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Abstract. We present a geometric framework for a class of partition identities. We

show that there exists a unique bijection proving these identities, and satisfies certain
linearity conditions. In particular, we show that Corteel’s bijection enumerating
partitions with nonnegative r-th differences can be obtained by our approach. Other

examples and generalizations are presented.

Introduction

Let λ = (λ1, . . . , λk), λ1 ≥ · · · ≥ λk ≥ 1 be a partition of n, denote by λ ` n.
Define the first differences (∆1

1(λ),∆1
2(λ), . . . ) = (λ1 − λ2, λ2 − λ3, . . . ), second

differences (∆2
1(λ),∆2

2(λ), . . . ) = (∆1
1(λ)−∆1

2(λ),∆1
2(λ)−∆1

2(λ), . . . ), etc. Finally,
define r-th differences by (∆r

1(λ),∆r
2(λ), . . . ) = (∆r−1

1 (λ) − ∆r−1
2 (λ),∆r−1

2 (λ) −
∆r−1

3 (λ), . . . ).
Andrews showed [A3] (see also [APR]) that the number of partitions of n with

nonnegative r-th differences is equal to the number of partition of n into parts of
the form

(
i
r

)
, where i ≥ r. This result was discovered with the help of Andrews,

Paule and Riese’s Omega package [APR]. It was proved combinatorially by Cor-
teel [CCH,Z] by the following simple bijection: σ : λ →

{(
r
r

)∆r
1(λ)(r+1

r

)∆r
2(λ)

. . .
}

.
Not shy on adjectives, Zeilberger [Z] called Andrews’s Theorem “elegant”, and
referred to Corteel’s bijection as “brilliant”, “human-generated” (sic), “one-line-
proof”, and “natural” (emphasis follows [Z]). The purpose of this note is to make
formal the notion of a “natural bijection”. We restate Andrews’s Theorem in a geo-
metric setting and present the proof. Corteel’s bijection becomes a simple corollary
of the setup, unique in a certain precise sense. We then extend the approach to a
wide class of related partition results, in the spirit of a recent paper by Corteel and
Savage [CS].

Following the structure of [A3], we first tackle a classical problem of enumeration
of integer triangles, where we exhibit how a geometric setting completely resolves
the problem. We then switch to Andrews’s Theorem, and to Corteel–Savage type
generalizations. We conclude the paper with examples and final remarks.
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Let us emphasize that at no point do we claim to have new enumerative partition
results nor new bijections proving these results. In fact, paper [CS] resolves these
issues in an even greater generality than we have, and has other applications and
further examples. The main point of the paper is to show that the above mentioned
partition results are “natural” from a geometric point of view, and that bijections
are uniquely defined in this setting.

1. Integer Triangles

Consider the following classical problem. Let a triple (a, b, c) be an integer–sided
triangle1, if 0 ≤ a ≤ b ≤ c ≤ a + b. Let An be the set of integer triangles with
perimeter a + b + c = n. Then

1 +
∞∑

n=1

|An| tn =
1

(1− t2)(1− t3)(1− t4)
.

In other words, the number of integer-sided triangles with perimeter n is equal to
the number of partitions of n into parts 2, 3 and 4. The following map α gives an
explicit bijection between these two sets: α(2x3y4z) = (y + z, x+ y + z, x+ y +2z).
Here we use the standard notation (1m12m2 . . . ) for partition with m1 copies of
part (1), m2 parts (2), etc. It is crucial in what follows that φ is linear over R. For
more on the the history of the problem and the bijection above, see [A2,A3,JWW].

Here is how we approach the problem. Let A be the set of all triples (a, b, c) ∈ R3

which satisfy 0 ≤ a ≤ b ≤ c ≤ a + b. Check that A is a simple cone in R3 with
extreme rays given by vectors v1 = (0, 1, 1), v2 = (1, 1, 1), and v3 = (1, 1, 2). Indeed,
the inequality a ≥ 0 follows from b ≤ c ≤ b + a, so A is the intersection of three
halfspaces. Now pairwise intersections of the supporting hyperplanes give us the
vectors above.

