
An infinite set of Heron triangles with two

rational medians

Ralph H. Buchholz and Randall L. Rathbun

January 1997

1 Introduction

If we denote the sides of a triangle by (a, b, c) then the area is given by

∆ =
√
s(s− a)(s− b)(s− c) (1)

where s = (a+b+c)/2 is the semiperimeter. This formula is usually attributed
to Heron of Alexandria circa 100 BC - 100 AD. However, it was already known
to Archimedes prior to 212 BC [5, p. 105].

Our investigation is limited to triangles with rational sides. Even with sides of
rational length, “Heron’s” formula shows that the area need not be rational; any
triangle with three rational sides and rational area is called a Heron triangle.
The smallest such triangle with integer sides is the familiar (5, 4, 3) right triangle
(with area 6) shown in Figure 1. If we let (k, l,m) denote the medians that are
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Figure 1: The (5,4,3) right triangle

incident with the respective sides (a, b, c), they can be expressed in terms of the
sides:

k =
1
2

√
2b2 + 2c2 − a2, l =

1
2

√
2c2 + 2a2 − b2, m =

1
2

√
2a2 + 2b2 − c2 . (2)
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The medians of the (5, 4, 3) triangle are (k, l,m) =
(

5/2,
√

13/2,
√

73/2
)
. This

triangle has rational area and one rational median—from the midpoint of the
hypotenuse to the vertex at the right angle. It is an interesting exercise to prove
that integer right triangles have precisely one rational median [1, p. 31]—the
median to the hypotenuse.

But can any Heron triangle have two rational medians? In 1905, Schubert [3, p.
199] claimed that no such triangle could exist. As Dickson points out [3, p. 208],
Schubert’s proof was flawed but no such triangle was forthcoming. Despite this
flaw, the parametrization used by Schubert turns out to be extremely useful in
helping to uncover a key underlying pattern.

2 The Schubert Parameters

Consider the triangle in Figure 2, showing one of the medians with its adjacent
angles. If we apply the trigonometric identity

cot
(α

2

)
=

sinα
1− cosα

to the angle αa say, in Figure 2, then it is clear that the corresponding half-angle
cotangent is rational only if sinαa and cosαa are rational. Since
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Figure 2: The angles related to Schubert’s parameters

sinαa =
∆
bk

and cosαa =
b2 + k2 − (a/2)2

2bk
,

we see that sinαa, cosαa and hence cot (αa/2) are rational for any Heron tri-
angle with a rational median k. The same argument applies to all the angles
αa, βa, γa, δa adjacent to median k so all the half-angle cotangents are rational
in this case. To ensure an unambiguous naming scheme for these parameters
we impose a counter-clockwise orientation on the triangle around its centroid.
Then the angles that the median to side a makes with the triangle, beginning
with the two at the vertex, are labeled αa, βa, γa, δa as in Figure 2. The re-
spective half-angle cotangents are denoted by Ma, Pa, Xa, Ya. We call the set of
rational numbers (M,P,X, Y ) ‘Schubert parameters’; it is understood that if no
subscript is present then the parameters are all obtained from the same median.
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Ma = 4∆
4bk+a2−3b2−c2 Pa = 4∆

4ck+a2−b2−3c2

Xa = 4∆
2ak−b2+c2 Ya = 4∆

2ak+b2−c2

Table 1: Schubert parameters for a triangle with sides (a, b, c)

For the (5, 4, 3) Heron triangle, we obtain (Ma, Pa, Xa, Ya) =
(

3
1 ,

2
1 ,

4
3 ,

3
4

)
. The

half-angle cotangents X and Y satisfy XY = 1, while the three half-angle cotan-
gents M , P , and X satisfy an important relationship first proved by Schubert:

(M − 1/M)− (P − 1/P ) = 2(X − 1/X) . (3)

Although only two parameters suffice to describe any triangle, we usually con-
sider three parameters (M,P,X). It is important to note that if (M,P,X)
does satisfy equation (3), then so do 32 related 3-tuples. These occur because
equation (3) is invariant under the following operations:

(i) replace any parameter by its negated inverse, or

(ii) interchange M and P while also inverting X, or

(iii) simultaneously invert all three of the parameters.

Since all such 3-tuples correspond to the same Heron triangle, we occasionally
use an alternate representation.

Conversely, if we know any set of Schubert parameters, (M,P,X) say, then we
can calculate the ratio of the sides (a, b, c) from

a

c
=

2
(
X + 1

X

)
P + 1

P

b

c
=
M + 1

M

P + 1
P

. (4)

This specifies the triangle up to homothety (a similarity transformation), which
is sufficient for our purposes.

