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Abstract. A hilly poor noncrossing partition is a noncrossing partition with
the properties : (1) each block has at most two elements, (2) in its linear
representation, any isolated vertex is covered by some arc. This paper de-
fines basic pairs as a combinatorial object and gives the number of hilly
poor noncrossing partitions with n blocks, which is closely related to Maxi-
mal Davenport-Schinzel sequences. Authors introduce a class of generalized
Motzkin paths called (i, j)-Motzkin paths, and present a bijection between
hilly poor noncrossing partitions and (2, 3)-Motzkin paths. Specialization
of the bijection deduces various results regarding 3-colored Motzkin paths,
Catalan numbers, Motzkin numbers and Riordan numbers.
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1. Introduction and notation

A partition P of [l] := {1, 2, . . . , l} is a collection {B1, B2, . . . , Bn} of nonempty
disjoint subsets of [l], called blocks, whose union is [l] and which are listed
in the increasing order of their minimal elements. A partition is called m-
regular, m ≥ 1, if for any x, y ∈ Bi, implies |x − y| ≥ m. A partition is a
noncrossing partition if there are no four distinct numbers a < b < c < d and
no two distinct blocks Bi, Bj such that a, c ∈ Bi and b, d ∈ Bj. A partition
is poor if each block has at most two elements. See [1], [6], [8] and [11] for
more information and references on partition.

There are various ways to represent a partition. For our purpose we will
use a linear representation and a canonical sequential form. In the linear
representation, l vertices are arranged on the line, the i-th vertex is labelled
by j if i ∈ Bj, and successive vertices with the same label are joined by an arc.
Specially, the sequence consisting of labels is called its canonical sequential
form. The noncrossing property of a partition corresponds to the facts that
the arcs do not intersect in its linear representation and that its canonical
sequential form contains no any . . . a . . . b . . . a . . . b . . . subsequence. Fig.1 is
the linear representation of P = {{1, 5}, {2, 4}, {3}, {6}} and its canonical
sequential form is a = 123214.

Let P(n) be the set of poor noncrossing partitions with n blocks and P2(n)
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Figure 1: A linear presentation and its canonical sequential form.

be the subset of P(n) in which each block has two elements. It is easy to
check that the cardinality of P2(n) is the n-th Catalan number Cn = 1

n+1

(
2n
n

)
by a simple bijection matching such partitions with Dyck paths of length 2n.

For convenience, in the linear representations of a poor noncrossing par-
tition, if two vertices of an arc are labelled by i, we call it arc i and do not
distinguish arc i with block Bi. An arc is void if there is no vertex under it.
Otherwise, it is a non-void arc. An arc is big if and only if there is no arc
above it. By an interval I(i) we mean an interval in a canonical sequential
form which begins and ends with an i-occurrence. In other words, I(i) is a
subgraph covered by arc i including arc i. We say that block Bi is covered
by block Bj if all vertices with label i are covered by arc j.

This paper focuses on hilly poor noncrossing partitions and (2, 3)-Motzkin
paths. In Section 2, we give a positive definition of hilly poor noncrossing
partitions and count its cardinality using generating function. In Section 3,
we characterize the parameter k by refining hill poor noncrossing partitions
with basic pairs, and obtain its enumerative formula by constructing a map-
ping. In Section 4, we define (i, j)-Motzkin paths and show a bijection π
between (2, 3)-Motzkin paths of length n and hilly poor noncrossing parti-
tions of n + 1 blocks. In Section 5, specialization of the bijection π figures
out a combinatorial explanation that

∑n
k=1

(
n
k

)
Ck+1 counts the number of

3-colored Motzkin paths of length n, which is derived by Ferrari, Pergola,
Pinzani and Rinaldi in [5], and leads to byproducts which are related to
Catalan numbers, Motzkin numbers and Riordan numbers.

2. Hilly poor noncrossing partitions

Definition 2.1 A hilly poor noncrossing partition is a poor noncrossing par-
tition satisfying that each isolated vertex is covered by some arc in its linear
presentation.

Denote H(n) the set of hilly poor noncrossing partitions with n blocks.
Let hn and pn be the cardinality of H(n) and P(n), respectively. By defi-
nitions, it is clear that H(n) ⊂ P(n) and pn = 2hn for n ≥ 1 by changing
the last uncovered isolated vertex into an arc whose another vertex is a new
added vertex on the leftmost position. Suppose that p(x) and h(x) are their
generating functions, respectively. It is trivial to derive their relations as
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follows:
p(x) = 1 + xp(x) + xp2(x), h(x) = 1 + xp(x)h(x).

