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Abstract. We present an expected polynomial time algorithm to generate a la-
beled planar graph uniformly at random. To generate the planar graphs, we derive
recurrence formulas that count all such graphs with - vertices and . edges, based
on a decomposition into 1-, 2-, and 3-connected components. For 3-connected
graphs we apply a recent random generation algorithm by Schaeffer and a count-
ing formula by Mullin and Schellenberg.

1 Introduction

A planar graph is a graph which can be embedded in the plane, as opposed to a map,
which is an embedded graph. There is a rich literature on the enumerative combinatorics
of maps, starting with Tutte’s census papers, e.g. [21]. An efficient random generation
algorithm was recently obtained by Schaeffer [17]. Much less is known about random
planar graphs, although they recently attracted much attention [3, 5, 6, 9, 13, 15]. Even
the expected number of edges for random planar graphs is not known (both in the la-
beled and in the unlabeled case), and the gap between known upper and lower bounds
is still large [5, 9, 15]. There are also some results on the asymptotic number of la-
beled planar graphs [3, 15]. If we had an efficient algorithm to generate a planar graph
uniformly at random, we could experimentally verify conjectures about properties of
the random planar graph. We could also use it to evaluate the average-case running
times of algorithms on planar graphs. Denise, Vasconcellos and Welsh [6] introduced
a Markov chain having the uniform distribution on all labeled planar graphs as its sta-
tionary distribution. However, the mixing time is unknown and seems hard to analyze,
and is perhaps not even polynomial. Moreover, their algorithm only approximates the
uniform distribution.

We obtain the first expected polynomial time algorithm to generate a labeled planar
graph uniformly at random.
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Theorem 1. A random planar graph with � vertices and � edges can be generated
uniformly at random in expected time
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����� �
	

after a deterministic preprocessing of
running time

��� ��� ������ �
	 � ����������� �

	�	
. The memory requirement is

��� ��� ���� �
	

bits.

We believe that the actual generation is much faster in practice, see Section 6. Our
result uses known graph decomposition and counting techniques [22, 25] to reduce the
counting and generation of labeled planar graphs to the counting and generation of 3-
connected rooted planar maps, also called c-nets.

Usually a planar graph has many embeddings which are non-isomorphic as maps,
but some graphs have a unique embedding. A classical theorem of Whitney (see e.g. [7])
asserts that � -connected planar graphs are rigid in the sense that all embeddings in the
sphere are combinatorially equivalent. As rooting destroys any further symmetries, c-
nets are closely related to 3-connected labeled planar graphs. Moreover, the ‘degrees
of freedom’ of the embedding of a planar graph are governed by its connectivity struc-
ture. We exploit this fact by composing a planar graph out of � -, � -, and � -connected
components.

The generation procedure first determines the number of components, and how
many vertices and edges they shall contain. Each connected component is generated
independently from the others, but having the chosen numbers of vertices and edges.
To generate a connected component with given numbers of vertices and edges, we de-
cide for a decomposition into � -connected subgraphs and how the vertices and edges
shall be distributed among its parts. So far this approach is similar to the one used in [4],
where the goal was to generate random outerplanar graphs. In the planar case we need
to go one step further.

Trakhtenbrot [20] showed that every � -connected graph is uniquely composed of
special graphs (called networks) of three kinds. Such networks can be combined in se-
ries, in parallel, or using a � -connected graph as a template (see Theorem 2 below).
Using this composition we can then employ known results about the counting and gen-
eration of � -connected planar maps.

The concept of rooting plays an important role for the enumeration of planar maps.
A face-rooted map is one with a distinguished edge which lies on the outer face and to
which a direction is assigned. The rooting forces isomorphisms to map the outer face
to the outer face, keep the root edge incident to the outer face, and preserve its direc-
tion. The enumeration of � -connected face-rooted unlabeled maps with given numbers
of vertices and faces was achieved by Mullin and Schellenberg [14]. We invoke their
closed formulas in order to count � -connected labeled planar graphs with given num-
bers of vertices and edges. For the generation of � -connected labeled planar graphs with
given numbers of vertices and edges we employ a recent algorithm by Schaeffer [18]
running in expected polynomial time.

