THE CONSTRUCTION OF HUFFMAN CODES
IS A SUBMODULAR (‘CONVEX’) OPTIMIZATION PROBLEM
OVER A LATTICE OF BINARY TREES

D. STOTT PARKER* AND PRASAD RAMT'

Abstract. We show that the space of all binary Huffman codes for a finite alphabet defines a
lattice, ordered by the imbalance of the code trees. Representing code trees as path-length sequences,
we show that the imbalance ordering is closely related to a majorization ordering on real-valued
sequences that correspond to discrete probability density functions. Furthermore, this tree imbalance
is a partial ordering that is consistent with the total orderings given by either the external path length
(sum of tree path lengths), or the entropy determined by the tree structure. On the imbalancelattice,
we show the weighted path-length of a tree (the usual objective function for Huffman coding) is a
submodular function, as is the corresponding function on the majorization lattice. Submodular
functions are discrete analogues of convex functions. These results give perspective on Huffman
coding and suggest new approaches to coding as optimization over a lattice.

Key words. Huffman coding, adaptive coding, prefix codes, enumeration of trees, lattices,
combinatorial optimization, convexity, submodular functions, entropy, tree imbalance, Schur convex
functions, majorization, Moebius inversion, combinatorial inequalities, Fortuin-Kasteleyn-Ginibre
(FKG) inequality, quadrangle inequality, Monge matrices, dynamic programming, greedy algorithms.

AMS subject classifications. 94A15, 94A24, 94A29, 94A45, 90C25, 90C27, 90C39, 90C48,
52A41, 68Q20, 68R05, 05A05, 05A20, 05C05, 05C30, 06A07, 26B25, 26D15

1. Introduction. The Huffman algorithm has been used heavily to produce efficient
binary codes for almost half a century now. It has inspired a large literature with diverse
theoretical and practical contributions. A comprehensive, very recent survey is [1]. Although
the algorithm is quite elegant, it is tricky to prove correct and to reason about. While there
may be little hope of improving on the O(n log n) complexity of the Huffman algorithm
itself,’ there is still room for improvement in our understanding of the algorithm.

There is also plenty of room for improvement in our understanding of variants of Huff-
man coding. Although the Huffman algorithm is remarkably robust in general and has
widespread use, it is far from optimal in many real applications. Huffman coding is optimal
only when the symbols to be coded are random and occur with fixed probabilities. Time-
varying dependencies are not captured by the Huffman coding model, and optimal encoding
of finite messages is not captured either.

Our motivation came from analysis of dynamic Huffman coding, a specific extension
of Huffman coding in which the code used evolves over time. Recently dynamic coding
algorithms have been studied heavily. Our initial idea was to define “rebalancing” operations
on code trees and to use these dynamically (“on the fly”) in producing better codes, in
situations where the distribution of symbols to be coded varies over time and/or is not
accurately predictable in advance.

This paper reconstructs Huffman coding as an optimization over the space of binary
trees. A natural representation for this space is sequences of ascending path-lengths, since
this captures what is significant in producing optimal codes.

We show that the set of path-length sequences representing binary trees forms a lattice,
which we call the imbalance lattice. This lattice orders trees by their imbalance and gives
an organization for them that is useful in optimization. Our belief is that having a better

*UCLA Computer Science Department, University of California, l.os Angeles, CA 90095-1596
(stott@cs.ucla.edu).

tXerox Corporation, El Segundo, CA 90245 (prasad@cplO.es.xerox.com).

1The algorithm is closely related to sorting, in the sense that the sorted sequence of a se-
quence of integer values {(zq - &) is obtainable directly from the optimal code tree for the values
(2%1 ... 2%} (e.g., [26, p.335]).

2 D.S. PARKER AND P. RAM

mathematical (and not purely procedural) understanding of coding will ultimately pay off
in improved algorithms.

The imbalance lattice and its imbalance ordering on trees depend on majorization
in an essential way. Majorization is an important ordering on sequences that has many
applications in pure and applied mathematics [27]. We have related it to greedy algorithms
directly [33]. Earlier majorization was recognized as an important property of the internal
node weights produced by the Huffman algorithm [13, 32], and in this work we go further to
clarify its pervasive role.

By viewing the space of trees as a lattice, a variety of new theorems and algorithms
become possible. For example, the objective functions commonly used in evaluating codes are
submodular on this lattice. Submodular functions are closely related to convex functions
(as we explain later; see Theorem 4.5) and are often easy to optimize [6, 9, 23, 24, 25].
Huffman coding gives a significant example of the importance of submodularity in algorithms.

2. Ordered Sequences, Rooted Binary Trees, and Huffman Codes.

2.1. Ordered Sequences. By a sequence we mean an ordered collection of non-
negative real values
x = {(z1x2 - Ty).
Repetition of values in the sequence is permitted: the values z; need not be distinct. The
length of this sequence is n, and for simplicity we also refer to the set of such sequences
with the vector notation R4 ™.
We introduce several useful operators on sequences:

ascending sort sort] (x) = (x put in ascending order)
descending sort sort] (x) = { x put in descending order)
sequence exponential 27 = (27T ... 277

sequence logarithm —log,(x) = (—log,(z1) --- —log,(zn)).

A density sequence is a nonnegative real-valued sequence whose entries sum to 1.
A distribution sequence is an ascending nonnegative sequence whose final entry is 1.

For simplicity, throughout this paper many sequences are implicitly sorted:
£, s, t,u denote ascending sequences of positive integer values

whose sequence exponentials 2_£, 27% 27% are density sequences.
w denotes a descending sequence of positive real values.
v denotes an ascending distribution sequence.
X, ¥, Z denote descending density sequences.

Note since £ is ascending, 2=t s descending; and since x is descending, —log, (x) is ascending.
We also allow sequences to be operated upon as vectors. Thus, if X is a sequence

(vector) of length n and A is an n x n matrix, then Ax is a sequence (vector). Treating

sequences as vectors allows us to define several useful operators using matrix algebra.

2.2. Rooted Binary Trees and Path-Length Sequences. Rooted binary trees
here are binary trees with a root node, in which every node is either a leaf node, or an internal
node having one parent and two children. The order of the leaves is insignificant, so a given
tree is determined (up to permutation of the leaves) by the lengths of the paths from the
root node to each leaf node (the distance of the leaf from the root). Thus we can represent
equivalence classes of the rooted binary trees with n leaves by sequences of n nonnegative
integers, which give the path-length of each leaf. For example, the path-length sequence

(1334444)

represents a binary tree with n = 7 leaves, of which one has path-length 1, two have path-
length 3, and four have path-length 4; it is shown in Figure 2.1.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 3

Fic. 2.1. A binary tree having path-length sequence (1334444)

Path-length sequences obey what we call the Kraft equality, a special case of the Kraft
inequality of noiseless coding theory (see e.g., [10], p.45).
THEOREM 2.1. For alln > 1, ({1 --- £y) is the sequence of path-lengths in a rooted

binary tree iff
Yoot =
i=1

Thus £ is a path-length sequence iff 2_£ 18 a density sequence.

Proof. Easily proven by induction on n. For the basis, with n = 1 we must have £; = 0.
The induction step follows by noticing that the two principal subtrees of any binary tree must
£, and (¢ --- £) satisfying the equality and that their composi-
.. (Z; +1) (¢ +1) - (Z;' + 1)), which again satisfies the

have sequences (£] ---
tion has the sequence { (¢ + 1)

equality. O

n 1 2 3 4 5 6 7 8
Thn 1 1 1 2 3 5 9 16

(oY | (11)|(122)|(1233)|(12344)|(123455)|(1234566)

(2222)[(13333)|(124444)|(1235555)

(22233)|(133344) |(1244455)

(222344)|(1333455)

(223333)|(1334444)

(2223455)

(2224444)

(2233344)

(2333333)

TaBLE 2.1

All path-length sequences of trees with n leaves, for small values of n

Henceforth we assume that tree path-length sequences are in ascending sorted
order. Table 2.1 shows a lexicographic tabulation of all possible sequences for 1 < n < 7,
along with T},, the total number of inequivalent sequences of length n. 7T, is enumerated
as sequence MO0710 (A002572) in [39]. An upper bound on 7T, can be obtained from the
Catalan number C),, which computes the number of unordered binary trees: for n > 3,
T, < %Cn < 2"72. Gilbert [12], using the notation g(N) for T, points out that T), is well
approximated for n < 30 by

T, o~ 0.148 (1.791)".