So the generating function of hn is

h(x) =
1 + x−√x2 − 6x + 1

4x
. (2.1)

It is interesting to find that xh(x) is exactly the generating function of
Maximal Davenport-Schinzel sequences over n symbols which have been stud-
ied by [9] and [7]. We know that a Maximal Davenport-Schinzel sequence is
the canonical sequential form of a 2-regular noncrossing partition satisfying
that the least and largest elements are in the same block. In fact, the reduc-
tion algorithm in [1] gave a bijection between Maximal Davenport-Schinzel
sequences and hilly poor noncrossing partitions. We briefly describe the re-
duction algorithm as follows without proof:
The reduction algorithm: For a m-regular (m ≥ 2) partition with n
(n ≥ 1) blocks, in its linear representation, for each arc joining the i-th
vertex with the j-th vertex, replace it by a new arc joining the i-th vertex
with the j − 1-th vertex. In other words, the second vertex of each arc is
changed into its frontal vertex. As a result, we obtain a linear representation
of a m − 1-regular partition with n − 1 blocks by deleting the last vertex.
For example, given u = 1232141, the reduction algorithm is demonstrated in
Fig.2:

1 2 3 2 1 4 1


1 2 2 1 3 3

Figure 2: The reduction algorithm.

Using the generating function and algebraic methods in [9], Millin and
Stanton derive an enumerative formula for Maximal Davenport-Schinzel se-
quences over n symbols, i.e.,

fn =
∑

0≤k≤bn/2c−1

3n−2−2k2k

(
n− 2

2k

)
Ck, for n ≥ 2, (2.2)

which is strictly related to the small schröder numbers: 1, 1, 3, 11, 45, 197, . . .
(A001003 in [10]). If we apply the reduction algorithm to 2-regular noncross-
ing partitions with n blocks whose canonical sequential forms are Maximal
Davenport-Schinzel sequences over n(n ≥ 2) symbols, then the partitions
obtained are hilly poor nocrossing partitions with n− 1 blocks. Thus we can
also obtain

hn = fn+1 =
∑

0≤k≤b(n−1)/2c
3n−1−2k2k

(
n− 1

2k

)
Ck. (2.3)
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3. Refinement of hilly poor noncrossing par-

titions

In the above section, we derive the number of hilly poor noncrossing parti-
tions with n blocks as the sum. A natural problem arising from the formula
(2.3) is the character of parameter k. We hope to address k’s combinatorial
explanation in this section.

Definition 3.1 Given a poor noncrossing partition P = {B1, B2, . . . , Bn}.
For any j ∈ [n], let I(i1), I(i2), . . . , I(ik) be all intervals satisfying that j is
the largest number in each of them and i1 < i2 < · · · < ik < j. If I(i1) is
included by another interval, then (Bi1 , Bj) forms a basic pair. Otherwise,
(Bi2 , Bj) is called a basic pair if k ≥ 2.

If (Bi, Bj) is a basic pair, we call Bi an out block and Bj a rightmost block.
It is obvious that Bj must be an isolated vertex or a void arc. Let H(n, k)
and hn,k be the set of hilly poor noncrossing partitions of n blocks with k
basic pairs and its cardinality, respectively, where 0 ≤ k ≤ bn−1

2
c.

Definition 3.2 In the linear representation of a poor noncrossing partition
P , we delete all the blocks which do not form basic pairs, then the remaining
graph is called the basic structure of P .

Given a partition P ∈ H(n, k), its basic structure has exactly k non-void
arcs. If we relabel vertices of the basic structure with [2k], it is changed into
a partition in P(2k). For example in Fig.3, (B3, B9) and (B4, B7) are basic
pairs where B3, B4 are out blocks and B9, B7 are the corresponding rightmost
blocks respectively. Whereas, (B1, B10), (B6, B7) and (B11, B12) are not basic
pairs. {{1, 7}, {2, 4}, {3}, {5, 6}} is the corresponding partition of its basic
structure in P(4).

3 4 7 4 9 9 3

1 2 2 3 4 5 6 7 6 4 8 9 9 3 10 10 1 11 12 11

Figure 3: A poor noncrossing partition and its basic structure

Let S(k) be the set of basic structures of H(n, k), we construct a map η
from H(n, k) onto S(k) which deduces the expression of hn,k.

Theorem 3.3 There exists a mapping η: H(n, k) 7−→ S(k) satisfying that
for any S ∈ S(k), S is the basic structure of a partition P in H(n, k) if and
only if P ∈ η−1(S). Moreover, hn,k = 3n−1−2k|S(k)|.
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Proof. Given a partition P ∈ H(n, k), let η(P ) be its basic structure, and it
is unique in S(k).

