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Abstract. The visualization of avoided and under-represented strings in some bacterial complete
genomes raises a combinatorical problem which may be solved either by using the Goulden–
Jackson cluster method or by construction of the minimal finite automaton defined by the set of
forbidden words of the corresponding language.
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1. Introduction

The heredity information of organisms (except for so-called RNA-viruses) is encoded
in their DNA sequence which is a one-dimensional unbranched polymer made of four
different kinds of monomers (nucleotides): adenine (a), cytosine (c), guanine (g), and
thymine (t). As far as the encoded information is concerned, we can ignore the fact
that DNA exists as a double helix of two “conjugated” strands and only treat it as a
one-dimensional symbolic sequence made of the four letters from the alphabet Σ RS

a T c T g T t U . Since the first complete genome of a free-living bacterium Mycoplasma
genitalium was sequenced in 1995, an ever-growing number of complete genomes has
been deposited in public databases. The availability of complete genomes opens the
possibility to ask some global questions on these sequences. One of the simplest con-
ceivable questions consists of checking whether there are short strings of letters that are
absent or under-represented in a complete genome. The answer is in the affirmative and
the fact may have some biological meaning V 4 W .

The reason why we are interested in absent or under-represented strings is twofold.
First of all, this is a question that can only be asked in the present day when complete
genomes are at our disposal. Second, the question makes sense as one can derive a
factorizable language from a complete genome which would be entirely defined by the
set of forbidden words.

We start by considering how to visualize the avoided and under-represented strings
in a bacterial genome whose length is usually the order of a million letters.X
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2. Visualization of Under-Represented Strings

There are 4K different strings of length K made of four letters. In order to check whether
all these strings appear in a genome we use 4K counters to be visualized as a 2K Y 2K

square array on a computer screen. These can be realized as a direct product of K
identical 2 Y 2 matrices:

M Z K [ R M \ M \A]^]_]_\ M T
where

M R `
g c

a t acb
We call this 2K Y 2K square a K-frame. In practice it is convenient to use binary

subscripts for this 2 Y 2 matrix and it is easy to develop an algorithm that depends only
on the total length of the genome but not on the string length K. Put in a frame of fixed
K and described by a color code biased towards small counts, each bacterial genome
shows a distinctive pattern which indicates on absent or under-represented strings of
certain types V 4 W . For example, many bacteria avoid strings containing the string ctag.
Any string that contains ctag as a substring will be called a ctag-tagged string. If we
mark all ctag-tagged strings in frames of different K, we get pictures as shown in

K = 6 K = 7

K = 8 K = 9

Figure 1: Ctag-tagged strings in K R 6 to 9 frames.
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Figure 2: The pattern of cg-tagged strings showing the overlaps.

Figure 1. The large scale structure of these pictures persists but more details appear
with growing K. Excluding the area occupied by these tagged strings, one gets a fractal
in the K d ∞ limit. It is natural to ask what is the dimension of this fractal for a given
tag.

In fact, this is the dimension of the complementary set of the tagged strings. The
simplest case is that of g-tagged strings. As the pattern has an apparently self-similar
structure, the dimension is easily calculated to be

D R log3
log2 b

Moreover, the dimension of all other cases must lie in between log3 e log2 and 2.
However, the calculation of these dimensions is somewhat tricky as one must take into
account the overlap of patterns precisely (see, for example the case of cg-tagged strings
shown in Figure 2).

Now let aK be the number of all strings of length K that do not contain the given
tag. As the linear size δK in the K-frame is 1 e 2K, the dimension may be calculated as:

D R lim
K f ∞

logaKg logδK
R lim

K f ∞

logaK
1 h K

log2 b
Suppose the generating function of aK is known:

f i s j�R ∞

∑
K k 0

aKsK b
Then, according to the Cauchy criterion of convergence, we have

lim
K f ∞

a1 h K
K Rml λ l+R 1l s0 l T

where λ is the radius of convergence of series expansion of f i s j and s0 is the minimal
module zero of f n 1 i s j . This finally determines the dimension

D R g log l s0 l
log2 b
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Table 1: Generating function and dimension for some single tags.

Tag f i s j D Tag f i s j D

g 1
1 n 3s

log3
log2 ggg 1 o s o s2

1 n 3s n 3s2 n 3s3 1.98235

gc 1
1 n 4s o s2 1.89997 ctag 1

1 n 4s o s4 1.99429

gg 1 o s
1 n 3s n 3s2 1.92266 ggcg 1 o s3

1 n 4s o s3 n 3s4 1.99438

gct 1
1 n 4s o s3 1.97652 gcgc 1 o s2

1 n 4s o s2 n 4s3 o s4 1.99463

gcg 1 o s2

1 n 4s o s2 n 3s3 1.978 gggg 1 o s o s2 o s3

1 n 3s n 3s2 n 3s3 n 3s4 1.99572

The generating function for the numbers of strings of various length made of the four
letters that do not contain certain designated strings (“bad words” as called in [6])
may be calculated by using the Goulden–Jackson cluster method V 2 W , well-described by
Noonan and Zeilberger V 6 W . In particular, the case of a single tag—one “bad word”
only—is easily treated and some of the results are shown in Table 1.