In the process of trying to describe all rational-sided triangles with three rational
medians the first author discovered that any rational-sided triangle, (a, b, c),
with two rational medians is given by the parametrization (see [1, p. 38])

a = τ{(−2φθ2 − φ2θ) + (2θφ− φ2) + θ + 1}
b = τ{(φθ2 + 2φ2θ) + (2θφ− θ2)− φ+ 1}
c = τ{(φθ2 − φ2θ) + (θ2 + 2θφ+ φ2) + θ − φ (5)

for (τ, φ, θ) constrained such that τ > 0, 0 < θ, φ < 1, and φ + 2θ > 1. In this
case, if the parameters (τ, θ, φ) are rational, then the corresponding triangle
must have rational sides and two rational medians, namely k and l, but not
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Sides Medians Area

a b c k l

73 51 26 35
2

97
2 420

626 875 291 572 433
2 55440

4368 1241 3673 1657 7975
2 2042040

14791 14384 11257 21177
2 11001 75698280

28779 13816 15155 3589
2 21937 23931600

1823675 185629 1930456 2048523
2

3751059
2 142334216640

Table 2: Sides, medians, area of discovered Heron triangles

necessarily rational area. The scaling factor τ is usually set to one. Solving for
θ and φ gives

θ =
c− a±

√
2c2 + 2a2 − b2

a+ b+ c
and φ =

b− c±
√

2b2 + 2c2 − a2

a+ b+ c
. (6)

Any triangle obtained from a rational triple (M,P,X) has rational sides, rational
area, and one rational median, while a triangle obtained from a rational pair
(θ, φ) has rational sides and two rational medians. It is the unveiling of the
interplay of these two parametrizations of a triangle that ultimately allows us
to make progress on the question mentioned in the introduction.

3 Search results and hint of a connection

In 1986, both authors, unaware of each other’s work, began searching for Heron
triangles with two rational medians. One particularly efficient method is to
enumerate over the rational parameters (θ, φ) in equations (5) and then check if
the area of the corresponding triangle is rational. This technique allowed us to
obtain the last two triangles in Table 2; meanwhile naive exhaustion struggled
to reach the fourth triangle in the list. So Heron triangles with two rational
medians do exist. Naturally we wondered how to find, or better yet generate,
more such triangles. The first author noted that the first, second, fifth, and
sixth triangles of Table 2 have related internal angles and asked how this could
be exploited.

4 Discovery of the sequence of squares

In October 1989, the second author discovered a remarkable connection between
the Xa and Xb parameters of related triangles. By selecting the “appropriate”
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level i triangle Ma(i) Pa(i) Xa(i) Mb(i) Pb(i) Xb(i)

0 (2,1,1) 3
2

2
3

3
2

2
3

3
2

2
3

1 1st 4
1

2
3

8
3

35
6

84
5

7
40

2 2nd 18
1

35
6

63
10

176
105

∗ 77
360

∗ 99
32

∗

3 5th 75
98

176
105

539
800

3080
111

14504
275

147
1850

4 6th 1344
605

3080
111

363
4736

3256
165585

∗ 5312
255189

∗ 36480
70301

∗

Table 3: Triangles with a common {Mb(i), Pa(i+ 1)} ratio.

Schubert parameters and inverting where necessary (denoted by an asterisk),
it became possible to arrange the four triangles into a logical chain such that
the Mb parameter from one triangle was equal to the Pa parameter of the next
triangle. We label these first four triangles of the chain (see Table 3) by level 1,
2, 3 and 4 respectively, and insert the degenerate triangle (2, 1, 1), with rational
area and medians, at level 0 to start the chain logically. The crucial observation
occurred by comparing the Xb(i) and Xa(i+ 1) ratios of consecutive triangles.
From levels 1 and 2 we observed that 40·7

63·10 =
(

2
3

)2. Similarly, levels 2, 3 and 3,
4 imply that 99·32

800·539 =
(

3
35

)2 and 147·1850
363·4736 =

(
35
88

)2. In other words, there is a
distinct pattern of rational squares in the first few products of the numerators
and denominators of the Xb(i) and Xa(i + 1) parameters. Furthermore, the
denominator of one square becomes the numerator of the next square. Now all
one needs to specify the next triangle in the chain is the denominator of the X
product ratio since this would determine P (i+ 1), X(i+ 1) and hence M(i+ 1)
via Schubert’s equation. For example, we set Pa(5) = Mb(4). Then since