Now we construct the inverse mapping η−1. Given a basic structure
S ∈ S(k), suppose that labels of non-void arcs are a1, a2, . . . , ak where 1 <
ai < ai+1, in which ai1 , ai2 , . . . , ais are labels of big arcs and put a0 = 1 and
ak+1 = n+2. Let bi be the label of the rightmost block corresponding to the
non-void arc ai. We determine every block’s position and type from left to
right. Draw an arc with label 1. Suppose that positions of the first m − 1
blocks have been determined and b is the label of the last big arc. Now we
consider the position of Bm:

If m = aij for some j ∈ [s], we add the interval I(m) of S to the inside and
rightmost position of arc b. Since relative positions of blocks in S covered
by arc m are also determined, we omit the case of m = aj or m = bj where
aj 6= ait for all t ∈ [s].

If aj < m < aj+1 for some j ∈ {0, 1, 2, . . . , k}, we consider the choices
for Bm as follows: (i) if there does not exist any l ∈ [k] such that al ≤ aj <
m < bl, we add an isolated vertex or a void arc to the inside and rightmost
position of arc b, or draw an arc after arc b, which can be a big arc in the
subsequent construction. Otherwise, let p be the greatest index such that
ap ≤ aj < m < bp. (ii) If bp < aj+1, we draw an isolated vertex or a void arc
before the block Bbp or an arc covering the block Bbp . (iii) If bp > aj+1, we
draw an arc covering the block Bbp , or draw an isolated vertex or a void arc
before arc aj+1.

Repeat above process until n blocks are all determined. From the above
procedure, it is easy to see that any isolated vertex must be covered by at
least one arc. Moreover, in each step determining positions and types of
blocks, in order not to destroy its basic structure, each block whose label is
neither ai nor bi has exactly 3 choices except for the first block. So we have
just 3n−1−2k partitions in H(n, k) having the same basic structure S.

. . . . . . . . . . . .
ap apm aj+1 aj+1

bj+1

bp

. . . . . . . . . . . .
ap apm m aj+1 aj+1

bj+1

bp

. . . . . . . . . . . . . . .
ap apm maj+1

bj+1

aj+1 bp
(iii)

mbp

. . . . . .
ap ap ap m m

. . . . . .
bp ap ap m bp

. . . . . .
m ap

(ii)

m
. . .

b b b
. . .

m m b b
. . .

b m m
(i)

Figure 4: Three choices for the m-th block.
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Remark 1: “A little black square” represents a rightmost block in Fig.4.

Remark 2: “. . .” represents some possible existed labelled vertices in Fig.4.

It is clear that a basic structure S ∈ S(k) is derived from P2(k): given a
partition P ∈ P2(k), for each arc in the linear representation of P , add an
isolated vertex or a void arc to the inside and rightmost position of the arc,
and choose 2k elements from the set {2, 3, . . . , n} to label these blocks from
left to right in increasing order. Thus we obtain a basic structure S, and
|S(k)| = 2k

(
n−1
2k

)
Ck is derived. From the constructive mapping in Theorem

3.3, we can use basic pairs to characterize the parameter k in Formula (2.3).

Theorem 3.4 The number of hilly poor noncrossing partitions of n blocks
with k basic pairs is

hn,k = 3n−1−2k2k

(
n− 1

2k

)
Ck, for n ≥ 1. (3.1)

So we give a combinatorial proof of Formula (2.2) combining Theorem 3.4
with the reduction algorithm. From Theorem 3.4, we deduce

Corollary 3.5 For n ≥ 1, 3n−1−2k
(

n−1
2k

)
Ck counts the number of hilly poor

noncrossing partitions of n blocks with k basic pairs satisfying that all right-
most blocks are of the same type.

We can use another method to enumerate the number of hilly poor non-
crossing partitions of n blocks satisfying that all rightmost blocks are void
arcs.

Lemma 3.6 The number of partitions in H(n + 1) satisfying that all right-
most blocks are arcs is

n∑

k=0

(
n

k

)
Ck+1.

Proof. Given such a partition P , suppose that there are exactly k + 1 arcs
in its linear representation, then the k + 1 arcs correspond to the linear
representation of a partition in P2(k + 1).

