running through N =
{1,2,...}. We considered H.(F,n) and H;(F,n) implicitly already in [15].
Except this article, as far as we know, our extremal setting is new and was
not investigated before. We stress again its two not so usual features: the
containment is an ordered one (the vertex injection F' is increasing) and H
may have edges of any sizes (even if the forbidden F is a mere graph).

Before summarizing our results we say few words about our motiva-
tion and about connections to other results in extremal set systems the-
ory. In this branch of combinatorics (see, for example, surveys of Frankl
[10], Fiiredi [8], and Tuza [23, 24] or the collection [11]) one is interested in
the maximum number of edges in set systems subject to some restrictions.
These may restrict intersections of edges or they may exclude some forbidden
(sub)configurations. Almost always the underlying universum of vertices is
supposed to be unordered. We know of only one systematic study of a class
of “ordered” extremal problems (for set systems; we are not speaking here
of posets, words etc.), the work of Fiiredi and Hajnal [9] that deals with
simple bipartite graphs with ordered parts. (In [9] the equivalent language
of 0-1 matrices is used. So is in Anstee, Ferguson and Sali [1], see also fur-
ther references thereof, but their extremal problems are “unordered”.) One
our aim is just to explore the properties of H.(F,n) and H;(F,n) and the
possibilities which open here. Other aim is to apply results and techniques
from the theory of Davenport—Schinzel sequences which deals with extremal
problems for words; necessary definitions and references will be given in Sec-
tion 5. Also, we want to extend some results of [9] from 2-element edges to
edges of arbitrary cardinality.

In Section 2 we consider hypergraphs Sy which consist of k£ disjoint sin-
gleton edges. (For the containment of Sy the order of vertices is irrele-
vant.) Theorems 2.1 and 2.3 determine H,(Sy,n) and H;(Sk,n) exactly.
We describe all extremal hypergraphs as well. In Theorem 2.2 we prove
that if F # Sk then H.(F,n) is a strictly increasing function. Trivially,
H.(F,n) < H;(F,n) for every n € N and F. Theorem 2.4 states that if
F has no two edges of which one completely precedes the other, then for
every n € N also H;(F,n) < cH.(F,n) where ¢ > 0 depends only on F.
Theorem 2.5 gives a trivial polynomial upper bound on H.(F,n). In Section
3 we precisely determine H.(F,n) and H;(F,n) for each of the 55 F with
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1 < i(F) < 4. Section 4 is enumerative. In Theorem 4.1 we give formulas for
the number of hypergraphs, both simple and all, with prescribed numbers of
edges of a given cardinality. We use the formulas to calculate the total num-
bers of hypergraphs, both simple and all, of weight n for n < 10. In Corol-
lary 4.3 two identities similar to Dobinski’s formula are given. (Dobinski’s
formula deals with set partitions and our identities deal with hypergraphs.)
In Section 5 we apply generalized Davenport—Schinzel sequences to obtain
two almost linear bounds in which «(n), the inverse Ackermann function,
is involved. In Theorem 5.1 we prove that for every fixed set partition F
for every F-free H the weight i(?) is bounded almost linearly in e(H). An
example is given showing that the superlinearity is inevitable. Theorem 5.2
gives an almost linear upper bound on G.(F,n) (H has only two-element
edges) in the case that F is a forest whose components are stars which have
all centers smaller than all leaves. An example shows that the superlinearity
is again genuine. In Section 6 we investigate the case when F is a forest
such that one part of the bipartition of F is smaller than the other (it is
easy to see that for other F we have H.(F,n) > n”, v > 1). Theorem 6.2
gives a method for deriving good upper bounds on H.(F,n) from those on
Ge(F,n). We give three applications. Theorem 6.3 extends the classical
(easy) unordered graph result ex(F,n) < n if F is a forest to hypergraphs:
H!(F,n) < n for every forest F. Theorem 6.4 extends the almost lin-
ear graph bound of Theorem 5.2 to hypergraphs: H.(F,n) is almost linear
whenever F is a star forest. In the last Theorem 6.6 we prove the bound
H.(F,n) < n(logn)*(loglogn)® if F = ({1,3},{1,5},{2,3},{2,4}). This
forbidden path was investigated first by Fiiredi who in [7] and [9] proved
graph bounds nlogn < G.(F,n) < nlogn (for ordered bipartite graphs).
Section 7 contains some open problems.

We need few more definitions. Notation f(n) < g¢(n) is synonymous
to the f(n) = O(g(n)) notation. If m,n € N and m < n, then [n] =
{1,2,...,n} and [m,n] = {m,m +1,...,n}. The degree deg(v) = degy (v)
of vin H = (H;: i€ I)is the number of the edges H; containing v. The
simplification of ‘H is a simple hypergraph H' obtained by keeping from each
family of repeated edges of H just one member. The deletion of H; from
H gives the hypergraph (H; : i € I') where I' = I\{j}. The deletion of
a € UH from H gives the hypergraph (H;\{a} : i € I) where we omit ) if
H; = {a} (this operation in general destroys simplicity). We may also delete
a only from some specified edges. A (connected) component H, of H is the
minimal subhypergraph #; of A such that every H € H\H, is disjoint with
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every H, € H;.

2 Singleton hypergraph S;

In this section F = S, = ({1},{2},...,{k}). We give exact formulas for
H.(Sk,n) and H;(Sk,n). For k =1 both extremal functions are undefined.

Theorem 2.1 Let k > 2 and Sy = ({1},{2},...,{k}). Then

;1 ... 1<n<k
He(s’“”):{Qk—Q o>k

In particular, for k > 3 the function H,(Sg,n) has the global mazimum
Ho (S, k—1)=2F1—-1.

Proof. The first formula is clear. For k > 2 and n > k we have H.(S;,n) >
2k=2 because of the hypergraph ([n], X : 0 # X C [k — 2]). We prove by
induction on k that for n > k also H,(Sy,n) < 2872 For k = 2 this holds
because H,(Sy,n) = 1 for every n € N. Let n > k > 3 and H be simple, Si-
free, and UH = [n]. We can suppose that (i) deg(v) > 2 for every v € UH
and (ii) there isan H € H with |H| > 2 and an a € H such that H\{a} & H.

If (i) is false, there is a vertex a and an edge H such that a € H and a lies
in no other edge of H. We delete H from A and obtain a simple hypergraph
‘H' that must be Sy_1-free because any Sy,_1-copy in ‘H' can be extended by H
and a to Sg-copy in H. By induction, e(H) = e(H')+1 < (2*"D-1-1)+1 =
2k=2 Suppose that (ii) is false. Let a € |JH be arbitrary and H € H, a € H,
be such that |H| is as small as possible. If |H| > 1, we take b € H, b # «a,
and the negation of (ii) gives H\{b} € H, contradicting the minimality of
|H|. Thus |H| =1 and {a} € H. We obtain that {a} € H for every vertex
a of H but this implies the contradiction H D Sy, (n > k).

We can assume that (i) and (ii) hold. Let ¢ and H be as in (ii). Let
H' € H be such that a € H', H # H, and, if possible, |H'| = 1. We
define H' by deleting H' from H and then a from H\{H'}. Some edges
may get duplicated and we set H” to be the simplification of H'. By (i),
v(H") =v(H)—1=n—1> k—1. Since any Sx_;-copy in H" can be extended
by H' and a to an Sg-copy in H, H" is Sy_i-free. Also, e(H') < 2e(H") — 1
because, by (ii), H\{a} is not duplicated in H'. Notice that ) ¢ H" because



we have deleted {a} as H'. By induction (now we use the stronger upper
bound on e(H")),

e(H) =e(H)+1< (2e(H") — 1)+ 1 =2e(H") < 22012 = gk=2,
O

H.(Sk, n) has the strange feature of being independent of n. We show that
the other functions H.(F,n) are increasing, as one expects.

Theorem 2.2 If F # Sy then H.(F,n) < H,(F,n+ 1) for every n € N.

Proof. Let F # S, and UF = [m]. We say that {u} € F is an isolated
singleton of F if deg(u) = 1. Let [ be the maximum number such that
{1},{2},...,{l} are isolated singletons of F. Since F # S, 0 < [ < m.
Clearly, any other isolated singleton of F is preceded by at least [+1 vertices.

We proceed by induction on n. The inequality holds for every n < m — 1
because then H.(F,n) =2" — 1. Let n > m — 1 and let H attain the value
H.(F,n). lfa € H € H and {a} ¢ H, we replace H by {a}. The new hyper-
graph is simple, F-free, and it has the same number of edges and vertices as
‘H; order does not decrease because else we would have contradiction with the
inductive assumption. Repeating the replacements we obtain a simple F-free
hypergraph H' such that e(H') = e(H) = H.(F,n), UH = UH = [n], and
{a} € H' for every a € [n]. We define H" by inserting in H’', between [ and
[+ 1, a new singleton edge {u}. H" is simple and satisfies v(H") = n + 1
and e(H") = e(H') + 1 = H.(F,n) + 1. We show that H" is F-free. This
gives H.(F,n+ 1) > e(H") > H.(F,n). The new edge {u} would have to
participate in every F-copy in H". It cannot play the role of any of the initial
[ isolated singletons of F because {1},{2},...,{l} € H' and we would have
already F C H'. It cannot play the role of any other isolated singleton of F
either because those are preceded in F by at least [ + 1 vertices but {u} is
preceded in H" by only [ vertices. Thus H" 2 F. O

Theorem 2.3 Let k > 2 and S, = ({1},{2},...,{k}). Then

n2n—! Lo 1 <n<k
H;(Sk,n) =< n+ (k—2)23 oo k<n <2341
(k—1n—(k—2) ... n>max(k,283+1).

Note that H;(Sp, k — 1) > H;(Sk,n) for k < n < max(k,282) (k> 3).
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Proof. The formula is clear for 1 < n < k. We suppose that n > k£ > 2 and
that A is a simple hypergraph with U# = [n]. Its dual H* is defined by

H* = (H;: i €[n]) where H ={H € H: i € H}.

