FACTORIAL FACTORS

John R. Silvester
Department of Mathematics
King's College London

Preliminaries: the product of n successive positive integers is divisible by n !. For if we choose n elements from a set of order m, where $m \geq n$, we may choose the first element m ways, the second $m-1$ ways, and so on, giving

$$
m(m-1)(m-2) \ldots(m-n+1)
$$

possible (ordered) choices. If we make one choice equivalent to another when its elements are a permutation of the elements of the other, we separate the set of choices into equivalence classes of n ! elements each, so that

$$
\frac{m(m-1)(m-2) \ldots(m-n+1)}{n!}
$$

is the number of possible (unordered) choices of n objects from m. This is also written $\binom{m}{n}$ or ${ }^{m} C_{n}$, and is the coefficient of x^{n} in the (binomial) expansion of $(1+x)^{m}$.

Here is a hoary old problem that reappears every Christmas:

According to the song, how many presents did my true love send to me?
(N.B. A partridge in a pear tree counts as one present.)

Let (r, s, t) denote the $r^{\text {th }}$ present of type s received on the $t^{\text {th }}$ day of Christmas.

So, for example, $(3,5,8)$ stands for the $3^{\text {rd }}$ of the 5 gold rings received on the $8^{\text {th }}$ day.

We must count all integer triples (r, s, t) with

$$
1 \leq r \leq s \leq t \leq 12
$$

or (equivalently)

$$
1 \leq r<s^{\prime}<t^{\prime \prime} \leq 14
$$

(where s^{\prime} means $s+1$, and $t^{\prime \prime}$ means $t+2$), and so the answer is

$$
\binom{14}{3}=\frac{14 \times 13 \times 12}{3!}=364
$$

A simpler problem: evaluate $1+2+3+\ldots+n$.

Solution (by counting): write it as

$$
(1)+(1+1)+(1+1+1)+\ldots+(1+1+\ldots+1)
$$

where the last bracket contains $n 1$'s. Then let (r, s) denote the $r^{\text {th }} 1$ in the $s^{\text {th }}$ bracket. We must count all integer pairs (r, s) with

$$
1 \leq r \leq s \leq n
$$

or (equivalently)

$$
1 \leq r<s^{\prime} \leq n+1
$$

and so the answer is

$$
\binom{n+1}{2}
$$

Thus

$$
\sum_{r=1}^{n} r=\binom{n+1}{2}
$$

or, more suggestively,

$$
\sum_{r=1}^{n}\binom{r}{1}=\binom{n+1}{2}, \quad \text { or } \quad \sum_{r=0}^{n}\binom{r+1}{1}=\binom{n+2}{2}
$$

In the partridge-in-a-pear-tree problem, the number of presents received on day s was $1+2+\ldots+s=\binom{s+1}{2}$, so the solution amounted to saying that

$$
\sum_{s=1}^{12}\binom{s+1}{2}=\binom{14}{3}, \quad \text { or } \quad \sum_{s=0}^{11}\binom{s+2}{2}=\binom{11+3}{3}
$$

In fact, for any n,

$$
\sum_{s=0}^{n}\binom{s+2}{2}=\binom{n+3}{3}
$$

and more generally (as we shall prove next)

$$
\sum_{s=0}^{n}\binom{s+k}{k}=\binom{n+k+1}{k+1}
$$

Proof: note first that $\binom{s+k}{k}$ is the number of ways of choosing integers $a_{1}, a_{2}, \ldots, a_{k}$ with $1 \leq a_{1}<a_{2}<\ldots<a_{k} \leq s+k$, or

$$
1 \leq a_{1}<a_{2}<\ldots<a_{k}<s+k+1
$$

Put $a_{k+1}=s+k+1$, and then as s runs from 0 to n, altogether we get the number of ways of choosing $a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}$, with

$$
1 \leq a_{1}<a_{2}<\ldots<a_{k}<a_{k+1} \leq n+k+1
$$

and this is just $\binom{n+k+1}{k+1}$, as required.