When we apply the various counting and generation subroutines along the stages
of the connectivity decomposition, we must branch with the right probabilities. Instead
of explicit (closed-form) counting formulas, which seem difficult to obtain, we derive
recurrence formulas that can be evaluated in polynomial time using dynamic program-
ming. These recurrence formulas can be translated immediately into a generation pro-
cedure.



The paper is organized as follows: In the next section we give the graph theoretic
background for the decomposition of planar graphs along their connectivity structure.
This decomposition guides us when we derive the counting formulas for planar graphs
in the following three sections. We analyze the running time and memory requirements
of the corresponding generation procedure in Section 7. Some results from an imple-
mentation of the counting part are shown in Section 8. We conclude with a discussion
of variations of the approach.

2 Decomposition by Connectivity

Let us recall and fix some terminology [7,22–24]. A graph will be assumed unoriented
and simple, i.e., having no loops or multiple (also called parallel) edges; if multiple
edges are allowed, the term multigraph will be used. We consider labeled graphs whose
vertex sets are initial segments of ��� .

Every connected graph can be decomposed into blocks by being split at cutvertices.
Here a block is a maximal subgraph that is either � -connected, or a pair of adjacent
vertices, or an isolated vertex. The block structure of a graph � is a tree whose vertices
are the cutvertices of � and the blocks (considered as vertices) of � , where adjacency is
defined by containment. Conversely, we will compose connected graphs by identifying
the vertex � of one part with an arbitrary vertex of the other. A formal definition of
compose operations is given at the end of this section.

A network � is a multigraph with two distinguished vertices � and � , called its
poles, such that the multigraph ��� obtained from � by adding an edge between its
poles is � -connected. (The new edge is not considered a part of the network.) We can
replace an edge �
	 of a network � with another network ���� by identifying � and
	 with the poles � and � of ���� , and iterate the process for all edges of � . Then the
resulting graph � is said to have a decomposition with core � and components ��� ,
����� � �

	
.

Every network can be decomposed into (or composed out of) networks of three spe-
cial types. A chain is a network consisting of � or more edges connected in series with
the poles as its terminal vertices. A bond is a network consisting of � or more edges
connected in parallel. A pseudo-brick is a network � with no edge between its poles
such that ��� is � -connected. ( � -connected subgraphs are sometimes called bricks.) A
network � is called an h-network (respectively, a p-network, or an s-network) if it has a
decomposition whose core is a pseudo-brick (respectively, a bond, or a chain). Trakht-
enbrot ( [20], see [24]) formulated a canonical decomposition theorem for networks:

Theorem 2 (Trakhtenbrot). Any network with at least 2 edges belongs to exactly one
of the 3 classes: h-networks, p-networks, s-networks. An h-network has a unique decom-
position and a p-network (respectively, an s-network) can be uniquely decomposed into
components which are not themselves p-networks (s-networks), where uniqueness is up
to orientation of the edges of the core, and also up to their order if the core is a bond.

A network is simple if it is a simple graph. Let � � ��� �
	

be the number of simple planar
networks on � vertices and � edges. In view of Theorem 2 we introduce the functions



� � ��� �
	
, � � ��� � 	

, and � � ����� 	
that count the number of simple planar h-, p-, and

s-networks on � vertices and � edges.
Let us define compose operations for the three stages ��� � � � � � of the connectivity

decomposition formally as follows. Assume that � and � are graphs on the vertex sets�
���	��
�� �� and

�
��������� �� and we want to compose them by identifying the vertices �

of � with the vertices 	�� of � , for ��� � ������� ����� � , such that the resulting graph will
have ������
�� �!�"� vertices. (No vertices are identified for ��� � .) Moreover, let � be a
set of �#�$� vertices from