Thus e(H*) = v(H) = n. Let I'(X) = I'y(X) be for X C [n] defined by

U H;

1€X

LX) = —{He#H: HNX £0}].

By the defect form of P. Hall’s theorem (Lovész [16, Problems 7.5 and 13.5])
applied on H*, H is Si-free if and only if

max | X|-T(X)>n—k+1.

X C[n]
Thus if H is Sy-free, there exists a set X C [n] of cardinality [, n — k +2 <

[ <n (I'(X)>1), intersected by only at most [ —n+k — 1 edges of H. And
contrarywise, every such a hypergraph is (trivially) Si-free. Hence

i(H)<(-—n+k-=Dn—(>I-n+k—=2)+n-02"""= f(l,k,n)

and this bound is attained.
The first difference of f(I, k,n) with respect to [ is the increasing function

fl+1,kn) = fl,k,n) =n—1—(n—1+1)2""2

Therefore f(l, k,n) attains its maximum in one of the endpoints [ = n—k+2
and [ = n (or in both). The corresponding values are f(n — k + 2,k,n) =
n+ (k—2)283 and f(n,k,n) = (k— 1)n — (k — 2). These values are equal
for n = 2¥3 + 1. For n < 2¥°3 + 1 the former value dominates and for
n > 283 11 the latter. We obtain the other two formulas. Maximum
weights are attained by H; or by Hs where the edges of H,, respectively of
Hs, are [n] together with all nonempty subsets of some (k — 2)-element set
Y C [n], respectively [n] together with some & — 2 distinct (n — 1)-element
subsets of [n]. O

It follows from the proof that H; and H, are the only types of extremal
hypergraphs for n > k. For 1 < n < k the maximum weight is attained only
by the complete hypergraph. We conclude that the number of simple Si-free
hypergraphs having order n and the maximum weight is 1 if 1 < n < k and
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ﬁk,n(ka) if n > k, where for k = 2,3,4 always 1, = 1 and for £ > 5 we
have 9, = 1 if n #2873 + 1 and ny gr-sy = 2.

By means of P. Hall’s theorem one can give a quick proof of Theorem 2.1
as well. The number of #H attaining H.(Sk,n) is seen to be 1 for n < k and
k=2 (kg) for n > k.

Two subsets X and Y of N are separated if max X < minY or max} <
min X. Below we can assume that e(F) > 1 because for F with just one

edge H.(F,n) and H;(F,n) are easy to determine exactly.

Theorem 2.4 Suppose that F has no two separated edges, p = v(F), and
q=e(F)> 1. Then for everyn € N

Hi(F,n) < (2p—1)(¢— 1)H(F,n).

Proof. Let #H attain H;(F,n). We transform # in a new hypergraph #'
by keeping all edges with less than p vertices and replacing every edge H =
{v1,v9,...,v5} of Hwith s > p, where v; < vy < --- < wg, byt = ||H|/p| new
p-element edges {vi,...,Up}, {Vps1,-- - V2pty -y {Vu—1)pt1s-- - Vip}. H' may
not be simple and we set " to be the simplification of #'. Two observations:
(i) no edge of H' repeats ¢ or more times and (ii) H" is F-free. If (i) were
false, there would be ¢ distinct edges Hy, ..., H, in M such that | N, H;| > p.
But this implies the contradiction F C H. As for (ii), note that any F-copy
in ‘H" may use from every H € H only at most one new edge and so it is
an F-copy in H as well. The observations and the definitions of H' and H"

imply

(2p = 1Diu(#H) _ (2p—1)(g = 1)i(H")

H(F,n)=1i(H) < <
(F,n) = i(H) . p
< (2p—1)(g—De(H")
< (2p - 1)((] - 1)He(f7 TL)
In the last innocently looking inequality we use Theorem 2.2. O

The same idea gives for H.(F, N) a trivial polynomial bound.
Theorem 2.5 If F is a hypergraph with p = v(F) and q¢ = e(F), then for

everyn € N
H.(F,n) < (q—l)(Z) + <pﬁ1> I (T)



Proof. Let H attain H.(F,n). We put in ‘H' every H € H with |H| < p
and, for every H € H with |H| > p, a p-element subset H' C H. Since no
p-element edge of H' repeats more than ¢ — 1 times (else # D F) and other
edges do not repeat at all, we have

aFa) = = ety < a0 (1)« (") ()

For F = ([p]1, P2, - - -, [p]) this bound is best possible.

3 One hundred and ten extremal functions

The table below lists extremal functions of the 55 nonempty forbidden F
with i(F) < 4. In the proofs we refer to F according to the numbers in
column 1. Star indicates that the reversal F is nonisomorphic to F and is
not listed, because it has the same extremal functions. F are visualized in
column 2. Hypergraphs F with i(F) = 1,2,3, and 4 occupy lines 1, 24,
5-11, and 12-39, respectively. Empty circle o denotes a vertex that is a
singleton edge and full circle e a vertex that is not a singleton edge. Two-
element edges are indicated by arcs and larger edges by ovals. Concentric
circles or arcs sharing both endpoints (F31) indicate edge multiplicities. For
example, Fig = ({1}1,{1}2,{1,2}) and F35 = ({1,2,3},{2}). Columns 3
and 4 list functions H.(F,n) and H;(F,n). The formulas given hold for all
n € N if not said otherwise. The extremal functions for hypergraphs F33 and
F34 were determined already in [15] but we give the arguments here again
for the sake of completeness.

Theorem 3.1
no. picture of F H.(F,n) H;(F,n)
1 o not defined not defined
2 © n n
3 o o 1,1, n




no. picture of F H.(F,n) H;(F,n)

4 L n n

5 [%"J 2n (n > 1)
6* ©® o n 2n — 1

7 o o o 1,3,2,2,. .. o — 1 (n#2)
]* o o n 2n—1

9* o D 2n — 1 3n—2

10 ‘ o . 2n—1 3n —2
| e |
12 2n (n > 2) 3n (n > 2)
13 0 2n — 1 |1 +1
14 © © n+1(n>1) 3n —2
5| © o o n+1(n>1) 3n—2

16 o © o n+1(n>1) 3n—2

17 o o o | 1,3,7,4,4,...| 3n—2(n#3)
18* ©—o 2n —1 dn —6 (n > 5)
19* © o 2n —1 3n —2
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no. picture of F H.(F,n) H;(F,n)

20 ‘ © e 2n —1 3n —2

21* o o—e 2n — 1 3n—2

22% o o 2n —1 3n —2

23* 6 o : 2n — 1 3n—2

24 o—o0 n 2n —1

25| o o e—e |[4n—5(n>1)| 8n—12(n>1)
2%% | o & o b [4n—5(m>1)| 8n—12(n>1)
27 | o e—e o [4n—5(m>1)| 8n—12(n>1)
28 é o o s |4n—-5m>1)] Sn—12(n>1)
20* m 2n —1 3n — 2

30 >~ oo {%J—i—n 2[%2J+n(n7é3)
31 VR (”;1) n?

32 | oo e | 2|HE) g |5 ) gy o
33 ¢ o—o b |4dn—-5(n>1)] 8n—12(n>1)
34 ‘ zg ¢ [4n—5mn>1)| 8n—12 (n>1)
I




no. picture of F H.(F,n) H;(F,n)
. CHE

37 oe e o) | womgn | g
39 @ non ot

Proof. # is a generic simple F-free hypergraph with UH = [n], n € N. H
is full if {a} € H for every a € UH. If a € H € H and {a} ¢ H, we can
replace H by {a}. (We used this replacement in the proof of Theorem 2.2.)
Our hypergraph remains simple and F-free, and its size has not changed (but
order might decrease and weight decreases). Repeating this operation, we
replace 1 by a full H' with e(H') = e(H) and v(H') = n' < v(H) =n. If
e(H') < f(n') for a nondecreasing function f, we have also e(H) = e(H') <
f(n') < f(n). This little trick helps us to obtain upper bounds on H,(F,n)
(it does not help for no. 4, 11, 29-34, and 39 where F has no singleton) but it
does not work for H;(F,n). When determining H,(F,n) we assume, without
repeating it every time, that # is replaced by a full ' with UH' = [»/].

For obtaining upper bounds on H;(F,n) we use induction and/or other
replacement arguments. To simplify the situation, we get rid of a large edge
H € H by replacing H by some sets H;, usually (but not always, see Fsg)
subsets of H. For the resulting hypergraph #, one has to check three things:
Ho remains simple (H; ¢ H for every i), i(Ho) > i(H) (X; |Hi| > |H]),
and Hy remains F-free (the reason is usually that any F-copy may use at
most one of the new edges H; and therefore, since H; C H, Hy O F implies
the contradiction H D F). For each particular replacement these three
conditions are easy to check and we leave it to the reader. Repeating the
replacements, we eliminate all large edges.

1. No such H exists. 2. H is a set partition. 3. H has one edge. 4. H
has only singleton edges.

5. Recall that #' is full. Therefore edges with |H| > 2 must be mutually
disjoint and H.(F,n) < n + |n/2]|, which is easy to attain. The value
H;(F,n) =2n for n > 1is clear; H;(F,1) = 1.
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6. H' besides singletons has no other edges and H.(F,n) < n, which
is easy to attain. As for the weight, we have (in #) deg(a) < 2 for every
a € [n — 1], and equality for an a implies deg(n) < 2. Hence deg(a) = 2 for
an a < n implies i(H) < 2n. Even i(H) < 2n — 1 because deg(a) = 2 for
every a € [n] is impossible (H is simple). In the other case when deg(a) =1
for every a < n again i(#) < 2n — 1 because then deg(n) < n. In both cases
i(H) < 2n — 1, attained by # = ([n],[n —1]) and H = ({i,n},{n} : i€
[n —1]).

7. Particular case of Theorems 2.1 and 2.3; H;(F,2) = 4.

8. H.(F,n) = n for the same reason as in 6. As for H;(F,n), every
component H; of H consists of several edges which pairwise intersect in one
common vertex that is their largest vertex. Thus i(H;) < 2v(H;) — 1 and
Hi(F,n) <2n —1, attained by H = ({i,n},{n} :i € [n —1]).