Alternative proof: we have

$$
1+y+y^{2}+\ldots+y^{n+k}=\frac{y^{n+k+1}-1}{y-1}
$$

and on putting $y=1+x$ this becomes

$$
1+(1+x)+(1+x)^{2}+\ldots+(1+x)^{n+k}=\frac{(1+x)^{n+k+1}-1}{x}
$$

The result follows on comparing coefficients of x^{k} on each side.

More applications: note that

$$
s^{2}=\binom{s}{2}+\binom{s+1}{2}
$$

This is pretty obvious anyway; but can be seen by counting.

We must count all (a, b) with $1 \leq a \leq s$ and $1 \leq b \leq s$.

For each such pair (a, b) we have

$$
a<b \quad \text { or else } \quad b \leq a,
$$

so we have

$$
1 \leq a<b \leq s \quad \text { or else } \quad 1 \leq b<a^{\prime} \leq s+1
$$

which give the first and second terms of (\star), respectively.

From (\star) we have

$$
\begin{aligned}
\sum_{s=1}^{n} s^{2} & =\binom{n+1}{3}+\binom{n+2}{3} \\
& =\frac{(n+1) n(n-1)}{6}+\frac{(n+2)(n+1) n}{6} \\
& =\frac{n(n+1)((n-1)+(n+2))}{6} \\
& =\frac{n(n+1)(2 n+1)}{6} .
\end{aligned}
$$

Alternatively,

$$
\begin{aligned}
4 \sum_{s=1}^{n} s^{2} & =\sum_{s=1}^{n}(2 s)^{2} \\
& =\sum_{s=1}^{n}\left(\binom{2 s}{2}+\binom{2 s+1}{2}\right) \\
& =\sum_{s=2}^{2 n+1}\binom{s}{2} \\
& =\binom{2 n+2}{3} \\
& =\frac{(2 n+2)(2 n+1)(2 n)}{6}
\end{aligned}
$$

so now divide each side by 4.

Now for the cubes. s^{3} is the number of ways of choosing (p, q, r) with $1 \leq p \leq s, 1 \leq q \leq s$, and $1 \leq r \leq s$.

Case 1: $|\{p, q, r\}|=3$, that is, p, q, r are distinct. This now subdivides into $3!=6$ cases according to the relative sizes of p, q, and r : for example, one case is $1 \leq p<q<r \leq s$, and the total count for case 1 is $6\binom{s}{3}$.

Case 2: $|\{p, q, r\}|=2$, so that two of p, q, r are equal, but different from the third. We can choose the two that are equal in 3 ways, and then the third is either greater or less than the others, so again there are 6 cases; for example, one is $1 \leq p=q<r \leq s$, and the total count for case 2 is $6\binom{s}{2}$.

Case 3: $|\{p, q, r\}|=1$, or $p=q=r$, so that $1 \leq p=q=r \leq s$, and the count here is just s, or $\binom{s}{1}$.

So

$$
s^{3}=6\binom{s}{3}+6\binom{s}{2}+\binom{s}{1}
$$

and therefore

$$
\sum_{s=1}^{n} s^{3}=6\binom{n+1}{4}+6\binom{n+1}{3}+\binom{n+1}{2}
$$

We shall show, by counting, that this is the same as

$$
\left(\sum_{s=1}^{n} s\right)^{2}
$$

so that its value is

$$
\frac{n^{2}(n+1)^{2}}{4}
$$

Recall that $1+2+\ldots+n$ is the number of pairs (a, b) with $1 \leq a<b \leq n+1$. So $(1+2+\ldots+n)^{2}$ is the number of 4 -tuples (a, b, c, d) with $1 \leq a<b \leq n+1$ and $1 \leq c<d \leq n+1$.