2.3. Huffman Codes are Optimal Path-Length Sequences. A Huffman

code for a given positive weight sequence

w1 Z w2 Z o 2 Wn

consists of a binary tree, i.e., a path-length sequence £ = ({1 {2 --- £,), which we evidently

want to be in ascending order,

b < b < - <Ay,

4 D.S. PARKER AND P. RAM

so that the weighted path-length

gw(f) = Z w; £y
i=1

is minimal. Beyond the Kraft equality of Theorem 2.1, it is difficult to characterize what it
is that makes £ optimal. For example, Table 2.2 shows all feasible codes and costs for the
weight sequence w = { 189 95 73 71 28 23 21), with n = 7.

£ gw(£)
(1234566) | 128
(1235555) | 1313
(1244455) | 1287
(1333455)
(1334444) | 1265
(2223455) | 1259
(2224444) | 1286
(2233344) | 1260
(2333333) | 1311

TABLE 2.2

Path-length sequences £ and their weighted path-length gw(€) for w = (189 95 73 71 28 23 21)

Huffman’s breakthrough [18] was to identify an efficient algorithm that finds an optimal
tree, avoiding a search over the exponentially large space of trees. The algorithm repeatedly
combines the two tree leaves with least weight, whose sum becomes the weight of a new leaf.
The Huffman (optimal) tree in Table 2.2 has path lengths £ = (1333455) and total
weighted path-length 1238. The Huffman algorithm reflects a divide-and-conquer structure
that has interesting properties on the space of trees, but because of its procedural nature
does little to characterize optimal trees.

3. The Imbalance Lattice of Binary Trees. The optimality of a Huffman code
is determined by the match between the balance (or imbalance) between the code tree and
the weights of the symbols to be coded. In this section we show ternary balancing exchanges
give an imbalance ordering on binary trees that defines a lattice.

The idea of using using lattices in coding dates back at least to Shannon in 1950 [38].
However, we have not found the lattice characterization of tree imbalance elsewhere. Fol-
lowing considerable work in the early 1980s on enumeration of trees, Pallo classified trees by
their rotationalstructure (e.g., [30, 31]) and showed that they then form a lattice. Our work
differs from Pallo’s in that we classify trees by their path-length (imbalance) structure.

3.1. Important Properties of Tree Path-Length Sequences.

THEOREM 3.1. FEvery path-length sequence £ has the form
2k

o= (=) T a)
a sequence including 2k copies of its largest value ¢ (where j, k > 0). Also, j is at most the
largest exponent of 2 in 2k, and therefore j < log,(2k).

Proof. £ must include 2k copies of its largest value ¢ since otherwise <2q . 22‘;1 Z_Z’) is
odd, contradicting the Kraft equality. Using this argument again on the shorter path-length
sequence obtained by replacing the 2k copies of ¢ with k copies of (¢—1), the Kraft equality
requires not only that j > 0 but also that j be at most the number of times 2 divides 2k. O

THEOREM 3.2. Exzcept for the sequence (123 ... (n—=2) (n—1) (n—1)), any path-
length sequence contains at least three identical values.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 5

Proof. By induction on the length n of the sequence. For the basis, when n = 3 the only
sequence is (1 2 2), satisfying the theorem. For the induction step, suppose n > 3, and to
the contrary of the theorem that there is a sequence does not have three identical values.
Let ¢ be the smallest value in the sequence appearing twice. We may assume ¢ < (n—1),
since otherwise the sequence is (123 ... (n—2) (n—1) (n—1)). Construct the sequence
of length n—1 that results from replacing the two values ¢ with one value (¢—1). In this new
sequence, ¢ does not appear at all (since there were only two before), and (¢—1) appears at
most twice. Therefore, by induction, since this sequence does not have three identical values
itis (123 ... (n—=3) (n—2) (n—2)). But since ¢ < (n—1) and ¢ does not appear in the
new sequence, this gives a contradiction. O

3.2. Ternary Exchanges determine Tree Imbalance. The insight that in-
spired us to write this paper is that it is possible to generate all binary tree path-
length sequences using ternary exchanges. Given any path-length sequence

(- P (g+1) (qg+1) -4,

then the revision

(oo (P+1) (pF1) ceeeen q)

is a path-length sequence also, because
2—p+2—(q+1) +2—(q+1) = 97P497¢ — 2—(p+1)_|_2—(p+1) 49279,

Moreover, if the initial sequence is sorted in ascending order, so p < ¢, and we replace the
rightmost p and leftmost two (¢ + 1)s, then the resulting sequence is still sorted. (When
p = ¢ the two sequences are identical.) Dually, this exchange can be applied in reverse; with
sorted sequences if we replace the leftmost two (p + 1)s and the rightmost (¢ — 1), the result
will still be sorted in ascending order.

The net effect of this exchange is to transfer two leaves dangling from level ¢ to level p.
The two examples in Figure 3.1 show this pictorially.

T WE T

(1334444) (1334444)
(2224444) (2233344)
Fi1G. 3.1. Balancing exchanges: (1334444) (2224444) and (1334444) (2233344)

DEFINITION 3.3. Let p, g be integers such that1 <p < q < n.
A balancing exchange is a ternary exchange of the form

(- f NS (q—H)\(q—fl) -

6 D.S. PARKER AND P. RAM

It is called ¢ minimal balancing exchange if (p+ 1) =q.
An imbalancing exchange is of the reverse form

(o (p4+1) (p4+1) e q -
L7 !
(- P e (g+1) (¢g+1) -

Finally, we can define partial orders as the reflexive transitive closures of these relations
among sequences. Given two sequences 8 and t, we say that s is at least as balanced as
tf

s < t,

if there are sequences £y, ..., £y (m > 1) where t = £1, £, = s, and for each i, 1 <1 < m,
there is a balancing exchange from €; to €;41.

Minimal balancing exchanges, in which (p + 1) = ¢, are particularly significant. The
balancing exchange (1334444)— (2224444)in Figure 3.1 gives an example. Min-
imal balancing exchanges are ternary exchanges of consecutive length values, so any tree
path-length sequence of the form {(--- (¢ —1) --- (¢+1) (¢+1) ---) determines the more
balanced tree path-length sequence {--- ¢ --- ¢ ¢ ---) and vice-versa.

THEOREM 3.4. If two path-length sequences differ, they differ in at least three values.
Also, if they differ in exactly three values, there is a ternary exchange between the sequences.

Proof. Direct consequence of the Kraft equality. The equality shows that two path-length
sequences cannot differ in one value. Similarly, there cannot be sequences s and t differing in
two values, since if the differences were the disjoint sequences of positive integers { s; s; } and
(t; t;), then the Kraft equality would imply 27 +27% = 27% 4+ 27" which is false under
the disjointness condition. Finally, sequences differing in three integer values { s; s; sx) and
(& t; tp) must satisfy 275 4277 427 = 27" 4275 4 27" and a case analysis shows that
this is solved only by { s; s; sk) = { p (¢+1) (¢g+1)) and { ¢; t; tx) = { (p+1) (p+1) ¢),
corresponding to a ternary exchange. O

THEOREM 3.5. The path-length imbalance ordering ts a partial order.