9. In H', |H| < 2 for every edge and |H| = 2 implies 1 € H. Hence
H.(F,n) <n+ (n—1), attained by H = ({1}, {1,:}, {i} : ¢ € [2,n]). As for
H;(F,n), we eliminate all edges with |H| > 3 by replacing H by two-element
sets {a,b} where a = minH and a < b € H. Since 1 € H for every two-
element edge, H;(F,n) < n + 2(n — 1), attained by the already mentioned
H.

10. Use arguments similar to 9. Allowed two-element edges are now
{i,i+1}.

11. H has only edges of cardinalities 1 and 2. Thus H.(F,n) = (T) + (g)
and H;(F,n) = (T) + 2(3)

12. If |H| > 3 foran H € H', then H, ¢ H' for some H, C H with |H,| =
2. Replacing H by H;, we get rid of all edges with three and more vertices.
Every vertex is then contained in at most two two-element edges. Therefore
H.(F,n) < n+n, attained for n > 2 by # = ({i}, {i,i + 1} : i € [n]) (taken
modulo n). For n = 1,2 we have H.(F,n) = 1,3. The value H;(F,n) = 3n
for n > 2 is clear; for n = 1,2 we have H;(F,n) =1, 4.

13. We eliminate from ' all edges with three and more vertice as in
12. Two-element edges may intersect only in the very last vertex n'. Thus
H.(F,n) <n+ (n—1), attained by H = ({i}, {n},{i,n} : i € [n —1]). As
for H;(F,n), let n > 3 and v be the first vertex with deg(v) > 3 (if v does
not exist, i(H) < 2n). If deg(v) = 3, i(H) < 3n — 1 because deg(w) < 3 for
every w > v and 3n cannot be attained. If deg(v) > 3, necessarily v = n and
deg(w) < 2 for w < n. Hence H;(F,n) <2(n—1)+1+ (n—1)+ 2],

2
attained by % = ({¢,n}, {2/ —1,24,n},{n} : i € [n—1],7 € [|%]]) for odd
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n > 3 and the same H plus {n — 1} for even n > 4.

14. Recall that H' is full. Besides singletons it may have at most one
other edge and H.(F,n) < n+ 1, which is easy to attain; H.(F,1) = 1. To
determine H;(F,n), notice that, in H, deg(w) > 4 implies that deg(v) =1
for every other vertex v. Then i(H) < 2n — 1. Otherwise deg(w) < 3 for
every w and i(H) < 3n. Since deg(w) = deg(v) = 3 implies that w and v
lie in the same three edges, weights 3n and 3n — 1 cannot be attained but
3n — 2 can, by H = ([n],[n — 1], [2,n]).

15. H' has no edges H with |H| > 2 and may have only one two-element
edge, {n'—1,n'}. Thus, for n > 1, H,(F,n) < n+1, which is easy to attain;
H.(F,1) =1. H = ([n],[n — 1],[2,n]) shows that H;(F,n) > 3n — 2. We
prove the opposite inequality by considering deg(1) in a general H. Case
deg(1) > 4 is impossible because it implies that % D F. So does deg(1) = 3
if an H € H exists with 1 ¢ H. Thus deg(1) = 3 implies that e(H) = 3 and
i(H) < 3n—2. If deg(l) = 2, we delete the two edges containing 1 from
H and obtain i(H) < n+ (n—1)+ (n — 1) = 3n — 2 because the resulting
hypergraph does not contain F3. If deg(1) = 1, we proceed by induction on
v(H). Let H € H with 1 € H. If Hy = H\{1} ¢ H, we delete 1 (simplicity
is preserved) and use induction. If H; € H and |H;| < 2, we delete 1 and H;
and use induction. If H; € H and |H;| > 3, let 1, u, v, and w be the first four
vertices of H (in this order). If both sets Hy = H;\{u} and Hy = H,\{v}
are edges of 1, we have H D F since u € HN Hy, v € Hy, and w € Hj.
Hence one of the sets, say Ho, is not an edge and we can again use induction,
deleting 1 from H and v from H;.

16. H.(F,n) is handled similarly to 15. H = ([n],[n — 1],[2,n]) shows
that H;(F,n) > 3n—2. We prove the opposite inequality. Let n > 3 and let
u € [2,n—1] have the maximum degree in H among the vertices in [2, n —2].
If deg(u) = 1, then i(H) < deg(1) +deg(n)+n—2<n+n+n—2=3n—-2.
If deg(u) > 4, then # D F, which is a contradiction. The same holds if
deg(u) = 3 and an edge H exists with v ¢ H. Thus deg(u) = 3 implies
e(H) =3 and i(H) < 3n — 2. Let deg(u) = 2. If deg(1) > 3 and deg(n) > 3,
we have again H D F or e(H) = 3. Thus, say deg(1) < 2. If deg(1) =1, we
delete the edge containing 1 and obtain i(H) < n+2(n—-1)—1=3n—3
because the rest of 1 does not contain Fg. If deg(1) = 2, we delete H € H
such that 1 € H and |H| < n — 1. The rest again does not contain Fg and
thus i(H) <n—1+2n—1=3n—2.

17. Particular case of Theorems 2.1 and 2.3; H;(F,3) = 12.

18. In H’', two nonsingleton edges may intersect only in the common last
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vertex, which implies that e(H;) < 2v(#;) — 1 holds for every component
Hy of H'. Hence H.(F,n) < 2n — 1, attained by ‘H = ({i},{i,n},{n}: i€
[n —1]).

As for H;(F,n), consider an ‘H with JH = [n]. Since H 5 F, deg(1) < 2.
We delete 1 from H and obtain H;. H; has at most two duplicated edges.
Let H, = H, be one of the duplications. If |H;| = 1, we delete H; from H;. If
|Hy| > 2, we delete from H; its last vertex. This creates no new duplication
(else H D F). In this way we remove from #; both possible duplications
and obtain a simple Hy with UMy = [2,n] and i(H) < 4 + i(H2). We have
the inductive inequality i(#) < 4 + H;(F,n — 1). Note that deg(2) < 2
and thus for induction we may as well delete 2 instead of 1 and that if
one of {1}, {2}, and {1,2} is an edge of #, we obtain the streghtening
i(H) <3+ H;(F,n—1). Note also that deg(v) > 3 implies that v is the last
vertex of every H € H,v € H.

We prove that for n = 1,2,3,4,5,6 we have H;(F,n) = 1,4,8,11,15,18
and that H;(F,n) = 4n — 6 for n > 6. The first two values are trivial. By
the inductive inequality, H;(F,3) < 4 + 4 = 8. Weight 8 is attained by H =
({3},{1,3},{2,3},[3]). Let n =4 and UH = [4]. Clearly, deg(1),deg(2) < 2.
Let first deg(3) > 3 and p be the number of edges intersecting both [2]
and [3,4]. Clearly, p < 2-2. Since no edge can contain both 3 and 4,
deg(3)+deg(4) < p+2 < 6and i(H) = X1 deg(i) < 2-2+6 = 10. If deg(3) <
2, let p be the number of edges H € H such that 4 € H and HN[3] # (. Then
p < H.(Fs5,3) =4,deg(4) < 1+p <5, and i(H) = ] deg(i) < 3-2+5 = 11.
Weight 11 is attained by H = ({4}, {7,4},[4] : 7 € [3]). Thus H;(F,4) = 11.
By the inductive inequality, H;(F,5) < 4411 = 15 and weight 15 is attained
by # = ({5}, {i,5}, {2 — 1,25,5} : i €[4],j € [2)).

[t remains to show that H(F,6) = 18 and not 4+ 15 =19. H(F,6) > 18
due to H = ({6}, {i,6},{1,2,6},{3,4,5,6} : i € [5]). We elaborate the
argument for n = 4. Let UH = [6]. Clearly, deg(1),deg(2) < 2 and deg(3) <
4. If deg(3) = 4, no edge intersects both [3] and [4, 6] and i(H) < 2H;(F,3) =
16. If deg(3) = 3, we delete 3 from #H. If this creates a duplication, one of {1},
{2}, and {1, 2} is an edge of H and by the above remark i(H) < 3+H;(F,5) =
18. If no duplication arises, again i(H) < deg(3) + H;(F,5) = 18. So
deg(3) < 2. Let k = deg(4). Let first £ > 3 and p be the number of edges
intersecting both [4] and [5, 6] (none of them contains 4). The edges for which
4 is the last vertex contribute by at least £ —1 to deg(1) +deg(2) +deg(3) < 6
and thus k < 7andp < 6—(k—1) =7—k. If deg(5) > 3, deg(5) +deg(6) <
p+2 < 9—Fk (no edge contains both 5 and 6) and i(H) = S%deg(i) <
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3-24+k+4+9—Fk =15. If deg(5) < 2, we have deg(6) < 2+p <9 —k
and i(H) < 4-2+k+9—k = 17. Thus k = deg(4) < 2 and we have
deg(i) < 2 for every i € [4]. If deg(5) > 3 we set again p to be the number
of H € H intersecting both [4] and [5,6]. We have p < 4.2 = 8 and
deg(5) + deg(6) < p+ 2 < 10. Thus i(H) = X0 deg(i) < 4-2+10 =18. If
deg(5) < 2, let p be the number of H € H intersecting [5] and containing
6. Then p < H.(F5,5) = 7 and deg(6) < 1+ p < 8. We have again
i(H) <5-2+8=18. Thus H,(F,6) = 18.

Finally, using induction starting at n = 6 and the inductive inequality
we see that for n > 6 we have H;(F,n) < 4n — 6. The opposite inequality is
proved by the hypergraph H = ({i,n— 1}, {i,n}, {n—1},{n}: i € [n—2]).