� �%�	� �&� �� which are designated for the remaining part of � .
Let �(' be the graph obtained by mapping the vertices of � to the set

�
����� �)� ��!*+� ,

retaining their relative order. Let �$' be the graph obtained by mapping the vertices� �,�����-� �� of � to the set � , retaining their relative order, and mapping � to the image
of 	 � in �(' for �.� � ������� �/�0� � . Then the result of the compose operation for the
arguments � ,

� 	 � ������� � 	21�3 � 	 , � , and � is the graph with vertex set
�
�4�	� �$� �� and

edge set � � �(' 	65 � � ��' 	 .
We use ��7 198 � ����� 	

to denote the number of � -connected planar graphs with � ver-
tices and � edges.

3 Planar Graphs

We show how to count and generate labeled planar graphs with a given number of
vertices and edges in three steps. A first easy recurrence formula reduces the problem
to the case of connected graphs. In the next section, we will use the block structure to
reduce the problem to the � -connected case. This may serve as an introduction to the
method before we go into the more involved arguments of Section 5.

Let :�; � ��� � 	
denote the number of planar graphs with � vertices and � edges

having 
 connected components. Clearly, : � � ��� � 	 � ��7 � 8 � ��� � 	
and ��7 �<8 � ��� � 	 �=?>;A@ � :-; � ��� � 	

. Moreover,: ; � ����� 	 � � for �B�C
"D � .

We count : ; � ����� 	
by induction on 
 . Every graph with 
"E � connected components

can be decomposed into the connected component containing the vertex � and a remain-
ing part, using the inverse of the compose operation for ��� � as defined in Section 2. If
the split off part has � vertices, then there are F > 3 �G 3 �2H ways to choose its vertex set, as the
vertex � is always contained in it. The remaining part has 
I� � connected components.
We obtain the recurrence formula

: ; � ����� 	 � > 3 �J G @ �
KJ��@ �
L �"� ��#� �NM � 7 � 8 � � �9� 	 : ; 3 � � �)�$� � �O� � 	 �

Thus it suffices to count connected graphs. But the counting recurrence also has an
analogue for generation: Assume that we want to generate a planar graph � with � ver-
tices and � edges uniformly at random. First, we choose 
 � � ���	� �P with probabil-
ity proportional to : ; � ��� � 	

. Then we choose the number of vertices � of the compo-
nent containing the vertex � and its number of edges � with a joint probability propor-
tional to F > 3 �G 3 � H ��7 � 8 � � �Q� 	 : ; 3 � � �R�S� ���T��� 	 . We also pick an

� �U� �
	
-element subset



�U'�� � �I�	� �&� �� uniformly at random and set � � � � ' 5�� ��� . Then we compose � (as
explained in Section 2) out of a random connected planar graph with parameters � and � ,
which is being mapped to the vertex set � , and a random planar graph with parameters
� �$� and � �R� having 
 � � connected components, which is generated in the same
manner.

4 Connected Planar Graphs

In this section we reduce the counting and generation of connected labeled planar
graphs to the � -connected case. Let ��� � ��� � 	

denote the number of connected labeled
planar graphs in which the vertex � is contained in � blocks. Here we will call them
m � -planars. An m � -planar is a planar graph in which � is not a cutvertex. Clearly,
��7 � 8 � ����� 	 � = > 3 �� @ � �	� � ����� 	

and

�	� � ����� 	 � � for �$D
� or � D�� .

In order to count m � -planars by induction on � (for �?E � ), we split off the largest
connected subgraph containing the vertex � in which � is not a cutvertex. This is done
by performing the inverse of the compose operation for � � � as defined in Section 2.
If the split off m � -planar has � vertices, then there are F > 3 �G 3 ��H possible choices for its
vertex set, as the vertices � and � are always contained in it. The remaining part is an
m ��3 � -planar. Thus

� � � ��� � 	 � > 3��� �J G @ �
K 3 �J��@ �

L �"� ��#� � M � � � � �9� 	 � ��3 � � �)�$�P� � ��� �)� 	 �
and this immediately translates into a generation procedure.