Proof. 1t 1s reflexive and transitive by construction. Also the imbalance ordering is
antisymmetric, because s<It and t<s together imply s = t. Otherwise there would be a
sequence of balancing exchanges that transform t to s and ultimately back to t; this is
not possible; as each balancing exchange reduces by at least 1 the sum of the values in the
sequence. O

I 1233 12344 123455
2222 13333 124444

22233 133344

1234566

e

e
~® 1334444

2224444

222344

223333 2223455

2233344

2333333
Fi1c. 3.2. The path-length imbalance ordering for n =4, 5, 6, 7; edges denote ternary exchanges

The imbalance partial order is straightforward to derive for small values of n. In Fig-
ure 3.2, it is displayed for n = 4,5,6,7. The most imbalanced sequence appears at the top of
the partial order, and an edge from a sequence s down to another t means that a balancing
exchange is possible from s to t. It is evident from Figure 3.2 that the minimal exchanges
define the bulk of the ordering. In order to provide a deeper appreciation for its structure,

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE

123455

124444

L=
222344

223333

Fia. 3.3.

1234566

1235555

1244455

12345677

12346666

12355566

123456788

123457777

123466677

23555677

7

13334566 123556666 124445677
22234566 24446666 33345677
L
2233344 22235555 24455566 33346666 9222345677
+
2333333 $ 22244455 124555555 33355566 ~9222346666
t
22333455 33444566 ~9222355566
22334444 33445555 22444566
L
23333344 134444455 9222445555 223334566
S
33333333 144444444 23335555
23344455
223444444 233333455
33334444
333333344
| s t sVt s At |
(144444444) (222355566) (133355566) (223444444)
(144444444) {223334566) {(133444566) (223444444)
(134444455) {223334566) {(133444566) (223344455)
(124555555} {223334566) {(124455566) (223335555)
(124555555} {222345677) {(124445677) (222445555
(124455566) {222345677) {(124445677) {(222355566)
The imbalance lattice, showing path-length sequences ordered by imbalance. The

sequence (1234 ---) is mawimally imbalanced. The graphs display the (transitively reduced) path-
length imbalance ordering for n = 6, 7, 8, 9. For clarity only a minimal subset of the imbalance

ordering is drawn; orderings in the transitive closure of the minimal set are omitted. The imbalance

ordering is also a lattice, with well-defined upper bounds s V t and lower bounds s At for every pair

of trees s and t. Some trees are marked to clarify certain notions (contractions, lower expansions,
and upper ewpansions), and their use in derivation of the first entry in the table of representative
upper and lower bounds for n = 9.

8 D.S. PARKER AND P. RAM

Figure 3.3 presents the ordering for n = 6,7,8,9. Figures 3.2 and 3.3 suggest a number of
results about the imbalance ordering.

THEOREM 3.6. A sequence is on level k of the imbalance partial order (counting down
from 0, the topmost and least balanced level) iff k minimal balancing exchanges are needed to
derive it from the least balanced sequence (1 2 3 -+ (n—2) (n—1) (n—1)). In this situation
the sum of the values in the sequence s

(n+2)(n—-1) g
— .
Thus the level of a sequence in the partial order is determined by the sum of its path-length

values.

Proof. By induction on k. For the basis £ = 0, the sum of the path-lengths in the
least balanced sequence is (Z::ll i)+ (rn—1) = (n 4+ 2)(n — 1)/2. For the induction step,
consider a sequence whose sum of values is % — k with £ > 0. By Theorem 3.2,
this sequence must contain at least three identical values (¢ ¢ ¢). Thus there is a minimal
balancing exchange to this sequence from another that contains {(¢—1) (¢+1) (¢+1)). This
sequence is at level k — 1 by construction, and by induction it has the stated sum. O
Theorem 3.6 shows the significance of the level of a sequence in the imbalance partial order:

DerFINITION 3.7. The level of balance of a path-length sequence s is

(n+2)(n—-1)

5 (sum of the path-length values in s).

3.3. Contractions and Expansions of Path-Length Sequences.

DEFINITION 3.8. Let £ = ({1 --- £,) be a tree path-length sequence of length n.
The contraction £~ of £ is the sequence of length (n—1) defined by

E_ = SOI“tT (< Z1 e Zn_Q (Zn_1 — 1) >)
The position i expansion of £ is the sequence of length (n+1) defined by
SOItT(<Z1 Zi_1 (Z;-Fl) (Z;-Fl) Zi+1 Zn >)

As permatted by Theorem 3.1, if we write

2k

¢ o= (=) T)

with j, k > 0, then 2k is the suffix length of £, and j is the suffix increment of £.

The contraction £~ is then

£ o= (- (¢=F) (g=1) 7T - g)

The lower expansion £4 is the position n — 2k expansion of £:

2k

b= (o (a=i+D) (=) T 7).
The upper expansion £T is the position n expansion of £:
2k—1
e = (e gma) T T 0 D) (a4).

Note the definition for €4 assumes 2k < n. When 2k = n, requiring n to be a power of 2
and £ = (¢ --- ¢) where ¢ = log,(n), the preceding formula does not define £;. In this
very special case we define £, = £% rather than leave £, undefined.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 9

¥ =(13344455)
upper expansion of £

£7=(133344)
contraction of £

£={(1334444)

£, =(13444444)
lower expansion of £

Fi1c. 3.4. The contraction and expansions of the path-length sequence £= (1334444)

path-length suffiz | suffiz lower upper
sequence length | incr. contraction erpansion erpansion
£ 2k 7 L= [VA
(1234566) 2 1 (123455) | (12346666) | (12345677)
(1244455) 2 1 (124444) | (12445555) | (12444566)
(1235555) 4 2 (123455) | (12445555) | (12355566)
(1333455) 2 1 (133344) | (13335555) | (13334566)
4 1 ‘(133344)‘ ‘(13444444)‘ ‘(13344455)‘
(2223455) 2 1 (222344) | (22235555) | (22234566
(2224444) 4 2 (222344) | (22334444) | (22244455)
(2233344) 2 1 (223333) | (22334444) | (22333455)
(2333333) 6 1 (223333) | (33333333) | (23333344)

TABLE 3.1

Path-length sequences of length 7, with their contractions and expansions. Note that all con-
tractions have length 6, and expansions length 8. Emboldened digits reflect changes from L.

These definitions will be used heavily throughout the rest of the paper. Figure 3.4 and

Table 3.1 give examples for n = 7. Figure 3.3 also gives examples illustrating the relationships

these definitions produce among the imbalance orderings for successive values of n.

THEOREM 3.9. If£ is a path-length sequence, £5 < £ and (£4)” <4 (£7)” = L

Furthermore, either £ = (£7)4, or £ = (£7)t. Thus

(€7)+

a4 ¢ 4

().

Proof. £, and €T differ by a ternary exchange, so £; < £%. From Theorem 3.1 we can

2k
assume £ = (--- (¢g—35) q -+~ ¢), and thus (£¥)~ = £. Furthermore (£4)” = £if § =1 and
26—2
()" = (- (g=5+D(g—3+D(g—1) 7 ¢) QLif j > 1. Finally ()t =£if k=1

(necessitating j = 1) and (£7); = £if k > 1. Consequently £ € { (£7)4, (£7)T }.0

THEOREM 3.10. If s<¢t,
Proof. Recall that if 8 < t, then there are sequences £, ...
t = ¢4, €,, = s and for each 7, 1 <@ < m, there is a balancing exchange from £; to £;41. Our

then

s” <t

S4 Slt-l-a

and

sttt
,€m (m > 1) such that

10 D.S. PARKER AND P. RAM

approach here is very simple: to prove s~ <t~ we convert the derivation t = £1,...,£, =8
directly to the derivation t— = £4;7,...,£,,~ = s~ . For this it is sufficient to show that either
each step from (£;)” to (£i41)” is a balancing exchange, or (£;)” = (£i41)”. The former
must hold if £; and £;41 agree in the final two positions. If they disagree,
L = < R p a -+ b q q >’
Ligg = (- (p+1) (p+1) a - b (¢=1))
because they define a balancing exchange, and by Theorem 3.1 necessarily b = (¢—1). Then
()~ = sort] ((- P a - (¢g=1) (¢=1))),
(i1)” = sortT((-+ (p+1) (p+1) @ - (—2)))-

If (p+1) =b=(g—1), then p = (¢—2) and the two contractions are equal. If not, they still
differ by a balancing exchange.