19. Let v be the first vertex in H' with deg(v) > 2. If deg(v) = 2, H'
has at most one nonsingleton edge and e(H') < n + 1. If deg(v) > 2, every
nonsingleton edge has two vertices and starts in v. Thus H.(F,n) < 2n — 1,
attained by # = ({1},{1,¢},{i} : 4 € [2,n]). This hypergraph shows that
H;(F,n) > 3n — 2. To prove the opposite inequality, we take a general
H and argue as in 15. If deg(l) > 3, |[H| < 2 for every edge of H and
|H| = 2 implies 1 € H. Thus i(H) < 3n — 2. If deg(1) = 2, we delete
the two edges containing 1. Since the rest does not contain F,, we have
iH) <n+Mn—-1)+(n—1) =3n—2. If deg(l) = 1, let H and H; be
given by 1 € H € H, and Hy = H\{1}. If H, ¢ H or |H;| < 2, we delete 1
and, if necessary, H;, and use induction. If H; is an edge and |H;| > 3, then
Hy = H \{u}, where u = min H, is not an edge (else H D F). We delete 1
from H and u from H; and use induction.

20. In H’', for every two nonsingleton edges H; # Hy we have H; < H,
or Hi > H,. (H; < H, means that x < y for every z € Hy,y € Hy.)
Therefore H' has at most n — 1 such edges. H.(F,n) < 2n — 1, attained
by ({i,i + 1},{i},{n} : ¢ € [n — 1]). This hypergraph shows also that
H;(F,n) > 3n — 2. We prove the opposite inequality by induction. Let
H have UH = [n] with n > 3. If deg(v) = 1 for every v € [2,n — 1]
then i(H) = deg(l) + deg(n) + n — 2 < 3n — 2. If deg(v) > 3 for some
v € [2,n — 1], we split H into H; and H, where H; takes the edges of H
lying to the left of v, H, takes those lying to the right, and if {v} € H
then {v} € Hi; no edge lies on both sides of v because H » F. We have
v(Hi) + v(Hz) < n+ 1. If v(H1) + v(Hz) < n, then by induction i(H) =
i(H1)+i(He) < 3v(Hi)—2+3v(Ha) —2 < 3n—4. lfv(H1)+v(Ha) =n+1,
we note that i(Hy) < 3v(H3) — 3 because now v = min{JH, and {v} & H,.
Again by induction i(H) = i(H1) + i(H2) < 3n — 2. The last case is if
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deg(v) = 2 for some v € [2,n — 1]. Let H; and H, be the edges containing
v. If no edge jumps over v we split 4 and proceed as before. Else we have,
say, min H; < v < max H;. We delete v from H. Since Hi\{v} & H, the
only duplication that may arise is when v = min Hy (case v = max H, is
similar) and H3 = Hy\{v} € H. We cancel this duplication by deleting from
Hj its last vertex. No new duplication then arises (% 7 F) and we have by
induction that i(H) <3+3(n—1)—2=3n—2.

21. H.(F,n) < 2n — 1 follows from the fact that, in H', |H| < 2 for
every edge and |H| = 2 implies 1 € H. The bound is attained by H =
({1},{i},{1,7¢} : ¢ € [2,n]). This hypergraph shows also that H;(F,n) >
3n — 2. To prove the opposite inequality, consider deg(1) in a general H.
If deg(1) = 1, delete the edge containing 1. The rest does not contain Fg
and thus i(H) < n+2(n—1)—1=3n—3. If deg(l) = 2, delete an edge
H such that |H| < n—1and 1 € H. The rest does not contain Fp, (Fg
would do here but not in the next argument 22), s0 i(H) <n—1+2n—1=
3n — 2. If deg(1) > 3, we delete 1 from H. In the resulting hypergraph
only singletons may be duplicated and every component H; of H, satisfies
i(H1) < 2v(Hy) since the only intersection in H; is the common last vertex
v (and {v} may be duplicated). Thus i(Hy) < 2(n —1). (H\{1l}: 1 €
H € H,H # {1}) is a simple and Fyy-free, even Fg-free, hypergraph. Hence
deg(l) <14 H.(Fasyn —1) =n. In total, i(H) <n+2(n—1) =3n—2.

22. The arguments are very similar to those in 21.

23. H' has no edge H with |H| > 3 and no two-element edge skipping one
or more vertices. Again H.(F,n) < 2n—1, attained by the same hypergraph
as in 20. This hypergraph shows also that H;(F,n) > 3n — 2. We prove
the opposite inequality by induction on v(H) = n. It is easy to check that
deg(1) > 3 implies H D F. Let deg(1) = 2. The first case is when |H| # 2 for
both edges containing 1. Deletion of 1 from # gives then a simple hypergraph
and we have i(H) < 2+3(n—1) —2 =3n— 3. If |H| = 2 for exactly one
of them, we set H; = H, and if both have two elements, we set H; to be
the longer one. Deletion of H; from H and 1 from the rest gives a simple
hypergraph and i(H) <2+1+43(n—1) —2 = 3n — 2. Let now deg(l) =1
and 1 € H € H. If |H| < 3, we delete H and use induction. Let |H| > 4.
If H, = H\{1} is not an edge, we delete 1 from A and use induction. If
H, € H, let u = min Hy. Clearly, H;\{u} is not an edge (else # D> F). We
delete 1 from H and u from H; and use induction.

24. As in 6, H' has no nonsingleton edge and thus H.(F,n) = n. As for
weights, notice that every component H; of H either consists of at most two
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edges or the only intersection in H; is one vertex common to all edges. Both
cases give bound i(H;) < 2v(H;) — 1 and thus H;(F,n) < 2n — 1, attained
by H = ({i,n},{n}:ie[n—1]).

25. We remark that in 25-28 H.(F,1) = H;(F,1) = 1. H' has no edge
H with |H| > 4, every three-element edge must contain 1 and 2, and two-
element edges must start in 1 or in 2. Thus, forn > 1, H.(F,n) < n+(n—1)+
2(n — 2), attained by the hypergraph H* = ({1}, {7}, {1,i},{2,75},{1,2,j} :
i € [2,n],j € [3,n]). H* shows that, for n > 1, H;(F,n) > 8n — 12. To
prove the opposite inequality, we consider a general H with v(#) > 3. If
|[HN[3,n]| < 1forevery H € H,i(H) <i(H*) =8n—12. Let |[HN[3,n]| > 2
for an edge H. If deg(1),deg(2) > 3 then H D F. So, say, deg(2) < 2 (case
deg(1) < 2 is similar). We delete from H the edges containing 2 and observe
that the rest avoids Fy. Hence i(H) < n+n—1+3(n—1)—2 = 5n—6 < 8n—12
(n>2).

26. |H| < 3 for every edge of H', allowed three-element edges are {1, b, b+
1} (n — 2 edges) and allowed two-element edges are {1,b} and {b,b + 1}
(2n — 3 edges). Thus H.(F,n) < 4n —5 (n > 1) and it is clear which
hypergraph attains this value. We show that the same hypergraph attains
also the maximum weight 8n — 12. If deg(1) < 2, we delete from # the edges
containing 1 and conclude, since the rest avoids Fig, that i(H) <n+n—1+
3(n—1)—2=5n—6 <8n—12 (n > 2). Let deg(1) > 3. We delete 1 from H.
Consider two edges H; and Hy of the resulting H;. H; = H; implies |H;| < 2
(else H D F) and no edge of H; has higher multiplicity than 2. If H; # H,
and neither H; is a singleton, then H; < Hy or Hy < Hy (else H D F). Thus
i(H) =deg(l)+i(H1) <(1+n—24+n—-1)+2(n—1+2(n—2)) =8n—12.

27. Similar to 25. Only the interval [3,n] is replaced by [2,n — 1].

28. In H' no edge has more than three elements, three-element edges
must consist of consecutive vertices, and two-element edges must be of the
form {a,a+1} and {a,a+2}. Again H.(F,n) <n+2(n—2)+n—1=4n—>5,
which is attained if we take all decribed edges (and singletons). To prove
H;(F,n) < 8n — 12, which is attained by the same hypergraph, we show
that other edges can be eliminated using induction on n. If an H € H exists
with |H| > 4, let u,v € H be two distinct vertices, none of them the end
of H. If deg(u) = deg(v) = 1, u or v may be deleted from H (one of these
deletions does not create duplication) and induction applies. If deg(u) > 2
and deg(v) = 1, we can delete v from A unless deg(u) = 2 and H\{v} € H.
But then we can delete u from . Similarly if deg(u) = 1 and deg(v) > 2. If
deg(u) > 2 and deg(v) > 2, both inequalities must be equalities and u, v lie in
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the same two edges. Either of u and v can be deleted and induction applies.
Thus we can assume that |[H| < 3 for every H € H. If H = {a,b,c}. € H
and ¢ > b+ 1 (case a < b — 1 is similar), then deg(b) < 2 and deg(b) = 2
implies that b and b+ 1 lie in the same edge. It is easy to see that b can
be deleted. We may assume that every edge H with |H| = 3 is of the form
H = {a,a + 1,a+ 2}. Finally, if {a,b} € H and a < b — 2, it is clear that
b— 2 and b — 1 have degree 1 and lie in the same edge. Either one of them
can be deleted. We can assume that {a,b}. € H implies b < a + 2.

29. We delete the last vertex from every H € H, |H| > 2. The resulting
sets are mutually disjoint and lie in [n —1]. Thus H.(F,n) < n+(n—1) and
H;(F,n) <n+(n—1)+(n—1), attained by H = ({i}, {n}, {i,n} :i € [n—1]).

