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OVER A LATTICE OF BINARY TREES

D� STOTT PARKER� AND PRASAD RAMy

Abstract� We show that the space of all binary Hu�man codes for a �nite alphabet de�nes a
lattice� ordered by the imbalance of the code trees� Representing code trees as path�length sequences�
we show that the imbalance ordering is closely related to a majorization ordering on real�valued
sequences that correspond to discrete probability density functions� Furthermore� this tree imbalance
is a partial ordering that is consistentwith the total orderings given by either the external path length
�sum of tree path lengths�� or the entropy determinedby the tree structure� On the imbalance lattice�
we show the weighted path�length of a tree �the usual objective function for Hu�man coding� is a
submodular function� as is the corresponding function on the majorization lattice� Submodular
functions are discrete analogues of convex functions� These results give perspective on Hu�man
coding and suggest new approaches to coding as optimization over a lattice�
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�� Introduction� The Hu�man algorithm has been used heavily to produce e�cient
binary codes for almost half a century now� It has inspired a large literature with diverse
theoretical and practical contributions� A comprehensive� very recent survey is ���� Although
the algorithm is quite elegant� it is tricky to prove correct and to reason about� While there
may be little hope of improving on the O�n log n� complexity of the Hu�man algorithm
itself�� there is still room for improvement in our understanding of the algorithm�

There is also plenty of room for improvement in our understanding of variants of Hu�	
man coding� Although the Hu�man algorithm is remarkably robust in general and has
widespread use� it is far from optimal in many real applications� Hu�man coding is optimal
only when the symbols to be coded are random and occur with 
xed probabilities� Time	
varying dependencies are not captured by the Hu�man coding model� and optimal encoding
of 
nite messages is not captured either�

Our motivation came from analysis of dynamic Hu�man coding� a speci
c extension
of Hu�man coding in which the code used evolves over time� Recently dynamic coding
algorithms have been studied heavily� Our initial idea was to de
ne �rebalancing� operations
on code trees and to use these dynamically ��on the 
y�� in producing better codes� in
situations where the distribution of symbols to be coded varies over time and�or is not
accurately predictable in advance�

This paper reconstructs Hu�man coding as an optimization over the space of binary
trees� A natural representation for this space is sequences of ascending path	lengths� since
this captures what is signi
cant in producing optimal codes�

We show that the set of path	length sequences representing binary trees forms a lattice�
which we call the imbalance lattice� This lattice orders trees by their imbalance and gives
an organization for them that is useful in optimization� Our belief is that having a better
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mathematical �and not purely procedural� understanding of coding will ultimately pay o�
in improved algorithms�

The imbalance lattice and its imbalance ordering on trees depend on majorization
in an essential way� Majorization is an important ordering on sequences that has many
applications in pure and applied mathematics ����� We have related it to greedy algorithms
directly ����� Earlier majorization was recognized as an important property of the internal
node weights produced by the Hu�man algorithm ���� ���� and in this work we go further to
clarify its pervasive role�

By viewing the space of trees as a lattice� a variety of new theorems and algorithms
become possible� For example� the objective functions commonly used in evaluating codes are
submodular on this lattice� Submodular functions are closely related to convex functions
�as we explain later� see Theorem ���� and are often easy to optimize ��� �� ��� ��� ����
Hu�man coding gives a signi
cant example of the importance of submodularity in algorithms�

�� Ordered Sequences� Rooted Binary Trees� and Hu�man Codes�

���� Ordered Sequences� By a sequence we mean an ordered collection of non	
negative real values

x � h x� x� � � � xn i�

Repetition of values in the sequence is permitted� the values xj need not be distinct� The
length of this sequence is n� and for simplicity we also refer to the set of such sequences
with the vector notation ��

n�
We introduce several useful operators on sequences�

ascending sort sort� �x � � h x put in ascending order i
descending sort sort� �x � � h x put in descending order i

sequence exponential ��x � h ��x� � � � ��xn i

sequence logarithm �log��x� � h �log��x�� � � � �log��xn� i�

A density sequence is a nonnegative real	valued sequence whose entries sum to ��

A distribution sequence is an ascending nonnegative sequence whose 
nal entry is ��

For simplicity� throughout this paper many sequences are implicitly sorted�
�� s� t� u denote ascending sequences of positive integer values

whose sequence exponentials ���� ��s� ��t are density sequences�
w denotes a descending sequence of positive real values�
v denotes an ascending distribution sequence�
x� y� z denote descending density sequences�

Note since � is ascending� ��� is descending� and since x is descending� �log��x� is ascending�
We also allow sequences to be operated upon as vectors� Thus� if x is a sequence

�vector� of length n and A is an n � n matrix� then Ax is a sequence �vector�� Treating
sequences as vectors allows us to de
ne several useful operators using matrix algebra�

���� Rooted Binary Trees and Path	LengthSequences� Rooted binary trees
here are binary trees with a root node� in which every node is either a leaf node� or an internal
node having one parent and two children� The order of the leaves is insigni
cant� so a given
tree is determined �up to permutation of the leaves� by the lengths of the paths from the
root node to each leaf node �the distance of the leaf from the root�� Thus we can represent
equivalence classes of the rooted binary trees with n leaves by sequences of n nonnegative
integers� which give the path	length of each leaf� For example� the path	length sequence

h � � � � � � � i

represents a binary tree with n � � leaves� of which one has path	length �� two have path	
length �� and four have path	length �� it is shown in Figure ����
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Fig� ���� A binary tree having path�length sequence h 	 � � � � � � i

Path	length sequences obey what we call the Kraft equality� a special case of the Kraft
inequality of noiseless coding theory �see e�g�� ����� p�����

Theorem ���� For all n � �� h �� � � � �n i is the sequence of path�lengths in a rooted
binary tree i�

nX
i��

���i � ��

Thus � is a path�length sequence i� ��� is a density sequence�
Proof� Easily proven by induction on n� For the basis� with n � � we must have �� � ��

The induction step follows by noticing that the two principal subtrees of any binary tree must
have sequences h��� � � � �

�
pi and h�

��
� � � � ���q i satisfying the equality and that their composi	

tion has the sequence h ���� � �� � � � ��
�
p � �� ��

��
� � �� � � � ��

��
q � �� i� which again satis
es the

equality�

n 	 � � � 
 � 
 �
Tn 	 	 	 � � 
 � 	�

h � i h 	 	 i h 	 � � i h 	 � � � i
h � � � � i

h 	 � � � � i
h 	 � � � � i
h � � � � � i

h 	 � � � 
 
 i
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 � � i
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h � � � � � � � i
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��
�

Table ���

All path�length sequences of trees with n leaves� for small values of n

Henceforth we assume that tree path�length sequences are in ascending sorted
order� Table ��� shows a lexicographic tabulation of all possible sequences for � � n � ��
along with Tn� the total number of inequivalent sequences of length n� Tn is enumerated
as sequence M���� �A������� in ����� An upper bound on Tn can be obtained from the
Catalan number Cn� which computes the number of unordered binary trees� for n � ��
Tn �

�
�Cn � �

n��� Gilbert ����� using the notation g�N� for TN � points out that Tn is well
approximated for n � �� by

Tn � ����� �������n�

��
� Hu�man Codes are Optimal Path	Length Sequences� A Hu�man
code for a given positive weight sequence

w� � w� � � � � � wn

consists of a binary tree� i�e�� a path	length sequence � � h �� �� � � � �n i� which we evidently
want to be in ascending order�

�� � �� � � � � � �n�
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so that the weighted path	length

gw��� �

nX
i��

wi �i

is minimal� Beyond the Kraft equality of Theorem ���� it is di�cult to characterize what it
is that makes � optimal� For example� Table ��� shows all feasible codes and costs for the
weight sequence w � h ��� �� �� �� �� �� �� i� with n � ��

� gw���
h � � � � � � � i ����

h � � � � � � � i ����

h � � � � � � � i ����

h � � � � � � � i ����

h � � � � � � � i ����

h � � � � � � � i ����

h � � � � � � � i ����

h � � � � � � � i ����

h � � � � � � � i ����

Table ���

Path�length sequences � and their weighted path�length gw��� for w � h 	�� �
 
� 
	 �� �� �	 i

Hu�man�s breakthrough ���� was to identify an e�cient algorithm that 
nds an optimal
tree� avoiding a search over the exponentially large space of trees� The algorithm repeatedly
combines the two tree leaves with least weight� whose sum becomes the weight of a new leaf�
The Hu�man �optimal� tree in Table ��� has path lengths � � h � � � � � � � i and total
weighted path	length ����� The Hu�man algorithm re
ects a divide	and	conquer structure
that has interesting properties on the space of trees� but because of its procedural nature
does little to characterize optimal trees�


� The Imbalance Lattice of Binary Trees� The optimality of a Hu�man code
is determined by the match between the balance �or imbalance� between the code tree and
the weights of the symbols to be coded� In this section we show ternary balancing exchanges
give an imbalance ordering on binary trees that de
nes a lattice�

The idea of using using lattices in coding dates back at least to Shannon in ���� �����
However� we have not found the lattice characterization of tree imbalance elsewhere� Fol	
lowing considerable work in the early ����s on enumeration of trees� Pallo classi
ed trees by
their rotational structure �e�g�� ���� ���� and showed that they then form a lattice� Our work
di�ers from Pallo�s in that we classify trees by their path�length �imbalance� structure�


��� Important Properties of Tree Path	Length Sequences�

Theorem ���� Every path�length sequence � has the form

� � h � � � �q�j�

�kz �� �
q � � � q i�

a sequence including �k copies of its largest value q �where j� k � ��� Also� j is at most the
largest exponent of � in �k� and therefore j � log���k��

Proof� � must include �k copies of its largest value q since otherwise
�
�q �

Pn

i�� �
��i
�
is

odd� contradicting the Kraft equality� Using this argument again on the shorter path	length
sequence obtained by replacing the �k copies of q with k copies of �q���� the Kraft equality
requires not only that j � � but also that j be at most the number of times � divides �k�

Theorem ���� Except for the sequence h � � � � � � �n��� �n��� �n��� i� any path�
length sequence contains at least three identical values�
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Proof� By induction on the length n of the sequence� For the basis� when n � � the only
sequence is h � � � i� satisfying the theorem� For the induction step� suppose n � �� and to
the contrary of the theorem that there is a sequence does not have three identical values�
Let q be the smallest value in the sequence appearing twice� We may assume q � �n����
since otherwise the sequence is h � � � � � � �n��� �n��� �n��� i� Construct the sequence
of length n�� that results from replacing the two values q with one value �q���� In this new
sequence� q does not appear at all �since there were only two before�� and �q��� appears at
most twice� Therefore� by induction� since this sequence does not have three identical values
it is h � � � � � � �n��� �n��� �n��� i� But since q � �n��� and q does not appear in the
new sequence� this gives a contradiction�


��� Ternary Exchanges determine Tree Imbalance� The insight that in	
spired us to write this paper is that it is possible to generate all binary tree path�
length sequences using ternary exchanges� Given any path	length sequence

h� � � p � � � � � � � � � �q � �� �q � �� � � �i�

then the revision

h� � � �p� �� �p� �� � � � � � � � � � q � � �i

is a path	length sequence also� because

��p � ���q��� � ���q��� � ��p � ��q � ���p��� � ���p��� � ��q�

Moreover� if the initial sequence is sorted in ascending order� so p � q� and we replace the
rightmost p and leftmost two �q � ��s� then the resulting sequence is still sorted� �When
p � q the two sequences are identical�� Dually� this exchange can be applied in reverse� with
sorted sequences if we replace the leftmost two �p���s and the rightmost �q� ��� the result
will still be sorted in ascending order�

The net e�ect of this exchange is to transfer two leaves dangling from level q to level p�
The two examples in Figure ��� show this pictorially�t����� XXXXXt��� HHH
t t

����t t��
��tt t����

��AA ��AAt t t t
t����� XXXXXt��� HHH

t t
����t t tt t����

��AA ��AAt t t t��
��

h � � � � � � � i h � � � � � � � i

� �
h � � � � � � � i h � � � � � � � it����� XXXXXt��� HHH
t

����t t��
�� t tt t����

��AA ��AAt t t t
t����� XXXXXt��� HHH

t
��AAt t��
�� t

����t t tt t����
��AAt t

Fig� ���� Balancing exchanges� h	 �� �� �� i � h � �� �� �� i and h 	 �� �� �� i � h �� �� � �� i

Definition ���� Let p� q be integers such that � � p � q � n�
A balancing exchange is a ternary exchange of the form

h� � � p � � � � � � �q � �� �q � �� � � �i
� 	 � � � 	 �

h� � � �p � �� �p� �� � � � � � � q � � �i
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It is called a minimal balancing exchange if �p� �� � q�
An imbalancing exchange is of the reverse form

h� � � �p� �� �p� �� � � � � � � q � � �i
� 
 � � � 
 �

h� � � p � � � � � � �q � �� �q � �� � � �i

Finally� we can de�ne partial orders as the re�exive transitive closures of these relations
among sequences� Given two sequences s and t� we say that s is at least as balanced as
t�

s � t�

if there are sequences ��� � � � � �m �m � �� where t � ��� �m � s� and for each i� � � i � m�
there is a balancing exchange from �i to �i���

Minimal balancing exchanges� in which �p � �� � q� are particularly signi
cant� The
balancing exchange h � � � � � � � i � h � � � � � � � i in Figure ��� gives an example� Min	
imal balancing exchanges are ternary exchanges of consecutive length values� so any tree
path	length sequence of the form h� � � �q � �� � � � �q � �� �q � �� � � �i determines the more
balanced tree path	length sequence h� � � q � � � q q � � �i and vice	versa�

Theorem ���� If two path�length sequences di�er� they di�er in at least three values�
Also� if they di�er in exactly three values� there is a ternary exchange between the sequences�

Proof� Direct consequence of the Kraft equality� The equality shows that two path	length
sequences cannot di�er in one value� Similarly� there cannot be sequences s and t di�ering in
two values� since if the di�erences were the disjoint sequences of positive integers h si sj i and
h ti tj i� then the Kraft equality would imply �

�si���sj � ��ti ���tj � which is false under
the disjointness condition� Finally� sequences di�ering in three integer values h si sj sk i and
h ti tj tk i must satisfy ��si���sj���sk � ��ti���tj���tk � and a case analysis shows that
this is solved only by h si sj sk i � h p �q��� �q��� i and h ti tj tk i � h �p��� �p��� q i�
corresponding to a ternary exchange�

Theorem ���� The path�length imbalance ordering is a partial order�
Proof� It is re
exive and transitive by construction� Also the imbalance ordering is

antisymmetric� because s�t and t�s together imply s � t� Otherwise there would be a
sequence of balancing exchanges that transform t to s and ultimately back to t� this is
not possible� as each balancing exchange reduces by at least � the sum of the values in the
sequence� �
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Fig� ���� The path�length imbalance ordering for n � �� 
� �� 
� edges denote ternary exchanges

The imbalance partial order is straightforward to derive for small values of n� In Fig	
ure ���� it is displayed for n � �� �� �� �� The most imbalanced sequence appears at the top of
the partial order� and an edge from a sequence s down to another t means that a balancing
exchange is possible from s to t� It is evident from Figure ��� that the minimal exchanges
de
ne the bulk of the ordering� In order to provide a deeper appreciation for its structure�
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Fig� ���� The imbalance lattice� showing path�length sequences ordered by imbalance� The
sequence h 	 � � � � � � i is maximally imbalanced� The graphs display the �transitively reduced� path�
length imbalance ordering for n � �� 
� �� �� For clarity only a minimal subset of the imbalance
ordering is drawn� orderings in the transitive closure of the minimal set are omitted� The imbalance
ordering is also a lattice� with well�de�ned upper bounds s � t and lower bounds s � t for every pair
of trees s and t� Some trees are marked to clarify certain notions �contractions� lower expansions�
and upper expansions�� and their use in derivation of the �rst entry in the table of representative
upper and lower bounds for n � ��
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Figure ��� presents the ordering for n � �� �� �� �� Figures ��� and ��� suggest a number of
results about the imbalance ordering�

Theorem ���� A sequence is on level k of the imbalance partial order �counting down
from �� the topmost and least balanced level� i� k minimal balancing exchanges are needed to
derive it from the least balanced sequence h � � � � � � �n��� �n��� �n��� i� In this situation
the sum of the values in the sequence is

�n� ���n � ��

�
� k�

Thus the level of a sequence in the partial order is determined by the sum of its path�length
values�

Proof� By induction on k� For the basis k � �� the sum of the path	lengths in the
least balanced sequence is �

Pn��

i��
i� � �n��� � �n � ���n � ����� For the induction step�

consider a sequence whose sum of values is �n����n���
� � k with k � �� By Theorem ����

this sequence must contain at least three identical values h q q q i� Thus there is a minimal
balancing exchange to this sequence from another that contains h �q��� �q��� �q��� i� This
sequence is at level k � � by construction� and by induction it has the stated sum�
Theorem ��� shows the signi
cance of the level of a sequence in the imbalance partial order�

Definition ���� The level of balance of a path�length sequence s is

�n� ���n � ��

�
� �sum of the path�length values in s��


�
� Contractions and Expansions of Path	Length Sequences�

Definition ���� Let � � h �� � � � �n i be a tree path�length sequence of length n�

The contraction �� of � is the sequence of length �n��� de�ned by

�
� � sort� � h �� � � � �n�� ��n�� � �� i ��

The position i expansion of � is the sequence of length �n��� de�ned by

sort� � h �� � � � �i�� ��i��� ��i��� �i�� � � � �n i ��

As permitted by Theorem 	�
� if we write

� � h � � � �q�j�

�kz �� �
q � � � q i

with j� k � �� then �k is the su�x length of �� and j is the su�x increment of ��

The contraction �� is then

�
� � h � � � �q�j� �q���

�k��z �� �
q � � � q i�

The lower expansion �� is the position n� �k expansion of ��

�� � h � � � �q�j��� �q�j���

�kz �� �
q � � � q i�

The upper expansion �� is the position n expansion of ��

�
� � h � � � �q�j�

�k��z �� �
q � � � q �q��� �q��� i�

Note the de
nition for �� assumes �k � n� When �k � n� requiring n to be a power of �
and � � h q � � � q i where q � log��n�� the preceding formula does not de
ne ��� In this
very special case we de
ne �� � �� rather than leave �� unde
ned�
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Fig� ���� The contraction and expansions of the path�length sequence � � h 	 � � � � � � i
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Table ���

Path�length sequences of length 
� with their contractions and expansions� Note that all con�
tractions have length �� and expansions length �� Emboldened digits re	ect changes from ��

These de
nitions will be used heavily throughout the rest of the paper� Figure ��� and
Table ��� give examples for n � �� Figure ��� also gives examples illustrating the relationships
these de
nitions produce among the imbalance orderings for successive values of n�

Theorem ��	� If � is a path�length sequence� �� � �� and ����
�
� ����� � ��

Furthermore� either � � ������ or � � ������ Thus ����� � � � ������
Proof� �� and �� di�er by a ternary exchange� so �� � ��� From Theorem ��� we can

assume � � h � � � �q�j�

�kz �� �
q � � � q i� and thus ����� � �� Furthermore ����

� � � if j � � and

����
� � h � � � �q�j� ���q�j� ���q���

�k��z �� �
q � � � q i � � if j � �� Finally ����� � � if k � �

�necessitating j � �� and ����� � � if k � �� Consequently � � f ������ ��
��� g�

Theorem ���
� If s � t � then s� � t� � s� � t� � and s� � t� �
Proof� Recall that if s � t� then there are sequences ��� � � � � �m �m � �� such that

t � ��� �m � s and for each i� � � i � m� there is a balancing exchange from �i to �i��� Our
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approach here is very simple� to prove s� � t� we convert the derivation t � ��� � � � � �m � s
directly to the derivation t� � ��

�� � � � � �m
� � s�� For this it is su�cient to show that either

each step from ��i�
� to ��i���

� is a balancing exchange� or ��i�
� � ��i���

�� The former
must hold if �i and �i�� agree in the 
nal two positions� If they disagree�

�i � h � � � p a � � � b q q i�
�i�� � h � � � �p��� �p��� a � � � b �q��� i

because they de
ne a balancing exchange� and by Theorem ��� necessarily b � �q���� Then

��i�
� � sort� � h � � � p a � � � �q��� �q��� i ��

��i���
� � sort� � h � � � �p��� �p��� a � � � �q��� i ��

If �p��� � b � �q���� then p � �q��� and the two contractions are equal� If not� they still
di�er by a balancing exchange�
Proving s� � t� is similar� where ��i�� � ��i���� i� �i � h � � � �q�j� q q � � � q i� �i�� �
h � � � �q�j��� �q�j��� �q��� � � � q i and j � �� Proving s� � t� is also similar� but
easier� since then it is never the case that ��i�

� � ��i���
��


��� The Vector Lattice and Distribution Lattice� Recall ��� that a lattice
is an algebra hS�v�u�ti in which S is a set� v is a partial ordering on S� and for all a� b � S�
there is a unique greatest lower bound �glb� a u b and least upper bound �lub� at b�
The lattice is called distributive if these operators satisfy the distributive law�

for all a� b� c in S� a u �b t c� � �a u b� t �a u c��

Optionally the lattice can have a greatest element 
 and least element ��
Definition ����� Let �vec be the element�wise ordering on vectors �sequences� in �n�

Then
x �vec y i� xi � yi for � � i � n�

Also de�ne vector element�wise minima and maxima

x minvec y � h min�x�� y�� � � � min�xn� yn� i
x maxvec y � h max�x�� y�� � � � max�xn� yn� i�

Theorem ����� The nonnegative vectors h��
n��vec�minvec�maxveci form a distribu�

tive lattice called the vector lattice�
The set P of distribution sequences of length n �ascending nonnegative vectors v with

vn � �� also form a distributive lattice� hP��vec�minvec�maxveci� called the distribution
lattice� with least element � � h � � � � � � � i and greatest element 
 � h � � � � � � � i�

Proof� The one	dimensional algebra h�����min�maxi is a distributive lattice� The
vector properties required here follow from this�


��� The Majorization Lattice and Density Lattice� We reproduce basic
majorization concepts developed in the paper ����� Majorization as de
ned here is an ex	
tension of the classical majorization of Muirhead and Hardy	Littlewood	P�olya ����� useful
in the study of inequalities� Marshall and Olkin ���� provides a very good account of the
classical theory and its applications� The classical theory de
nes a majorization ordering
on descendingly	ordered �or sometimes ascendingly	ordered� multisets� and although quite
beautiful is also quite complex� We have transplanted the theory to rely only on linear al	
gebra and convexity� Thus the de
nitions in this section are ours� and the results vary from
those in �����

Definition ����� The Zeta matrix
R
� ��ij� is de�ned by

�ij � 
 if i � j� � otherwise�

The M�obius matrix � � ��ij� is de�ned by

�ij � 
 if i � j� �� if j � i� �� � otherwise�
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The M�obius matrix is the inverse of the Zeta matrix� For example� when n � ��

R
	

�B� � 
 
 
 

� � 
 
 

� � � 
 

� � � � 

� � � � �

�CA � 	
R

��
	

�B� � 
 
 
 

�� � 
 
 


 �� � 
 


 
 �� � 


 
 
 �� �

�CA �

The M�obius matrix is also signi
cant in that it corresponds directly to the concept of pairwise
exchange �of adjacent elements in a sequence�� The theory of M�obius inversion ���� gives
a generalized notion of di�erential on partially	ordered domains �although here we consider
only totally	ordered sequences�� We can think of

R
as an integral operator �which transforms

a sequence to its left	to	right �integral��� with � as its inverse di�erential operator�

Theorem ����� If x and y are density sequences �so
Pn

i��
xi �

Pn

i��
yi � ��� then

x � y i� �
R
x� �vec �

R
y��

If v and v� are distribution sequences� then � v and � v� are density sequences and

v �vec v� i� �� v� � �� v���

Proof� �
R
x� �vec �

R
y� is equivalent to�

x� � y�� x� � x� � y� � y�� � � � x� � x� � � � �� xn � y� � y� � � � �� yn�

Note x is a density sequence i� �
R
x� is a distribution sequence� The second statement then

follows since the M�obius and Zeta transformations are inverses of one another�

This isomorphism between �vec and � implies that majorization de
nes a lattice�

Definition ����� Majorization lub and glb operators are de�nable by

x t y � � ��
R
x� maxvec �

R
y��

x u y � � ��
R
x� minvec �

R
y���

Theorem ����� The nonnegative reals ordered by majorization forms a distributive
lattice h��

n���u�ti called the majorization lattice�

The set D of density sequences of length n �nonnegative x with
Pn

i�� xi � �� forms
a distributive lattice hD���u�t���
i called the density lattice� with least element � �
h � � � � � � � i and greatest element 
 � h � � � � � � � i�

Proof� The transformation x ��
R
x de
nes a lattice isomorphism between the vector

and majorization lattices� and between the distribution and density lattices� Here x u y and
x t y are de
ned just so as to be the majorization glb and lub�

z � x� z � y x � z� y � z
� �

R
z� �vec �

R
x�� �

R
z� �vec �

R
y� � �

R
x� �vec �

R
z�� �

R
y� �vec �

R
z�

� �
R
z� �vec � �

R
x� minvec �

R
y� � � � �

R
x� maxvec �

R
y� � �vec �

R
z�

� z � � � �
R
x� minvec �

R
y� � � � � �

R
x� maxvec �

R
y� � � z

� z � x u y� � x t y � z�

Thus the majorization algebra also forms a distributive lattice�

Even when x and y are in descending order� the sequences �x u y� and �x t y� de
ned
here are not necessarily in descending order� x � h ��� ��� ��� ��� ��� ��� ��� ��� ��� i
and y � h ��� ��� ��� ��� ��� ��� ��� ��� ��� i yield the least upper bound x t y �

� �
R
x maxvec

R
y� � h ��� ��� ��� ��� ��� ��� ��� ��� ��� i� See Figure ����
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s 	 � � � � � � � � � � �
��s 	 � ��� ��� ��� ��� ��� ��� ��� ��� ��� �R
��s 	 ��� � �� 
� �
� ��� ��� ��
 ��� ��� ��� �

t 	 � � � � � � � � � � �
��t 	 � ��� ��� ��� ��� ��� ��� ��� ��� ��� �R
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 ��� ��� ��� ��� �R

��s maxvec

R
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� �
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� �
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Fig� ���� Related points in the majorization and imbalance lattices� showing their connection
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Fig� ���� Results of ���s u ��t� and ���s t ��t� are not necessarily in descending order

s 	 � � � � � � � � � � �
��s 	 � ��� ��� ��� ��� ��� ��� ��� ��� ��� �R
��s 	 ��� � �� 
� �
� �
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t 	 � � � � � � � � � � �
��t 	 � ��� ��� ��� ��� ��� ��� ��� ��� ��� �R
��t 	 ��� � �� �� 
� ��� ��
 ��� ��� ��� ��� �R

��s minvec

R
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�� �s � t	 � ���s u ��t�� the two di�er where indicated� Non�integral exponents occur for n � 
�

Fig� ���� The imbalance lattice is not simply conjugate to a sublattice of the majorization lattice
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�
� The Imbalance Lattice� A Discrete Cousin of the Majorization
Lattice� Since every pair of sequences in Figures ��� and ��� has a unique glb and lub� the
imbalance ordering is not only a partial order� but also a lattice� In this section we prove this
by showing that every pair of sequences s� t has a glb s � t and lub s � t� We also relate the
imbalance lattice directly to the majorization lattice� as illustrated in Figures ��������

Theorem ����� On tree path�length sequences� the imbalance ordering is isomorphic to
the majorization ordering� Speci�cally� whenever s and t are tree path�length sequences� then

s � t i� ��s � ��t�

Proof� We show 
rst that balancing exchanges cause a reduction in the majorization
ordering� Let s be the result of a balancing exchange on t �so s � t�� Then�

t 
 � � � � p u � � v �q � �	 �q � �	 � � 	

s 
 � � � � �p � �	 �p � �	 u � � v q � � 	

��t 
 � � � � ��p ��u � � ��v ���q��	 ���q��	
� � 	

��s 
 � � � � ���p��	 ���p��	 ��u � � ��v ��q � � 	R
��t 
 � � � S S���p S���p���u � � T T����q��	 T���q � � 	R
��s 
 � � � S S����p��	 S���p � � T���v T T���q � � 	

� � � � � ���p��	 � ��u � � � ��v � ���q��	 � � � 	

Thus
R
��s and

R
��t di�er only in the values appearing between p and q� and each element

in
R
��t �

R
��s is nonnegative� so ��s � ��t�

The proof of the converse� that ��s � ��t implies s� t for tree path	length sequences s�
t� can proceed by assuming a counterexample for which the di�erence in the levels of balance

m � �level of balance of s� � �level of balance of t��

is minimal� Since ��s � ��t� let a� b� c� d be the rightmost aligned pairwise	di�ering values
among the two sorted sequences such that s � h� � � a � � � b � � �i and t � h� � � c � � � d � � �i�
where c � a� b � d because of the majorization inequality� a � b and c � d because
the sequences are ascending� c �� d since c � a � b � d� and 
nally ��a � � � � � ��b �
��c � � � �� ��d� which is always possible by the Kraft equality� Because b � d necessarily
t � h� � � c � � � d d � � �i� since otherwise we reach a contradiction �multiplying both sides of
the equality by �d makes the left side even but the right side odd�� Thus� if we de
ne the result
t� � h� � � �c� �� �c� �� � � � �d� �� � � �i of a balancing exchange on t � h� � � c � � � d d � � �i�

then the level di�erence between s and t� is at most �m� ��� and ��t
�

� ��t� Furthermore

we claim ��s � ��t
�

� using the following schematic�

t 
 � � � � c u � d d � � 	

t
� 
 � � � � �c � �	 �c � �	 � � �d � �	 � � 	
s 
 � � � � a w � � b � � 	

��t 
 � � � � ��c ��u � ��d ��d � � 	

��t
�


 � � � � ���c��	 ���c��	
� � ���d��	

� � 	

��s 
 � � � � ��a ��w � � ��b � � 	R
��t �

R
��s 
 � � � � ����c � ��a	 �S� � �Sk � � � 	R

��t �

R
��t

�


 � � � � ����c��	 ���u � ���d � � � 	R
��t

�
�

R
��s 
 � � � � �����c��	

� ��a	 ��S� � ��u	 � ��Sk � ��d	 � � � 	

Because ��s � ��t� the running totals S�� � � � � Sk are nonnegative� Also� ��
��c������a� � �

since c � a� Furthermore c � �a��� � w� implying S���
�u � ���c���a���w � ���a����

��w � �� Finally Sk��
�d���b � �� so b � �d��� implies Sk��

�d � ���b���d����d �

��b � ���d��� � �� Thus
R
��s�vec

R
��t

�

�i�e�� ��s � ��t
�

�� contradicting the assumed
minimality of m� and existence of a counterexample�
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Theorem ����� The imbalance ordering on binary trees determines a bona��de lattice
in which� for all s and t� the glb s� t and lub s� t are de�ned with the following recursive
algorithms� where the expansion used is chosen from among the lower and upper expansions�

s � t �

�	
	�
s if s � t
t if t � s
the greatest expansion of s� � t�

that is also a lower bound for s and t otherwise�

s � t �

�	
	�
t if s � t
s if t � s
the least expansion of s� � t�

that is also an upper bound for s and t otherwise�

Proof� We must show that� whenever s and t are tree path	length sequences of length
n� there are unique path	length sequences s � t and s � t such that�

� s � t � s� t� also if � is any path	length sequence� then � � s� t i� � � s � t�

� s� t � s � t� also if � is any path	length sequence� then s� t � � i� s � t � ��

This can be done by induction on n� We consider only the glb here� the proof for the lub
being similar� The theorem holds trivially for n � �� since then the trees are totally ordered�
Assume it holds for sequences of size n�� or less�

First� s and t must have a common lower bound�
The glb s� � t� exists by induction� and �Theorems ��� and ����� lower expansion gives a
lower bound

�s� � t��� � �s��� � s� �s� � t��� � �t��� � t�

Second� if s and t have two greatest lower bounds � and ��� then they must be equal�
From � � s� t and �� � s� t we infer �� � s� � t� and ��� � s� � t� by Theorem �����
Since furthermore � and �� are greatest lower bounds� s� � t� � �� and s� � t� � ����
Thus �� � ���� By Theorem ���� the only way � �� �� can arise is that

� � ������ �
� � ����� or � � ������ �

� � �����

so � � �� or �� � �� contradicting their both being greatest lower bounds� Thus � � ���
Third� the algorithm produces a glb that is as good as any other lower bound�

Assuming this for �s� � t�� by induction� there can be no lower bound � �� �s � t� such that
�s� � t��� � �� since otherwise �s� � t�� � �� � s�� t� contradicting our assumption�

The table of nontrivial examples in Figure ��� gives an appreciation for glbs and lubs�
The 
rst example �which is illustrated in the 
gure� is expanded in Table ���� Note the 
nal
pairs of entries in s and t are the same as the 
nal pairs of entries in s � t and s � t� and
the su�x lengths of s and t are never shorter than those of s � t and s � t�

Theorem ���	� If s and t are path�length sequences of length n� then�

s � t �

�
�s� � t��� if s � �s��� and t � �t���

�s� � t��� if s � �s��� and t � �t���

s � t �

�
�s� � t��� if s � �s��� and t � �t���

�s� � t��� if s � �s��� and t � �t���

Otherwise� if either s � �s��� and t � �t���� or s � �s
��� and t � �t���� then either

s� t � �s� � t��� and s� t � �s� � t���� or s� t � �s� � t��� and s� t � �s� � t����

Furthermore� if the �nal pairs of entries of s and t are hp pi and hq qi� where p � q� then
the �nal pairs of entries of s� t and s� t are respectively hp pi and hq qi�

Also� the su�x lengths of s and t are at least as long as those of �s� t� and �s� t��



HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE ��

n s t s � t s � t

� h 	 � � � � � � � � i h � � � � 
 
 
 � � i h � � � � � � � � � i h 	 � � � 
 
 
 � � i
� lower expansion � upper expansion � lower expansion � upper expansion

� h 	 � � � � � � � i h � � � � 
 
 
 
 i h � � � � � � � � i h 	 � � � 
 
 
 
 i
� lower expansion � lower expansion � lower expansion � lower expansion


 h 	 � � � � � � i h � � � � � 
 
 i h � � � � � � � i h 	 � � � � 
 
 i
� lower expansion � upper expansion � lower expansion � upper expansion

� h 	 � � � � � i h � � � � � � i h � � � � � � i h 	 � � � � � i

Table ���

Elaboration of the �rst example of representative bounds in Figure 
�
� showing how s� t and
s� t can be derived with their recursive algorithms�

Proof� These properties follow by induction on n� For the basis� they all hold trivially
when n � �� since then the imbalance lattice is a total order and f s� t g � f s� t� s� t g�
and the 
nal two entries of any path	length sequence are a pair by Theorem ���� For the
induction step� we can write

s � h � � � �p�i�

�hz �� �
p � � � p i t � h � � � �q�j�

�kz �� �
q � � � q i

s� � h � � � �p�i� �p���

�h��z �� �
p � � � p i t� � h � � � �q�j� �q���

�k��z �� �
q � � � q i

where i� j�h� k � �� and we assume with no loss of generality that p � q� There are four
cases to consider� depending on the the su�x lengths �h of s and �k of t� In the 
rst�
h � � and k � �� i�e�� s � �s��� and t � �t���� Then i � � and j � � by Theo	
rem ���� By induction �s� � t�� and �s� � t�� have respective 
nal pairs h�p��� �p���i
and h�q��� �q���i� and have su�x lengths not exceeding those of s� and t�� Now� by The	
orem ���� �s� � t���� �s��� and �s� � t���� �t���� Because �s��� � s and �t��� � t�
the recursive algorithm in Theorem ���� will 
nd �s� � t��� � s� t� Thus the 
nal pair
of s� t will be hp pi� and it will have su�x length �� Similarly s� t � �s� � t���

because s� t � f �s� � t���� �s
� � t��� g� and choosing �s� � t��� gives a contradic	

tion� if s � �s��� � �s� � t��� and t � �t���� �s� � t��� then �because of Theo	
rem ����� s� � ��s������ ��s� � t����

� �� ��s� � t����� � s� � t� and correspond	
ingly t� � ��t������ ��s� � t����

� �� ��s� � t����� � s� � t� so the lub of s� and t�

is not s� � t�� a contradiction� Again the 
nal pair of s� t will be hq qi� with su�x length
��
The other three cases� where h � � and�or k � �� are similar�

�� Submodularity of Weighted Path	Length over the Lattices� Hu�man
codes for a positive descending weight sequence w � hw�w� � � � wn i are binary tree path	
length sequences � � h �� �� � � � �n i that minimize the weighted path	length

gw��� �

nX
i��

wi �i�

In this section we show that gw is submodular over the lattice of trees� which helps explain
why e�cient algorithms for 
nding optimal trees are possible at all�

���� Submodularity� Most work on submodular functions assumes the lattice is the
lattice of subsets of a given set� the case originally emphasized by Edmonds ���� However�
the de
nition applies to any lattice�

Definition ���� A real�valued function f � L � � de�ned on a lattice hL�v�u�ti is
submodular if

f�x u y� � f�x t y� � f�x� � f�y�
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for all x� y � L� Equivalently� f is submodular if a 
di�erential� inequality holds�

 �f�x� y�
def
� f�x� � f�y� � f�x u y� � f�x t y� � ��

Section ��� discusses the relationship between submodularity and convexity�

���� Submodularity of weighted path	length on the Majorization lat	
tice� In this section we show that weighted path	length on the imbalance lattice of trees �or
a logarithmic variant on the majorization lattice of densities� is a submodular function�

De
ne the function Gw on the majorization lattice of densities by

Gw�x� � gw��log��x�� � �
X
i

wi log��xi��

Note that Gw is convex on ��
n� as its Hessian r�Gw � � �

�Gw�x�
�xi�xj

� � �
ln��� diag�

wi
x�
i

� is

positive semide
nite there ���� p������ �recall we are assuming all weights are positive��

Gw is actually also submodular on the majorization lattice� We prove this directly now�
and show later how submodularity can be established using only vector calculus�

Theorem ���� Assuming w is a descending positive sequence of length n� Gw is sub�
modular on the majorization lattice� That is� for all nonnegative sequences x� y of length
n�

Gw�x u y� � Gw�x t y� � Gw�x� � Gw�y��

Proof� By induction on n� For n � �� the inequality is satis
ed with equality� Let an
and bn be the n	th entries of �x u y� and �x t y�� respectively� The theorem follows by
induction if we can show

wn � ��log��an�� � wn � ��log��bn�� � wn � ��log��xn�� � wn � ��log��yn���

Recall that x u y � � ��
R
x�minvec �

R
y�� and x t y � � ��

R
x�maxvec �

R
y���

There are four cases� depending on X �
R
x and Y �

R
y� and speci
cally on the 
nal values

Xn�� �

n��X
i��

xi� Xn �

nX
i��

xi� Yn�� �

n��X
i��

yi� Yn �

nX
i��

yi

as follows�

�� if Xn�� � Yn�� and Xn � Yn� then an � xn� bn � yn�

�� if Xn�� � Yn�� and Xn � Yn� then an � yn� bn � xn�

�� if Xn�� � Yn�� and Xn � Yn� then xn � yn� an � Yn � Xn�� � yn � �� bn �
Xn�Yn�� � xn��� where � � �Yn���Xn��� � � and � � xn�yn � �xn max yn��
�xn min yn��

�� if Xn�� � Yn�� and Xn � Yn� then yn � xn� an � Xn � Yn�� � xn � �� bn �
Yn�Xn�� � yn��� where � � �Xn���Yn��� � � and � � yn�xn � �xn max yn��
�xn min yn��

Each case satis
es wn ���log��an�� � wn ���log��bn�� � wn ���log��xn�� � wn ���log��yn��
as needed� the 
rst two cases satisfy it with equality� and in the last two we have

an � �xn min yn� � �� bn � �xn max yn� � �

but then assuming xn� yn � ��

log��an� � log��bn� � log��an bn� � log��xn yn � 	� � log��xn� � log��yn�

where 	 � � ��xnmax yn�� �xnmin yn�� �� � � and multiplying by �wn gives the theorem�
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��
� Submodularity of weighted path	length on the Imbalance lattice�

Theorem ���� Assuming w is a descending positive sequence of length n� gw is sub�
modular on the imbalance lattice� That is� for all path�length sequences s� t of length n�

gw�s � t� � gw�s � t� � gw�s� � gw�t��

Proof� Also by induction on n� The theorem holds with equality for n � �� since then
the lattice of path	length sequences is totally ordered� We sketch the induction step from
n�� to n� showing  �gw�s� t� � �gw�s� � gw�t�� � �gw�s� t� � gw�s� t�� � � follows
from  �gw�s

�� t�� � � � where gw� when applied to sequences of length �n���� uses only
the 
rst �n��� entries of w�

Recall �k is the su�x length of the path	length sequence � � h � � � �q�j�

�kz �� �
q � � � q i�

and j is its su�x increment� The su�x increment is � when ����� � �� so�

gw��� �

�
gw��

�� � �wn�� � q �wn� if � � ����� �i�e�� k � �� � �
gw��

�� � �wn��k�� � q �wn� if � � ����� �i�e�� k � ���

Thus gw�s� � gw�s
�� and gw�t� � gw�t

�� in all cases�
However� it can happen that gw�s� t� � gw�s

� � t�� or gw�s� t� � gw�s
� � t�� because

it is possible either that s� � t� �� �s� t�� or that s� � t� �� �s� t��� Speci
cally� it is

possible s� t � h � � � �q�j� �q�j�

�kz �� �
q � � � q i and s� � t� � h � � � �q�j���

�kz �� �
q � � � q i�

i�e�� s� t � �s� � t��� and s� t has su�x increment j � �� in which case

gw�s� t� � gw�s
� � t�� � �wn��k�� � j �wn��k � q �wn�

and the parenthesized expression can be negative�
From Theorem ����� the 
nal pairs of entries of s and t are always the same as the 
nal

pairs of entries of s � t and s � t� and the su�x lengths for each of s and t cannot be less
than those for each of �s� t� and �s� t�� We now consider the same four cases addressed in
the proof of Theorem �����

In the case where both s is the upper expansion of s�� and t is the upper expansion of
t�� then by Theorem ���� s� t � �s� � t��� and s� t � �s� � t���� so

 �gw�s� t� � �gw�s� � gw�t�� � �gw�s� t� � gw�s� t��
� �gw�s

�� � gw�t
��� � �gw�s

� � t�� � gw�s
� � t��� �  �gw�s

�� t��

with the preceding analysis for gw��� with k � �� In this situation only the 
nal pairs of
entries of s� t and of s� t� s� t can cause the two di�erences to be unequal� but we now
know them to give the same two pairs� So in this case the theorem follows by induction�

It remains to treat the cases where s is the lower expansion of s� or t is the lower
expansion of t�� In these cases it can happen that gw�s� t� � gw�s