A related question is the number G i n j of different types of generating functions for
a given tag length n. These numbers turn out to be independent upon the size of the
alphabet Σ as long as there are more than two letters in Σ V 3 W :

n 1 2 3 4 5 6 7 8 9 10 11

G i n j 1 2 3 4 6 8 10 13 17 21 27

In fact, these G i n j are so-called correlations of n as given by the integer sequence
M0555 in [7] (see also [3]).

3. Redundant and True Avoided Strings

Once we know that there are avoided strings in the complete genomes from the visu-
alization scheme, one can perform a direct search for these strings. The direct search
has the merit not being significantly limited by the string length K. However, another
combinatorical problem arises which is closely related to the problem discussed in the
previous section. Take, for example, the complete genome of E. coli. At K R 7, the first
avoided string gcctagg is discovered. At the next K R 8 level, a total of 173 avoided
strings are identified. However, these 173 strings are not all true avoided strings as some
must be the consequence of the absence of the K R 7 string gcctagg. A naive estimate
of the redundant avoided strings without taking into account any possible overlap of
substrings would lead to 4i i i p 1 j : If there is only one avoided string at the K p 0 level,
it would take away 8, 48, 256, 1280, b^b_b strings at the next K p i levels. This estimate
works well for E. coli until K R 13 when the overlap of the first and the last letter g in
the true avoided string gcctagg would show off. Applying the Goulden–Jackson cluster
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method to the case of only one “bad word” gcctagg leads to the following generating
function:

f i s j<R 1 p s6

1 g 4s p s6 g 3s7 b
The number of redundant avoided strings are given by

1
1 g 4s

g f i s j1R s7 p 8s8 p 48s9 p 256s10 p 1280s11 p 6144s12p 28671s13 p 131063s14 pA]^]_] b
The deviation from the naive estimate appears from s13.

For a non-trivial example, we consider the newly published complete genome of the
hyperthermophilic bacterium Aquifex aeolicus V 1 W . For this, 155 1335-letter sequence
four avoided strings are identified at K R 7. They form the set B of “bad words”:

B R S
gcgcgcg T gcgcgca T cgcgcgc T tgcgcgc U b

As there are significant overlaps among these strings, the naive estimate of redun-
dant avoided words can hardly work. The application of the Goulden–Jackson clus-
ter method requires the solution of a system of four linear equations and leads to the
following generating function:

f i s j�R 1 p s2 p s4 p s6 p s8 p s10 p s12

1 g 4s p s2 g 4s3 p s4 g 4s5 p s6 g 4s8 g 4s10 g 4s12 b
The numbers of redundant avoided strings are given by:

1
1 g 4s

g f i s j1R 4s7 p 27s8 p 152s9 p 784s10 p 3840s11 pc]_]_] b
In what follows we show that these results may be obtained by an entirely different
method, namely, by making use of formal language theory. For convenience of presen-
tation, we first collect a few notions from language theory without proofs. The details
may be found, e.g., in [9] and references therein.

4. Some Notions from Formal Language Theory

In formal language theory one starts with an alphabet, e.g., Σ R S
a T c T g T t U . Let Σ q

denote the collection of all possible strings made of letters from Σ, including the empty
string ε. Any subset L r Σ q is called a language over the alphabet Σ. The set L s�R Σ q g L
defines the complementary language. A language L is a factorizable language if any
substring of a word x t L also belongs to L. A factorizable language has a minimal set
of forbidden words or Distinctive Excluded Blocks [8] (DEBs) L s s such that, if x t L s s ,
then any proper substring of x belongs to L. A factorizable language is completely
determined by its set of DEBs:

L R Σ q g Σ q L s s Σ q b
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A prominent example of factorizable language is given by the admissible symbolic
sequences in the symbolic dynamics of a dynamical system (see, e.g., [5, 9]). Another
class of factorizable languages may be obtained from a complete genome as follows.
Let G be a complete genome of an organism; it may consist of one or more linear or
circular sequences. All possible substrings of G, including the empty string ε and G
itself, obviously form a subset of Σ q and thus define a language which is factorizable
by construction.

Any language L r Σ q introduces an equivalence relation RL in Σ q with respect to L.
For any pair x T y t Σ q xRLy if and only if for each z t Σ q , either both xz T yz t L or both
xz T yz et L. The number of equivalence classes in Σ q with respect to L defines the index
of RL, denoted by index i RL j .

An important theorem (Myhill–Nerode) says that L is a regular language if and only
if index i RL j is finite and L being regular implies that the minimal deterministic automa-
ton corresponding to L, minDFA i L j , is unique up to an isomorphism, i.e., to renaming
of the states. Moreover, the number of states in minDFA i L j equals to index i RL j .