Next we consider m � -planars. The root block is the block containing the vertex � .
A recurrence formula for m � -planars arises from splitting off the subgraphs attached to
the root block at its cutvertices one at a time. Thus we consider m � -planars such that
the root block has � vertices and the � least labeled vertices in the root block are no
cutvertices. Let us call them m ��� 1 -planars and denote the number of m ��� 1 -planars with
� vertices and � edges by ����� 1 � ��� � 	

. Then � � � �����
	 � = > � @ � �	��� � � ��� � 	

. The
initial cases are graphs without cutvertices. We have

� ��� � � ��� � 	 � ��� �� ��7 � 8 � ��� � 	
for �+� ��� �

� for �+� � �
�
� � ��� and � � �&� �

� for ���� � .

To count � ��� 1 using � ��� 1� � , we split off the subgraph attached to the � -th least labeled
vertex in the root block, if it is a cutvertex. This can be any connected planar graph. The
remaining part is an m ��� 1� � -planar. If the split off subgraph has � vertices, then there
are F > 3 �G 3 �2H ways to choose them, as the vertex � of the subgraph will be replaced with
the cutvertex. We obtain the recurrence formula

�	��� 1 � ����� 	 � > 3 �J G @ �
K 3 �J��@ �

L �"� ��#� �NM � 7 � 8 � � �Q� 	 �	��� 1� � � �)��� � � ���O� � 	 �
Again, the generation procedure is straightforward.



5 2-Connected Planar Graphs

In this section we show how to count and generate 2-connected planar graphs. Note
that every labeled 2-connected planar graph with � vertices and � edges is obtained
from some simple planar network with � vertices and �T� � edges by adding an edge
between the poles, then choosing ����� ����� ��� � , �	���� , and exchanging the vertices
� with � and � with � . Thus

� 7 � 8 � ����� 	 � �� � F > ��H� � � ��� � � �
	

for �$E � ��� E �
� otherwise.

Now we derive recurrence formulas for the number � of simple planar networks.
Trakhtenbrot’s decomposition theorem implies

� � ��� �
	 � � � � ����� 	 � � � ��� � 	 � � � ��� �

	
for ��E � � � E �

� otherwise .

p-Networks. Let us call a p-network with a core consisting of 
 parallel edges a p ; -
network, and let � ; � ����� 	

be the number of p ; -networks having � vertices and � edges.
Clearly, � � ����� 	 � = K ;A@ � � ; � ����� 	

. In order to count p ; -networks by induction on 
 ,
we split off the component containing the vertex labeled � by performing the inverse of
the compose operation for ��� � as defined in Section 2. Technically, it is convenient
to consider the split off component as a p � -network. But note that according to the
canonical decomposition, a p � -network is either an h- or an s-network. Thus

� � � ����� 	 � � � � �����
	 �C� � ����� 	

for �$E � ��� E �
� otherwise .

The remaining part is a p ; 3 � -network (even if 
 � � ). For 
"E � we have� ; � ��� � 	 � � if �	� � or � D.
 .

If a p-network with � vertices is split into a p � -network with � vertices and a p ; 3 � -
network, there are F > 3 �G 3 ��H ways how the vertex labels

�
� �	� �"� �A can be distributed

among both sides, as the labels � , � , and � are fixed. We obtain the recurrence formula

� ; � ����� 	 � >J G @ �
K 3 �J��@ �

L �&� ��#� �6M � � � � �9� 	 � ; 3 � � �&�$�P� � ��� �)� 	 �
s-Networks. Let us call an s-network whose core is a path of 
 edges an s ; -network,
and denote the number of s ; -networks which have � vertices and � edges by � ; � ��� � 	

.
Then � � ��� � 	 � = K ;A@ � � ; � ����� 	

. We use induction on 
 again, but for s ; -networks
we split off the component containing the vertex labeled � . Again it can be consid-
ered as an s � -network, and it is either an h- or a p-network, according to the canonical



decomposition. Thus

� � � ����� 	 � ��� ��
� � ��� �

	 �C� � ��� � 	
for ��E � , � E �

� for � � � , � � �
� otherwise .

