Bipartite, k-Colorable and k-Colored Graphs

Steven Finch

June 5, 2003
A labeled graph G is bipartite if its vertex set V can be partitioned into two disjoint subsets A and $B, V=A \cup B$, such that every edge of G is of the form (a, b), where $a \in A$ and $b \in B$.

Let k be a positive integer and $K=\{1,2, \ldots, k\}$. A labeled graph G is k colorable if there exists a function $V \rightarrow K$ with the property that adjacent vertices must be colored differently. Clearly G is bipartite if and only if G is 2 -colorable.

Define $c_{n, k}$ to be the number of k-colorable graphs with n vertices. We have $c_{n, 1}=1$ for $n \geq 1$ since a 1 -colorable graph G cannot possess any edges. We also have $c_{1, k}=1$ for $k \geq 1, c_{2, k}=2$ for $k \geq 2, c_{3,2}=7$ by Figure $1, c_{3,3}=8, c_{4,2}=41$ by Figure 2, and $c_{4,3}=63$. More generally, $c_{n, n-1}=2^{n(n-1) / 2}-1$ since the total number of labeled graphs with n vertices is $2^{n(n-1) / 2}$ and, of these, only the complete graph cannot be ($n-1$)-colored.

Does there exist a formula for $c_{n, k}$? The answer is yes if $k=2$, but evidently no for $k \geq 3$. We'll examine this issue momentarily, but first define a related notion.

A k-colored graph is a labeled k-colorable graph together with its coloring function. Let $\gamma_{n, k}$ be the number of k-colored graphs with n vertices. The point is that a k-colorable graph counts several times as a k-colored graph. Clearly $\gamma_{n, 1}=1$, $\gamma_{1, k}=k, \gamma_{2,2}=6$ by Figure 3, $\gamma_{2,3}=15$ by Figure 4 , and $\gamma_{3,2}=26$ by Figure 5.

When $k=2$, the following formulas can be proved $[1,2,3]$:

$$
\begin{gathered}
\gamma_{n, 2}=\sum_{j=0}^{n}\binom{n}{j} 2^{j(n-j)} \\
c_{n, 2}=n!\cdot\left(\text { the } n^{\text {th }} \text { degree Maclaurin series coefficient of } \sqrt{\Gamma(x)}\right)
\end{gathered}
$$

where

$$
\Gamma(x)=\sum_{i=0}^{\infty} \gamma_{i, 2} \frac{x^{i}}{i!}
$$

For arbitrary k, we have the following recursion $[4,5]$:

$$
\gamma_{n, k}=\sum_{j=0}^{n}\binom{n}{j} 2^{j(n-j)} \gamma_{j, k-1}
$$

[^0]

Figure 1: There are 7 labeled bipartite graphs with 3 vertices.
with initial conditions $\gamma_{0, k}=1$ and $\gamma_{n, 0}=0$ for $n \geq 1$. Alternatively, we have a closed-form expression involving multinomial coefficients:

$$
\gamma_{n, k}=\sum_{N}\binom{n}{n_{1}, n_{2}, \ldots, n_{k}} 2^{\frac{1}{2}\left(n^{2}-n_{1}^{2}-n_{2}^{2}-\cdots-n_{k}^{2}\right)}
$$

where the summation is over all nonnegative integer k-vectors $N=\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ satisfying $n_{1}+n_{2}+\cdots+n_{k}=n$. There is, however, no known analogous formula for $c_{n, k}$ when $k \geq 3$.

Computations show that $[4,6]$

$$
\begin{gathered}
\left\{\gamma_{n, 2}\right\}_{n=1}^{\infty}=\{2,6,26,162,1442,18306,330626,8488962 \ldots\} \\
\left\{c_{n, 2}\right\}_{n=1}^{\infty}=\{1,2,7,41,376,5177,103237,2922446 \ldots\}
\end{gathered}
$$

and suggest that $\gamma_{n, 2} / c_{n, 2} \rightarrow 2$ as $n \rightarrow \infty$. We also have

$$
\begin{gathered}
\left\{\gamma_{n, 3}\right\}_{n=1}^{\infty}=\{3,15,123,1635,35043,1206915,66622083,5884188675, \ldots\} \\
\left\{c_{n, 3}\right\}_{n=1}^{\infty}=\{1,2,8,63,958,27554, \ldots\}
\end{gathered}
$$

but there is insufficient data on $c_{n, 3}$ to clearly suggest the asymptotic behavior of $\gamma_{n, 3} / c_{n, 3}$. Prömel \& Steger [7], however, proved that

$$
\lim _{n \rightarrow \infty} \frac{\gamma_{n, k}}{c_{n, k}}=k!
$$

for each $k \geq 2$. In words, a random k-colorable graph is almost surely uniquely k colorable (up to a permutation of colors). This is an important result since it allows us to utilize at least one term of the $\gamma_{n, k}$ asymptotics to estimate the growth of $c_{n, k}$.

