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Abstract. Let U(n) denote the set of lattice paths that run from (0,0) to (n,0) with
permitted steps (1,1), (1,—1), and perhaps a horizontal step. Let £(n + 2) denote the set
of paths in U(n + 2) that run strictly above the horizontal axis except initially and finally.
First we review the cut and paste bijection which relates points under paths of £(n + 2) to
points on paths of U(n). We apply it to obtain enumerations, some involving the Narayana
distribution. We extend the bijection to a formula relating arbitrary factorial moments
for the paths of £(n + 2) to moments for the paths of U(n). This formula produces some
additional results for moments and for the total area of the paths of £(n + 2).

Key phases: lattice path moments, Catalan numbers, Narayana distribution, Schroder
numbers, square-triangular numbers.

1 Introduction

Consider lattice paths in the integer plane represented as concatenations of the directed
steps types: U := (1,1), D := (1,—1), and, perhaps, H := (h,0) where h is a positive integer.
When the steps are weighted, the weight of a path P, denoted by |P|, is the product of the
weights of its steps. The weight of a path set X', denoted |X|, is the sum of the weights of its
paths. For a given step set S, let U(n) denote the set of all unrestricted paths running from
(0,0) to (n,0). Let C(n) denote the set of paths in U(n) constrained never to pass beneath
the horizontal axis. Let £(n) denote the set of paths in C(n) that are elevated strictly above
the horizontal axis except at their initial and final points. E.g., for the unit-weighted steps of
S = {U, D} and for n > 0, we have that [1/(2n)| is the central binomial coefficient (*'), C(2n)
are the Dyck paths of length 2n, and |C(2n)| = |€(2n + 2)| is a Catalan number —L-(*").

n+1
For any step set S and any path P running from (0,0) to (n,0), let

(0,p0), (L,p1),(2,02), -, (2, 02)s - -, (10, Pp) (1)

denote the lattice points traced by the path. (When P uses an (h,0) step for h > 2, the
trace points need not be at the ends of steps.) For any real valued function f defined on the



integers and for any path set X'(n), X'(n) C U(n), the weighted moment with respect to the
formula f(y) is designated as

X ), f) = D IPID_ fpa)-
PeX(n) =0

For f(y) = 1/(n+1) and X(n) C U(n), (X (n),1/(n+1)) = |X(n)|. By the trapezoid
rule, if f(y) = y, u(€(n),y) is the sum of the weighted areas of the regions bounded by
the paths of £(n) and the horizontal axis. When we permit only the unit-weighted steps of
S = {U, D}, we will see later that u(€(2n + 2),y) = 4™ for n > 0.

This paper is a direct continuation of the paper [6] which introduces the cut and paste
bijective method relating lattice points under elevated paths of £(n + 2) to points on the
unrestricted paths of U(n). In [6] the method yielded results about zeroth, first, and second
moments for £(n + 2), in particular

uEn+2),y°) = pU(n), 1) = (n+ |U(n)|. (2)

Section 2 will review the cut and paste method. Section 3 will give some illustrations
of the method obtained by restricting its domain and codomain. In particular, the cut and
paste delivers the Narayana numbers. Section 4 will extend the method to a result that
relates factorial moments for £(n + 2) to factorial moments for ¢(n). The paper concludes
with additional means for handling moments and with consequences of Section 4 including
results related to the Schroder, central Delannoy, and square-triangular numbers.

Some notation and background. In this paper n will denote an arbitrary nonnegative
integer. Usually, U, D, and H (= (h,0)) will denote unit-weighted steps, while U; and H;
will denote steps weighted by the indeterminates ¢ and s. For notational brevity, we will
allow h to be either a positive integer or ‘o0’. Effectively, {U, D, (00,0)} = {U, D}, and the
power z*° will make no contribution to any power series.