Proving s; <ty is similar, where (&)1 = (Lig1)+ i € = (-+ (¢—J) qq -+ q), bi1 =
(- (g—35+1) (g—35+1) (g—=1) --- ¢) and § > 2. Proving st < tt is also similar, but
easier, since then it is never the case that (Ei)‘i' = (£i+1)+. 0

3.4. The Vector Lattice and Distribution Lattice. Recall [5] that a lattice
is an algebra (8, C, M, U)Y in which S is a set, C is a partial ordering on &, and for all a, b € S,
there is a unique greatest lower bound (glb) « M) and least upper bound (lub) a Ub.
The lattice is called distributive if these operators satisfy the distributive law:

forall @, b,cin S, a M (b Uc¢) = (aNbd) U (aN e

Optionally the lattice can have a greatest element T and least element L.
DEFINITION 3.11. Let <. be the element-wise ordering on vectors (sequences) in R™.
Then
X <pee ¥ ift z, < yi for1<i<n.

Also define vector element-wise minima and mazxima

X Minge. y = { min(z1,91) -+ min(cn,yn))
X MmaXyee y = { max(z1,y1) - - max(zTn,yn)).

THEOREM 3.12. The nonnegative vectors (R4 ", <, .., MiNyee, MaXyec) form a distribu-
tive lattice called the vector lattice.

The set P of distribution sequences of length n (ascending nonnegative vectors v with
vn = 1) also form a distributive lattice, (P, < .., MiNyec, MaXyec), called the distribution
lattice, with least element L = (00 --- 01) and greatest element T = (11 .--11).

Proof. The one-dimensional algebra (R, <,min, max) is a distributive lattice. The

vector properties required here follow from this. O

3.5. The Majorization Lattice and Density Lattice. We reproduce basic
majorization concepts developed in the paper [34]. Majorization as defined here is an ex-
tension of the classical majorization of Muirhead and Hardy-Littlewood-Pdélya [16], useful
in the study of inequalities. Marshall and Olkin [27] provides a very good account of the
classical theory and its applications. The classical theory defines a majorization ordering
on descendingly-ordered (or sometimes ascendingly-ordered) multisets, and although quite
beautiful i1s also quite complex. We have transplanted the theory to rely only on linear al-
gebra and convexity. Thus the definitions in this section are ours, and the results vary from
those in [27].

DEFINITION 3.13. The Zeta matrix [= ((i;) is defined by

Gy = 1ife>3, O otherwise
The M6bius matrix 8 = (pi;) ts defined by

ni; = 1ifi=y3, —1ifyj=1—1, 0 otherwise.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 11

The Mobius matrix is the inverse of the Zeta matrix. For example, when n = 5:

1 0 0 0 O 1 0 0 0 0
1 1 0 0 0 . 1 1 0 0 0
f = 11 1 0 0 o = f = 0 -1 1 0 0
1 1 1 1 0 0 0 -1 1 o0
11 1 1 1 0 0 0 -1 1

The Mobius matrix is also significant in that it corresponds directly to the concept of pairwise
exchange (of adjacent elements in a sequence). The theory of M6bius inversion [36] gives
a generalized notion of differential on partially-ordered domains (although here we consider
only totally-ordered sequences). We can think of fas an integral operator (which transforms
a sequence to its left-to-right “integral”), with & as its inverse differential operator.
THEOREM 3.14. If x and y are density sequences (so Z:;l T, = Z:;l yi = 1), then
x 2y Mt (%) Lo (J9)

If v and v' are distribution sequences, then v and Ov' are density sequences and

v < vl iff (Ov) < (8v).

— Ve

Proof. fx <vee fy is equivalent to:
r1 < i, r1+ 22 < Y1+ 2, T1+T2+-+Tn < y1+y2+-+Yn.

Note x is a density sequence iff (fx) is a distribution sequence. The second statement then
follows since the Mobius and Zeta transformations are inverses of one another. O

This isomorphism between <. and < implies that majorization defines a lattice.

€ec
DEFINITION 3.15. Majorization lub and glb operators are definable by

x Uy 8((fx) maxXyec (fy))
x Ny = 8((fx) mingyee (fy))

THEOREM 3.16. The nonnegative reals ordered by majorization forms a distributive
lattice (R4 ™, <,11,U) called the majorization lattice.

The set D of density sequences of length n (nonnegative x with 22‘;1 z; = 1) forms
a distributive lattice (D, <,M,U, L, T) called the density lattice, with least element L =
(00 --- 01) and greatest element T = (10 ---00).

Proof. The transformation x +— fx defines a lattice isomorphism between the vector
and majorization lattices, and between the distribution and density lattices. Here x My and
x Uy are defined just so as to be the majorization glb and lub:

z < x, z < X <z, y R zZ

< (fZ) Svec (f fZ vec fy A (X) Svec fZ fy vec fZ)
< (fZ) Svec ((mlnvec f < ((fX) maXyec (fy)) Svec (fZ)

& oz =X 9 fX mingee (fy)) & O (fX) MaXyec (fy)) 2z

& z X xMNy. & xUy X z.

Thus the majorization algebra also forms a distributive lattice. O

Even when x and y are in descending order, the sequences (x My) and (x U y) defined
here are not necessarily in descending order: x = (272272272 27t g7t g7¥ 9% 9=t 9=ty
and y = (272272272272 972972 97% 97% 97%) yjeld the least upper bound x Uy =

O ([x maxye: [y)=(27227727" 27 27* 27° 27°). See Figure 3.6.

12

S

-
Jom
t

9=t

o
f2_5 maxXyec f2_'

8([2_5 maxyec f2_')

27y 27t
sVt

f2_5 mingyec f2_'

8([2_5 mingyec f2_t)

275 n 2t
sAt

D.S. PARKER AND P. RAM

2—7

e N N

D T N N SN

2
9-2
96

9-2
64
96

32
9=2

64

32
9-2

4 4 5 5
27% 97% 975 7%
104 112 116 120
2 3 4 5
9-2 93 =4 9-35
96 112 120 124
104 112 120 124
8 8 8 4
974 97t 97t 9=5
4 4 4 5
96 112 116 120
32 16 4 4
272 27% 975 7%
2 3 5 5

5 6 6)
9—5 9—6 9—6)
124 126 128)
6 7 7)
276 277 277)
126 127 128)
126 127 128)
2 1 1)
276 277 27T)
6 7 7)
124 126 128)
4 2 2)
275 276 27¢
5 6 6)

F1G. 3.5. Related points in the majorization and tmbalance lattices, showing their connection

S

-
Je
t
9=t

o
f2_5 maxXyec f2_'

8([2_5 maxyec f2_')

27y 27t

sVt

s

5=

I

t

5t

o

f2_5 mingyec f2_'
8([2_5 mingyec f2_')

27527t

9=7

e e N NN

2
9-2
32

2
9-2
64

5-3

3
5-3
80

5-3

4 4 4
274 27% 27¢
88 96 104
3 3 3

9—3 9—3 9—3
80 96 112
88 96 112

are not necessarily in

5 5 5
9—5 9—5 9—5
108 112 116
3 4 5

273 274 27°
112 120 124
108 112 116

4 4 4
27% g97% 7%
112 120 128
4 5 5
9—4 9—5 9—5
120 124 128
120 124 128
8 4 4
275 27°%
5 5

descending order

5 5 5
9—5 9—5 9—5
120 124 128
6 7 7

276 977 o7
126 127 128
120 124 128
4 4 4

275 9275% 97°%

2= (At < (27° N 27%); the two differ where indicated. Non-integral exponents occur for n > 9.

Fi1Gc. 3.7. The imbalance lattice is not simply conjugate to a sublattice of the majorization lattice

NN AN N NN

— e e

NN AN N NN

~—

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 13

3.6. The Imbalance Lattice: A Discrete Cousin of the Majorization
Lattice. Since every pair of sequences in Figures 3.2 and 3.3 has a unique glb and lub, the
imbalance ordering is not only a partial order, but also a lattice. In this section we prove this
by showing that every pair of sequences s, t has a glb s At and lub s VvV t. We also relate the
imbalance lattice directly to the majorization lattice, as illustrated in Figures 3.5—3.7.