Conversely, given a partition P in P2(k + 1), we insert n − k isolated
vertices into positions between arcs to consist a partition in H(n + 1) with
k+1 arcs such that each rightmost block is an arc. In fact, these n−k isolated
vertices only can be inserted into k + 1 positions which are the inside and
rightmost positions of big arcs and the frontal positions of the first vertices
of non big arcs. So there are

(
n
k

)
methods to choose positions of isolated

vertices. Summing over k, the lemma is proved.

Theorem 3.7 For n ≥ 0,

n∑

k=0

(
n

k

)
Ck+1 =

bn
2
c∑

k=0

3n−2k

(
n

2k

)
Ck. (3.2)
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4. A bijection π between (2, 3)-Motzkin paths

and hilly poor noncrossing partitions

It is well known that Motzkin paths are lattice paths in the plane using
up steps (1, 1) (U), down steps (1,−1)(D), and horizontal steps (1, 0) (H)
and running from (0, 0) to (n, 0) that never pass below x-axis [11]. Motzkin
paths of length n are counted by Mn =

∑
0≤k≤bn/2c

(
n
2k

)
Ck [4]. If (i, j) and

(i+1, j+1) are the coordinates of an up step, we say the up step is at level j.
Similarly, a horizontal step whose coordinates are (i, j) and (i + 1, j) is said
to be at level j, and a down step whose coordinates are (i, j) and(i+1, j−1)
is called to be at level j − 1. For each up step, its corresponding down step
is the first down step at the same level to the right.

In this section we consider a class of generalized Motzkin paths, which is
closely related to hilly poor noncrossing partitions.

Definition 4.1 A Motzkin path is a (i, j)-Motzkin path if each up step is
colored by one letter of alphabet {u1, u2, . . . , ui}, and each horizontal step is
colored by one letter of alphabet {h1, h2, . . . , hj}.

Denote Mi,j(n) the number of (i, j)-Motzkin paths of length n. Note that
(1, 1)-Motzkin paths are ordinary Motzkin paths, (1, 2)-Motzkin paths are
2-Motzkin paths [3], and (1, 3)-Motzkin paths are 3-colored Motzkin paths
[12]. It is trivial to derive Mi,j(n) and its generating function Mi,j(x):

Mi,j(n) =
∑

0≤k≤bn
2
c
ikjn−2k

(
n

2k

)
Ck,

Mi,j(x) = 1 + jxMi,j(x) + ix2M2
i,j(x),

Mi,j(x) =
1− jx−

√
1− 2jx + j2x2 − 4ix2

2ix2
.

In particular,

M2,3(x) =
1− 3x−√x2 − 6x + 1

4x2
, (4.1)

M2,3(n) =
∑

0≤k≤bn
2
c
2k3n−2k

(
n

2k

)
Ck. (4.2)

Comparing Formula (2.1) with (4.1) and (2.3) with (4.2), we find that h(x) =
1+xM2,3(x) and hn+1 = M2,3(n). A natural problem is to find a bijection be-
tween (2, 3)-Motzkin paths of length n and hilly poor noncrossing partitions
with n + 1 blocks.

Theorem 4.2 There exists a bijection π between (2, 3)-Motzkin paths of
length n and H(n + 1). If a (2, 3)-Motzkin path P has k up steps, π(P )
has exactly k basic pairs.
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Proof. Given a (2, 3)-Motzkin path M of length n with k up steps, we can
define its image π(M) as follows: label the steps with 2, 3, . . . , n+1 from left
to right. Suppose that labels of up steps are a1, a2, . . . , ak which are listed
in increasing order and labels of corresponding down steps are b1, b2, . . . , bk.
Assume that the horizontal steps at level 0 colored by h1 are labelled by
c1, c2, c3, . . . , ct where ci < ci+1 and ct+1 = n + 2. For our convenience, step
{x, y} denotes that the step is colored by x and labelled by y. Replace each
up step {u1, ai} and its corresponding down step with a basic pair (Bai

, Bbi
)

such that Bbi
is a void arc and Bai

covers all the blocks Bj where ai < j ≤ bi.
Replace each up step {u2, ai} and its corresponding down step with a basic
pair (Bai

, Bbi
) such that Bbi

is an isolated vertex and Bai
covers all the blocks

Bj where ai < j ≤ bi. Replace each horizontal step {h2, i} with an isolated
vertex Bi. Replace each horizontal step {h3, i} with a void arc Bi. For all
1 ≤ j ≤ t, replace each horizontal step {h1, cj} with a big arc which covers
all the blocks Bi where cj < i < cj+1. For each horizontal step {h1, i} at level
l+1, there exists a largest index j such that aj < i < bj and the step labelled
by aj is at level l. We replace each such step with an arc which covers the
block Bbj

preserving its noncrossing property. Draw the first block as a big
arc which covers all the blocks Bi where 1 < i < c1. Thus we get a partition
π(M) ∈ H(n + 1, k).