Observe that the volume |det(v1, v2, v3)| = 1, i.e. the cone A is unimodular.
Therefore, every integral point w ∈ A := A∩Z3 is given by w = c1v1 + c2v2 + c3v3,
where ci ∈ Z+ := {0, 1, 2, . . . } (see e.g. [St]). Let ω : R3 → R be the perimeter
function: ω(a, b, c) = a + b + c. We conclude:

∑
w∈A

tω(w) =
1

(1− tω(v1))(1− tω(v2))(1− tω(v3))
=

1
(1− t2)(1− t3)(1− t4)

.

Now consider a simple cone P of triples (x, y, z) ∈ R3 which satisfy x, y, z ≥ 0.
The extreme rays are e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1). The integral
points P := P ∩ Z3 correspond to partitions (2x, 3y, 4z) into parts 2, 3, and 4.
Obviously, |det(e1, e2, e3)| = 1 again. Define the partition function ϕ : R3 → R by
ϕ(x, y, z) = 2x+3y+4z. Observe that {ϕ(e1), ϕ(e2), ϕ(e3)} = {ω(v1), ω(v2), ω(v3)}
= {2, 3, 4}. Therefore,

∑
w∈A tω(w) =

∑
w∈P tϕ(w). Clearly, a linear map defined

by α : ei → vi, i = 1, 2, 3, gives a bijection between An = {w ∈ A : ω(w) = n} and
Pn := {w ∈ P : ϕ(w) = n} = {λ = (2x3y4z) ` n}. Furthermore, every linear map
α̃ : A → P which gives a bijection between An and Pn for all n, must be equal
to α (in fact, restriction to n = 2, 3, 4 suffice). Thus it in not surprising that α is
the same bijection as defined above. To summarize, we obtain the following result:

1For simplicity, we allow here degenerate triangles.
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Theorem 1. There exists a unique sequence of bijections αn : An → Pn, for
all n ≥ 0, which extends to a linear map α : A → P.

2. Partitions with nonnegative r-th differences

Consider a cone Pk ⊂ Rk of real partitions with at most k parts: (λ1, λ2, . . . , λk),
λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0. Similarly, consider a cone Pr

k ⊂ Rk of real partitions with
at most k parts and nonnegative r-th differences:

λ1 −
(

r

1

)
λ2 +

(
r

2

)
λ3 − . . . ≥ 0, λ2 −

(
r

1

)
λ3 +

(
r

2

)
λ4 − . . . ≥ 0, . . .

λk−r −
(

r

1

)
λk−r+1 +

(
r

2

)
λk−r+2 − . . . ≥ 0,

λk−r+1 −
(

r − 1
1

)
λk−r+2 +

(
r − 1

2

)
λk−r+3 − . . . ≥ 0, . . .

λk−2 − 2λk−1 + λk ≥ 0, λk−1 − λk ≥ 0, λk ≥ 0.

These k inequalities define a simple cone Pr
k ⊂ Rk with extreme rays given by

vectors: vi =
((

r+i−2
r−1

)
, . . . ,

(
r+1
r−1

)
,
(

r
r−1

)
, 1, 0

)
, 1 ≤ i ≤ k − 1, and vk = (1, 1, . . . , 1).

Indeed, simply check that these vectors lie in the intersection of all but one hyper-
plane, corresponding to the respective inequality. Clearly, |det(v1, . . . , vk)| = 1, so
Pr

k is unimodular. Thus all integer partitions with ≤ k parts and nonnegative r-th
differences λ ∈ Pr

k := Pr
k ∩ Zk are nonnegative linear combinations of vi.