Case 1: $|\{a, b, c, d\}|=4$. There are 6 subcases:

$$
\begin{array}{ll}
1 \leq a<b<c<d \leq n+1, & 1 \leq a<c<b<d \leq n+1 \\
1 \leq a<c<d<b \leq n+1, & 1 \leq c<a<b<d \leq n+1 \\
1 \leq c<a<d<b \leq n+1, & 1 \leq c<d<a<b \leq n+1
\end{array}
$$

So the total count here is

$$
\sigma\binom{n+1}{4}
$$

Case 2: $|\{a, b, c, d\}|=3$. Again, there are 6 subcases:

$$
\begin{array}{ll}
1 \leq a=c<b<d \leq n+1, & 1 \leq a=c<d<b \leq n+1 \\
1 \leq c<a=d<b \leq n+1, & 1 \leq a<b=c<d \leq n+1 \\
1 \leq a<c<b=d \leq n+1, & 1 \leq c<a<b=d \leq n+1
\end{array}
$$

So the total count here is

$$
6\binom{n+1}{3}
$$

Case 3: $|\{a, b, c, d\}|=2$. Here $1 \leq a=c<b=d \leq n+1$, so the count for this case is

$$
\binom{n+1}{2}
$$

To sum up (!),

$$
\begin{aligned}
\sum_{s=1}^{n} s^{3} & =6\binom{n+1}{4}+6\binom{n+1}{3}+\binom{n+1}{2} \\
& =\left(\begin{array}{c}
\sum_{s=1}^{n} s
\end{array}\right)^{2} \\
& =\binom{n+1}{2}^{2}
\end{aligned}
$$

The reader is invited to find an alternative proof by showing that

$$
\binom{n+1}{2}^{2}-\binom{n+1}{2}=6\binom{n+2}{4}
$$

and that

$$
\binom{n+2}{4}=\binom{n+1}{4}+\binom{n+1}{3}
$$

Do either of these formulae generalize?

Yet again, we know

$$
s^{2}=\binom{s}{2}+\binom{s+1}{2}
$$

and you can easily obtain (by counting!) that

$$
s^{3}=\binom{s}{3}+4\binom{s+1}{3}+\binom{s+2}{3}
$$

Exercise: obtain coefficients $a_{i j}$ such that

$$
s^{r}=a_{r 1}\binom{s}{r}+a_{r 2}\binom{s+1}{r}+\ldots+a_{r r}\binom{s+r-1}{r}
$$

for the next few values of r, and investigate the properties of the Pascal-like triangle of numbers $a_{i j}$.

You should get:

By courtesy of the On-Line Encyclopedia of Integer Sequences (www.research.att.com/~njas/sequences/) I now know that the above numbers are the Eulerian numbers and the triangle is known as Euler's number triangle. Given a permutation $\rho: i \mapsto \rho_{i}$ of $\{1,2, \ldots, n\}$, we write the list of images $\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{n}\right\}$; in this list, an ascent is a pair of adjacent elements that are in descending order. For example, if $n=6$ and ρ sends $\{1,2,3,4,5,6\}$ to $\{2,4,5,3,1,6\}$ respectively, then ρ has two ascents, $\{5,3\}$ and $\{3,1\}$.

The Eulerian number $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$, where $0 \leq k<n$, is defined to be the number of permutations of $\{1,2, \ldots, n\}$ having exactly k ascents.

Immediate observations: for $0 \leq k \leq n-1,\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ is a positive integer, with $\left\langle\begin{array}{l}n \\ 0\end{array}\right\rangle=1$ and $\left\langle\begin{array}{c}n \\ n-1\end{array}\right\rangle=1$; and obviously

$$
\left\langle\begin{array}{l}
n \\
0
\end{array}\right\rangle+\left\langle\begin{array}{l}
n \\
1
\end{array}\right\rangle+\ldots+\left\langle\begin{array}{c}
n \\
n-1
\end{array}\right\rangle=n!.
$$

Next, $\left.\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle=\begin{array}{c}n \\ n-1-k\end{array}\right\rangle$, by observing that, if ρ is paired with ρ^{\prime}, where $\rho_{i}^{\prime}=n+1-\rho_{i}$, all i, then the number of ascents in ρ plus the number of ascents in ρ^{\prime} is $n-1$. Also the relation

$$
\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle=(n-k)\left\langle\begin{array}{l}
n-1 \\
k-1
\end{array}\right\rangle+(k+1)\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle
$$

comes from observing that if n is inserted into a permutation of $1,2, \ldots, n-1$ to produce a permutation of $1,2, \ldots, n$, then it can be inserted in any of n places, and the number of ascents either stays the same or goes up by 1 .

