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A labeled graph G is bipartite if its vertex set V can be partitioned into two
disjoint subsets A and B, V = AU B, such that every edge of GG is of the form (a,b),
where a € A and b € B.

Let k be a positive integer and K = {1,2,... k}. A labeled graph G is k-
colorable if there exists a function V' — K with the property that adjacent vertices
must be colored differently. Clearly G is bipartite if and only if (G is 2-colorable.

Define ¢, to be the number of k-colorable graphs with n vertices. We have
cn1 = 1 for n > 1 since a 1l-colorable graph GG cannot possess any edges. We also
have 1, =1for k> 1, cop =2 for k > 2, c39 =7 by Figure 1, ¢33 =8, c42 = 41 by
Figure 2, and ¢4 3 = 63. More generally, ¢, ,_1 = onn=1)/2 _ 1 since the total number
of labeled graphs with n vertices is 2" 1/2 and, of these, only the complete graph
cannot be (n — 1)-colored.

Does there exist a formula for ¢, ;? The answer is yes if k = 2, but evidently no
for k > 3. We’ll examine this issue momentarily, but first define a related notion.

A k-colored graph is a labeled k-colorable graph together with its coloring func-
tion. Let 7,5 be the number of k-colored graphs with n vertices. The point is that
a k-colorable graph counts several times as a k-colored graph. Clearly 7,1 = 1,
Y15 =k, 2,2 = 6 by Figure 3, v 3 = 15 by Figure 4, and 392 = 26 by Figure 5.

When k = 2, the following formulas can be proved [1, 2, 3|:

Yn2 = Z (?) 2/0)

i=0

Cpap=mnl" (the n™® degree Maclaurin series coefficient of \/P(a:)>

where ,
o0 a,/.l

T(x)=) iy

i=0 :

For arbitrary k, we have the following recursion [4, 5]:

" /n\ . .
Tnk = Z (]) zj(nﬂ)%‘,kfl

=0
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Figure 1: There are 7 labeled bipartite graphs with 3 vertices.

with initial conditions vo; = 1 and v,0 = 0 for n > 1. Alternatively, we have a
closed-form expression involving multinomial coefficients:

T 1(.2 .2 .2 2
k=Y o (rt-rit-n—nt)
N 1, N9, ..., Nk

where the summation is over all nonnegative integer k-vectors N = (nq,ne,...,n)
satisfying n +ng + - - - + np = n. There is, however, no known analogous formula for
Cnx When k > 3.

Computations show that [4, 6]

{2}, = {2,6,26,162, 1442, 18306, 330626, 8483962 . . .}
{ena}>, = {1,2,7,41,376,5177, 103237, 2022446 . . .}

and suggest that v,2/cn2 — 2 as n — co. We also have
{’yn,g}fbo:l = {3,15,123,1635, 35043, 1206915, 66622083, 5884188675, . ..}
{ens}, =1{1,2,8,63,958,27554,.. .}

but there is insufficient data on ¢, 3 to clearly suggest the asymptotic behavior of
Yn,3/Cn,3. Promel & Steger 7], however, proved that

lim 2k —

n—oo Cn,k
for each k > 2. In words, a random k-colorable graph is almost surely uniquely k-
colorable (up to a permutation of colors). This is an important result since it allows
us to utilize at least one term of the 7, , asymptotics to estimate the growth of ¢, .
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Figure 2: There are 41 labeled bipartite graphs with 4 vertices.
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g 9 2 9 {7 2 9 17 .1

Figure 3: There are 6 labeled 2-colored graphs with 2 vertices.

3 3 1 3 q 1 1 3 3 1

2 3 3 2 2-==-3 32

Figure 4: There are 15 labeled 3-colored graphs with 2 vertices (these 9 plus the
preceding 6).

We turn now to a result due to Wright [8, 9, 10, 11, 12]: if n = a mod k, where
0 <a <k, then

k-1

1 1 2 k: 2
ke~ lf . 2—(17—)77, . kfn .
T ~ Ok, a) - 2277 <1n(2) . n)

as n — oo, where C(k,a) is a constant that depends on n only via its residue modulo
k. In fact,

C(k,a) = k2 - (In(2))7 - (21)""7 - Ly(a)
and the infinite series Ly(a) will be defined for k = 2, 3 and 4 shortly.

0.1. 2-Colored Graph Asymptotics. To characterize the growth of ~,z, by
the above, it is sufficient to determine C'(k, a) for each 0 < a < k. We have here

Ly(a) = 3 2737 slenrad
_ i o taon? _ [ 21280368272... ifa=0
R T 2.1289312505... ifa=1

These two constants also appear with regard to the asymptotic enumeration of par-
tially ordered sets [13] and of linear subspaces of F} [14], where Fy is the binary field
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Figure 5: There are 26 labeled 2-colored graphs with 3 vertices.
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with arithmetic modulo 2. Therefore

C(2,a) = 1.0000013097...=1+¢ ifa=0
] 0.9999986902...=1—¢ ifa=1

where & = 1.3097396978 ... x 107 °. In fact, all of the constants C'(k,a) we examine
are close to 1; thus we shall focus on difference with 1 henceforth.

0.2. 3-Colored Graph Asymptotics. We have here

o0

Ls(a) = Y 3 23 3 slerotige

rP=—00 8=—00

o0 o0
_ Z Z 27% (a273a7’+37’273a5+37’5+352)

rP=—00 8=—00

and therefore
14+ 2 ifa=0
C<3’“>_{ l—¢ ifa=1lor?

where ¢ = 1.7060611047... x 1078.

0.3. 4-Colored Graph Asymptotics. All planar graphs are 4-colorable by the
famous Four Color Theorem. We have here [4, 6]

{yma}>, = {4,28,340,7108, 254404, 15531268, 1613235460, 284556079108, .. .}

{ean}>, = {1,2,8,64,1023,32596, ...}

.- .- .- —1p2 142 12 Ll g )24 142
L4(a) = Z Z Z 9273 2 A 8

) ) )
_ Z Z Z 27% (3a278a7’+87’278a5+87’s+85278at+87’t+85t+8t2)

r=—00 §=—00 t=—00

and therefore
146 ifa=0
C(4,a) = 1—¢ ifa=1or3
1—64+2¢ ifa=2

where § = 4.2421496651 ... x 107° and £ = 2.5731271141... x 10712, A simple rela-
tionship between 6 and ¢ is not apparent.

Higher-order asymptotics for v, are possible, due to Wright [8]; we hope to
examine the corresponding constants later. Observe that terms beyond the first need
not necessarily apply for ¢, .
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A random k-colorable graph is almost surely connected [10, 12, 15] and is almost

surely k-chromatic (meaning that k — 1 colors won’t suffice to color all n vertices).
The asymptotics discussed above therefore apply to these important subclasses as

well.

Enumerating unlabeled k-colorable graphs (that is, non-isomorphic types of la-

beled k-colorable graphs) is also a difficult computational problem [16]. A general

result due to Promel [17] provides that ¢, x/n! is the associated asymptotic formula.
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