Forany S = {U;, D, H,}, consider the following generating functions: c¢(z) := ), ., |C(n)|2",
(2) 1= t226(2) = Ty 160 +2)[272, and u(z) = Y, ()27 )

From the known decompositions of paths sets we have,

c(z) = 1+s2"c(z) +t22c(2)? (3)
u(z) = 1+ szu(z) 4 2t22c(2)u(z) (4)
To see (4) note that every path in U (n) either has zero length, begins with H, or begins with

U or D followed by a constrained path or its reflection and later returns to the horizontal
axis for the first time. Identity (3) follows in a similar manner. Solving these yields

e(2) = tlc(z) = (1 —s2"— /(1 —s2h)2 — 4t22)/2,
u(z) = 1/4/(1 —s2M)2 — 4t22. (5)

We remark that Example 6.3.8 of [9] extends easily to an alternative derivation of (5).
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Recall the rising factorial, 2%, defined so 2* = z(z 4+ 1)--- (z + k — 1) for positive integer
k, 2° = 1, and 2% = 0 for negative integer k. Then, for k > 0, ("t*) = (r + 1)*/k!. For
any statement A, we define its truth value by x(A) so that x(A) = 1 if A is true, and = 0

otherwise.

2 The cut and paste method

Here we define the cut and paste method, which was presented with more detail, including
its invertibility, in [6]. Let S = {U, D, H}. First we need the notion of a dot. Given a path
P € &(n + 2), given a lattice point (z,y) lying strictly under P but weakly above the
horizontal axis, and given an integer k, a dot is a triple, [P, (z,y), k]. The index k permits
the existence of more than one distinguishable dot at some points. With the notation of (1),
the domain for our proposed bijection is

DOTS(n+2) := {[P, (x,y), k] : P € E(n+2),0 < x < n+2,0 <y < pg, —Pety < k < pe—y}.

This domain can be partitioned into triangular arrays of dots, with one array correspond-
ing to each lattice point on the trace of each elevated path in £(n + 2). Thus there will be
(n+ 1)|€(n + 2)| triangular arrays. E.g., if P = UUDUUDDD and if x = 5, then p; = 3
and the corresponding array appears as

[P, (5,2),0]
[Pv (571)7_1] [Pv (571)70] [Pv (55 1)51]
[Pv (57 0)7 _2] [Pv (57 0)7 _1] [Pv (57 0)7 O] [Pv (55 0)5 1] [Pv (57 0)7 2]

The codomain for the proposed bijection is a set of pointed paths, each path being
pointed, i.e. marked, by a distinguished lattice point on its trace. Hence the codomain is

POINTS(n) := {(P, (z,p.)) : P € U(n),0 <z < n}.

We now define
¢ : DOTS(n + 2) — POINTS(n) (6)

First assume k£ > 0. Each [P, (z,y), k] € DOTS(n + 2) determines four points on P (See
Fig. 1):

— Let 6 be the point on P directly above (x,y); i.e., 8 := (x, p;).

— Let € = (€1, €2) be the nearest point on P to the left of (z,y) such that e = p, —k — 1.

(This indicates the role k plays in defining the bijection.)

— Let A = (A1, Ag) be the nearest point on P to the left of (z,y) such that Ay = y.

— Let p = (p1, p2) be the nearest point on P to right of (z,y) such that py = y.

Let L; be that subpath of P running from (0,0) to A; let Ly be that subpath of P running
from A to €; let Ry be that subpath of P running from € to p; let Ry be that subpath of P
running from p to (n + 2,0). Some of these subpaths may be empty. Here P = LiLoR  R,.
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Figure 1: For k = 3, the dot [P, (27,3),3] in DOTS(40) and its image [P’,(25,3)] in

POINTS(38).

Let LR, be the path obtained from the concatenation L;R; by deleting its first and last
steps. When 3 = 0, L; has zero length, and we will use R; to denote L, R;. Define

O([L1LaRa Ry, (2,y), k]) = (RyLy Ry Ly, (2, k) (7)

where the point  is moved along with R; so that 2/ =z +n+ X\ — e — p1 — 1.
If £ <0, let REFL(P') denote the reflection of the path P" about the z-axis and define

¢([P7 (l", y): k]) = (REFL(P’), (x,7 k))

where ¢([P, (z,y), [k[]) = (P', (<, []))-

3 Examples of the cut and paste

Here we illustrate the cut and paste method by restricting its domain and codomain
to prove some known results, mainly concerning the Narayana distribution and the large
Schroder numbers. Other such examples appear in [6].

3.1 Cardinality results analogous to the cycle lemma
For § = {U,, D, H,} let £(n,m) and U(n,m) denote those subsets of £(n) and U(n),
respectively, where each path has m U-steps.