Let L be a factorizable language and L s s its set of all DEB’s. Define a set

V R S
v l v is a proper prefix of some y t L s s U b

For each word x t L, there exists a string v t V such that xRLv. In other words, all
equivalence classes of L are represented in the set V . In order to find all equivalence
classes of Σ q with respect to L, it is enough to start from L s s . In addition, L s is an
equivalence class of Σ q . For two given strings u T v t V , uRLv if and only if for each
z t Σ q uz contains a DEB as its suffix u vz t L s and vice versa. This statement sets
the computation rule to identify all equivalence classes. Each equivalence class may
be named after a member xi t L and be denoted as V xi W . The transfer function between
states of minDFA i L j is defined as δ i^V xi WvT s j<RwV xis W for xi t L and s t Σ.

5. Finite Automaton and Incidence Matrix

Now we apply what has just been said to the complete genome of Aquifex aeolicus with
its set B of four avoided strings at length K R 7. Although there are longer avoided
strings we take B to be its L s s for the time being. From the proper suffixes of these
strings, we get the set

V R S
g T gc T gcg T gcgc T gcgcg T gcgcgc T c T cg T cgc T cgcg T

cgcgc T cgcgcg T t T tg T tgc T tgcg T tgcgc T tgcgcg U b
By checking the equivalence class of these strings, only 13 out of these 18 strings are
kept as representatives of each class. Adding the class V L sxWPr Σ q , we get the following
14 equivalence classes of Σ q :V ε WyV g WzV gc W{V gcg WzV gcgc W|V gcgcg WzV gcgcgc WV c W}V cg W~V cgc W}V cgcg W~V cgcgc W�V cgcgcg W~V L s	W b
The transfer function δ i_V xi W�T s j�R�V xis W , xi t V and s t Σ, is determined by attributing
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Table 2: The transfer function for the minimal deterministic automaton for Aquifex
aeolicus. V xi W�� s a c g tV ε W V ε W V c W V g W V c WV g W V ε W V gc W V g W V c WV gc W V ε W V c W V gcg W V c WV gcg W V ε W V gcgc W V g W V c WV gcgc W V ε W V c W V gcgcg W V c WV gcgcg W V ε W V gcgcgc W V g W V c WV gcgcgc W V L sxW V c W V L s	W V c WV c W V ε W V c W V cg W V c WV cg W V ε W V cgc W V g W V c WV cgc W V ε W V c W V cgcg W V c WV cgcg W V ε W V cgcgc W V g W V c WV cgcgc W V ε W V c W V cgcgcg W V c WV cgcgcg W V ε W V L s3W V g W V c W
V xis W to the existing equivalence classes. It is listed in Table 2. The particular transfer
function δ i_V xi WvT s j1RwV L s W leads to a “dead end”.

By counting the number of lines leading from one state to another, we write down
an incidence matrix:

M �
�����������������������������

1 1 2

1 1 1 1

1 1 2

1 1 1 1

1 1 2

1 1 1 1

2

1 2 1

1 1 1 1

1 2 1

1 1 1 1

1 2 1

1 1 1

� ����������������������������
�
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One draws the minimal deterministic automaton according to the above transfer
function. As it is no longer a planar graph, we do not show it here. The columns
and rows of the matrix M are ordered as elements in the first column in Table 2 of the
transfer function.

To make connection with the generating function

f i s j1R ∞

∑
0

aKsK T
obtained by using the Goulden–Jackson cluster method, we note that the sum of ele-
ments in the first row of the Kth power of M is nothing but aK V 8 W :

aK R 13

∑
j k 1

i MK j 1 j b
The summation runs over all equivalence classes except for L s . We list the elements of
the first row of MK in columns of Table 3.

The negative numbers in the last row of Table 3 show the difference of aK and 4K .
They are precisely the coefficients in the expansion of 1 e�i 1 g 4s j g f i s j as shown at
the end of Section 3. We see that the transfer function and the incidence matrix contain
more detailed information on the combinatorical problem than the generating function
alone. The consequence of this approach has to be further elucidated in the future.

Table 3: Elements of the first rows of MK and their sum.

K � 1 2 3 4 5 6 7 8 9 10 11

1 4 16 64 256 1024 4095 16378 65501 261960 1047664

1 2 8 32 128 512 2048 8190 32756 131002 523920

0 1 2 8 32 128 512 2048 8190 32756 131002

0 0 1 2 8 32 128 512 2048 8190 32756

0 0 0 1 2 8 32 128 512 2048 8190

0 0 0 0 1 2 8 32 128 512 2048

0 0 0 0 0 1 2 8 32 128 512

2 7 28 112 448 1792 7168 28665 114640 458483 1833624

0 2 7 28 112 448 1792 7168 28665 114640 458483

0 0 2 7 28 112 448 1792 7168 28665 114640

0 0 0 2 7 28 112 448 1792 7168 28665

0 0 0 0 2 7 28 112 448 1792 7168

0 0 0 0 0 2 7 28 112 448 1792

Sum: 4 16 64 256 1024 4096 16380 65509 261992 1047792 4190464

-4 -27 -152 -784 -3840
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