30. If H € H with |H| > 3, we replace H by the two-element set of the
first two vertices of H. Thus, for bounding H.(F,n) from above, we may
assume that |H| < 2 for every edge. It is clear that two-element edges form
a triangle-free graph on at most n vertices. By a special case of Turdn’s
theorem (see [16, Problem 10.30]), it has at most L%J edges. The value of
H.(F,n) is attained by ({i},{j,k} : i € [n],j € [|n/2]],k € [|[n/2] + 1,n]).
We show that the maximum weight is attained by the same hypergraph
with the exception n = 3 when H;(F,3) = 8 (and not 7). Large edges
H = {ai,a9,...,a;}< with ¢ > 4 are eliminated by the replacement H —
{ar, a1 1}, {az, a1}, ..., {ar2,a, 1}. If t = 3 and a3 < n, we eliminate H
by H — {az,as},{as,n}. Similarly if 1 < a;. Let k be the number of the
troublesome edges {1,a,n}. No two-element edge is incident with any of the
as and they form a triangle-free graph on at most n — k vertices. By Turédn’s
theorem, H;(F,n) < n+2L%J +3k where the bound is attained. For n >
4 this is maximized for £ = 0 (and k& = 2 for n = 4; H;(F,4) = 12 is attained
by ({i},{1,3},{1,4},{2,3},{2,4}) and ({3}, {1,4},{1,2,4},{1,3,4}) where
i € [4]) and for n = 3 by k = 1. Indeed, ({i}, {1,3},{1,2,3}) is better than
({i}, {1,2},{1,3}) where i € [3].

31. No two distinct edges of H intersect in two or more vertices. Hence
every H € H with |H| > 3 may be replaced by its two-element subsets;

this works for both size and weight. Therefore H.(F,n) = (Tf) + (Z) and
Hy(F,n) = (1) +2(3), as in 11.

32. As for H.(F,n), we eliminate from H all edges with |H| > 4 by
replacing H by the two-set of its first two elements. So |H| < 3 for every

H € H. Let a+ 1 be the first vertex that is the last point of a two-element
edge or the middle point of a three-element edge. H consists of singletons,
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of a bipartite graph with parts [a] and [a + 2,n], and of edges of the form
{ba+1},{a+1,¢}, and {b,a+1,c} where b € [a],c € [a+ 2, n|; other edges
would create F or they would contradict the minimality of a+1. We see that
H.(F,n) <n+2a(n—1—a)+ (n—1), which is attained and maximized by
a = [(n—1)/2]. The same hypergraph attains the maximum weight because
large edges H = {ay,as,...,a;}< can be eliminated by the replacement H —
{a1,a2},{a1,a2,a3} if t = 4,5 and by H — {ay, a2}, {a1,a3},...,{a1,a; 2}
if £ > 6. Counting the weight instead of size, we obtain the second formula.

33. First, we bound the number of two-element edges in H. Let H =G
be a (F-free) graph with the vertex set [n]. The sets X; = {z € [i + 1,n] :
{i,z} € G}, i € [n—1], are subsets of [2,n] and (G A F) max X; < min X, ;.
Thus e(G) = X' X <n—1+4+n—2=2n— 3. Hence H has at most
2n— 3 two-element edges. We delete from every H € H, |H| > 3, its first and
last vertex. If two of the resulting sets intersect, we have two distinct edges
H,, H, € H and five not necessarily distinct vertices uy, us < v < wy, wy such
that {uy,v, w1} C Hy and {ug, v, wy} C Hy. Moreover, we can assume that
up # ug or wy # wy because H; # H,. But this implies X D F. Thus the
resulting sets, subsets of [2,n — 1], are mutually disjoint. We conclude that
e(H) < n+2n—3+n—2=4n—5and i(H) < n+2(2n—3)+3(n—2) = 8n—12.
These bounds are attained by H = ({1}, {n},{1,n},{1,i}, {i,n},{1,i,n} :
i€[2,n—1]).

34. Tt is easily checked that the argument bounding the number of edges
with more than 2 elements works here as well. We prove by induction on n
that the number of two-element edges is again at most 2n — 3. Let H = G be
a (F-free) graph with the vertex set [n]. If deg(1) = 1, we have by induction
that e(G) <14 2n—5=2n— 4. For deg(1) > 1, if {1,n} € G let m be the
second largest neighbour of 1 and if {1,n} ¢ G let m be the largest neighbour
of 1. Clearly, m < n and every edge of G, except possibly only {1,n}, lies
either in [m] or in [m + 1,n]. By induction, e¢(G) < 1+ 2m — 3 + 2(n —
m+1) —3 =2n — 3. Thus again e(H) < 4n — 5 and i(H) < 8n — 12. The
extremal hypergraph is, for example, H = ({1}, {n}, {1, n}, {i}, {1,4}, {i,i+
1Ll i, i+ 1} i€ [2,n—1]).

35. We have |H| < 2 for every H € H'. Thus H.(F,n) = (?) + (g) As
for the weight, if H € H with |H| > 3, we replace H by the two-element sets
{a,b} where a = min H and a < b € H. Thus we may suppose that |H| < 2
for every H € H and we conclude that H;(F,n) = (Vf) + 2(3)

36. Same argument as in 35.
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37. In H', |[H| < 3 for every edge and |H| = 3 implies 1 € H. Thus
H.(F,n) = (T) + (Z) + (”;1) As for the weight, we get rid of all H with
|H| > 4 by the same replacements as in 35. If H with |H| = 3 is present,
again 1 € H. Thus H;(F,n) = (’f) + 2(3) + 3(n;1).

38. Same argument as in 37. Allowed three-element edges are now H =

{a,a+1,b}. and we have again 1 +2+ -+ (n — 2) = (";1) of these.

39. Clearly, Hc(F,n) = (T) + (’;) + (’;) and Hy(F,n) = (T) +2(g) +3(§)_
O

We do not have 110 distinct extremal functions and not even close to
78. Hypergraphs F with 1 < i(F) < 4 have 28 distinct extremal functions
H.(F,n)and H;(F,n) (included the “undefined function”). Of these 25 differ
for infinitely many arguments. The formulas for H.(F,n) and H;(F,n) hold
for n > v(F) with the exception of Fs5, Fi2, Fis, and Fso but only the initial
values of H;(Fis,n) caused some troubles. We conclude this section by a nice
geometric derivation of the formula for H.(F34,n) (crossing pattern) due to
Attila Por. Put the vertices 1,2, ..., n in this order clockwise on a circle in the
plane and consider the convex hulls C; = conv(H;), H; € H. The condition
‘H 2 F34 is equivalent to the condition that the relative interiors of C; do not
intersect. So it is clear that we may have at most n—2 edges H with |H| > 3,
maximized by the triangulations, and at most 3n —6 — (n — 3) = 2n — 3 two-
element edges because these form a planar graph with a big outer face. Thus
H.(Fs,n)<n—24+2n—-3+n=4n—>.

4 Enumerative intermezzo

Besides the extremal problems for F-free hypergraphs there is also the enu-
merative problem to count them. Let

h(F)=|{H : Hissimple & H p F & UH = [n]}]

n

be the number of simple nonisomorphic F-free hypergraphs H with v(H)
n. Let h{*)(F) and h{) (F) be the analogous counting functions with i(H) =
n in the place of v(H) = n and with the simplicity of H dropped in h{))(F).

For example, for F, = ({1}, {1}2) all three counting functions equal to the
nth Bell number B, that counts partitions of [n].
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The enumerative problem to determine or to bound, for F fixed and
n — 00, the three counting functions is already for i(F) < 4 much more dif-
ficult than the extremal problem. In Klazar [15] we found the ordinary gen-
erating functions Fy(r), Fy(v), and Fy(x) of h(")(F), h&9)(F), and h)(F),
respectively, for the crossing pattern F3q = ({1, 3}, {2,4}). F1, F», and Fj are
algebraic over Z(z) of degrees 3, 4, and 4, respectively, and their coefficients
grow roughly like (63.97055...)", (5.79950...)", and (6.06688...)" where the
bases of the exponentials are algebraic numbers of degrees 4, 15, and 23, re-
spectively. We did not succeed in enumerating Fs3-free hypergraphs where
Fss = ({1,4},{2,3}) and we believe it is a problem that deserves interest.

In this article we drop the condition of F-freeness and we determine the
total numbers hq(f), hg’s), and hg), that is, the number of simple H with
v(H) = n, the number of simple H with i(H) = n, and the number of all
H with i(H#) = n. The numbers h{") have been already investigated before,
in the slightly different terminology of set covers, but the remaining two
problems seem new. We review the known formulas for h(*), derive a new
recurrence for them, and then we proceed to h(**) and h{").

Write s,, for the number of simple set systems on [n], which are (possibly
empty) sets of nonempty subsets of [n]. Clearly, s, = 22" and

S (”) he) 1)

i=0 \J

because set systems 1-1 correspond to simple H with UH C [n]. Hence we

can easily calculate h(") starting by h(()v) = 1 and continuing by the recurrence
SRR SN CAW®
B — 92 —z(.>hj @)
j=0 \J

given in Hearne and Wagner [13]. Using exponential generating functions
F(z) = Sy 820"/n! and H(z) = ¥,50 A" 2™ /n! we invert relation (1) by
noting that it amounts to F(x) = e*H(x). Thus H(x) = e *F(x) and we
have the explicit formula

h® — Xn:(_nn—j (") 9% ~1 (3)

J

that can be found in Comtet [4, p. 165] and that was derived independently
by Macula [17].
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We show that for n > 0 also

(v) _ hi(cv)hz(v)"! (v)
=2 2 G i Bl @
(The actual summation range is max(k,l) < n < k +[.) We take a simple
H, UH = [n+1], and decompose it into H; and Hs where #H; consists of the
sets H\{1} such that 1 € H € H (we omit the §) if {1} € H) and H, consists
of the remaining edges of H. We relabel the vertices so that |J#; = [k] and
U#Hy = [I]. It is clear that H; and H, are simple and that k,! < n. To invert
the decomposition, we first select two simple H; and H, of order £ and [,
which can be done in A" h{") ways. We unite their vertex sets so that n
vertices arise. This can be done in (k +l_n72_k,n_l) ways by choosing, from n
vertices, k+[—n,n—k, and n—[ vertices lying in J H; NUJ Hs, only in J Ho,
and only in [JH,, respectively. We append to every edge in H; a new least
vertex 1" and obtain a simple H with n + 1 vertices. Finally, the possible
addition of {1'} to H (we always loose edge {1} when decomposing) gives
two further options, except for H; = () when {1'} must be always added.
This explains the factor 2 and the subtraction of A{") in (4).
By means of any of (2), (3), and (4) one finds that

(h")ns1 = (1,5,109, 32297, 2147321017, 9223372023970362989, . . ).

n

This quite quickly growing sequence is entry A003465 of Sloane [22].