Proposition 1 For m > 0,

(m + D)E(n + 2,m + 1)| = t{d(n, m)].



When § = {U, D}, this formula reduces to (n + 1)|€(2n + 2)| = |U4(2n)], and thus the
cut and paste explains the factor (n+1). The paper [6] compares this explanation with that
given by the classical cycle lemma of [4].

To obtain the proposition, place m + 1 dots on the z-axis under each path P in £(n +
2,m + 1) so that exactly one dot is located directly below the final point of each U step.
More specifically, apply the restricted bijection

¢ :A{[P,(x,0),0] : P € E(n+2,m+ 1) and = below a final point of a U step}

—{[P',(0,0)] : P € E(n,m)}.

We see that the weight of the domain is (m + 1)|€(n + 2, m + 1)| while the weight of the
codomain is t|U(n, m)|, where the factor ¢ corresponds to the deletion of a U in the cut and
paste. [

We define the elevated large Schroder paths to be the paths in £(n + 2) having S =
{U,D,(2,0)}. (Here and in the following, when we embellish ‘S’, we embellish ‘£’ and
‘U’ correspondingly.) We thus take the large Schréder numbers to be defined in terms of
the cardinality of these path sets. Specifically, (|€(2n + 2)|)n>0 = (1,2,6,22,90,394,...).
(Sequence A006318 of [8].)

The proposition shows that large Schroder numbers can be formulated as

E@n+2)| =) [E@n+2,m+1)| =

m>0

L _ (m+n)!
(m+I)W(Qnm)'_Z m+ Dl ml (n—m)’ (8)

m>0

3.2 The Narayana distribution in terms of oddly positioned up steps

Consider the step set S = {U;,U, D} where Uy is a step of weight ¢ that must be oddly
positioned on any path of éN'(2n+2), U is a unit-weighted step that must be evenly positioned
on any path of g(?n +2), and D is unit weighted.

Proposition 2 Forn > 1,

s D)) o

where L (M) (.")) is a Narayana number. (Sequence A001263 in [8].)

i—1

For t =1, (|€(2n +2)|), n>1 = (1,2,5,14,42, ...), the Catalan numbers less the first term.
For t =2, (|€(2n+ 2)|)p>1 = (2,6,22,90,394, ...), the large Schroder numbers less the first
term.



For this proof, use the unit weighted steps, U and H. For any path @, let W,(Q)
(We(Q), respectively) denote the number of oddly (evenly, respectively) positioned U steps
on Q, translated if necessary to begin at (0,0). Let £(2n+2, i) denote the subset of £(2n+2)
whose paths have ¢ oddly positioned steps. Let

A = {[P,(x,0),0] : P € £(2n+2,i) and = is a final abscissa of an oddly positioned U},
B = {(P,(0,0)): P € U(2n) and the lowest point of P has an even ordinate},
C := {P":P" runs from (0,0) to (2n — 1,1) and W, (P") =i — 1}.

Restricting the cut and paste establishes the bijection ¢ : A — B. However, since this
map does not preserve the number of oddly positioned U steps, we need a bijectionv : B — C'
correcting this situation for which the composition v o ¢ is weight preserving.

For y = 0, P factors as LyR;, and its image under ¢ factors as Ry Ly. We now de-
fine v(R; Ly). Immediately, W.(R;) = W,(R;) — 1. If Ly has zero length then W,(Ly) =
W.(Ly) = 0. If Ly has positive length, write R, L, as a sequence of steps: R, L, =
T Ton_gi1lilo - - £y—1. The step £, begins with a negative even ordinate, namely, 1 —p,.
Let ¢; denote the last step on R, L, that begins with ordinate equal —1. Put

E L’g =nrrg e '7“2n—m+1£j€j+1 cely i lily - 'ejfl-

Since on R; L} the relocated step ¢; is the last step to begin with ordinate 2 — p,, Ly is
recoverable from L/,. Moreover, W, (L) = W,(Ls).