Now for s^{r}. We have that s^{r} is equal to the number of ways of choosing $n_{1}, n_{2}, \ldots, n_{r}$ with $1 \leq n_{i} \leq s$, all i. For each such choice, rearrange the n_{i} in increasing order; this is unambiguous for distinct values, but where two or more n_{i} have the same value, arrange them so that their subscripts are in decreasing order. Let the new order be $n_{\rho_{1}}, n_{\rho_{2}}, \ldots, n_{\rho_{r}}$, which defines a unique permutation ρ.

For example, if $s \geq 5$ and $r=6$, and $n_{1}=4, n_{2}=1, n_{3}=4$, $n_{4}=3, n_{5}=4$ and $n_{6}=5$, then we have the multiple inequality

$$
n_{2}<n_{4}<n_{5} \leq n_{3} \leq n_{1}<n_{6}
$$

and ρ sends $1,2,3,4,5,6$ to $2,4,5,3,1,6$ respectively. If instead we had written $n_{1}=5$ and $n_{6}=6$, we would have obtained the stronger condition

$$
n_{2}<n_{4}<n_{5} \leq n_{3}<n_{1}<n_{6}
$$

Each choice of $n_{1}, n_{2}, \ldots, n_{r}$ thus gives rise to exactly one permutation ρ. The corresponding multiple inequality involves $1 \leq n_{\rho_{1}}$, $n_{\rho_{2}}, \ldots, n_{\rho_{r}} \leq s$ in that order; if we now insert into this list " \leq " at each ascent of ρ, and " $<$ " elsewhere, then the condition obtained (or maybe a stronger one) is satisfied by our chosen n_{i}.

The number of ways of solving this multiple inequality, if there are exactly k weak inequalities, is $\binom{s+k}{r}$, and so if we lump together the permutations having the same number of ascents, we obtain

$$
s^{r}=\left\langle\begin{array}{l}
r \\
0
\end{array}\right\rangle\binom{ s}{r}+\left\langle\begin{array}{c}
r \\
1
\end{array}\right\rangle\binom{ s+1}{r}+\ldots+\left\langle\begin{array}{c}
r \\
r-1
\end{array}\right\rangle\binom{ s+r-1}{r} .
$$

This is the equation

$$
s^{r}=a_{r 1}\binom{s}{r}+a_{r 2}\binom{s+1}{r}+\ldots+a_{r r}\binom{s+r-1}{r}
$$

on page 19, with $a_{r k}=\left\langle\begin{array}{c}r \\ k-1\end{array}\right\rangle$.

Here is a different sort of counting argument. How do we set about finding a basis for a vector space? For example, if we want a basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ for \mathbb{R}^{3}, we choose the first element, \mathbf{v}_{1}, to be any vector in \mathbb{R}^{3} except the zero vector; that is, we avoid the zero-dimensional subspace.

For the second element, \mathbf{v}_{2}, we can choose any vector not linearly dependent on \mathbf{v}_{1}; that is, we avoid the 1-dimensional subspace spanned by \mathbf{v}_{1}.

For the final element, \mathbf{v}_{3}, we can choose any vector not linearly dependent on \mathbf{v}_{1} and \mathbf{v}_{2}; that is, we avoid the 2-dimensional subspace spanned by \mathbf{v}_{1} and \mathbf{v}_{2}.

Now let's do this using a different field of scalars: we'll use the field \mathbb{F}, which we are going to suppose is finite: specifically, suppose $|\mathbb{F}|=q$. (For example, we might choose $\mathbb{F}=\mathbb{Z}_{p}$, integers modulo a prime number p. In that case we would have $q=p$.)

Over such a field, an r-dimensional space (or subspace of a space) must be isomorphic to \mathbb{F}^{r}, and so will contain q^{r} elements.