36480 · 70301
numerator(Xa(5)) · denominator(Xa(5))

=
(

88
k

)2

and since Pa(5) and Xa(5) must lead to a rational value of Ma(5) in Schubert’s
equation (3), one finds that k = 37 and hence Xa(5) = 780330

581 . Now calculate the
Schubert parameters corresponding to the other rational median in this triangle
and repeat the process. This leads to the sequence of ratios(

1
2

)2

,

(
2
3

)2

,

(
3
35

)2

,

(
35
88

)2

,

(
88
37

)2

,

(
37

4731

)2

,

(
4731

107134

)2

, . . .

This permitted us to generate the next few triangles. For example, the fifth
Heron-2-median triangle has sides given by (2442655864, 2396426547, 46263061).

5 Connection to Somos sequences

There the matter stood for 5 years, until the two authors were able to re-
establish contact. The main question was: How was the rational square sequence
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Numerator Factors Denominator Factors Parameter

i a1 a2 a3 a4 b1 b2 b3 b4 Xb(i)

0 2 · 1 −1 −1 1 1 · 1 1 3 1 2
3

1 1 · 1 1 1 −7 2 · 2 2 5 −1 7
40

2 2 · 2 1 1 8 1 · 3 3 11 1 32
99

3 1 · 3 −7 −7 −1 2 · 5 5 37 1 − 147
1850

4 2 · 5 8 8 −57 1 · 11 11 83 −7 36480
70301

5 1 · 11 −1 −1 391 2 · 37 37 274 8 4301
6001696

6 2 · 37 −57 −57 −455 1 · 83 83 1217 −1 109393830
8383913

Table 4: Decomposition of the parameter Xb(i)

i 1 2 3 4 5 6 7 8 9 10
Si 1 1 2 3 5 11 37 83 274 1217
Ti 1 −1 1 1 −7 8 −1 −57 391 −455

Table 5: The S and T series

determined, and could a formula be found for it? After intense correspondence
from late 1994 to early 1995, we obtained some interesting results.

The problem with the method described in the previous section is that it requires
the factorization of numbers that are growing very rapidly. Furthermore, there
is still some ambiguity about inverting certain parameters and not others.

We found that all of the (M,P,X) parameters could be formed as a combination
of two series. Notice that the numerator of the Xb parameter in Table 4 is the
product a1 ·a2 ·a3 ·a4 and the denominator is likewise the product b1 · b2 · b3 · b4,
where each of the ai and bi are shifts of one or another of two special sequences.
There are similar relationships for all the Schubert parameters for our set of
triangles in terms of these two series, which we denote by S and T . We observed
that each series seemed to satisfy an order eight recurrence, namely,

Si =
2χ(i) · 3χ(i+1) · Si−7 · Si−1 + S2

i−4

Si−8
and

Ti =
6χ(i+1) · Ti−7 · Ti−1 + T 2

i−4

Ti−8
,

where

χ(i) =

{
0 if i is even
1 if i is odd.

Since these two series were so fundamental, one author sent a query to the On-
Line Encyclopædia of Integer Sequences (sequencesresearch.att.com), au-
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thored by Neil J. A. Sloane. It quickly posted back that the first, S series, was
indeed a Somos 5 sequence [4, p. 41], and gave the recursion formula

Ai =
Ai−1 ·Ai−4 +Ai−2 ·Ai−3

Ai−5
. (7)

We realised that the T series satisfied the same recurrence with different initial
terms. In terms of the order 5 recurrence we have

Si =

{
1, 1, 2, 3, 5 for i = 1, . . . , 5
Ai for i ≥ 6.

Ti =

{
1,−1, 1, 1,−7 for i = 1, . . . , 5
Ai for i ≥ 6.

(8)
The half-angle cotangents of our chain of Heron triangles with two rational
medians are given in terms of the series S and T by

Ma(i) = −
Si+1 · S2

i+2 · Ti
Si · Ti+1 · T 2

i+2

Mb(i) =
Si+1 · Si+4 · Ti+1 · Ti+4

Si+2 · Si+3 · Ti+2 · Ti+3

Pa(i) = −Si+1 · Si+2 · Ti+1 · Ti+2

Si · Si+3 · Ti · Ti+3
Pb(i) = −

S2
i+2 · Si+3 · Ti+4

Si+4 · T 2
i+2 · Ti+3

Xa(i) = 2(−1i+1) ·
Si · S2

i+2 · Ti+3

Si+3 · Ti · T 2
i+2

Xb(i) = 2(−1i) ·
Si+1 · T 2

i+2 · Ti+4

S2
i+2 · Si+4 · Ti+1

.