If Ly has zero length, let P’ denote R;; otherwise, let P’ denote R, L, and notice that we
have W, (P'") = W,(P) — 1. If P’ terminates with a D step, let P” denote the path obtained
from P' when this final D is deleted. For the sake of recovering P’ notice that the lowest
point on P” has even ordinate. On the other hand, if P’ terminates with a U step, let P”
denote the path obtained when this (evenly positioned) last step is removed and the leftmost
lowest D step is changed into an (evenly positioned) U step. Here, for the sake of recovering
P', notice that the lowest point on P” is unique and has an odd ordinate. In either case,
P" terminates at (2n — 1,1) and W (P") = W, (P') = W,(P) — 1 =i — 1. Thus we define
v(R, Ly) = P".

To determine |C|, observe that each path must have i — 1 of its n — 1 even step positions
filled with a U step and must have n — (i — 1) of its n odd step positions filled with a U step.
Hence [C] = (7)) (, %) = £(5)(;",), while |[A] = i[€(2n + 2,4)]. O

3.3 The Narayana distribution in terms of peaks

For this application we count elevated paths with respect to the number of bicolored
peaks. Again we derive the Narayana distribution and the large Schroder numbers. On any
path, a ‘right-hand turn’ or a ‘peak’ is the intermediate vertex of a consecutive UD pair.
For S = {U, D}, let g(n, b,r) denote the set of elevated paths using the steps U and D and
having b blue peaks and r red peaks.



Proposition 3 For1 <b+r <n,

~ 1 n—1 n bt
|5(2n+2,b,r)|—m<b+r—1> <b+r—1>< b )

For each path P in g’(?n—l—?, 0,1), place i dots on the z-axis below the peaks (all being red)
of the path. With k = 0 each dot is mapped by ¢ to a point ¢([P, (x,0),0]) = [R; L, (0, 0)]
where the image path begins with a D step and has ¢ — 1 right-hand turns. If we tilt each
image path counterclockwise by 45 degrees, one can check that in the tilted path there
would be (7;:11) ways to choose the abscissae and (lfl) ways to choose the ordinates for
the intermediate vertices of the right-hand turns, where these turns uniquely determine the
path. Thus, z|g(2n +2,0,1)| = (7;:11) (lfl) Now, allowing b of the peaks to be independently
colored blue, while the remainder are red, yields the factor (bzr) 0

When we disallow blue peaks, the proposition shows that £(2n + 2,0,7) is a Narayana
number. When we do not limit the coloring or the number of peaks, we see that the number

of paths in the E(Zn + 2) with independently bicolored peaks is the large Schroder number:

DY E@nt2b) = 3D E@n+2.bi-b) =
& . “1{n-1 n ;
zi:zb:|8(2n+2,b,z—b)| ZZ(i—l)(i—1>2 (10)

=1

Now return to the large Schréder paths, considered in (8), which used S = {U, D, (2,0)}.
In that notation, £(2n,n + 1 — j) will be the set of elevated paths having j of the (2,0)
steps. There is a simple matching between U,E(Qn +2,b,7) and £(2n + 2,n + 1 — b) that
is obtained by transforming each UD pair with a blue intermediate vertex into a (2,0) step
and by removing the color red. Hence the number of paths in £(2n + 2) is also counted by
large Schroder numbers of (10).

3.4 The ‘area’ under peaks

We will consider the total area under the paths of £(n + 2) more extensively in Section
6. Here, for S = {U;, D, H,}, we will sum the heights of peaks over all of the constrained
paths in C(n). Equivalently, by the manner in which dots are arrayed under each trace point
of the paths of £(n + 2), we will find the weighted cardinality of the dots with £ = 1 under
the peaks of the paths of £(n + 2). By the cut and paste one can check that the restricted
bijection is

¢ :A{[P, (z,y),1] € DOTS(n +2) : (x,p,) is a peak }
— {(P,(z,1)) € POINTS(n) : pp_1 = pzy1 = 0}.

Here, each dot in the restricted domain is mapped to an unrestricted path with a marked UD
with intermediate vertex having ordinate 1. Each marked path results from the concatenation
of three paths, namely, an unrestricted path from (0,0) to the marked UD followed by an
unrestricted path to (n,0). Hence, with #2? corresponding to the marked UD, we have
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Proposition 4

S Y xlp) is a peak)pz” = 12%u(2)’.

n>0 PeC(n) 0<z<n

Consequently, for S = {U, D}, the power series for the sum of heights of the peaks on
constrained paths is tz%u(z)? = 2%(1 — 42?)~!, whose coefficients are powers of 4.