THEOREM 3.17. On tree path-length sequences, the imbalance ordering is isomorphic to
the majorization ordering. Specifically, whenever s and t are tree path-length sequences, then

s 4t iff 27 < 27t

Proof. We show first that balancing exchanges cause a reduction in the majorization
ordering. Let s be the result of a balancing exchange on t (so s < t). Then:

t = (- - . » u . - (a+1) (a+1))
s = (- - . (rp+1) (rp+1) u B v q)
2=t = (. . . o—p g—u . . g—vw 2—(g+1) a—(g+1) .y
2=8 = (. . . 2= (p+1) o—(p+1) o—u o= 2—4q)
fz—‘ = (s S427°P S427 P42 . LT 42— (a+1) pyo—a 1)
fz—s = (- - s s+42=(+) s4o-p . . T_2v T 7424 1)
(o - o 42— (+1) o R R a2V 42— (gD 0 . 0)

Thus f2_s and f2_t differ only in the values appearing between p and ¢, and each element
in f2_t - f2_s is nonnegative, so 27° < 27,

The proof of the converse, that 27° < 27% implies s <t for tree path-length sequences s,
t, can proceed by assuming a counterexample for which the difference in the levels of balance

m = (level of balance of 8) — (level of balance of t).

is minimal. Since 275 < 27% let a, b, ¢, d be the rightmost aligned pairwise-differing values
among the two sorted sequences such that s =(---a --- b --Yand t=(--c--- d -,
where ¢ < a, b < d because of the majorization inequality, ¢ < b and ¢ < d because
the sequences are ascending, ¢ # d since ¢ < a < b < d, and finally 27¢ 4+ ... 4+ 27 =
27¢ 4+ ... 4 274 which is always possible by the Kraft equality. Because b < d necessarily
t={_(-c---dd), since otherwise we reach a contradiction (multiplying both sides of
the equality by 2¢ makes the left side even but the right side odd). Thus, if we define the result
t'=(- (c+1)(¢+1) --- (d—1) ---) of a balancing exchange on t = {--- ¢ -+~ dd -},
then the level difference between s and t' is at most (m — 1), and 9=t =< 27t Furthermore

we claim 27° < 2_tl, using the following schematic:

t = (. c w . d d . .)
= (- (c+1) (c+1) c (d-1))
8 = (. a w . . b . .)
2=t = (- - 27f 27 .o2md o—d)
=t = 2= (e+1) 2= (c+1) o o= (d=1)
278 = (. . . 9—a g—w . . 2—b .)
2=t — f27% = (o . 0 427 -—27% +5 . 4S5k i -0)
2=t [t = (o . 0 q2-(etD) 42— . 4274 0 - 0)
fz—" - fz—s = (0 - o 4 (et _p-ay 4(s; —27¥) . 4(5, — 279 0 - 0)
ecause 2~ - e running totals Si, ... L are nonnegative. SO - —27
B 27° < 27¢ th g totals Sy, ..., S gative. Also, (27(¢t1 —_27%) > ¢

since ¢ < a. Furthermore ¢ < (¢—1) < w, implying 51 —27% = (27°=27%) 2% > g—la=1) _
27% > 0. Finally Sy 4+27%—27"=0,s0b < (d—1) implies Sy —27%¢ = (27*—274) —27¢ =
27 — 27(d=1) > 0. Thus f2_5§wc f2_tl (e, 27° < 2_tl), contradicting the assumed
minimality of m, and existence of a counterexample. O

14 D.S. PARKER AND P. RAM

THEOREM 3.18. The imbalance ordering on binary trees determines a bona-fide lattice
in which, for all s and t, the glb s At and lub sVt are defined with the following recursive
algorithms, where the expansion used is chosen from among the lower and upper expansions:

) of s <t

t] t <
sAt = . _ _ i =

the greatest expansion of 8~ At

that is also a lower bound for 8 and t otherwise;

t if s d

) of t s
sVE = the least expansion of 8~ V £~

that is also an upper bound for s and t otherwise.

Proof. We must show that, whenever & and t are tree path-length sequences of length
n, there are unique path-length sequences s At and s V t such that:

e s At s, t;alsoif £is any path-length sequence, then £ s, t iff £ ds A t.
e 5, t dsVt;alsoif £is any path-length sequence, then s, t <L iff s vVt < L.

This can be done by induction on n. We consider only the glb here, the proof for the lub
being similar. The theorem holds trivially for n < 6, since then the trees are totally ordered.
Assume it holds for sequences of size n—1 or less.

First, 8 and t must have a common lower bound:
The glb 87 A t7 exists by induction, and (Theorems 3.9 and 3.10) lower expansion gives a
lower bound

(sTAtT)y 9 (37)y D s, (sTAtT)y D (7)) Dt

Second, if s and t have two greatest lower bounds £ and £’, then they must be equal:
From £ s, t and ¢ <s, t weinfer £~ s~ At~ and £~ <8~ At~ by Theorem 3.10.
Since furthermore £ and £’ are greatest lower bounds, s~ At~ < £ and s~ At~ < £,
Thus £~ = £'~. By Theorem 3.9, the only way £ # £’ can arise is that

L= (), €= @) o L=, £ =),

so £ <\ £ or £’ < £, contradicting their both being greatest lower bounds. Thus £ = £’

Third, the algorithm produces a glb that is as good as any other lower bound:
Assuming this for (s~ A t7) by induction, there can be no lower bound £ # (s A t) such that
(87 At7)T ¥, since otherwise (s™ At7) < £~ <57, t~ contradicting our assumption. O

The table of nontrivial examples in Figure 3.3 gives an appreciation for glbs and lubs.
The first example (which is illustrated in the figure) is expanded in Table 3.2. Note the final
pairs of entries in s and t are the same as the final pairs of entries in 8 A t and s V t, and
the suffix lengths of 8 and t are never shorter than those of s At and s Vv t.

THEOREM 3.19. Ifs and t are path-length sequences of length n, then:

RV { (s~ vit)t i s=(6T)T and t=(t7)*
(s™ vitT)s i s=(T)y and t=(t7)4
Cnt - { (s7 AtT)T i s=(T)T and t=(t7)*
(s™ AtT)4 i s=(T)y and t=(t7)4

Otherwise, if either s = (s7)Y andt = (t ™)y, ors = (s7)3 and t = (t7)F, then either
sAt=("AtT)T andsVt=(s"VtT);, orsAt=(sTAtT)y andsVt=(s" Vvt .
Furthermore: if the final pairs of entries of s and t are (p p) and {¢q q), where p < q, then
the final pairs of entries of sAt and sVt are respectively (p p) and {(q ¢).

Also: the suffiz lengths of s and t are at least as long as those of (s At) and (s V t).

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 15

n S

t

sAt

sVt

9 [(144444444)
T lower expansion
8| (13444444)
T lower expansion
7| (1334444)

T lower expansion

6 (133344)

(222355566)
T upper expansion
(22235555)
T lower expansion
(2223455)

T upper expansion

(222344)

(223444444)
T lower expansion
(22334444)
T lower expansion
(2224444)

T lower expansion

(222344)

(133355566
T upper expansion
(13335555)
T lower expansion
(1333455)

T upper expansion

(133344)

TABLE 3.2
Elaboration of the first ezample of representative bounds in Figure 3.3, showing how s At and
sVt can be derived with their recursive algorithms.