We turn to counting hypergraphs, both simple and all, by weight. Inspec-
tion of the long table in Section 3 reveals that (h(*),>; = (1,2,7,28,...)
and (h"),>1 = (1,3,10,41,...). What comes next?

Recall that a partition A = 12% .. .[% of n € N, where a; > 0 are
integers and usually a; > 0, is the decompositionn =1+14---4+1+ 2+
c++4+ 24 .-+ 1+ ---+ 1 with the part i appearing a; times (parts ¢ with
a; = 0 may be ommited). Thus Y ia; = n. We write briefly A - n. If  has
weight n and «a; edges of cardinality 7, the maximum edge cardinality being
[, then A = 1%12% [ I n and we say that H has edge type \. We derive

formulas for numbers of hypergraphs with a given edge type.

Theorem 4.1 Let A =1%2% ...l F n where a; > 0. The number of simple
hypergraphs with weight n and edge type \ is

()

£ (6)(0).(O) £ (1)
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and the number of all hypergraphs with weight n and edge type X\ is
zn: (( Nta— 1> ((g‘) +ay — 1> ((g‘) ta— 1> i(_l)m,j <m>
=l ay az o a m=j i)
Proof. Consider the polynomials

ﬁ 2567

=1

Wn — Wn(ZL‘l,ZL‘Q,...,ZEn) = Z
H

where we sum over all simple # with J# = [n] and e(i, H) is the number of
i-element edges in H. Refining (1) we have

Zﬁllm z()

where on the left is a polynomial (analogous to W,,) counting simple set
systems on [n] according to the edge cardinalities. In terms of exponential
generating functions,

$ f[l(l +a)() . L= Z . (5)
Thus, as in (3),
W1, .. 2,) = é(—nn—j (?) ljl(l +a;) (),

The number of simple H with i(H) = n and edge type A = 1%2%2 [ | n
is the coefficient at z{* ...2}" in W, + W41 + - - - + W, which is

E5om ()(0) 210 2 ()

Derivation of the second formula is almost identical, only W, becomes a
power series and 1 + z; is replaced by (1 — z;)~! because now any i-element
edge may come in arbitrary many copies. O

We give for illustration the distribution of hypergraphs with weight n = 6
according to their edge types (the first entry is the number of simple H and
the second, given only if different, is the number of all H):
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6' | 1'5' | 2'4' | 124" |32 | 1'2'3'[1%3" |23
1 |11 |41 [41,50]31,32]239 |63,120 | 62,75

1222 | 1%2t | 1°
198,264 | 41,160 | 1,32

Collecting the numbers over all edge types we obtain formulas for A{»*)
and h{V.

Corollary 4.2 The numbers of hypergraphs with weight n, simple and all,
are (A =1%2% . " with a; > 0)

e = SEI(W) e () Q

Men j—=l i=1 \ @i J

w = x0T ) Ses(n). o

AFn o j=li=1 m=j J

(W), oy = (1,2,7,28,134, 729, 4408, 29256, 210710, 1633107, . . .)
(MD),s1 = (1,3,10,41,192,1025, 6087, 39754, 282241, 2159916, . . .).

As of May 2001, these sequences were absent in [22].

From the point of view of complexity theory formulas (6) and (7) are
inferior compared to those for h(*). While any of (2), (3), and (4) needs only
polynomially many (in n) operations to turn the input n into the output
h{") | (6) and (7) require roughly n°p(n) operations where p(n) = [{\: A+
n}|. Numbers p(n) grow superpolynomially because by the famous Hardy—
Ramanujan-Uspensky asymptotics p(n) ~ (n-4v/3)~"-exp(ry/2n/3) if n —
o0. (An elementary proof was given by Erdds [5] who proved that p(n) ~
en~t - exp(my/2n/3) and by Newman [18] who showed that ¢ = (4v/3)~"
simpler complex-analytical proof was given later by Newman [19]. See also
Newman’s book [20, chapter 2].) On the other hand, p(n) is subexponential
and thus formulas (6) and (7) are nontrivial in the sense that the numbers
of operations which they require are substantially smaller than h(»*) and A
themselves (obviously A{®) A{) > 27 for n > 3). A polynomial algorithm
generating h{"*) and h{() can be given by means of the recurrence approach
that we used to derive (4).
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For any rational polynomial P(m) € Q[m] we have Y0 P(m)/m! =e-q
where e = 2.71828 ... is Euler number and ¢ € Q. This follows simply
by expressing P(m) as a Q-linear combination in the basis {1, m, m(m —
1),m(m —1)(m — 2),...}. Dobinski’s formula ([16, Problems 1.9a and 1.13]
and [4, p. 210]) belongs to this family of identities and has P(m) = m™ and
q = B,, where B, is the nth Bell number. Setting in (5), respectively in the
analogous equation for all hypergraphs, ¥ = 1 and z; = 2* and comparing
coefficients at 2™ we obtain two identities of this type.

Corollary 4.3 For every n € N we have the identities (A = 1%12% ... m®
with a, =0 allowed)

m=0 """ Npi=1 \ % i(H)=n Y
Sl | m (m) + a; 1> 1
N ¢ = e
mz::O m! /\z)—;brl_[l < ( i(H)=n U(H)'

where e = 2.71828 ... and the star indicates that the sum is over simple H
only.

For n = 1,2,3, and 4 the factors at e in the first identity are 1,1, %L, and %

y 4y 60
and in the second identity 1,2,2, and 2.

5 Two applications of Davenport—Schinzel se-
quences

We begin with reminding a bound from the theory of generalized Davenport—
Schinzel sequences. A sequence v = ajas ...q; € [n]* over the alphabet [n] is
k-sparse if a; = aj,i < j, implies j — ¢ > k. The length of v is denoted |v|.
If u,v € [n]* are two sequences and v has a subsequence that differs from
u only by an injective renaming of symbols, we say that v contains u. For
example, v = 2131425 contains u = 4334 but v does not contain v = 2323.
We write u(k, ) to denote the sequence

wk, ) =12.. . K12... k... 12.. .k € [k]*

with [ segments 12...k. In Klazar [14] we proved that if v € [n]* is k-sparse
and does not contain u(k,[), where k > 2 and [ > 3, then for every n € N

|’U| <n- 2]{;216174(10k)2a(n)kl—4+8a(n)kl—5 (8)
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where a(n) is the inverse Ackermann function. (If £ =1 or [ < 2, it is not
difficult to prove that |v| = O(n).)

Recall that a(n) = min{m : A(m) > n} where A(n) = F,(n), the
Ackermann function, is the diagonal function of the hierarchy of functions
F; : N — N, i € N, starting with Fj(n) = 2n and continuing by the rule
Fiy1(n) = F(Fi(... F;(1)...)) with n iterations of F;. Thus Fy(n) = 2" and
F3(n) is the tower function

F3(n) = 22'.. }n
We write 3(k,l,n) to denote the factor at n in (8). Thus
B(k,1,n) = 2k25=4(10k)2(M" +8am) =2 (9)

We utilize (8) in another approach to bounding H;(F,n) from above in
terms od H.(F,n). Recall that # is a set partition if it has disjoint edges.

Theorem 5.1 Suppose that F is a set partition withp = v(F),q =e(F) > 1
and H is a F-free hypergraph with v(H) = n, not necessarily simple. Then

i(H) < (¢ —1)n+ B(q,2p, e(H)) - e(H)
where B(k,l,n) is defined in (9).

Proof. Let U#H = [n] and the edges of H be Hy, Hy, ..., H, where e = e(H).
We set for i € [n]
Si={jele]: i€ H;}

and consider the sequence v = I, 15 ... I, where I; is an arbitrary permutation
of S;. Clearly, v € [e]* and |v| = i(H). The sequence v may not be g-sparse,
because of the transitions I;1;,, but it is easy to see that by deleting at most
q — 1 terms from the beginning of every I;, ¢ > 1, one can obtain a g-sparse
subsequence w with length |w| > |v| — (¢ — 1)(n — 1). It is also easy to
see that if w (or v) contains u(q, 2p) then H contains F, which is forbidden.
(Note that the subsequence aab in v forces the first @ and the b to appear in
two distinct segments I; and thus it gives incidences of H, and H, with two
distinct vertices.) Hence w does not contain u(g,2p) and we can apply (8):

i(H) = o] <(¢—Dn+w| < (q¢—1)n+ B(g,2p,e) -e.
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O

For fixed numbers k, [ the function §(k, [, n) grows to infinity extremly slowly
and for all practical purposes it is bounded. We give an example showing
that in the last theorem some unbounded factor at e(#) is necessary.

Hart and Sharir [12] constructed sequences v € [n|* which are 2-sparse,
do not contain sequence 12121, and have length |v| > na(n). See Sharir and
Agarwal [21] for more information. We take such a sequence v, consider the
subsequence w of v consisting of the first and last appearances of symbols
i € [n] in v, and decompose v into segments

UZ[IIZ---[m

where every I; ends by a term from w and contains no other term of w.
Clearly, n < m = |w| < 2n (we may assume that v uses every i € [n]). Note
that |I;| = |I,,| = 1. If an I; contains a symbol a € [n] twice, we have in I; a
subsequence aba, b # a, because v is 2-sparse. By the definition of segments,
the first b appears in v before I; and the last b after I; or on its end and v
is forced to have the forbidden babab subsequence. Thus every I; must be a
permutation of a set S; C [n] and we can defined the hypergraph

H = (H;: i€c[n]) where H;={j € [m]: i€ S;}.

Clearly, UH C [m] and n < v(H) < 2n, e(H) = n, and i(H) = |v| > na(n).
It is also clear that H is F,o-free where Fy is the set partition

Fao = ({1737 5}7 {274}) = @ :

For F = Fy the factor at e(#) in Theorem 5.1 must be > «(n).