The remaining part is an s ; 3 � -network (even if 
 � � ). For 
4E � we have� ; � ��� � 	 � � if ��D 
0� � or � D.
 .

Concerning the number of ways how the labels can be distributed among both parts,
note that the labels � and � are fixed, hence the new 0-root for the remaining part can
be one out of �4� � vertices, and then the number of choices for the internal vertices of
the split off s � -network is F > 3 �G 3 � H . We obtain the recurrence formula

� ; � ��� � 	 � � �"� �
	 > 3 �J G @ �

K 3 �J��@ �
L �&� �� � � M � � � � �Q� 	 � ; 3 � � �&�$�P� � ��� �)� 	 �

h-Networks. Let us call an h-network whose core is a pseudo-brick on 
 edges an
h ; -network, and denote the number of h ; -networks with � vertices and � edges by� ; � ����� 	

. Then
� � �����

	 � = K ;A@ � � ; � ��� � 	
, as the smallest pseudo-brick has �

edges. We can order the edges of the core lexicographically by the vertex numbers.
A recurrence formula similar to the p- and s-network case arises from replacing the
edges of the core with components one at a time and in lexicographic order. To give
names to the intermediate stages, let

� ; � � � ��� � 	
be the number of h ; � � -networks with

� vertices and � edges, where an h ; � � -network is an h ; -network in which the compo-
nents corresponding to the first � edges of the core are simple edges. Thus

� K � K � ����� 	
is the number of pseudo-bricks with � vertices and � edges, and

� ; � ; � ����� 	 � � for
��� � . Applying the recurrence formula derived below for � � 
 � � down to � , we
can calculate

� ; � ����� 	 � � ; � � � ����� 	
, and hence,

� � �����
	
. For the initial case, we

have � K � K � ����� 	 � � �)� �
	��

�
� � ��� � � �

	
�

where
� � ��� �

	
denotes the number of c-nets, i.e., rooted � -connected simple maps,

with � vertices and � edges (see the next section): for we assign � to the root vertex,
� to the other vertex of the root edge and the remaining labels to the remaining vertices,
and neglect the orientation. To count

� ; � � using
� ; � �� � , we split off the � -th component

of an h ; � � -network, i.e., the component replacing the � -th edge of the core. This can be
a network of any of the three kinds. Thus

� � � ��� �
	 � ��� �� �

� �����
	 � � � ����� � �

	
for �$E � , � E �

� for � � � , �T� �
� otherwise .

The remaining part is an h ; � �  � -network. If the � -th component has � vertices, then there
are F > 3 �G 3 � H ways to choose them, as the vertices � and � are merged with the endpoints



of the � -th edge of the core, respecting their relative order. We obtain the recurrence
formula� ; � � � ����� 	 � > 3 �J G @ �

K 3 ;  �J��@ �
L �&� �� � � M � � � � �9� 	 � ; � �� � � �"�$�P� � � �O�)�I� �

	 �
6 c-Nets

In the preceding sections, we have shown how to count and generate random planar
graphs assuming that we can do so for c-nets, i.e., 3-connected simple rooted maps. For
this one can use a formula for their number

� � �����
	

derived by Mullin and Schellen-
berg in [14]. Using Euler’s formula, it asserts that