4 Relating moments for £(n + 2) to those for U(n)

To obtain our principal consequence of the the cut and paste bijection, we assign a value
to each dot and its image. Consider any real valued function, p, defined on Z x Z. With r
viewed as an index, the cut and paste yields trivially

>, p(k,r) = > pk,r) = > ply,r).  (11)

[P,(z,y),k]eDOTS(n+2) (P,(z,k))ePOINTS(n) (P,(z,y))ePOINTS((n)

We call a formula p(y, ) a ‘b-moment’ if, for arbitrary (y,r) € Z x Z,

ply,r+1)=x(y>0) > p(j,r). (12)

0<j<y

We use the name, ‘b-moment’, since a b-moment is easily seen to be a linear combination of
binomial coefficients. Thus, if p is a b-moment, the left side of (11) becomes

Pz—1pe—y—1 pz—1

SN k) = DD ppe—y—1,r+1)

z y=0 z y=0

= Zzp(px_17r+2)'

This identity and (11), which is a consequence of the cut and paste, yields

Proposition 5 For S = {U,, D, H,}, for integer r, and for any b-moment p(y,r),

p(En +2),p(y = Lr +2)) = tuU(n), py, 7). (13)

Specifically,
pEn+2), (7, 501%) = tpU(n), (V37)) (14)
and for r > 0,

pEM+2),y) _ tuU(n),y")
(r+2)! r! '

(15)



As the classic example, we use (14) to prove (2):
pEMm+2),y%) = u(En+2),2(05) - (%))

= pU(n),2(%) = () = nU(n),2x(y > 0) = x(y = 0)) = pU(n), 1),
where the last identity holds since over the paths of U(n) there are the same number of
points with positive ordinate as with negative ordinate.

5 Recurrences of moment generating functions

We will recast a recurrence for factorial moments for elevated paths like one given by Chap-
man [3]. (See also [7] and [12]). We will then use Proposition 5 to convert that recur-

rence into one for moments for unrestricted paths. For a given b-moment p(y,r) and for
S ={U;, D, H,}, let

Zu (n+2),p(y —1,7))2z""™ and  u,(2) ::ZH(L{(n),p(y,r))z”.

n>0 n>0

Proposition 6 For integer r,

(1 —t2c(2)Yer(2) = er1(2) (16)
(1 —t22c(2))us(2) = up 1(2) (17)
e(2) = %(1 + (1= s2Mu(2))ers(2) (18)

We prove (16) in the form
er(2) = e, 1(2) + t2%c(2)%e,(2). (19)

Since p is a b-moment we have p(i,r) = p(i,7 — 1) + p(i — 1,7) and hence

n+1 n+1 n+1

Z Zp -1,r) Z Zp e — Lr—1)+ Z Zp —-2,r).  (20)

Pe&(n+2) Pe&(n+2) Pe&(n+2)

Consider the rightmost double sum. Each P € £(n+2), satisfies P = UQD where Q € C(n)
and ) can be factored uniquely so that each factor, @), is a translation of some elevated
path. Suppose @' can be translated to belong to £(n'), for 2 < n’ < n. Each time Q'
appears as a factor in some of the concatenations forming the paths of C(n), it is preceded
by a (perhaps void) constrained path and followed by a (perhaps void) constrained path;
thus @ makes >, . |C(7)||C(i')| appearances in the paths of C(n). Since each factor
@' begins and ends with points of ordinate 1, i.e., since each @)’ is ‘doubly elevated’, the



moment contribution to ZPes(n+2) ZZE p(pe — 2,7) of @', translated to begin at (0,0), is
Z:’:_ll p(q, — 1,7) times its frequency of appearances. Hence,

n+1

> E:P }: o> lelied IE: (21)

Pe&(n+2) n'=2Qe&(n’) i+i'=n—n'

and the corresponding generating function is t2%c(z)%e,(z). The identities (20) and (21) yield
(19). An application of Proposition 5 to (16) yields (17). A straightforward computation
yields (18). O