Taking in Theorem 5.1 a simple ‘H with the maximum weight, we obtain
as a corollary for every set partition F (p = v(F) and ¢ = e(F) > 1; case
g = 1 is trivial) the inequality

H;(F,n) < (¢g—1)n+ 8(q,2p, H(F,n)) - H(F,n).

But here Theorem 2.4, when it applies, gives better bound.
In the second application of (8) we obtain an almost linear bound on
H.(F,n) in the case when F is a star forest. These are simple graphs G
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which have no two separated edges and such that deg(v) = 1 whenever
v = max H, H € H. Thus every component of a star forest is a star and
every centre of a star is smaller then every leaf. We begin with the graph
case.

Theorem 5.2 Let F be a star forest with r > 1 components and p vertices
and G.(F,n) be the mazimum number of edges in a simple graph G such that
G 2 F andv(G) =n. Then

Ge(F,n) < (r—=1)n+n-pB(r,2(p—r+1),n)
where B(k,l,n) is the almost constant function defined in (9).
Proof. Let G attain G.(F,n) and UG = [n]. We consider the sequence
v="NL1...I, € n]*

where I; is any permutation of the set {i € [n] : {i,j} € G,i < j}. As
in the previous proof, we select an r-sparse subsequence w of v with length
|lw| > |v] = (r — 1)(n — 1). It is not hard to see that if w (or v) contains
the sequence u(r,2(p — r + 1)) then G D F. Thus w does not contain
u(r,2(p —r +1)) and we can apply (8):

Ge(F,n)=e(@)=v|<(r—=1n+n-6(r,2(p—r+1),n).
|

For r = 1 component we have G.(F,n) < n. We extend the bound of Theo-
rem 5.2 from graphs to hypergraphs by means of a more generally aplicable
technique in the next section. We conclude the present section by an example
showing that in general G(F,n) is superlinear for star forests.
Let v € [n]* be the same 12121-free sequence as in the previous example
for F,o and let
v = [1[2 e Im

be the same decomposition into segments containing no repeated symbol,
n < m < 2n. We rename the symbols in v so that if i < j then the first
appearance of j in v precedes that of i. (This does not affect the 12121-
freeness.) We define the simple bipartite graph G with UG = [n 4+ m| by

{i,jteG<ien|&je[n+1,n+m|&iappearsin [;_,.
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Then e(G)s = |v| > na(n) and 2n < v(G) < 3n. We show that G 5 Fy
where Fy; is the star forest

Fu = ({1,3},{1,5},{2,4},{2,6}) = @ .

Suppose for the contrary that F,; C G and a; < as < ... < ag are the vertices
of a Fyi-copy in G. By the definition of G, z = ajasa,as is a subsequence of
v, with terms appearing in I, ..., I4—n, respectively. But since ay > ay,
an as must appear in v before z starts and v contains a subsequence of the
type 12121, which is forbidden. So G is Fy;-free and shows that G.(Fy,n) >
na(n).

6 Orderly bipartite forests

H is an orderly bipartite forest (OBF) if it is a simple graph which has no cycle
and such that min H < max H' holds for every two edges H, H' € H. Star
forests are OBF. Orderly bipartite forests with some singleton edges (which
may repeate) form the largest class of F for which one can hope for linear
or close to linear extremal functions. (Since every OBF with singletons is
contained in an OBF without singletons, it is enough to consider only OBF.)
We state this simple but important observation as a theorem.

Theorem 6.1 If the hypergraph F is not an orderly bipartite forest with
singletons, then there is a constant v > 1 such that He(F,n) > n.

Proof. If F is not an OBF with singletons, then F has (i) an edge with more
than two elements or (ii) two separated two-element edges or (iii) a two-path
isomorphic to ({1,2},{2,3}) or (iv) a repeated two-element edge or (v) an
even cycle of two-element edges (odd cycles are subsumed in (iii)). In the
cases (i)—(iv) it is easy to see that H.(F,n) > n? (cf. the results for Fi,
Fs2, Fa0, and F3z; in Section 3). An application of the probabilistic method
(Erdés [6]) provides an unordered graph that has n vertices, > n'*'/* edges,
and no even cycle of length k. Thus H,(F,n) > n'*'/* in case (v) if F has
an even cycle of length k. O

In the unordered case it is well known that G¥(F,n) = ex(F,n) < n iff F
is a forest, and if F is not a forest then ex(F,n) > n? for some v > 1 (by
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the aforementioned result). In the ordered case the class OBF enjoys much
larger variety of linear and close to linear extremal functions.

We say, for £ € N, that a graph G’ is a k-blowup of a graph G if for
every edge coloring y : G' — N that uses every color ¢ € N at most k times,
there exists a subgraph in G’ which is isomorphic to G and whose edges have
totally different colors (no color is repeated on the subgraph). For example,
it is not difficult to construct for every OBF G and k£ € N an OBF G’ that is
a k-blowup of G. For k € N and a graph G we write B(k,G) to denote the
set, of all k-blowups of G. The following theorem shows how to derive bounds
for hypergraphs from the graph case.

Theorem 6.2 Suppose that F is a graph with p = v(F) and q¢ = e(F) > 1.
If f : N — N is a nondecreasing function such that

Ge(B((3), F),n) <n- f(n)
holds for every n € N, then
Ho(Fn) < q- Go(F,n) - H(F,2f (n) + 1) (10)
holds for every n € N.

Proof. Let H attain H.(F,n) and UH = [n]. We put in H' every edge
with more than 1 and less than p vertices and for every H € H with |H| > p
we put in H' an arbitrary subset H' C H, |H'| = p. No edge of H' repeats
more then ¢ — 1 times for else H D F. Let H” be the simplification of #'.
So e(H) <n+(q¢g—1)e(H"). Let G be the simple graph consisting of all the
edges F such that F C H for some H € H". Observe that if ' € B((’Z’),}"),

meaning that F' is a (g)—blowup of 7, and 7' C G, then F C ‘H" and thus

F C H. (For the edges E € G lying in an F'-copy consider the coloring
X(E) = H € H" where E C H.) Hence F' C G for no F' € B((g),]—"). Let
v(G) =n'; n’ < n. We have

e(G) < Ge(B((5), F),n') < '+ f(n').
There exists a vertex vy € UG such that

d = degg(vg) < 2f(n') <2f(n).
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Fix an arbitrary Fy, vy € Ey € G. Let X C [n] be the union of all
H € H" with Ey C H and m be the number of such edges in H”. We have
the inequalities
m < Ho(F,|X]|) and |X|<d+1.

Thus (H.(F,n) is increasing by Theorem 2.2)
m < H,(F,|X|) < H(F,d+1) < H,(F,2f(n) + 1).

We see that the two-element set Ej is contained in at least one but less than
H.(F,2f(n) + 1) edges of H". Deleting those edges we obtain a subhyper-
graph HY{ of H" on which the same argument can be applied. That is, a
two-element set E; exists such that F; C H for at least one but less than
H.(F,2f(n)+1) edges H € H{ (clearly Ey # E,). Continuing this way until
the whole H" is exhausted, we define a mapping

F:H"—{E: EC|[n]|E|=2}

such that
F(H)C H and |F Y(E)| < H(F,2f(n)+1)
holds for every H € H" and every E C [n],|E| = 2. Let G’ be the simple
graph G' = F(H"). Let v(G') =n'; n' < n.
The containment F C G’ implies, by the definition of G’, that F C H"

and thus F C H, which is forbidden. We have (it is easy to see that G.(F,n)
is increasing)

e(G") < G (F,n') < G(F,n).
Putting it all together, we obtain (G.(F,n) >n—1if ¢ > 1)

H(F,n)=e(H) < n+(g—1)-eH")
< n+(qg—1)-H(F,2f(n)+1)-e(G")
<

q-Ho(F,2f(n)+ 1) - Go(F,n).
O

Recursive inequality (10) is nontrivial only if f(n) = o(n) and thus it
has any value only if F is an OBF (or perhaps if F is an even cycle). If
F is an OBF and in Theorem 6.2 we replace B((g),}") by some subclass

B C B((’;),]—") N OBF, the number of colors (g) can be replaced by p — 1.
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(Because for |[H| = p every p two-element edges E C H contain a cycle but
now no F' € B has a cycle.) Note that the ordering of vertices was not used
in the proof (it is crucial only for obtaining linear or close to linear bounds
on G.(F,n) and G.(B,n)) and therefore Theorem 6.2 holds in the unordered
case as well. We make use of this in the first of its three applications.

Theorem 6.3 Let F be an unordered forest. Its unordered hypergraph ex-
tremal function satisfies
H!(F,n) < n.

Proof. Let v(F) = p and e(F) = ¢ > 1 (case ¢ = 1 is trivial). It is
not hard to prove that G¥(F,n) = ex(F,n) < (¢ — 1)n (e.g. Bollobés
[2, Exercise 24 in IV.7]). It is also easy to define a large forest F' with
Q=e(F)=(p—1(¢—-1)+1)e(F) = (pg —p—q+2)q < pg(q — 1) edges
that is a (p—1)-blowup of F. We set B = {F'} and use (10) with the bounds
GU(F,n) <(¢g—1)n, f(n) =Q—1 (since GX(B,n) = GL(F',n) < (Q —1)n),
and H*(F,n) < 2" (trivial):

O

One can prove this bound also directly without using Theorem 6.2 by adapt-
ing the proof of ex(F,n) < (¢ — 1)n to the hypergraph case.

In the second application of Theorem 6.2 we extend the bound of Theo-
rem 5.2 to hypergraphs.

Theorem 6.4 Let F be a star forest with r > 1 components, p vertices, and
q edges. Lett = (p—1)(¢q—1)+ 1. Then

H,(F,n) <n-B(r2tp—r)+2,n)°
where 3(k,l,n) is the almost constant function defined in (9).