� � �����
	 � � for ��D�� or � D � � �

and otherwise

� � �����
	 � � >J G @ �

KJ��@ > � � � 	 G  � 3 >
L � �R� � �� M L ���M� ��L � �B� � � � �

�&��� M L � �&� �
� � � M ��� L � �B� � � � �

�&���-� � M L � �"� �
�O� � � � M�� �

This concludes the counting task.
A generation algorithm for c-nets with given numbers of vertices and edges run-

ning in expected polynomial time algorithm is due to Schaeffer et al. [1, 2, 16–18].
Here we only outline the method. The c-net is obtained by extracting the 3-connected
core from a 2-connected map. There is a linear time algorithm to generate 2-connected
maps [16], and the extraction is linear as well [17]. If the parameters of the 2-connected
map are tuned appropriately, chances are good that the resulting c-net will have the
desired parameters. Otherwise the sample is rejected and the procedure restarts. A
map with � vertices and � edges is said to have an imbalance � which is defined by
� � �,� � � �� � � 	 . To obtain a core with � edges and imbalance � , one should select
a 2-connected map with imbalance � � and ���
	 � � � � 	 edges, where the tuning ratio is	 � � � 	 � 7 � 3 ��� 8 7 �  ��� 8� 7 � 3 ��
��� 8 7 �  ��
��� 8 [2, 17]. We have 	 � � � 	 ��� � ���
� 	

in the worst case. The

expected number of iterations is
��� �

����� � ������� 	 for any given number of edges, where
the probability ��� that the core (whose size obeys a bimodal distribution) has around �
edges is � � � ���� 	 � � � � 	 � ��� � ��� � � 	

, and the
��� �

� ��� 	
term accounts for prescribing

the exact number of edges. Prescribing also the number of vertices exactly (and not just
up to a constant factor as in [17]) increases the running time by another factor

��� �
��� � 	

(see [16, p. 140] and [18]). Thus a random c-net with � edges and imbalance � can be
generated in expected time

��� �
�  �  ��� �  � 	 � ��� �

� � � �
	
.

We conjecture that in fact a much faster generation should be possible based on
two grounds: Most c-nets have an imbalance with � ��� � ����� ��� , where � � � is
any constant. In this case the tuning ratio 	 � and hitting probability ��� are bounded
by constants and the expected running time reduces to

��� �
�  � ���  � � � 	 � ��� �

� � ��� 	
.



Moreover, if we are about to generate many planar graphs, we might store the rejected
samples for future use, possibly resulting in a near-linear amortized running time at the
expense of a larger (but still polynomial) memory requirement.

7 Running Time and Memory Requirements

In this section we establish a polynomial upper bound on the expected running time and
the memory requirement of our algorithm.

A number of dynamic programming arrays has to be pre-calculated before the ac-
tual random generation starts. As an example, consider the recurrence formula for� ; � � � ��� � 	

. The number of entries is
��� ���

	
for all tables. All entries are bounded

by the number of all planar graphs. Therefore the encoding length of each entry is�������� � �
�
� � > 	�	 � ��� � ���� �

	
[6, 15] and the total space requirement is

��� � � ���� �
	

bit. The calculation of each entry involves a summation over
��� �

� 	
terms. Using a fast

multiplication algorithm, the precomputation time is
��� � � ������ �

	 � ������  � � �
	�	

.
We assume that we can obtain random bits at unit cost. In order to prepare for

branching with the right probabilities, we can easily calculate the necessary partial
sums in a second pass over the dynamic programming arrays. We can then perform
random decisions with the right probabilities in time linear in the encoding length, i.e.,
in

��� �  � � �
	
.

The total expected time spent in all calls to Schaeffer’s c-net generation algorithm is
bounded by

��� �
��� � �
	

(but we believe it is much faster in practice, see Section 6). Simi-
larly, the random decisions for the connectivity decomposition require

��� �
� ���� �

	
time

in total. An � -element subset of a 
 -element ground set can be chosen in
��� �  � � 
 	

time, hence the total time spent for random decisions for the label assignments dur-
ing the composition is

��� �
�  � � �

	
as well. The compose operation itself is linear and

requires at most
��� �

�
	
total time.