Conversely, for each basic pair (Bi, Bj) of P ∈ H(n+1, k), if Bj is a void
arc, then Bi corresponds to an up step colored by u1 and Bj corresponds
to a down step. Otherwise, Bi corresponds to an up step colored by u2 and
Bj corresponds to a down step. For the remaining blocks, an isolated vertex
corresponds to a horizontal step colored by h2; a void arc covered by at least
one arc corresponds to a horizontal step colored by h3; a big arc or a non-void
arc corresponds to a horizontal step colored by h1. Deleting the first step
and encoding all the steps from left to right, we get a (2, 3)-Motzkin path
π−1(P ) of length n with k up steps.

For instance, p = 122345647731898 and the corresponding (2, 3)-Motzkin
path is shown in Fig. 5.

h3

u1

u2

h2

h1 h2 =⇒π
1 2 2 3 4 5 6 4 7 7 3 1 8 9 8

Figure 5: An example of the bijection π.

5. Specialization of the bijection π

In this section, applying the bijection π to some specialization of (2, 3)-
Motzkin paths, some known results are derived, and we give another combi-
natorial explanation for 3-colored Motzkin paths, Catalan numbers, Motzkin
numbers and Riordan numbers, respectively.
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Corollary 5.1 ([3]) There exists a bijection π between 2-Motzkin paths of
length n and P2(n + 1). Thus the number of 2-Motzkin paths of length n is
Cn+1.

Proof. Since P2(n+1) ⊂ H(n+1), if we apply the bijection π−1 to P2(n+1),
we get the set of all 2-Motzkin paths of length n colored by u1, h1 or h3.

For a (2, 3)-Motzkin path, if each up step is colored by u1 and each
horizontal step is colored by h1, h2 or h3, we obtain a 3-colored Motzkin
path. The first numbers of 3-colored Motzkin paths are 1, 3, 10, 36, 137,
543, 2219, 9285, . . . (A002212 in [10]).

Corollary 5.2 There exists a bijection π between 3-colored Motzkin paths
of length n and hilly poor noncrossing partitions with n + 1 blocks satisfying
that all rightmost blocks are void arcs. Moverover, the number of 3-colored
Motzkin paths of length n is

∑n
k=0

(
n
k

)
Ck+1.

By the above corollary, the identity (3.2) can also be proved. Note that the
fact that

∑n
k=0

(
n
k

)
Ck+1 counts the number of 3-colored Motzkin paths of

length n has been proved by [5] using generating function.

View 2-Motzkin paths as (1, 2)-Motzkin paths colored by u2, h1 or h2.
Similar to the bijection between Dyck paths of length 2n + 2 and 2-Motzkin
paths of length n in [3], a bijection between Dyck paths of length 2n and
2-Motkzin paths of length n without horizontal steps colored by h1 at x-axis
is the following: for a given 2-Motzkin path M we replace U by UU , D by
DD, a horizontal step colored with h1 by DU , and a horizontal step colored
with h2 by UD. Note that M has no horizontal steps colored by h1 at x-axis
if and only if the obtained path is a Dyck path of length 2n. Applying π to
such 2-Motzkin paths and deleting the first arc, we obtain

Corollary 5.3 ([6]) The n-th Catalan number counts the number of all the
2-regular poor noncrossing partitions with n blocks.

Applying π to an ordinary Motzkin path M of length n colored by u2 and h2,
and deleting the first block, we get a 2-regular poor noncrossing partitions
with n blocks satisfying that if b, c are in the same block, then c + 1 must
be the minimal element in some block. This leads to a new combinatorial
interpretation of Motzkin numbers.

Corollary 5.4 The n-th Motzkin number counts the number of all the 2-
regular poor noncrossing partitions with n blocks such that if b, c are in the
same block and b < c, then c+1 must be the minimal element in some block.

Riordan numbers count the numbers of Motzkin paths without horizontal
steps on the x-axis [2]. The first Riordan numbers are 1, 0, 1, 1, 3, 6, 15, 36 . . .
(A005043 in [10]). Hence, we lead to another combinatorial explanation of
Riordan number by applying π to such Motzkin paths.
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Corollary 5.5 The n-th Riordan number counts the number of all the 2-
regular hilly poor noncrossing partitions with n blocks such that if b, c are in
the same block and b < c, then c + 1 must be the minimal element in some
block.
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