Proof. We replace F by the star forest F' in which every edge {i,j} € F,
i < j,isreplaced by t edges {i,7(1)},...,{4,j(t)} wherei < j(1) <--- < j(t)
and the set {j(1),...,7(¢)} is slightly blowned up leaf j, that is, j; < jo
implies ji(a) < j2(b) for all 1 < a,b < t and all leaves ji, jo of F. It is easy
to see that 7' € B(p — 1, F).
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We set B = {F'} and use (10) with the bounds G.(F,n) < n-3(r,2(p —
r) +2,n) (Theorem 5.2 for F), f(n) < B(r,2t(p —r) + 2,n) (Theorem 5.2
for '), and H.(F,n) < n? (Theorem 2.5):

H,(F,n) < n-pB(r,2t(p —r)+2,n)P

Feeding in (10) this improved upper bound on H,(F,n), the second applica-
tion of Theorem 6.2 gives

H,(F,n) < n-B(r,2t(p—r)+2,n)% B(r,2t(p — 1) +2,¢6(-- )Pt

where ¢ > 0 is a constant. Since [(r,2t(p — 1) + 2,¢8(r,2t(p —r) + 2,n)) <
B(r,2t(p —r) +2,n)/P+Y for every sufficiently large n, we obtain the stated
bound. O

By Theorem 2.4, for H;(F,n) we have the same bound.
Our third and last application of Theorem 6.2 is to the graph

F=({1,3},{1,5},{2,3},{2,4}) = %\ .

It arises from Fjy; by identifying 3 and 4 but it is more important to note
that the starting points of the two edges ending in 3 emanate two noncrossing
edges ending to the right of 3. F,, is an OBF but it is not a star forest. F,

in its matrix form
11
1 1

(configuration Cy of [9]) was introduced by Fiiredi [7] in order to prove that
every convex n-gon has O(nlogn) diagonals with unit length. (Recently
simpler proof was given by Brafl and Pach [3].) In [7] he proved that

nlogn < G.(Fy,n) < nlogn.

(The proof was given for ordered bipartite graphs but it works without
changes for all ordered graphs.) For our purposes we need somewhat stronger
version of the upper bound, which we prove (by the same argument of [7]) in
Lemma 6.5. For completeness, we reproduce here the construction proving
the lower bound, as given in [9, Construction 3.2].

We define inductively bipartite graphs G,, n € N, with parts [2"] and
27 + 1,21, G, = ({1,3},{2,3},{2,4}). Let A =[2"], B = [2" + 1,2"T!]
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C =2 +1,2" 4 27] and D = 2"t 42" +1,2"2]. G, consists of two
copies of G,, one on the parts A, C' and the other on B, D, and a matching
between B and C. An easy induction shows that e(G,) = (n + 2)2"° 1,
v(G,) = 2" and G, 7 Faa. Thus Ge(Fiz,n) > nlogn.

For k € N consider graphs G with the following structure. UG = [k +
14+ a+0b], a,b >k, and G has 2k* + k edges: {i,k + 1} € G for i € [k] and
every i € [k] is connected by k edges to [k + 2,k + 1 + a] and by k edges to
k+2+a,k+1+4+a+0b]. Thus deg(k+1) =k and deg(i) = 2k +1 for i € [k].
We write Fyo(k) to denote the set of all such graphs.

Lemma 6.5 The sets of graphs Fis(k), k € N, are as defined above.
1. Fio(3k + 1) C B(k, Fua). In particular, Fu(31) C B((‘;),.ﬂg).
2. Ge(Fua(k),n) < nlogn.

Proof. Let K =3k + 1 and G € Fy»(K) be edge colored so that each color
appears at most k times. We select two edges {i, K + 1} and {j, K + 1},
i < j < K+ 1, with different colors. There are K edges {i,l} and K edges
{4, '} such that K +1 <" <[ holds for every two vertices I’ and . Because
in each of the two K-tuples we have at least 4 different colors, we can select
vertices ' and [ so that the colors of {i, K + 1}, {j, K + 1}, {j,!'}, and {3, [}
are all different. Since i < j < K + 1 < [I' < [, this subgraph is isomorphic
to f42.

Let n > 2 and G be a simple graph with JG = [n] which contains no
F € Fuo(k). For every fixed i € [n], we list the endpoints j of {i,j} € G,
i< jri<jo<g1<-<ji—1 <mn Lets=|t/(k+1)]. We keep only
the edges with endpoints ji 1)k41), ¢ = 1,2,...,5. (If t < k4 1, we keep
no edge {7,j}.) The graph G’ obtained satisfies e(G') > e(G)/(2k + 1) — kn
and for every two edges {i,7},{i,j'} € G', i < j < j', there are at least k
edges {i,l} € G,j <l < j', and at least k edges {i,(} € G, > j'. Now we
proceed as in [7]. We say that {i,j} € G', i < j, has type (j, m) if there are
two edges {i,(} and {i,I'} of G’ such that j <l <{"and [ —j <2™ < —j.
Consider the partition G’ = G; UG, where G; is formed by edges with at least
one type and G, by edges without type. It follows from the definitions that
if & edges of G; have the same type, then F C G for some F € Fy5(k). The
number of types is less than n(1 + log, n). Thus |G| < kn + knlog,n. Let
i€nland i < jo < ji <---<jr1 < n be the endpoints j, j > i, of the
edges incident with ¢ which have no type. Let d, = j, — j, 1, r € [t — 1],
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and D =dy +---+di 1 = ji1— Jo. If dy < D/2, then d; < 2™ < D for
some m € Ny and {i,jo} has type (jo, m) because of {i,j;} and {7,751}
Thus d; > D/2 and D — d; < D/2. For similar reason dy > (D — d;)/2 and
D—dy—dy<DJ/4. Ingeneral 1 < D —dy —---—d, < D/2" forr € [t —2].
We obtain that ¢t < [log, D| +2 < 3+ logyn, |G| < 3n + nlog,n, and
|G'| = |G1| + |G2| < (k + 3)nlog, n. Therefore

e(G) < kn+ (2k + 1)e(G") < (2k + 2)(k + 3)nlog, n.

Theorem 6.6 Let Fyo = ({1,3},{1,5},{2,3},{2,4}). Then
n-logn < Hy(Fiz,n) < n- (logn)* - (loglogn)®.

Proof. The lower bound holds already in the graph case and was proved
above. To prove the upper bound, we set B = F;5(31) and apply (10) of
Theorem 6.2 with the bounds f(n) < logn (because Ge(B((g),f42),n) <
Ge¢(B,n) < nlogn by Lemma 6.5), G¢(Fi2,n) < nlogn ([7] or from the pre-
vious bound by G.(Fi,n) < Ge(B,n)), and He(Fiz,n) < n° (Theorem 2.5;
we could as well start with the completely trivial bound H,(Fa,n) < 2"):

H.(Fj,n) < n- (logn)®.
Using this bound, the next application gives
H,(Fi2,n) < n - (logn)® - (loglogn)®.
The third application gives

H.(Fi,n) < n-(logn)?- (loglogn)? - (logloglogn)®
< n-(logn)?- (loglogn)®.

By Theorem 2.4,
H;(Fi2,n) < n - (logn)? - (loglogn)®

as well.
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7 Concluding remarks

We mention possible directions for further research. As for Theorem 2.4,
singleton hypergraphs Sy show that H;(F,n) < H.(F,n) is not always
true. We conjecture that S are the only exceptions: if F # S, then
H;(F,n) < cH.(F,n) holds with a constant ¢ > 0 depending only on F
(but cf. Theorem 5.1 and the example with Fjp). One may try to extend
the precise results of Section 3, say to the case when F is a graph with 3 or
4 edges. One may try to explain the repetitions of functions H,(F,n) and
H;(F,n), such as for no. 9, 10, and 19-23 or for no. 25-28, 33, and 34.

An interesting question is about the order of magnitude of the hypergraph
counting functions considered in Section 4. We can prove that log(h(»*)) and
log(h{?) are equal to nlogn —nloglogn+O(n) but more precise asymptotics
are desirable. The ratio h(¥) /h{"*) seems to tend to a limit lying between 1.2
and 1.3. What is this limit? Which partition A = n maximize the number of
(simple or all) hypergraphs with weight n and edge type A?

As for the class OBF (orderly bipartite forests), we define a hierarchy of
three subclasses of OBF

LIN ¢ ALIN c CLIN c OBF.

LIN contains F with linear extremal function: H,(F,n) < n. ALIN contains
F with almost linear extremal function: H.(F,n) < n- f(a(n)) where a(n)
is the inverse Ackermann function and f(n) is primitively recursive. CLIN
contains F with close to linear extremal function: H.(F,n) < n - (logn)®
where ¢ > 0 is a constant depending only on F. (If F is a hypergraph and
H.(F,n) < n- (logn)¢ then by Theorem 6.1 F must be an OBF.) The
first two inclusions are sharp: we have seen that F;; € ALIN\LIN and that
Fi € CLIN\ALIN. Is it true that CLIN=OBF? If not, what general upper
bound can one give for H.(F,n) if F is an OBF? As for Theorem 6.6, what
is the exact asymptotics of H(Fya,n)?

A basic but difficult question is to determine which OBF lie in LIN, which
in ALIN, and which in CLIN. We summarize briefly our knowledge. Here we
have proved that the four OBF with e(F) < 2, namely Fy, Fag, Fa3, and Fay,
are in LIN. A more general result is given in [15, Theorem 3.3]: for every
k € N the star forest

Nk = ({i,2k —i+1}, {5, 2k +4} : i € [K])
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([k] is matched with [k+1, 2k] decreasingly and with [2k + 1, 3k] increasingly)
is in LIN. (In [15] the linear bound is proved only for the graph case but
blowing up the leaves of N'(k) and using Theorem 6.2 we can extend it to
hypergraphs.) We have proved here that every star forest is in ALIN; the
containment of Fy; forces it to be in ALIN\LIN. As for CLIN\ALIN, it
contains F,s and some modifications of it but we do not know any large
subfamily.
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