So, to choose a basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ of \mathbb{F}^{3}, we have a choice of $q^{3}-1$ vectors for \mathbf{v}_{1}, a choice of $q^{3}-q$ vectors for \mathbf{v}_{2}, and a choice of $q^{3}-q^{2}$ vectors for \mathbf{v}_{3}. Thus the number of different bases is

$$
\left(q^{3}-1\right)\left(q^{3}-q\right)\left(q^{3}-q^{2}\right)
$$

More generally, the number of different bases of \mathbb{F}^{n} is

$$
\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \ldots\left(q^{n}-q^{n-1}\right)
$$

since there are q^{n} vectors altogether, and at the $(r+1)^{\text {th }}$ step we are trying to avoid the q^{r} vectors in some r-dimensional subspace.

Of course, if we write the elements of a basis in a different order, we get another basis, and this means that the different bases fall into equivalence classes of n ! bases each, under the action of permuting the elements. It follows that

$$
\frac{\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \ldots\left(q^{n}-q^{n-1}\right)}{n!}
$$

is an integer, being the number of unordered bases of \mathbb{F}^{n}.

Thus we have proved that

$$
n!\mid\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \ldots\left(q^{n}-q^{n-1}\right)
$$

Alternative posh argument: the general linear group $\mathrm{GL}_{n}(\mathbb{F})$, of all invertible $n \times n$ matrices over \mathbb{F}, has order

$$
\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \ldots\left(q^{n}-q^{n-1}\right)
$$

the successive brackets being the number of choices for successive rows of an invertible matrix. The permutation matrices (obtained by permuting the rows, or columns, of the identity matrix) form a subgroup of this, of order n !, and the result follows by Lagrange's theorem.

Now, if $q=|\mathbb{F}|$, where \mathbb{F} is a field, then \mathbb{F} contains a minimal subfield (isomorphic to) \mathbb{Z}_{p}, where p is a prime number, the characteristic of \mathbb{F}. (p is the additive order of 1 in \mathbb{F}, necessarily prime, and \mathbb{Z}_{p} is the prime subfield of \mathbb{F}.)

But this means that \mathbb{F} can be regarded as a vector space over \mathbb{Z}_{p}. Since it is finite, it is certainly finite-dimensional; and if its dimension is r then $\mathbb{F} \cong \mathbb{Z}_{p}^{r}$ (as \mathbb{Z}_{p}-spaces), and therefore $q=p^{r}$.

So the order of a finite field is a prime power; and in fact for every prime power there is (up to isomorphism) precisely one finite field of that order.

To recap, we have proved that

$$
n!\mid\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \ldots\left(q^{n}-q^{n-1}\right)
$$

but we now see that our proof will not work if q is not a prime power.

In fact, (\star) true for every q, though the proof is a bit fiddly. What we shall do is calculate, for every prime p, how many times p divides each side of (\star), and compare.

How many times does p divide n ! ?
p divides once into each of $p, 2 p, 3 p, \ldots$;
a second time into each of $p^{2}, 2 p^{2}, 3 p^{2}, \ldots$;
a third time into each of $p^{3}, 2 p^{3}, 3 p^{3}, \ldots$;
and so on. The number of multiples of m that are less than or equal to n is the integer part of n / m, which we denote $[n / m]$. We conclude: n ! is divisible by p^{r} (and not by p^{r+1}), where

$$
r=\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\left[\frac{n}{p^{3}}\right]+\ldots
$$

(This makes sense, as all but a finite number of terms on the right are zero.)

Note that

$$
r<\frac{n}{p}+\frac{n}{p^{2}}+\frac{n}{p^{3}}+\ldots=\frac{n}{p}\left(1-\frac{1}{p}\right)^{-1}=\frac{n}{p-1}
$$

Next, note that

$$
\begin{aligned}
& \left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \ldots\left(q^{n}-q^{n-1}\right) \\
= & q^{s}\left(q^{n}-1\right)\left(q^{n-1}-1\right)\left(q^{n-2}-1\right) \ldots(q-1)
\end{aligned}
$$

where

$$
s=0+1+2+\ldots+(n-1)=\frac{n(n-1)}{2}
$$

Since p is prime, either $p \mid q$ or else p and q are coprime. In the first case, we need to show that

$$
r \leq \frac{n(n-1)}{2}
$$

If $n=p=2$, then $r=[n / p]=1$ and also $\frac{n(n-1)}{2}=1$. On the other hand, if $n>2$ or $p>2$ (or both) then

$$
2 \leq(n-1)(p-1)
$$

whence

$$
\frac{n}{p-1} \leq \frac{n(n-1)}{2}
$$

and the result follows, since, as we have already shown, $r<\frac{n}{p-1}$.