(9)

Equations (9) permitted us to rapidly compute many corresponding triangles us-
ing multiprecision packages (MAPLE and PARI) and each such triangle invariably
had rational area and two rational medians.

6 Searching for a Closed form for S and T se-
quences

Having obtained recurrence relations for Si and Ti, we hoped that a closed for-
mula would allow us to prove some of the results that we had so far observed only
numerically. A second posting to the sci.math.research newsgroup prompted
a number of interesting responses but by far the most impressive came from
Noam Elkies, who gave two closed formulae for the Si sequence and indirectly
provided a formula for the Ti sequence. What follows borrows heavily from his
reply.

Numerical evidence suggests that the sequence Si also satisfies recurrence rela-
tions of the form

Si−2Si+2 = 2Si−1Si+1 − S2
i if i is even,

Si−2Si+2 = 3Si−1Si+1 − S2
i if i is odd.

7



It is possible to combine these into a single identity by defining

σi =

{
Si, if i is even,
rSi, if i is odd.

Replacing Si with σi or σi/r as appropriate and then equating the preceding
two recurrences, one finds that r = 4

√
2/3. Hence, the σi satisfy the recurrence

relation
σi−2σi+2 =

√
6σi−1σi+1 − σ2

i .

Because of the similarity of this to a Somos recurrence on sequences of elliptic
theta functions, one attempts to fit a solution of the form

σi = bui
2

+∞∑
n=−∞

qn
2
zin. (10)

In fact, the parameters q, z, b, u can be obtained numerically from the condition
that the formula for σi hold for the initial values. This leads to

q = 0.02208942811097933557356088 . . .
z = 0.1141942041600238048921321 . . .
b = 0.9576898995913810138013844 . . .
u = 0.7889128685374661530379575 . . .

The theta function (10) is rapidly convergent and so we have a numerical, closed
form expression to evaluate each σi and hence each Si. Using the initial condi-
tions for the T -sequence would lead to a similar theta function.

However, the numbers Si can also be obtained “arithmetically” from the elliptic
curve C∗/q2Z associated to our theta functions. By

(i) computing the j-invariant j(E) = j(q2) as a real number,

(ii) using its continued fraction to recognize j(E) as the rational 116/612,

(iii) computing the x-coordinate of the point z on the curve C∗/q2Z, which
determines the correct quadratic twist, and

(iv) reducing to standard minimal form,

Elkies finds the elliptic curve

E : y2 + xy = x3 + x2 − 2x,

which is curve #102-A1 in Cremona’s tables [2]. It has a point of order 2 at
(0, 0) and an infinite order point at P = (x, y) = (2, 2). For i = 1, 2, 3, 4, . . . the
x-coordinate of the i-th multiple of P on E in lowest terms is

2 · 12

12
,

12

12
,

2 · 22

12
,

32

12
,

2 · 52

72
,

112

82
,

2 · 372

12
, · · · .
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Indeed, the numerator of i ∗ P is always S2
i or 2S2

i according as i is even or
odd. Notice that the denominator is precisely T 2

i . The two sequences are very
closely connected. Not only do they satisfy the same recurrence relation, but
the initial conditions are no longer arbitrary; given one it is possible to construct
the other.

Unfortunately, we were not able to use either of these closed forms to prove that
the triangles generated from equations (9) and (4) always have rational area.
However, the elliptic curve does turn up again and leads to such a proof from a
different direction.

7 Triangles in the θφ-plane lead to five elliptic
curves

At this stage we used equations (9), (4), and (6) to generate the values of θ
and φ corresponding to the first 100 terms of the two Somos sequences Si and
Ti. We plotted these parameters, considered as points corresponding to distinct
Heron triangles with two rational medians, in the θφ-plane (Figure 3) and the
structure here was a surprise.