Proof. These properties follow by induction on n. For the basis, they all hold trivially
when n < 6, since then the imbalance lattice is a total order and {8, t} = {sVt, sAt},
and the final two entries of any path-length sequence are a pair by Theorem 3.1. For the
induction step, we can write

s o= (-DF - P) ot = (DT - q)
ST o= (=) =D P) o= (a1 T 7))

where ¢, 7, h, k > 0, and we assume with no loss of generality that p < g. There are four
cases to consider, depending on the the suffix lengths 2k of 8 and 2k of t. In the first,
h=1and k = 1,ie,s = (s7)" and t = (t7)*. Then ¢ = 1 and § = 1 by Theo-
rem 3.1. By induction (s~ At7) and (s~ Vt7) have respective final pairs {(p—1) (p—1))
and {(¢—1) (¢—1)), and have suffix lengths not exceeding those of s~ and t~. Now, by The-
orem 3.10 (s7 At7)T <(s7)t and (sT AtT)T <(t7)T. Because (s7)t = s and (t7)T = t,
the recursive algorithm in Theorem 3.18 will find (s~ At™)T = sAt. Thus the final pair
of sAt will be {p p), and it will have suffix length 2. Similarly svt = (s~Vvt7)T
because sVt € {(s7VtT)y, (57 VtT)T), and choosing (s” Vt7); gives a contradic-
tion: if s = (sT)T<(s7VtT)y and t = (t7)t <Q(s”VtT); then (because of Theo-
rem 3.10) s7 = ((37)") "< ((s7VtT)4)” # ((sTVtT)T)T = sT Vvt~ and correspond-
ingly t7 = ((t7)T)" Q((s™VtT)1)” # ((8™VtT)T)T =87Vt~ so the lub of s~ and t~
is not 8T Vt7, a contradiction. Again the final pair of s Vt will be (g ¢), with suffix length
2.

The other three cases, where h > 1 and/or k > 1, are similar. O

4. Submodularity of Weighted Path-Length over the Lattices. Huffman
codes for a positive descending weight sequence w = (w; wz -+ wy,) are binary tree path-
length sequences £ = (Zl by - Zn> that minimize the weighted path-length

n
E w; U,
i=1

In this section we show that gw is submodular over the lattice of trees. which helps explain
why efficient algorithms for finding optimal trees are possible at all.

gw(l) =

4.1. Submodularity. Most work on submodular functions assumes the lattice is the
lattice of subsets of a given set, the case originally emphasized by Edmonds [6]. However,
the definition applies to any lattice:

DEFINITION 4.1. A real-valued function f : L — R defined on a lattice (£,C,1,U) is
submodular if

flzmy) + flzuy < flz) + fly)

16 D.S. PARKER AND P. RAM

for all z,y € L. Fquivalently, f is submodular if a “differential” inequality holds:

Ny Y @)+ fly) - feny) - flauy) > o

Section 4.4 discusses the relationship between submodularity and convexity.

4.2. Submodularity of weighted path-length on the Majorization lat-
tice. In this section we show that weighted path-length on the imbalance lattice of trees (or
a logarithmic variant on the majorization lattice of densities) is a submodular function.

Define the function G on the majorization lattice of densities by

Gu(x) = gu(-logy(x)) = —Zwi log, (2:).

. . . 2 _ 82Gw(x) _ 1 . Wiy s
Note that Gw is convex on Ry", as its Hessian V°Gw = (TR) = mdlag(g) is

positive semidefinite there [27, p.448]. (recall we are assuming all weights are positive).

Gl is actually also submodular on the majorization lattice. We prove this directly now,
and show later how submodularity can be established using only vector calculus.

THEOREM 4.2. Assuming w is a descending positive sequence of length n, Gw is sub-
modular on the majorization lattice. That s, for all nonnegative sequences X, y of length
nf

Gw(xMy) + Gu(xUy) < Guw(x) + Guwl(y).

Proof. By induction on n. For n = 1, the inequality is satisfied with equality. Let a,
and by, be the n-th entries of (x M y) and (x U y), respectively. The theorem follows by
induction if we can show

wn - (=logy(an)) + wn - (—logy(bn)) < wn - (=log,(wn)) + wn - (—log,(yn))-

Recall that x My = O(([/x)minee([y)) and x Uy = 8 ((Jx)maxye ([¥)).
There are four cases, depending on X = fx and Y = fy, and specifically on the final values

n—1 n n—1 n
Xno1 = in, X, = in, Yoo = Zyi, Yo = Zyz
=1 =1 =1 =1

as follows:
1. if X1 <Yno1 and X, <Y, then ap = 2y, by = yn.
2.1f Xpy > Vioq and X, > Y, then an = yn, by = 2.

3.0 Xpuoy < Yaog and Xy, > Yy, then 2, > yp, an = Yo — X1 = yn + €, by =
Xn—Yn_1 =zn—¢, wheree = (Yoo1—Xn_1) > 0and € < 2, —yn = (T, max yn) —
(zn min yp).

4. if Xy—1 > Ypo1 and X, < Yy, then yp > 2p, ¢ = Xon — Y1 = 25 + ¢, by =
Yo—Xn_1 =yn—¢, wheree = (X1 —Yn—1) > 0and € < yp,— 2, = (¢, max yn) —
(zn min yp).

Each case satisfies wy, - (—log,(ar)) + wy-(—log,(bn)) < wpn-(—log,(zn)) + wy-(—log,(yn))
as needed; the first two cases satisfy it with equality, and in the last two we have

an = (zp, min yn) + €, b, = (z, max y,) — €
but then assuming z,, y, > 0,
log,(an) + logy(bn) = logy(an bn) = logy(enyn + n) > logy(wn) + log,y(yn)

where 7 = € ((rn maxyn) — (£, min y,) — €) > 0 and multiplying by —w,, gives the theorem.

O

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 17

4.3. Submodularity of weighted path-length on the Imbalance lattice.

THEOREM 4.3. Assuming W s a descending positive sequence of length n, gw is sub-
modular on the imbalance lattice. That s, for all path-length sequences s, t of length n,

gw(s At) + gw(s V) < gw(s) + gw(t)

Proof. Also by induction on n. The theorem holds with equality for n < 6, since then
the lattice of path-length sequences is totally ordered. We sketch the induction step from
n—1 to n, showing A’gw(s,t) = (gw(8) + gw(t)) — (gw(sAt) + gw(3Vt)) > 0 follows
from A?gw (3™, t7) > 0 — where gw, when applied to sequences of length (n—1), uses only
the first (n—1) entries of w.

2k

Recall 2k is the suffix length of the path-length sequence £ = ((q g g),

and j is its suffix increment. The suffix increment is 1 when (£ t =

)
{ gull7) + (ot qown) L= (L) (2=+ 0
)

gw(£) gw(€™) + (wp—2k+1 + q-wpn) HL=(L7)4 (e, k>1).

Thus gw(s) > gw(s7) and gw(t) > gw(t™) in all cases.
However, it can happen that gw(sAt) < gw(sT At7) or gw(s Vt) < gw(s™ Vt™) because
it is possible either that s~ At~ # (sAt)” or that s~ Vt~ # (sVt)7. Specifically, it is
2k 2k
. . o~ — _ _ . N,
possible sAt = (-+ (¢—j) (g—j) q -+~ ¢) and sTAt™ = (- (¢g—j—1)q -+ ¢),
ie,sAt=(s7 At7); and s At has suffix increment j > 1, in which case

gw(sAt) = gw(sTAtT) + (wn—2k41 — J - Wn—2k + ¢-wn)

and the parenthesized expression can be negative.

From Theorem 3.19, the final pairs of entries of s and t are always the same as the final
pairs of entries of 8 A t and s V t, and the suffix lengths for each of s and t cannot be less
than those for each of (s At) and (sVt). We now consider the same four cases addressed in
the proof of Theorem 3.19.

In the case where both s is the upper expansion of 87, and t is the upper expansion of
t~, then by Theorem 3.19 sAt = (s At™)T and sVt = (s~ Vt™)T, so

Ngw(s,t) = (gw(s) + gw(t)) = (gw(sAt) + gw(sVt))
(gw(s7) + gw(tT)) — (gw(s™ALT) + gw(sTVET)) = Agw(s™ t7)
)

with the preceding analysis for gw(£) with & = 1. In this situation only the final pairs of
entries of 8, t and of s At, sVt can cause the two differences to be unequal, but we now

know them to give the same two pairs. So in this case the theorem follows by induction.

It remains to treat the cases where s is the lower expansion of 8~ or t is the lower
expansion of t7. In these cases it can happen that gw(sAt) < gw(sT AtT) or gw(sVt) <
gw(sT VtT) as previously noted.