Figure 2: There are 41 labeled bipartite graphs with 4 vertices.

Figure 3: There are 6 labeled 2-colored graphs with 2 vertices.

Figure 4: There are 15 labeled 3 -colored graphs with 2 vertices (these 9 plus the preceding 6).

We turn now to a result due to Wright $[8,9,10,11,12]$: if $n \equiv a \bmod k$, where $0 \leq a<k$, then

$$
\gamma_{n, k} \sim C(k, a) \cdot 2^{\frac{1}{2}\left(1-\frac{1}{k}\right) n^{2}} \cdot k^{n} \cdot\left(\frac{k}{\ln (2) \cdot n}\right)^{\frac{k-1}{2}}
$$

as $n \rightarrow \infty$, where $C(k, a)$ is a constant that depends on n only via its residue modulo k. In fact,

$$
C(k, a)=k^{\frac{1}{2}} \cdot(\ln (2))^{\frac{k-1}{2}} \cdot(2 \pi)^{-\frac{k-1}{2}} \cdot L_{k}(a)
$$

and the infinite series $L_{k}(a)$ will be defined for $k=2,3$ and 4 shortly.
0.1. 2-Colored Graph Asymptotics. To characterize the growth of $\gamma_{n, k}$, by the above, it is sufficient to determine $C(k, a)$ for each $0 \leq a<k$. We have here

$$
\begin{aligned}
L_{2}(a) & =\sum_{r=-\infty}^{\infty} 2^{-\frac{1}{2} r^{2}-\frac{1}{2}(a-r)^{2}+\frac{1}{4} a^{2}} \\
& =\sum_{r=-\infty}^{\infty} 2^{-\frac{1}{4}(a-2 r)^{2}}= \begin{cases}2.1289368272 \ldots & \text { if } a=0 \\
2.1289312505 \ldots & \text { if } a=1\end{cases}
\end{aligned}
$$

These two constants also appear with regard to the asymptotic enumeration of partially ordered sets $[13]$ and of linear subspaces of $\mathbb{F}_{2}^{n}[14]$, where \mathbb{F}_{2} is the binary field

Figure 5: There are 26 labeled 2-colored graphs with 3 vertices.
with arithmetic modulo 2. Therefore

$$
C(2, a)= \begin{cases}1.0000013097 \ldots=1+\varepsilon & \text { if } a=0 \\ 0.9999986902 \ldots=1-\varepsilon & \text { if } a=1\end{cases}
$$

where $\varepsilon=1.3097396978 \ldots \times 10^{-6}$. In fact, all of the constants $C(k, a)$ we examine are close to 1 ; thus we shall focus on difference with 1 henceforth.
0.2. 3-Colored Graph Asymptotics. We have here

$$
\begin{aligned}
L_{3}(a) & =\sum_{r=-\infty}^{\infty} \sum_{s=-\infty}^{\infty} 2^{-\frac{1}{2} r^{2}-\frac{1}{2} s^{2}-\frac{1}{2}(a-r-s)^{2}+\frac{1}{6} a^{2}} \\
& =\sum_{r=-\infty}^{\infty} \sum_{s=-\infty}^{\infty} 2^{-\frac{1}{3}\left(a^{2}-3 a r+3 r^{2}-3 a s+3 r s+3 s^{2}\right)}
\end{aligned}
$$

and therefore

$$
C(3, a)=\left\{\begin{array}{cc}
1+2 \varepsilon & \text { if } a=0 \\
1-\varepsilon & \text { if } a=1 \text { or } 2
\end{array}\right.
$$

where $\varepsilon=1.7060611047 \ldots \times 10^{-8}$.
0.3. 4-Colored Graph Asymptotics. All planar graphs are 4 -colorable by the famous Four Color Theorem. We have here [4, 6]