Let γ : Rk → R be given by γ(λ1, . . . , λk) = λ1 + · · ·+ λk. We conclude:

∑
λ∈Pr

k

tγ(λ) =
k∏

i=1

1
1− tγ(vk)

=
1

1− tk

k−1∏
i=1

1

1− t(
r−1+i

r )
.

Consider a vector space Qr
k of real partitions into parts

(
m
r

)
, 1 ≤ r ≤ r+k−2, and k.

More precisely, consider partitions of the form
((

r
r

)x1
(
r+1

r

)x2
. . .

(
r+k−2

r

)xk−1
, kz

)
,

where xi, z ∈ R, and if k =
(
m
r

)
. for some m ≥ r, we have two types of part k. As

before, let ϕ(1m12m23m3 . . . ) = m1 + 2m2 + 3m3 + . . . . We obtain a linear map
σ : Pr

k → Qr
k given by σ(vi) =

(
r+i−1

r

)
, for i = 1, . . . , k − 1, σ(vk) = (k).

Let Pr
n,k = {λ ∈ Pr

k : λ ` n}, and let Qr
n,k = {µ ∈ Qr

k : λ ` n}. From above,
map σ gives a bijection between Pr

n,k and Qr
n,k, for every n > 0. Moreover, if

k 6=
(
m
r

)
, such linear map is unique.

Now let P be a Banach space of all infinite sequences (λ1, λ2, . . . ), λi ∈ R, and
with `1-norm < ∞. Let Pr be a subset of these with all r-th differences ≥ 0.
Similarly, let Rr be a Banach space of infinite sequences x = (x1, x2, . . . ) with
ϕ(x) =

(
r
r

)
x1 +

(
r+1

r

)
x2 + · · · < ∞, and let Qr be a cone {xi ≥ 0 for all i}.

Observe that Pr
n,1 ⊂ Pr

n,2 ⊂ . . . stabilizes to Pr

n = ∪kPr
n,k, and, similarly,

Qr
n,1 ⊂ Qr

n,2 ⊂ . . . stabilizes toQr

n = ∪kQr
n,k. As we mentioned in the introduction,

Andrews’s Theorem states that |Pr

n| = |Qr

n|, for all r, n > 0. Corteel’s bijection is
a map between these two sets of partitions. Letting k →∞ in the reasoning above,
we obtain:

Theorem 2. For every r ≥ 1, there exists a unique sequence of bijections
σn : Pr

n → Qr

n, for n ≥ 1, which extend to a linear map σ : Pr → Rr.
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3. Corteel-Savage type generalizations and examples

In a recent paper [CS] the authors obtained an advanced generalization of Andrews’s
Theorem and Corteel’s bijections. Basically, they considered the inequalities of
general form λi ≥ ai,i+1λi+1 + ai,i+2λi+2 + . . . with integer values of ai. They also
present a number of interesting examples. While our approach extends verbatim
to general compositions investigated in [CS], we concentrate here on a nice special
case of partitions.

Let Λ be a set of integer sequences λ = (λ1, λ2, . . . ), with a finite number of
nonzero entries. Fix a nonnegative integer sequence (a1, a2, . . . , ar). Now let An

be a set of partitions λ ` n, such that λi − λi+1 ≥ a1λi+1 + a2λi+2 + · · ·+ arλi+r.
As before, let A = ∪nAn.

For a sequence (b1, b2, . . . ), with b1 < b2 < . . . , let B be a set of partitions into
parts bi. Let Bn = {µ ∈ B : µ ` n}. Finally, define Banach spaces A ⊃ A and
B ⊃ B as in the previous section.

Theorem 3. For every sequence (a1, a2, . . . ) and a set of partitions A, defined
as above, there exists a sequence (b1, b2, . . . ) and a set of partitions B into parts bi,
such that |An| = |Bn| for all n ≥ 1. Furthermore, there exists a unique sequence of
bijections σn : An → Bn, which extend to a linear map σ : A → B.