In the other case, when p and q are coprime, we know that p divides $q^{p-1}-1$, by Fermat's little theorem; and likewise it divides $q^{2(p-1)}-1, q^{3(p-1)}-1$, and so on. The number of terms ($q^{s}-1$) divisible by p on the RHS of (\star) is thus at least $\left[\frac{n}{p-1}\right]$. But we know $r \leq \frac{n}{p-1}$, and since r is an integer, we must have $r \leq\left[\frac{n}{p-1}\right]$. This finishes the proof: in all cases,

$$
n!\mid\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \ldots\left(q^{n}-q^{n-1}\right)
$$

Suppose we want to combine n elements of some set under a non-associative binary operation. (So $n \geq 2$.) How many ways can we do this, i.e., how many ways can we put in the brackets?

For example, if $n=3$, the answer is 2 , for we can write

$$
a(b c) \text { or }(a b) c .
$$

Again, if $n=4$, the answer is 5 , for we can write

$$
a(b(c d)), \quad a((b c) d), \quad(a b)(c d), \quad(a(b c)) d, \quad \text { or } \quad((a b) c) d .
$$

Here is a neat way of getting a formula for the answer, for n symbols. In elementary group theory, the "product" $a b$, or ($a b$), is often written using some special symbol such as \star, so we might write $a \star b$, to emphasize that this is not (necessarily) ordinary multiplication. We are going to do this, but perversely we shall write it as $\star a b$, not $a \star b$. In this notation, we don't need any brackets! For example, $(a b) c$ is written $\star \star a b c$, and $a(b c)$ is written $\star a \star b c$.

To reverse the process, replace each * by a LH bracket, and you then find there is a unique way of inserting RH brackets to make the answer make sense. For instance,

$$
\star \star a b \star c d \rightarrow((a b(c d \rightarrow((a b(c d) \rightarrow((a b)(c d) \rightarrow((a b)(c d)) .
$$

The symbols a, b, c, \ldots are just place-holders, so we shall write them all as a. A particular way of bracketing a product of n elements can now be represented by a string of $2 n-1$ symbols, $n a$'s and $n-1 \star$'s.

Not every such string is legal, i.e., makes sense: for example, when $n=2$ the possible strings are

$$
\star a a, \quad a \star a, \quad \text { and } \quad a a \star \text {, }
$$

but only the first of these is legal. However, we make the crucial observation that a suitable (and unique) cyclic permutation of each of the illegal strings will legalize them.

We prove this for general n by induction. We just did the first case, $n=2$. For larger n, we claim that some cyclic permutation of any given string will contain the sub-string $\star a a$.

Since we have more a 's than \star 's in our given string, some cyclic permutation of the string (possibly trivial) will bring two or more a 's together. However many successive a 's occur, they must be preceded by a \star (in the cyclic ordering), so that a cyclic permutation (possibly trivial) will produce the sequence $\star a a$.

We now replace $\star a a$ by a, and this reduces us to the case of $n-1$ a 's and $n-2 \star$'s, so the result follows by induction.

Here is a worked example with $n=5$:

So we should have started three from the end:

$$
\text { which represents } \left.\left.\stackrel{\star}{(}\left(\begin{array}{lllllll}
a & a \\
a & a
\end{array}\right) \stackrel{a}{\star}\left(\begin{array}{lll}
a & a \\
a & (& a
\end{array} a\right)\right)\right) .
$$

We have shown that the number of ways of bracketing a product of n elements is the number of cyclic orderings of $2 n-1$ symbols, of which n are the same and the remaining $n-1$ are the same. This is

$$
\frac{(2 n-2)!}{n!(n-1)!}
$$

which we'll denote by $f(n)$. Here are the first few values:

$$
\begin{array}{rccccccccc}
n: & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
f(n): & 1 & 2 & 5 & 14 & 42 & 132 & 429 & 1430 & 4862
\end{array}
$$