$$
\begin{aligned}
&\left\{\gamma_{n, 4}\right\}_{n=1}^{\infty}=\{4,28,340,7108,254404,15531268,1613235460,284556079108, \ldots\} \\
&\left\{c_{n, 4}\right\}_{n=1}^{\infty}=\{1,2,8,64,1023,32596, \ldots\} \\
& L_{4}(a)= \sum_{r=-\infty}^{\infty} \sum_{s=-\infty}^{\infty} \sum_{t=-\infty}^{\infty} 2^{-\frac{1}{2} r^{2}-\frac{1}{2} s^{2}-\frac{1}{2} t^{2}-\frac{1}{2}(a-r-s-t)^{2}+\frac{1}{8} a^{2}} \\
&= \sum_{r=-\infty}^{\infty} \sum_{s=-\infty}^{\infty} \sum_{t=-\infty}^{\infty} 2^{-\frac{1}{8}\left(3 a^{2}-8 a r+8 r^{2}-8 a s+8 r s+8 s^{2}-8 a t+8 r t+8 s t+8 t^{2}\right)}
\end{aligned}
$$

and therefore

$$
C(4, a)=\left\{\begin{array}{cc}
1+\delta & \text { if } a=0 \\
1-\varepsilon & \text { if } a=1 \text { or } 3 \\
1-\delta+2 \varepsilon & \text { if } a=2
\end{array}\right.
$$

where $\delta=4.2421496651 \ldots \times 10^{-9}$ and $\varepsilon=2.5731271141 \ldots \times 10^{-12}$. A simple relationship between δ and ε is not apparent.

Higher-order asymptotics for $\gamma_{n, k}$ are possible, due to Wright [8]; we hope to examine the corresponding constants later. Observe that terms beyond the first need not necessarily apply for $c_{n, k}$.

A random k-colorable graph is almost surely connected $[10,12,15]$ and is almost surely k-chromatic (meaning that $k-1$ colors won't suffice to color all n vertices). The asymptotics discussed above therefore apply to these important subclasses as well.

Enumerating unlabeled k-colorable graphs (that is, non-isomorphic types of labeled k-colorable graphs) is also a difficult computational problem [16]. A general result due to Prömel [17] provides that $c_{n, k} / n!$ is the associated asymptotic formula.

References

[1] H. S. Wilf, generatingfunctionology, $2^{\text {nd }}$ ed., Academic Press, 1994, pp. 86-89; MR1277813 (95a:05002).
[2] P. Flajolet and R. Sedgewick, Analytic Combinatorics, unpublished manuscript, 2001.
[3] D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory 6 (1969) 12-19; MR0236035 (38 \#4333).
[4] R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math. 12 (1960) 410-414; MR0114775 (22 \#5594).
[5] F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, pp. 16-18; MR0357214 (50 \#9682).
[6] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A000684, A000685, A000686, A047863, A047864, A084279, and A084280.
[7] H. J. Prömel and A. Steger, Random l-colorable graphs, Random Structures Algorithms 6 (1995) 21-37; MR1368832 (96j:05095).
[8] E. M. Wright, Counting coloured graphs, Canad. J. Math. 13 (1961) 683-693; MR0133252 (24 \#A3086).
[9] E. M. Wright, Counting coloured graphs. II, Canad. J. Math. 16 (1964) 128-135; MR0177913 (31 \#2171).
[10] R. C. Read and E. M. Wright, Coloured graphs: A correction and extension, Canad. J. Math. 22 (1970) 594-596; MR0263695 (41 \#8296).
[11] E. M. Wright, Counting coloured graphs. III, Canad. J. Math. 24 (1972) 82-89; MR0289368 (44 \#6559).
[12] F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math. 31 (1979) 60-68; MR0518706 (80b:05036).
[13] S. R. Finch, Lengyel's constant: Chains in the subset lattice of S, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 317-318.
[14] S. R. Finch, Transitive relations, topologies and partial orders, unpublished note (2003).
[15] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A001832, A084283, and A084284.
[16] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A033995, A076315, and A076316.
[17] H. J. Prömel, Counting unlabeled structures, J. Combin. Theory Ser. A 44 (1987) 83-93; MR0871390 (87m:05014).

[^0]: ${ }^{0}$ Copyright © 2003 by Steven R. Finch. All rights reserved.