In the case where either s is the lower expansion of 8~ or t is the lower expansion of t~,
but not both, then by Theorem 3.19, either sAt = (37 At7)4 andsVt = (s~ Vt™)T, or
sAt = (sTAtT)T and sVt = (57 Vt7)4. The lower expansions among these two cannot
yield as large a gw increase as the lower expansions giving s and t, because they expand
higher-indexed positions (their suffix lengths are never longer), and the suffix increment of
ST At or sTVtT can be greater than 1. Therefore A%gw (s, t) > A’gw(s™, t7).

In the final case where both s is the lower expansion of 8~ and t is the lower expansion of
t7,thensAt = (sTAt7)yandsVt = (87 Vt7); (Theorem 3.19), and because the lower
expansions giving s At and sVt cannot yield as large a gw increase as the lower expansions
giving s and t, again A’gw(s,t) > A’gw(s™, t7). 0

To see an example, the submodularity of gw can be verified on the lattice for n = 9 and
the weight sequence shown in Figure 4.1.

18

D.S. PARKER AND P. RAM

123456788
1329

123457777
1840

123466677
1524

Code Cost
Path-length Weighted
Sequence Path-length
L gw(l)
123556666 124445677
123456738 1529 1562 1990
123457777 1840
123466677 1824
123555677 1851
123556666 1562
124445677 1830
124446666 1841
124455566 1325
124555555 1386
133345677 1281
133346666 1292
133355566 1276 124555555 “@L133355566
133444566 1503 1386 1276
133445555 1814
134444455 1348
144444444 1433
222345677 1502
222346666 1313
222355566 1297
222444566 1824
222445555 1385
223334566 1303
223335555 1814
223344455 1298 134444455
223444444 1859 1348
233333455 1849
233334444 1860
333333344 1510

144444444
1433

The transitively reduced imbalance lattice for n = 9 showing,
forw = (18995 73 71 23 21 18 9 1), the code cost gw(£) for
each path-length sequence £. The Huffman code 133355566,
with cost 1276, 1s the global minimum. The code 223344455,
with cost 1298, is a local minimum. (Because the graph shows
only the transitive reduction of the lattice, 1t omits some edges
corresponding to exchanges, but the minimum is localized.)

222345677
1302

222346666
1318

222355566
1297

222445555 223334566
1335 1503

223335555
1514

223444444 233333455
1359 1849

233334444
1360

333333344
1510

Fic. 4.1. Costs of all possible codes for the weights w = { 189 95 73 71 23 21 1891).

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 19

4.4. Submodularity as a discrete analogue of Convexity. Although it is
very simply defined, submodularity is difficult to appreciate. Using only standard vector
calculus, we now clarify some basic relationships between submodularity and notions of
convexity. We have not seen this done elsewhere.

There are several reasons why submodularity plays an important role here, at the cross-
roads between information and coding theory. First, submodularity is directly related to
the Fortuin-Kasteleyn-Ginibre (FKG) “correlation” inequalities, which generalize a basic
inequality of Tchebycheff on mean values of functions (hence expected values of random
variables). A fine survey of results with FKG-like inequalities is [15].

Second, submodularity is closely related to convexity. Book-length surveys by Fujishige
[9] and Narayanan [28] review connections between submodularity and optimization (and
even electrical network theory). The relationship between convexity and submodularity was
neatly summarized by Lovasz with the following memorable definition and result.

DEFINITION 4.4. Given a finite set S of cardinality n, we can identify a {0, 1}-vector
t € Ry"™ with any subset T C S specifying the incidence in T' of the elements in S (indexed
in some fized order).

Any nonnegative vector x € R4 " can be decomposed uniquely into a sum of positive real
values multiplied by ‘decreasing’ {0, 1}-vectors. Specifically, x € R1™ determines an integer
k (0 < k < n) such that x has a unique greedy decomposition

k
X = E i S
i=1

where A; > 0, S1 D -+ D Sk are distinct subsets of S, and s; is the {0,1}-vector identified
with S;. For any function f : S — Ry, its greedy extension f: Ry" — R4 to nonnegative
vectors is then defined by

fx = Z Xisi) = Z X £(S0).

In fact, A = 8 (sort] (x)), using our notation.
THEOREM 4.5. (Lovdsz (25, p.249])

f 5 — Ry is submodular iff its greedy extension fA: R4y"™ — R4 is convex.
Proof. The essence is that for positive constants A < x and sets T'# U,

~ ~ ~

FOAt+ru) = AF(TUU) + (k=X FU) < XD + s f(U) = fOOt) + f(sku)

where t and u are the {0,1}-vectors corresponding to 7" and U. The central inequality is
due to submodularity. Restricting 0 < A < 1 and x = (1 — A) shows f is convex. D
Lovész goes on [25, p.250-251] to point out that

~

min { f(X)| X € §} = min{Jj(x)|x € [0,1]"}

and that as a consequence there is a polynomial-time algorithm to minimize f.

The vector lattice (R4 ", <, .., MiNyec, MaXyec), is exactly the extension of the set lattice
to nonnegative vectors. Vector lattices, also called Riesz spaces, can be more ‘natural’ than
set lattices in some ways. For example, submodularity has a natural characterization:

THEOREM 4.6. (Lorentz [27, p.150])
When twice differentiable, f is submodular on the vector lattice (R4", < .0,
iff

minyec, MaXyece)

& f
0x;0%;

0 (i#4, 1<4,j <n).

20 D.S. PARKER AND P. RAM

Proof. Essentially definition. Using the shorthand f{ u v) to denote the expression

f({z1 ... mi—1 w Tig1 ... Tj_1 U Tjgp1 ... Tp) gives the result
PI o Haee) () = faa) 1)) = flo (a40)) + o)
0%;0%; €ire5—0 € € -

where the inequality comes from the fact that f is submodular, since with respect to <.,
the points x = {(zi+e€;) z;) and y = { z; (z;+¢€;)) have the upper and lower bounds
X MaXyee ¥ = { (zi+e€:) (vj+€;)) and x mingec y = (z; «;). For the converse, if f is
not submodular on a rectangle defined by x = { (zi+a) z; } and y = { ; (¢;+b)) Lorentz

pointed out we can find a subrectangle on which 8° f/dz;0z; > 0. O

) L 92 f . . . 2r _ % f i
Note: the derivatives =L can still be positive. In fact, the Hessian V*f = () still

az? Oz, 0z

can even be positive semidefinite (hence f can be convex), or be an M-matrix [3, ch.6].

THEOREM 4.7. When twice differentiable, F is submodular on the majorization lattice
(Ry™, =, m,U) off for all i # 5 between 1 and n — 1,

3 F(z) 3 F(z) 3 F(z) n 3 F(z) < 0
aZiaZ] aZi+1 az] aZiaZJ+1 aZi+1 aZ]+1 - ’

Proof. Theorem 3.16 shows that the Mobius transformation & gives a bijection between
the majorization lattice (1™, <,M, U} and the vector lattice (R1", <, .., MiNyec, MaXyec).
Thus f(x) = F(9x) is submodular on the vector lattice when F' is submodular on the
majorization lattice. Expanding the inequality

a? a?
" (F(- 2 < 0
0x;0%; (F(9x)) 0x;0%; (fe)) <
(which follows from the previous theorem) with the chain rule gives the stated result, because
z=0x={(z1 (x2—71) (z3—32) -+ (Tpn—Tpa)).0

Revisiting Theorem 4.2, Gw(z) = —Z:;l w; log,(z;) satisfies
0 |t — 4] >1
P Cwl(z) *CGwl(z) *Guw(z) n FCGwl(z) 1 —w;/#} i=7+1
aZiaZJ 8zi+18z] aZiaZ]+1 8zi+18z]+1 o 111(2) —’LUi+1/Zi2+1] = Z-|— 1

i1zl +wifzl 1=

and, for example, Gw(9x) = —w; log,(z1) — ::11 w; log,(zit1 — z;) satisfies
82 1 — W41 . .
— (Gw(Ox = it < 0 when g =74+ 1.
dx;0z, (Gw(9%)) In(2) (ziy1 —=)® J

This gives two alternative proofs of Theorem 4.2, showing how such results can be derived
more easily.