The proof follows the same framework as before, so we will shall just point out
the differences. Start by defining c1 = 1, c0 = c−1 = c−2 = · · · = 0, ci+1 =
(1 + a1)ci + a2ci−1 + a3ci−2 + . . . . Computing extremal rays gives us, sequentially,
v1 = (c1, 0, 0, 0, . . . ), v2 = (c2, c1, 0, 0, . . . ), v3 = (c3, c2, c1, 0, . . . ), etc. Since ai are
nonnegative integers, vectors vi are integer partitions. Setting bi = c1 + . . . + ci,
gives us the desired set of partitions B. The rest of the proof follows verbatim.

Example 0. Let An be the set of all partitions λ ` n, which corresponds to
the trivial sequence (0). Then vi = (1, 1, . . . , 1, 0, . . . , 0) with i ones, and ci = i.
In this case Bn = An, and the map σ : An → Bn, defined by σn : vi → (i), is a
simple conjugation: σ(λ) = λ′ (see [A1]). Thus our geometric approach shows that
conjugation is a unique automorphism on the set of partitions which translates part
lengths into part multiplicities.

Example 1. Let An be the set of partitions λ ` n, such that λi ≥ rλi+1 for all i.
This corresponds to a sequence (1). In this case Bn is the set of partitions µ ` n
into parts bi = (ri − 1)/(r− 1). The corresponding bijection τn : Bn → An is given
by τ : (bi) → (ri−1, ri−2, . . . , r, 1). This bijection is due to Hickerson (see also [CS],
Example 4). Our approach shows that it’s unique in the same sense as before.

Example 2. Let An be the set of partitions λ ` n, such that λi ≥ λi+1 + λi+2,
for all i. This corresponds to a sequence (0, 1, 1). From Theorem 3, we obtain
the set Bn of partitions into parts {1, 2, 4, 7, 12, . . . , Fk − 1, . . . }, where Fk is k-
th Fibonacci number. The corresponding bijection τn : Bn → An is given by
τ : (Fk − 1) → (Fk−1, Fk−2, . . . , 2, 1) and is given in [CS], Example 6.

To generalize the examples, let A(t) = a1t+a2t
2+ . . . , B(t) = 1+b1t+b2t

2+ . . . ,
and C(t) = 1 + c1t + c2t

2 + . . . Now the recurrence relations give us C(t) =
1 + t C(t) + A(t) · C(t), and B(t) = C(t)/(1− t). We conclude:

B(t) =
1

(1− t)(1− t−A(t))
.
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This suggests a number of other examples, some of which formally not implied by
neither Theorem 3, nor [CS]), but follow with no change in the proof.

Example 3. Let An be the set of partitions λ ` n, such that successive 1-st
differences weakly decrease: λi − λi+1 ≥ λi+2 − λi+3, for all i. This corresponds
to a sequence (0, 1,−1). From above, B(t) = 1/(1 − t)2(1 − t2). Therefore, |An|
is equal to |Bn| the number of partitions of n into quarter–squares bm2

4 c, i.e. into
parts {1, 2, 4, 6, 9, 12, 16, 20, . . . } (see [Sl], Sequence A002620). Depending on the
parity, the corresponding bijection τn : Bn → An maps these parts into partitions
(k, k−1, k−1, . . . , 2, 2, 1, 1) and (k, k, k−1, k−1, . . . , 2, 2, 1, 1). We refer to [Sl] for
references to several combinatorial interpretations of quarter-squares.

Example 4. Let A be the set of partitions λ, such that for all i ≥ 1:

λi ≥ λi+1 + 2λi+2 + 5λi+3 + . . . + ckλi+k + . . .

where ck = 1
k+1

(
2k
k

)
are Catalan numbers. Since 1 + A(t) = C(t) in this case, we

have bn = 1+2+5+ . . .+ cn. Therefore, the corresponding bijection τn : Bn → An

maps (bk) into (cn, cn−1, . . . , 5, 2, 1). Naturally, Catalan numbers can be uniquely
defined this way.