6 Further examples

6.1 Areas and intercepts

Take S = {U, D, H} and let p(y,r) = (r;;y). Since p(y — 1,1) = y, the left side of (13)
becomes the first moment Zpeg(n+2) > . Pz, which by the trapezoid rule is the total area
bounded between the horizontal axis and the paths of £(n + 2). Since p(y, —1) = x(y = 0),
the right side of (13) becomes 3 /) 22, X(Ps = 0) which is the total number of intercepts
of the horizontal axis by the paths of LI (n). More generally, if we consider p(y,r) = (T;“fyé’o)
for nonnegative 1, then we can use (13) to show
Proposition 7 For S = {U,D,H} and for yy > 0, the total area of the regions under the
paths of E(n+2) and above the horizontal line y = yq is equal to the number of intercepts of
that line by the paths of U(n).

Next we give further results concerning intercepts, area, and the generating function
u(z)?, whose formula is obtained from (5).

Proposition 8 For S = {U, D, H}, the generating function for the number of intercepts of
the horizontal azis by the step end points on the traces of the paths of U(n) satisfies

Z Z Z (z,0) is a step end point on P )z" = u(z)>.

n>0 PeZ,{ 0<a:<n

This proposition follows by observing that each intercept contributing to the inner sum-
mations results from the concatenation of two paths, an unrestricted path from (0, 0) to the
intercept followed by an unrestricted path from the intercept to (n,0). OJ

Proposition 9 For S = {U, D, H}, the generating function for the number of intercepts of
the horizontal azis by lattice points on the traces of paths of U(n) satisfies

D uUn), x(y = 0))2" = (14 (h = 1)z")u(2)”. (22)
n>0
FEquivalently, the generating function for the total area under the paths of €(n + 2) satisfies

Zu (n+2),y)2"% = 22(1 + (h — 1)2")u(2)*.

n>0
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Intercepts which are end points of steps make a contribution to the generating function
as in Proposition 8. When a step lies on the horizontal axis, the h — 1 intercepts which are
interior to a step can be collapsed along with the step to become the intercept of a step end
point on a path of belonging to U(n — h) and thus make an adjusted contribution to the
right side of (22). The second identity follows by the initial remarks of this section. [J

6.2 Two comparable models Here we examine some comparable, yet different, models
whose area results are derivable from the the cut and paste, through Proposition 9. In

the two cases below we will consider instances of a recurrence: If a(n) is defined so that
Y-, a(n)z" = u(z)?, then

a(n) = 4ta(n — 2) + 2sa(n — h) — s’a(n — 2h) (23)

which follows the comparison of coefficients and (5).

Case for s =t+ 1 and h = 1: Here the step set is S* = {U,;, D, (0,1)441}. For t =1,
e*(z) = 122 +22% + 521 + 142° +4225..., a generating function for the Catalan numbers less
the first term. For t = 2, e*(2) = 222 + 623 + 22* 4+ 902° + 39425..., a generating function for
the large Schroder numbers less its first term; it is not a curiosity that the cardinalities of
E*(n+2) and £(2n + 2) (see (9)) agree as one can establish a straightforward isomorphism
o : U*(n) — U(2n) using the step replacement rules: a(U,) = UU, a(D) = DD, and
o(H,y1) = {U.D, DU},

For t =1 and ¢t = 2, u*(2) is the generating function for the central binomial coefficients
and the central Delannoy numbers, respectively. (See Sequence A001850 of [8] and Section
6.5 of [9].)

The weighted area under the elevated paths of £*(n + 2), satisfies

22
(t+1)z —1)% —4tz?

D wEn+2), )" = 12U (2)° =
n>0
For t = 1, 2%u*(2) = 12,

remark that there is a simple bijection from £*(n + 2) to a set of parallogram polyominoes

a generating function whose coefficients are powers of 4. We

of perimeter 2n + 4 which is area preserving as discussed in [11]. Further attention to this
result appears in [5].

For t = 2, 22%u*(2)? = 1_2;122 = 222 + 1223 + 702" + 4082°..., where the coefficients
are double the square-triangular numbers, or, equivalently, every other Pell number. (See
sequences A000129, A001109, and A001542 in [8].) By (23), for t = 2, u*(2)* = >

satisfies

n @ (n)2"

a*(n) =6a"(n—1) —a*(n—2) (24)

subject to a*(2) = 2 and a*(3) = 12. This recurrence in terms of the total the areas of zebras
(i.e., column-bicolored parallogram polyominoes) was a principal topic of [11].