� � t�� or gw�s� t� �
gw�s

� � t�� as previously noted�
In the case where either s is the lower expansion of s� or t is the lower expansion of t��

but not both� then by Theorem ����� either s� t � �s� � t��� and s� t � �s� � t���� or
s� t � �s� � t��� and s� t � �s� � t���� The lower expansions among these two cannot
yield as large a gw increase as the lower expansions giving s and t� because they expand
higher	indexed positions �their su�x lengths are never longer�� and the su�x increment of
s� � t� or s� � t� can be greater than �� Therefore  �gw�s� t� �  �gw�s

�� t���
In the 
nal case where both s is the lower expansion of s� and t is the lower expansion of

t�� then s� t � �s� � t��� and s� t � �s� � t��� �Theorem ������ and because the lower
expansions giving s� t and s� t cannot yield as large a gw increase as the lower expansions
giving s and t� again  �gw�s� t� �  �gw�s

�� t���
To see an example� the submodularity of gw can be veri
ed on the lattice for n � � and

the weight sequence shown in Figure ����
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	 �� �	 	� � 	 i� the code cost gw��� for
each path�length sequence �� The Hu�man code 	���


���
with cost �
��� is the global minimum� The code �������

�
with cost �
��� is a local minimum� �Because the graph shows
only the transitive reduction of the lattice� it omits some edges
corresponding to exchanges� but the minimum is localized��

Fig� ���� Costs of all possible codes for the weights w � h 	�� �
 
� 
	 �� �	 	� � 	 i�
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���� Submodularity as a discrete analogue of Convexity� Although it is
very simply de
ned� submodularity is di�cult to appreciate� Using only standard vector
calculus� we now clarify some basic relationships between submodularity and notions of
convexity� We have not seen this done elsewhere�

There are several reasons why submodularity plays an important role here� at the cross	
roads between information and coding theory� First� submodularity is directly related to
the Fortuin	Kasteleyn	Ginibre �FKG� �correlation� inequalities� which generalize a basic
inequality of Tchebyche� on mean values of functions �hence expected values of random
variables�� A 
ne survey of results with FKG	like inequalities is �����

Second� submodularity is closely related to convexity� Book	length surveys by Fujishige
��� and Narayanan ���� review connections between submodularity and optimization �and
even electrical network theory�� The relationship between convexity and submodularity was
neatly summarized by Lov�asz with the following memorable de
nition and result�

Definition ���� Given a �nite set S of cardinality n� we can identify a f�� �g�vector
t � ��

n with any subset T � S specifying the incidence in T of the elements in S �indexed
in some �xed order��

Any nonnegative vector x � ��
n can be decomposed uniquely into a sum of positive real

values multiplied by �decreasing� f�� �g�vectors� Speci�cally� x � ��
n determines an integer

k �� � k � n� such that x has a unique greedy decomposition

x �

kX
i��


i si

where 
i � �� S� � � � � � Sk are distinct subsets of S� and si is the f�� �g�vector identi�ed

with Si� For any function f � S � ��� its greedy extension bf � ��
n � �� to nonnegative

vectors is then de�ned by

bf�x� � bf� kX
i��


i si � �

kX
i��


i f�Si��

In fact� � � � �sort� �x ��� using our notation�
Theorem ���� �Lov�asz ���� p������

f � S � �� is submodular i� its greedy extension bf � ��
n � �� is convex�

Proof� The essence is that for positive constants 
 � � and sets T �� U �bf�
 t� �u� � 
 f�T � U� � ��� 
� f�U� � 
 f�T � � � f�U� � bf�
 t� � bf��u�
where t and u are the f�� �g	vectors corresponding to T and U � The central inequality is

due to submodularity� Restricting � � 
 � � and � � �� � 
� shows bf is convex�
Lov�asz goes on ���� p����!���� to point out that

min f f�X� j X � S g � min f bf�x� j x � ��� ��n g

and that as a consequence there is a polynomial	time algorithm to minimize f �
The vector lattice h��

n��vec�minvec�maxveci� is exactly the extension of the set lattice
to nonnegative vectors� Vector lattices� also called Riesz spaces� can be more "natural� than
set lattices in some ways� For example� submodularity has a natural characterization�

Theorem ���� �Lorentz ���� p�
����
When twice di�erentiable� f is submodular on the vector lattice h��

n��vec�minvec�maxveci
i�

��f

�xi�xj
� � �i �� j� � � i� j � n��
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Proof� Essentially de
nition� Using the shorthand fh u v i to denote the expression
f�h x� � � � xi�� u xi�� � � � xj�� v xj�� � � � xn i� gives the result

��f

�xi�xj
� lim

�i��j�	

fh �xi��i� �xj��j� i � fh �xi��i� xj i � fhxi �xj��j� i� fhxi xj i

�i �j
� �

where the inequality comes from the fact that f is submodular� since with respect to �vec�
the points x � h �xi��i� xj i and y � h xi �xj��j� i have the upper and lower bounds
x maxvec y � h �xi��i� �xj��j� i and x minvec y � h xi xj i� For the converse� if f is
not submodular on a rectangle de
ned by x � h �xi�a� xj i and y � h xi �xj�b� i Lorentz
pointed out we can 
nd a subrectangle on which ��f��xi�xj � ��

Note� the derivatives ��f

�x�
i

can still be positive� In fact� the Hessian r�f � � ��f

�xi�xj
� still

can even be positive semide
nite �hence f can be convex�� or be an M�matrix ��� ch����

Theorem ���� When twice di�erentiable� F is submodular on the majorization lattice
h��

n���u�ti i� for all i �� j between � and n� ��

��F �z�

�zi�zj
�

��F �z�

�zi���zj
�

��F �z�

�zi�zj��
�

��F �z�

�zi���zj��
� ��

Proof� Theorem ���� shows that the M�obius transformation � gives a bijection between
the majorization lattice h��

n���u�ti and the vector lattice h��
n��vec�minvec�maxveci�

Thus f�x� � F �� x� is submodular on the vector lattice when F is submodular on the
majorization lattice� Expanding the inequality

��

�xi�xj
�F �� x�� �

��

�xi�xj
�f�x�� � �

�which follows from the previous theorem� with the chain rule gives the stated result� because
z � � x � hx� �x��x�� �x��x�� � � � �xn�xn��� i�

Revisiting Theorem ���� Gw�z� � �
Pn

i�� wi log��zi� satis
es

��Gw�z�

�zi�zj
�
��Gw�z�

�zi���zj
�
��Gw�z�

�zi�zj��
�

��Gw�z�

�zi���zj��
�

�

ln���

�	
	�
� ji� jj � �
�wi�z

�
i i � j � �

�wi���z
�
i�� j � i� �

wi���z
�
i�� � wi�z

�
i i � j

and� for example� Gw�� x� � �w� log��x�� �
Pn��

i�� wi log��xi�� � xi� satis
es

��

�xi�xj
�Gw�� x�� �

�

ln���

�wi��

�xi�� � xi�
� � � when j � i � ��

This gives two alternative proofs of Theorem ���� showing how such results can be derived
more easily�

Definition ���� A function F � ��
n � � is Schur convex if it preserves the ma�

jorization ordering� i�e�� x�y implies F �x� � F �y��
Theorem ��	� F is Schur convex on the majorization lattice i� f�x� � F �� x� is

monotone on the vector lattice�
Proof� Again a direct result of the bijection between the two lattices� If f is di�erentiable�

f is monotone on the vector lattice i� rf�x� � h�f��x� � � ��f��xn i�vec �� which implies

�F

�xi
�� x� �

�F

�xi��
�� x� �

�

�xi
�F �� x�� �

�

�xi
f�x� � � �� � i � n� ���

This rederives the result that �F��zi � �F��zi�� when F is Schur convex �����
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Since monotonicity and convexity are related� Theorems ���!��� connect convexity� sub	
modularity� Schur convexity� and majorization� There are actually many connections� See
the survey ���� ch���� in which submodular functions are called L�subadditive functions�
Just as Lov�asz showed for submodular functions ����� Schur convex functions ���� ��� are
closed under various operations� min� max� convolution� composition with convex functions�
etc� ���� ch���� Theorem ��� is also reminiscent of symmetric gauge functions� which are
Schur convex� see ���� p�����

�� Hu�man Coding as Submodular Dynamic Programming� The results
of the previous sections can now be applied to Hu�man coding�

���� Non	monotonicity of Weighted Path	Length over the Lattices� It
is important to realize that weighted path	length is not monotone on the imbalance lattice�
so greedy search may not always 
nd its way to an optimal solution� This is illustrated by
the example in Figure ���� For this problem the sequence h � � � � � � � � � i with cost ����
is a local minimum� each of the � sequences reachable from it by imbalancing exchanges�
and each of the � sequences reachable from it by balancing exchanges� have greater weighted
path length� The diagram shows only the transitive reduction of the imbalance lattice�
omitting many balancing exchanges �because they would clutter the picture�� but it conveys
the general situation for larger Hu�man coding problems� It shows that� even though it may
do very well in practice� simple hill	climbing along ternary exchanges is not guaranteed to

nd the optimum sequence�

Although weighted path length gw is not monotone on the imbalance lattice of trees� a
monotone summary of weighted path length gwmon has the properties we need�

In ���� p������ Lov�asz stated the following de
nition and theorem for set lattices �easily
proved for general lattices� about the "monotonization� of a function f �

Definition ���� If f � L � �� is a real�valued function on a lattice L with ordering
relation v� de�ne

fmon�x� � min f f�x�� j x� v x g�

Theorem ���� If f is submodular� then fmon is also submodular�

Proof� From the de
nition of fmon� for all x� y in L� there exists a x� v x such that
fmon�x� � f�x�� and a y� v y such that fmon�y� � f�y��� But then �x� u y�� v �xu y� and
�x� t y�� v �x t y�� so

fmon�x u y� � fmon�x� u y�� � f�x� u y���
fmon�x t y� � fmon�x� t y�� � f�x� t y���

fmon�x u y� � fmon�x t y� � f�x� u y�� � f�x� t y��
� f�x�� � f�y�� �as f is submodular�
� fmon�x� � fmon�y��

Thus gw
mon is both submodular and monotone on the tree imbalance lattice�

���� Dynamic Programming reconstruction of the Hu�man Algorithm�
Based the analysis above� we can derive Hu�man codes using a simple recursion�

Definition ���� The Hu�man contraction w� of a descending weight sequence
w � hw� � � � wn i is

w� � sort� � h w� � � � wn�� �wn���wn� i ��

Parenthetically� note that �� � � log�� ��
���� � for path�length sequences ��



�� D�S� PARKER AND P� RAM

If n � � is the length of w� then the �most balanced� Hu�man code for w is de�ned by

Hu�man�w� �



h � i if n � �

better expansion�Hu�man�w� � �w� if n � �

better expansion� � �w� �



�� if gw� �� � � gw� �

� �

�� otherwise�

For example� the example in Figure ��� can be traced through Figure ��� and Table ����

Hu�man� h ��� �� �� �� �� �� �� � � i � � h � � � � � � � � � i
Hu�man� h ��� �� �� �� �� �� �� �� i � � h � � � � � � � � i
Hu�man� h ��� �� �� �� �� �� �� i � � h � � � � � � � i
Hu�man� h ��� �� �� �� �� �� i � � h � � � � � � i
Hu�man� h ��� �� �� �� �� i � � h � � � � � i
Hu�man� h ��� ��� �� �� i � � h � � � � i
Hu�man� h ��� ��� ��� i � � h � � � i
Hu�man� h ��� ��� i � � h � � i
Hu�man� h ��� i � � h � i�

This dynamic programming de
nition is similar to the standard Hu�man algorithm� but
di�ers in a few ways� First� it considers only upper and lower expansions of Hu�man�w� ��
we prove momentarily that this is su�cient� Second� it produces a unique Hu�man code�
which is the most balanced possible because it uses lower expansions whenever possible� �This
avoids the issue of multiplicity of solutions that arises in implementation of the standard
Hu�man algorithm� For example� if w � h � � � � i then h � � � � i is a Hu�man code� but
the more balanced sequence h � � � � i is also and will be produced by the algorithm above��

Actually� the de
nition of Hu�man�w� can be �simpli
ed�� Note that when

� � Hu�man�w� � � h � � � �q�j�

�kz �� �
q � � � q i

with su�x length �k and su�x increment j� the condition on better expansion���w� is�

gw���� � gw��
��

� gw��� � wn��k�� � �j���wn��k � q wn � gw��� � wn�� � �q � ��wn

� wn��k�� � �j���wn��k � wn�� � wn�

Going further� the proof of Theorem ��� below implies that this condition actually can be
simpli
ed to take j � �� so that better expansion���w� � �� if wn��k�� � wn�� �wn�

Theorem ���� Hu�man�w� is the most balanced optimal code for w�
Proof� Let s � Hu�man�w�� so s is the cheaper of Hu�man�w��� and Hu�man�w����

or is the former �which is more balanced� if they have equal cost�
Only these two expansions need be considered� Like the usual Hu�man algorithm� this

algorithm assigns wn�� and wn maximal path length� Therefore �wn�� �wn� must appear
in the �su�x� of w�� i�e�� among the �k � � 
nal entries� where �k is the su�x length of
� � Hu�man�w��� and so it has path length either �q � �� or q� corresponding to the two
possible expansions� Thus only Hu�man codes are derived with the algorithm above�

Submodularity of gw
mon now proves that there is a unique most balanced Hu�man code

�and thus greedy search will 
nd this code�� Suppose that s and t are maximally balanced
Hu�man codes that are not comparable in the balance ordering� Then gw

mon�t� � gw�t� �
gw�s�� Because t is optimal gw

mon�s� t� � gw
mon�t�� Submodularity of gw

mon then implies
that gw

mon�s� t� � gw
mon�s�� By the de
nition of gw

mon� gw
mon�s� t� � gw

mon�s�� But
then s� t is optimal� hence a Hu�man code� and it is more balanced than both s and t� This
gives a contradiction�
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Theorem ���� Hu�man�w�� � Hu�man�w���
Proof� We prove this by induction on the length n of w� The base case n � � is trivial�
For the induction step� let s � Hu�man�w�� so by the previous theorem s is the most

balanced optimal code for w� Let � � Hu�man�w��� As w� has length �n � ��� � is the
most balanced optimal code forw� by the induction hypothesis� By de
nition s is the better
�cheaper or more balanced if equally cheap� of �� or ��� We consider these two possibilities�

First� if s � ��� then � � s� as required� because � � ����� by Theorem ����
Second� if s � ��� then wn��k�� � �j���wn��k � wn�� � wn� where �k is the su�x

length of �� j is its su�x increment� and by Theorem ���� j � log���k� or equivalently
�j�� � k� If j � � we 
nd again � � s� as required�

We now claim that j � � cannot arise in this second possibility where s � ��� Let us 
rst
understand intuitively why this is so� When the su�x length j � �� � � h � � � �q�j� q � � � q i
describes a tree that is perfectly balanced over its su�x� but the rest is at least j levels shorter�
The Hu�man algorithm will construct such a tree only when the 
nal �k weights of w� are
all of similar size� but wn��k�� is much larger� Speci
cally� wn�� � wn � wn��k��� and
wn��k�� is constrained to be larger than the sum of the �j�� subsequent weights� or the
Hu�man algorithm would construct a di�erent tree� But wn��k�� is also constrained to be
small by the inequality in the de
nition of the Hu�man algorithm� if it becomes too large�
we get s � �� instead of s � ��� These two constraints turn out to not be simultaneously
satis
able when j � ��

Supposing that j � � and s � ��� then� since wn���wn � wn��k�� we have two cases�

�� wn�� � wn�� � wn�

Let W � wn��� Then wn��k�� � wn��k � ��
j�� � ��W and �W � wn��k � W �

since j � � implies �k � � by Theorem ���� �n��k�� � �q�j�� and � � Hu�man�w��
is constructed by the Hu�man algorithm� These give the 
rst bound

wn��k��

wn��k
� � � ��j�� � ���� � �j�� � ����

However� from wn��k�� � �j���wn��k � wn�� � wn it follows that

wn��k�� � wn��k � ��j�� � ��W
� wn��k � ��j�� � �� �wn�� � wn�
� wn��k � ��j�� � �� �wn��k�� � �j���wn��k��

When j � �� this simpli
es to wn��k�� � wn��k��� a contradiction� When j � ��
it gives the second bound

wn��k��

wn��k
�

�j��� � ����j�� � ��

� � ����j�� � ��
�

However this contradicts the 
rst bound for all j � ��

�� wn��k�� � wn�� � wn � wn���
Like the previous case� but this time whenW � wn�� we can derive only the weaker
condition W � �wn�� � wn���� because wn�� � wn�� � wn� Still� the same 
rst
bound� essentially the second bound �with ��j�� � �� divided by ��� and the same
contradictions� are derivable�

Thus all cases reach a contradiction� implying as required that� in the second possibility�
j � � and � � s��

��
� The importance of submodularity in Dynamic Programming� To	
gether� Theorems ��� and ��� show that Hu�man coding �
nding the most balanced code
that minimizes gw

mon� is a dynamic programming problem that can be solved in various
ways� because the problem enjoys elegant recursive properties�

Hu�man coding gives another example of a dynamic programming problem that can be
sped up considerably because the objective function is submodular over the solution space�
Lawler ���� remarked�
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If a discrete optimization problem can be solved e�ciently� it is quite likely

that submodularity is responsible� In recent years there has been a growing

appreciation of the fact that submodularity plays a pivotal role in discrete

optimization� not unlike that of convexity in continuous optimization�

Submodularity has a long history in dynamic programming� By ����� Monge had found
a form of submodularity to be important in simplifying the transportation problem �����
In ����� Edmonds ��� related submodularity to matroids and greedily	solvable optimization
problems� In ����� Yao ���� generalized upon Knuth�s famous O�n�� algorithm for optimum
binary search trees ���� by giving an O�n�� algorithm for the dynamic programming problem

c�i� i� � �
c�i� j� � w�i� j� � min i�k�j � c�i� k� �� � c�k� j� � �i � j�

w�i� j� � w�i�� j�� �i� � i � j � j��
w�i� j� � w�i�� j�� � w�i�� j� � w�i� j�� �i � i� � j � j���

Yao called the 
nal constraint the quadrangle inequality� noting that it implies the �in	
verse� triangle inequality� Writing I � �i� j� and J � �i�� j��� de
ning a lattice of intervals
of indices in the dynamic programming array� these two constraints require the function
W ��a� b�� � �w�a� b� to be monotone decreasing �W �I� � W �J� if I � J� and submodular
�W �I� �W �J� � W �I � J� �W �I � J��� Results from exploiting the quadrangle inequality
in dynamic programming appear in ��� �� ��� for problems ranging from DNA sequencing to
minimum cost matching�

Mirroring Theorem ���� the Monge condition wi�j � wi���j�� � wi���j � wi�j��

on an n � n weight matrix W is also equivalent to the requirement that� ignoring its 
rst
column and row� the matrix � W �

� is nonpositive� Burkard et al� have also compiled a
comprehensive survey of many incarnations of the Monge condition in ����

Recently Klein explored the connection between dynamic programming and submodu	
larity ����� Also Golin and Rote ���� developed dynamic programming algorithms for pre
x
codes when the codeword letters have di�ering costs� a useful case not handled by Hu�man�s
algorithm� and they recently extended this work to exploit the Monge property�


� Other Applications� The results here also can be used to gain further insight
about submodular dynamic programming� the Hu�man coding problem� and perhaps also
about the applications of lattice concepts in coding� Almost all of the theorems proved
here admit interesting extensions and�or special cases� For example� a direct corollary of
Theorem ��� �using w � h � � � � � i� is that the function mapping a path	length sequence to
its level of balance is submodular on the imbalance lattice� It would be interesting to extend
the work here for the t	ary codes discussed in �����

Majorization� we believe� can be exploited further in characterizing optimal codes� We
have established that the imbalance ordering on tree path	length sequences � is isomorphic

to the majorization ordering on exponentiated tree path	length sequences x � ���� Thus
any function that is Schur convex �i�e�� "majorization	preserving�� monotone with respect
to the majorization ordering� on exponentiated path	length sequences and hence monotone
on the �continuous� majorization lattice� will also be monotone on the �discrete� imbalance
lattice� Negative entropy is an important example of such a function� related functions are
discussed in �����

Furthermore� the methods developed above hold out hope for entirely new approaches
to Hu�man coding� We sketch two possibilities�


��� Continuous Approximation of Hu�man Codes� One possibility is that
we can attack the combinatorial problem of Hu�man coding with a continuous� real	valued
optimization problem� Recall Hu�man coding can be expressed as an optimization problem�

minimize
Pn

i�� wi �i

subject to
Pn

i�� �
��i � �� �i � �� integer �� � i � n��
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Dropping the integrality constraint gives an interesting continuous relaxation of Hu�man
coding that can be attacked numerically� For example� by treating the constraint as a
penalty function� the problem above can be solved numerically with something like the
system of equations ����j

�Pn

i�� wi �i � ���	 � � �
Pn

i�� �
��i ��

�
� � �� � j � n��

Using the example weight sequence w � h ��� �� �� �� �� �� �� � � i studied earlier� a
simple program found a unique real solution � � h ��� ��� ��� ��� ��� ��� ��� ��� ��� i for
these equations� with objective � ����� As expected� this solution is near the optimal
Hu�man code h � � � � � � � � � i� with cost �����

When the relaxation is faithful to the original� it will be possible to 
nd optimal solutions
quickly� The relaxed solution can be used to jump to the right neighborhood in the imbalance
lattice� from which balancing exchanges will walk to the optimal code� The penalty function
could clearly be varied� and perhaps could be changed to encourage near	integral solutions�

Interior point methods on the majorization lattice may also be possible� Among other
things� it may be possible to de
ne s � t in terms of �log�

�
��s u ��t

�
and de
ne s � t in

terms of �log�
�
��s t ��t

�
� they are often identical� and always satisfy

��s � t � ��s u ��t� ��s t ��t � ��s � t

�because ��s u ��t and ��s t ��t are the glb and lub with respect to majorization��
For perspective� if 
 � � � log����� � ��������� and � � �
 � ��� the following set

of examples represent the unusual cases with n � � where �log�
�
��s u ��t

�
�� �s � t� or

�log�
�
��s t ��t

�
�� �s � t��

s t �log�
�
��s u ��t

�
s � t

h � � � � � � � � � i h � � � � � � � � � i h � � � 
 � � � � � i h � � � � � � � � � i
h � � � � � � � � � i h � � � � � � � � � i h � � � 
 � � � � � i h � � � � � � � � � i
h � � � � � � � � � i h � � � � � � � � � i h � � � � � � � � � i h � � � � � � � � � i

s t �log�
�
��s t ��t

�
s � t

h � � � � � � � � � i h � � � � � � � � � i h � � � � � � � � � i h � � � � � � � � � i
h � � � � � � � � � i h � � � � � � � � � i h � � � � � � � � � i h � � � � � � � � � i
h � � � � � � � � � i h � � � � � � � � � i h � � � � � � � � � i h � � � � � � � � � i
h � � � � � � � � � i h � � � � � � � � � i h � � � � � � � � � i h � � � � � � � � � i
h � � � � � � � � � i h � � � � � � � � � i h � � � � � � � � � i h � � � � � � � � � i

These examples suggest there may be algorithms that "round up� �log�
�
��s u ��t

�
to

give s � t� and "round down� �log�
�
��s t ��t

�
to give s � t�


��� Practical Applications in Adaptive Coding� In many practical situations
it is di�cult or impossible to know a priori the weights w used in Hu�man coding� A natural
idea� which occurred independently to Faller ��� and Gallager ����� is to allow the weights to be
determined dynamically� and have the Hu�man code "evolve� over time� Dynamic Hu�man
coding is the strategy of repeatedly constructing the Hu�man code for the input so far� and
using it in transmitting the next input symbol� Knuth presented an e�cient algorithm
for dynamic Hu�man coding in ����� and his performance results for the algorithm show
it consistently producing compression very near �though not surpassing� the compression
attained with static Hu�man code for the entire input�

Vitter ���� ��� then developed a dynamic Hu�man algorithm that improves on Knuth�s
in the following way� rather than simply revise the Hu�man tree after each input symbol�
Vitter also 
nds a new Hu�man tree of minimal external path length

P
i
�i and height

maxi �i� With this modi
cation Vitter was actually able to surpass the performance of static
Hu�man coding on several benchmarks�

A small contribution we can make is to clarify the improvement of Vitter� Basically�
Vitter�s algorithm di�ers from Knuth�s in constructing the optimal path�length sequence that
is also as balanced as possible� Note that minimizing the external path length

P
i
�i is
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identical to maximizing the level of balance� Since there can be more than one optimal code�
and unnecessary imbalance tends to penalize the symbol currently being encoded� insisting
on maximally balanced codes improves performance�

Another contribution of the lattice perspective here is to encourage development of new
adaptive coding schemes� As suggested in Section ���� a move between adjacent points in
the lattice corresponds to minor alteration of codes� and by moving through the lattice we
incrementally modify the cost of a code� Hill	climbing then gives greedy coding algorithms�
and on	line hill	climbing gives adaptive coding algorithms� Although we have shown that the
codes produced by hill	climbing are not guaranteed to be optimal� lattice	oriented adaptive
coding algorithms may still have a role to play in some coding situations� since the Hu�man
notion of optimality is not really what is needed in the �currently popular and enormously
important� adaptive context�

For example� adaptive coding algorithms can start at any point in the lattice� as long as
both ends of the communication know which one� Rather than rely on the dynamic Hu�man
algorithm to derive reasonable operating points for the code� or rely on Knuth�s "windowed�
algorithm ����� one can immediately begin with a mutually	agreed	upon� "reasonable� initial
code �depending on the type of information being transmitted�� and then adapt this code
using some mutually	agreed	upon greedy algorithm for moving in the imbalance lattice�
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