We see that the running time is dominated by
��� � � �  � � �

	 � ����������� �
	�	

for the pre-
processing and

��� �
��� � �
	

(in expectation) for the random generation of c-nets. The
space requirement is

��� � � ���� �
	

bits due to the dynamic programming arrays.

8 Experimental Results

In this section we report on computational results from an implementation of the count-
ing formulas. The program was written in C++ using the GMP library for exact arith-
metic [10]. A run for � � vertices completed within one hour on a 1.3 GHz PC using 605
MB RAM. We also checked the recurrences and initial cases in Section 3-6 using an
independent counting method. A list of all unlabeled planar graphs with up to � � ver-
tices was generated by a program of Köthnig [11]. From these the labeled planar graphs
were enumerated by ‘brute force’. The unlabeled numbers, in turn, were confirmed by
entries in Sloane’s encyclopedia of integer sequences [19] and by [14].

A basic open question is the expected edge density of a random labeled planar
graph. The limit for general (no connectivity requirement) labeled planar graphs is
known to be E � � ��� �� ��� � � [9] and � � � �
� [5] (even � �!� � � [12]), and Markov



chain experiments [12] indicate a value around �!� � � . The precise values for up to � �
vertices are shown in Figure 1 (a). Note the high influence of connectivity.

McDiarmid, Steger, and Welsh proved that the quantity
� � � �

	 � � � 	 � � >
converges to

a limit � � , the labeled planar graph growth constant [13], as ����� . (Here and in the
following, we let � � �

	 � � = K � � �����
	
, etc.) As an indicator for the speed of conver-

gence, we plot the value of � � �
	 � � � � � �

	 � � for several ranges of the connecitvity �
in Figure 1 (b). For ��� � the limit is

�� ���N� � (namely, �
� � � in [3, Thm. 1 (b)]).
The asympototic fraction of disconnected labeled planar graphs is � �%� �
� � and� � [13]. Figure 1 (c) shows the value of � 7 198 � � 	 � � � �

	
for various ranges of the con-

nectivity � , and Figure 1 (d) shows the distribution of the three types of a network,
i. e., � , � , or

�
. As some of these quantities apparently converge fast, here we provide

numerical values:

�
���	��
 7 > 8� 7 > 8 ������ ��� ��� 7 > 8� 7 > 8 � 7 > 8� 7 > 8 � 7 > 8� 7 > 8 � 7 > 8� 7 > 8

��� � � � � � � � � � � � ��� � � � � � � ��� � � � � ����� � � � � ������� � � � �
� � � � � � � � ��� � � � � � � � � � � � � � � � � � ��� � � ��� � ����� ��� � � �

Figures 2 (e), (f), (g) illustrate the influence of the edge density on the connectivity.
It would be very interesting to determine the asymptotic shape of Figure 2 (g). Perhaps
surprisingly, the edge density is also highly related to the expected type of a network,
see Figure 2 (h). – All this calls for further investigation.

9 Conclusion

We have seen how to count and generate random planar graphs on a given number of
vertices and edges using a recursive decomposition along the connectivity structure.
Therefore a by-product of our result is that we can also generate connected and 2-
connected labeled planar graphs uniformly at random. Moreover it is easy to see that
we can count and generate random planar multigraphs by only changing the initial
values for planar networks as follows:

� � �����
	 � � � ��� � 	

for � � � ��� E ��-; � ����� 	 � � for � � � � � � 
 �<
4E �U�
It seems difficult to simplify our counting recurrences to closed formulas. In this

way one could eliminate the need for a preprocessing stage. Using generating functions
Bender, Gao and Wormald obtained an asymptotic formula for the number of labeled
2-connected graphs [3].

To increase the efficiency of the algorithm one might want to apply a technique
where the generated combinatorial objects only have approximately the correct size;
this can then be turned into an exact generation procedure by rejection sampling. A
general framework to tune and analyze such procedures has been developed in [2, 8]
and applied to structures derived by e.g. disjoint unions, products, sequences and sets.
To deal with planar graphs it needs to be extended to the compose operation used in this
paper.
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