Case for t = 1: Here S = {U, D, (0, h)s}. For h = oo, &(2) is a generating function for
the Catalan numbers. For s =1 and h = 1, €(2) is the generating function for the Motzkin
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numbers. For s = 1 and h = 2, C(n) are the usual large Schréoder paths with €(z) being the
generating function for the large Schréder numbers, as noted after formula (10).
For h = oo, u(z) gives the central binomial coefficients. For s = h = 1, u(z) gives the
central trinomial numbers. For s =1 and h = 2, u(z) gives the central Delannoy numbers.
By Proposition 9 the area under the elevated paths of £(n + 2), satisfies

1+ (h—1)2"
2),y)2" % = :
RZ:O“ (n+2),9)z (szh —1)2 — 422

For h = oo, the coefficients of this power series are powers of 4. (See [13].) For s =1 and

h = 2, this power series becomes fjg;{il = 122 + 72 4+ 4125 4 2392% 4 13932'°..., where

the coefficients correspond to pairwise sums of consecutive square-triangular numbers, or

equivalently to every other pairwise sum of consecutive Pell numbers, as noted in [2]. (See
sequence A002315 in [8].) For £(2n+2), we remark that the square-triangular numbers give
both the sums of the ordinates of the trace points restricted to be end points of steps and
the sums of the ordinates of the trace points which are the mid points of steps. By (23), for
s=1and h=2,u(z)? =) a(n)z" satisfies

a(n) =6a(n —2) —a(n —4) (25)

subject to @(2) = 1 and @(4) = 7, as noted in [2]. Compare this recurrence to (24). For
recent considerations of (25) and other references, see [1]. For a bijective approach to the
recurrences for the cardinality, area, and the second moments for large Schroder paths see

[10].

6.3 Moments for unrestricted paths about the horizontal axis

Consider the rising factorial moments of the distances from the horizontal axis for trace
points of the paths of U(n). While our computations are not consequences of the cut and
paste, we include them since they are analogous to the proofs of Propositions 6 and 8.

Proposition 10 For m > 0,

S Y bl =20 Y e+ 2,7

n>0 PeU(n) 0<z<n n>0

To prove this, note that since |p,|™ > 0 there is no contribution to the left side from the
intercepts. Also note that each path in U(n) can be factored into subpaths which begin and
end on the horizontal axis, each factor being either an elevated path P’ whose translation
belongs to £(n’ + 2) or its reflection. Since the factor P’, or its reflection (requiring the
multiple 2), is preceded and followed by a unrestricted path and since 3, . ..., [p}|™ (when
P’ is translated to begin at the origin) is a summand of u(E(n' + 2),y™), the proposition
now follows in a manner of the proof of (16). O.

12



6.4 Two Catalan configurations
Here we give two configurations enumerated by the Catalan numbers but not appearing
in the catalog of Exercise 6.19 of [9].

Proposition 11 For § = {U,D} and for n > 0, the total number of intercepts of the
horizontal azis by the Dyck paths running from (0,0) to (2n,0) is %H(ij). Moreover, if
the values 1, —2, and 1, are assigned respectively to the points of ordinate 0, 1, and 2 on the
unrestricted paths running from (0,0) to (2n,0), then the sum of these values over all these

paths is the same Catalan number.

More generally, for S = {U,, D, H,}, we claim that

ZIU,(U(TL), (_l)y(z))zn = ZM(U(n), (y;3))zn =

n>0 n>0

Zt’lu( (n+2), Zu =0))2" = c¢(2)%

n>0 n>0

To see the last identity, notice that u(C(n), x(y = 0)) is the weight of the set of intercept-
marked paths form from constrained paths of C'(n). Since each intercept is realized as the
concatenation of a constrained path from (0, 0) to the intercept with a constrained path from
the intercept to (n,0), u(C(n),x(y = 0)) = >_.|C(¢)||C(n — i|. To finish the proof of the
proposition, notice that 2%¢(2)* = ¢(z) — 1 for § = {U, D}. O

Acknowledgement. The author thanks Elisa Pergola for her contribution to the proof of
Proposition 2.
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