Example 5. Let A be the set of partitions λ, such that for all i ≥ 1:

λi ≥ λi+1 + λi+2 − λi+5 − λi+7 + λi+12 + λi+15 − λi+22 − λi+26 + . . . ,

where the general terms are (−1)k−1λi−m, and m = k(3k±1)
2 are pentagonal num-

bers. Let B be the set of partitions into parts bk = 1+p(1)+p(2)+· · ·+p(k−1), where
p(m) is the number integer of partitions of m. Then |An| = |Bn|, for all n. This
follows from Euler’s Pentagonal Theorem (see e.g. [A1]) and the same reasoning as
above. The corresponding vectors are: vk = (p(k − 1), p(k − 2), . . . , 7, 5, 3, 2, 1, 1).
We leave the details to the reader.

4. Final remarks

Note that Theorem 3 does not generalize Theorem 2 as the corresponding sequence
contains negative binomial coefficients. The Examples 3 and 5 do not follow from
Theorem 3 as well. We leave the the most general version of the theorem to the
reader (see [CS] for the numerical version).

While Catalan numbers are fixed points of 1 + A(t) → C(t) transformation, a
sequence A007317 in [Sl] is a fixed point of 1 + A(t) → B(t) transformation. We
omit the corresponding bijection and combinatorial interpretations.

It is rather rare to see a bijection uniquely determined in a combinatorial prob-
lem. In fact, we cannot recall a single such example in the context of Partition
Theory. Heuristically, the uniqueness of a bijection comes from taking all sets An

together and treating them as a single object A, with linearity conditions relating
An for different n. It would be nice to find less trivial examples of this phenomena.

The connection between partitions and integer points was noted earlier in several
special cases (see e.g. [BE]), but never have rigorously studied before. We hope that
this paper will open a way to further connections between Partition Theory and
Discrete Geometry.



6 IGOR PAK

Acknowledgements:

We would like to thank the referee for pointing out paper [CS]. Neil Sloane showed
us sequences A007317 and A014137 in [Sl]. We are grateful to Richard Stanley for
encouragement. The author was partially supported by the NSA and the NSF.

References

[A1] G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, MA, 1976.
[A2] G. E. Andrews, A note on partitions and triangles with integer sides, Amer. Math.

Monthly 86 (1979), 477–478.

[A3] G. E. Andrews, MacMahon’s Partition analysis. II. Fundamental theorems, Ann. Com-
bin. 4 (2000), 327–338.

[APR] G. E. Andrews, P. Paule, A. Riese, MacMahon’s partition analysis. III. The Omega
package, European J. Combin. 22 (2001), 887–904.

[BE] M. Bousquet-Mélou, K Eriksson, Lecture Hall Partitions 2, Ramanujan J. 1 (1997),

165–185.

[CCH] R. Canfield, S. Corteel, P. Hitczenko, Random partitions with non-negative r-th differ-
ences, Adv. in Appl. Math. 27 (2001), 298–317.

[CS] S. Corteel, C. Savage, Partitions and Compositions defined by inequalities, Ramanujan
J. (to appear).

[H] D. R. Hickerson, A partition identity of the Euler type, Amer. Math. Monthly 81 (1974),

627–629.
[JWW] J. H. Jordan, Ray Walch, R. J. Wisner, Triangles with integer sides, Amer. Math.

Monthly 86 (1979), 686–689.

[Sl] N. J. A. Sloane, On-line Encyclopedia of Integer Sequences, available at http://www.

research.att.com/˜njas/sequences.
[St] R. P. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cam-

bridge, 1997.
[Z] D. Zeilberger, Sylvie Corteel’s One-Line Proof of a Partition Theorem Generated by

Andrews-Paule-Riese’s Computer, Shalosh B. Ekhad’s and Doron Zeilberger’s Very Own

Journal, available at: http://www.math.rutgers.edu/˜zeilberg/mamarim/mamarimhtml/
corteel.html.