0.200 0.400 0.600 0.800 1.000−0.200

0.200

0.400

0.600

0.800

1.000

φ

θ

1C

2C

3C

4C
5C

Figure 3: Heron triangles with 2 rational medians in the θφ-plane

Rather than being randomly distributed in the region, the points seem to lie
on five distinct curves. During this process we discovered that the points were
being distributed to the five curves in a periodic way with a cycle length of
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7. The points generated by the parameter set (Ma(i), Pa(i), Xa(i)) visited the
curves in the order {1,2,3,4,1,2,5}. Similarly, the points generated by the set
(Mb(i), Pb(i), Xb(i)) visited the curves in the order {2,1,4,3,2,1,5}. As a result,
it was easy to isolate the rational coordinates of enough points on each curve to
determine the corresponding equations:

C1 : 27θ3φ3 − θφ(θ − φ)(8θ2 + 11θφ+ 8φ2)− 3θφ(5θ2 − θφ+ 5φ2)

− (θ − φ)(θ2 + 4θφ+ φ2)− (3θ2 − 7θφ+ 3φ2)− 3(θ − φ)− 1 = 0,

C2 : 3θ2φ2 − 2θφ(θ − φ)− (θ2 + 6θφ+ φ2) + 1 = 0,

C3 : θφ(θ − φ)3 − (θ4 + 11θ3φ+ 3θ2φ2 + 11θφ3 + φ4)

− 2(θ3 − φ3) + 10θφ+ 2(θ − φ) + 1 = 0,
C4 : θφ(θ − φ) + θφ+ 2(θ − φ)− 1 = 0,

C5 : (θ − 1)3φ2 + 2(θ + 1)(θ3 + 2θ2 − 2θ + 1)φ+ (2θ − 1)(θ + 1)3 = 0.

We conjectured that all the rational points on these five curves produce triangles
with rational area. Since the triangle has two rational medians, one can form
(θ, φ) parameters for either median. We call these dual parameter sets for the
triangle. The transformation that takes (θ, φ) to its dual point (θ′, φ′) is given
by

θ′ =
2θ2 + θφ+ θ + φ− 1

3θφ+ θ − φ+ 1
, φ′ =

−θφ− 2φ2 + θ + φ+ 1
3θφ+ θ − φ+ 1

.

Under this mapping the curves C1 and C2 are dual, as are C3 and C4, while C5

is self-dual. Thus it is sufficient to prove that all rational points on the curves
C2, C4, and C5 say, correspond to Heron triangles with two rational medians.

Next, we find that C2, C4 and C5 are all birationally equivalent to the same
elliptic curve so we need to prove the conjecture only for C4, say. These three
curves are quadratic in φ and the respective discriminants are

Disc(C2) = 4(4θ4 + 8θ3 + 5θ2 − 2θ + 1),

Disc(C4) = θ4 + 2θ3 + 5θ2 − 8θ + 4, and

Disc(C5) = 4θ2(θ + 1)2(θ4 + 2θ3 + 5θ2 − 8θ + 4).

Since we are searching for rational points on each of the curves, we require the
discriminant of each to be a rational square. All the rational points that force
this correspond to rational points on the elliptic curve

Y 2 = X4 + 2X3 + 5X2 − 8X + 4.

For C2, we map X to −1/θ while for C4 and C5 we just map X to θ. Finally
we were able to prove the following

Theorem 1 Every rational point on the curve

C4 : θ2φ− θφ2 + θφ+ 2θ − 2φ− 1 = 0
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such that 0 < θ, φ < 1 and 2θ + φ > 1 corresponds to a triangle with rational
sides, rational area, and two rational medians.

The proof requires several technical lemmas that will appear in a forthcoming
paper. Here we just give an outline.

(i) The θ, φ inequalities are obtained from the triangle inequalities.

(ii) Reduce the squarefree part of the square of the area from degree 11 to
degree 8 by applying the curve C4 to Heron’s formula (1).

(iii) Transform the curve C4 to minimal Weierstraß form to obtain E, the
elliptic curve found by Elkies in Section VI.

(iv) Finally, use induction in the group E(Q) to show that any point that
corresponds to a triangle with rational area leads, in all possible ways, to
another point corresponding to a triangle with rational area.

8 Two Isolated Triangles

The story does not end here since two of the triangles found by computational
search (the third and fourth entries of Table 2) do not lie on any of our five
elliptic curves. Although these two triangles were found using equations (5),
they are probably not parametrizable by equations (9) since the five curves
were numerically obtained from the latter. Each of these isolated triangles has
associated with it six triangles that have a rational median and rational area
and share a common Schubert parameter ratio. What role these ratios play is
as yet undetermined.

We are continuing further research into these two triangles, as we conjecture that
all Heron triangles with two rational medians are produced by formulæ similar
to those we have presented in this paper. However, finding more examples like
these two appears difficult.
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