DEFINITION 4.8. A function F : ®4"™ — R is Schur convex if it preserves the ma-
jorization ordering, i.e., x Xy implies F(x) < F(y).

THEOREM 4.9. F is Schur convex on the majorization lattice iff f(x) = F(9x) is
monotone on the vector lattice.

Proof. Again a direct result of the bijection between the two lattices. If f is differentiable,
f is monotone on the vector lattice iff Vf(x) = (9f/dz1---0f/dzn) > .. 0, which implies
oF oF a9 a9
ox; (%) - 0T iy1 (0%) = ox; (F(@x)) = ox;

fx) > 0 (1<i<n-1).

This rederives the result that dF/Jdz; > 0F/3zi+1 when F is Schur convex [34]. D

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 21

Since monotonicity and convexity are related, Theorems 4.5-4.9 connect convexity, sub-
modularity, Schur convexity, and majorization. There are actually many connections. See
the survey [27, ch.6], in which submodular functions are called £-subadditive functions.
Just as Lovdsz showed for submodular functions [25], Schur convex functions [37, 29] are
closed under various operations: min, max, convolution, composition with convex functions,
etc. [27, ch.3]. Theorem 4.5 is also reminiscent of symmetric gauge functions, which are
Schur convex; see [27, p.96].

5. Huffman Coding as Submodular Dynamic Programming. The results
of the previous sections can now be applied to Huffman coding.

5.1. Non-monotonicity of Weighted Path-Length over the Lattices. It
is important to realize that weighted path-length is not monotone on the imbalance lattice,
so greedy search may not always find its way to an optimal solution. This is illustrated by
the example in Figure 4.1. For this problem the sequence (223344455) with cost 1298
is a local minimum: each of the 7 sequences reachable from it by imbalancing exchanges,
and each of the 3 sequences reachable from it by balancing exchanges, have greater weighted
path length. The diagram shows only the transitive reduction of the imbalance lattice,
omitting many balancing exchanges (because they would clutter the picture), but it conveys
the general situation for larger Huffman coding problems. It shows that, even though it may
do very well in practice, simple hill-climbing along ternary exchanges is not guaranteed to
find the optimum sequence.

Although weighted path length g is not monotone on the imbalance lattice of trees, a
monotone summary of weighted path length g "°" has the properties we need.

In [25, p.241], Lov4sz stated the following definition and theorem for set lattices (easily
proved for general lattices) about the ‘monotonization’ of a function f:

DEFINITION 5.1. If f: L — Ry is a real-valued function on a lattice L with ordering
relation T, define

F™Mx) = min { f(x') | x' C x 1.

THEOREM 5.2. If f is submodular, then f™°" is also submodular.

Proof. From the definition of f™°" for all x, y in £, there exists a x’ C x such that
F7M(x) = f(x') and a y' C y such that f™°*(y) = f(y'). But then (x' My’) C (xMy) and
(x' Uy C (xUy), so

freixny) < MM Ny < f(E Ny,
fmon(xuy) < fmon(xl I_Iy') < f(X/ I_Iy')
< fx"H + f¥H (as f is submodular)

Thus gw"°" is both submodular and monotone on the tree imbalance lattice.

5.2. Dynamic Programming reconstruction of the Huffman Algorithm.
Based the analysis above, we can derive Huffman codes using a simple recursion.

DEFINITION 5.3. The Huffman contraction w™ of a descending weight sequence
W= {(w - wy) is

w = sort] ({ w1 -+ wp—2 (Wn_1+wy))).

Parenthetically, note that £~ = —log,((Z_E)ﬁ) for path-length sequences £.

22 D.S. PARKER AND P. RAM

If n > 1 is the length of w, then the (most balanced) Huffman code for w is defined by

) (0) if n=1
Huffman(w) =
better_expansion(Huffman(w™), w) if n>1

better_expansion(£,w) =
A otherwise.

{ o if ge(ty) < gw(eh)

For example, the example in Figure 4.1 can be traced through Figure 3.3 and Table 2.2:

Huffman((189 957371232118 91)) = (133355566)
Huffman((189 9573 7123211810)) = (13335555
Huffman({ 189 95 73 71 28 23 21)) = (1333455)
Huffman({ 189 95 73 71 44 28)) = (133344)
Huffman({ 189 95 73 72 71)) = (13333)
Huffman({ 189 143 95 73)) = (1233)
Huffman({ 189 168 143)) = (122)
Huffman({ 311 189)) = (11)

Huffman({ 500)) = (0).

This dynamic programming definition is similar to the standard Huffman algorithm, but
differs in a few ways. First, it considers only upper and lower expansions of Huffman(w™);
we prove momentarily that this is sufficient. Second, it produces a unique Huffman code,
which is the most balanced possible because it uses lower expansions whenever possible. (This
avoids the issue of multiplicity of solutions that arises in implementation of the standard
Huffman algorithm. For example, if w = (3221) then {123 3)is a Huffman code, but
the more balanced sequence (2 2 2 2) is also and will be produced by the algorithm above.)

Actually, the definition of Huffman(w) can be “simplified”. Note that when

2k

¢ = Huffman(w™) = (- (¢=5) T)

with suffix length 2k and suffix increment j, the condition on better_expansion (£, w) is:

gwlts) < gw(th)
& gwll) + wnok—1 — (=) wnok + quwn < gw(€) + wnor + (¢ 1) ws
< Wn—2k—1 — (]_1) Wn—2k S Wn—1 + Wn.
Going further, the proof of Theorem 5.5 below implies that this condition actually can be
simplified to take j =1, so that better_expansion (€, w) = €4 if wp_2x—1 < Wp_1 + Wn.

THEOREM 5.4. Huflman(w) is the most balanced optimal code for w.

Proof. Let s = Huffman(w), so s is the cheaper of Huffman(w ™)+ and Huffman(w™)%,
or is the former (which is more balanced) if they have equal cost.

Only these two expansions need be considered. Like the usual Huffman algorithm, this
algorithm assigns wy,_1 and w, maximal path length. Therefore (wn_l + wn) must appear
in the “suffix” of w™, i.e., among the 2k 4 1 final entries, where 2k is the suffix length of
£ = Huffman(w™); and so it has path length either (¢ — 1) or ¢, corresponding to the two
possible expansions. Thus only Huffman codes are derived with the algorithm above.

Submodularity of gw """ now proves that there is a unique most balanced Huffman code
(and thus greedy search will find this code). Suppose that s and t are maximally balanced
Huffman codes that are not comparable in the balance ordering. Then gw™°"(t) = gw(t) =
gw(8). Because t is optimal gw "°"(3s Vt) = gw "°"(t). Submodularity of gw"'°" then implies
that gw ™" (s At) < gw " °"(s). By the definition of gw ™", gw " (s At) = gw "°"(s). But
then s At is optimal, hence a Huffman code, and it is more balanced than both s and t. This
gives a contradiction. 0O

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 23

THEOREM 5.5. Huffman(w™) = Huffman(w)~.

Proof. We prove this by induction on the length n of w. The base case n = 2 is trivial.

For the induction step, let s = Huffman(w), so by the previous theorem s is the most
balanced optimal code for w. Let £ = Huffman(w™). As w™ has length (n — 1), £ is the
most balanced optimal code for w™ by the induction hypothesis. By definition s is the better
(cheaper or more balanced if equally cheap) of £% or £,. We consider these two possibilities.

First, if s = £, then £ = s~ as required, because £ = (£¥)~ by Theorem 3.9.

Second, if s = £y, then wp_ok—1 — (j—1) Wn—2x < Wp_1 + Wy, where 2k is the suffix
length of £, j is its suffix increment, and by Theorem 3.1, j < log,(2k) or equivalently
2971 < k. If j =1 we find again £ = s~ as required.

We now claim that j > 1 cannot arise in this second possibility where s = £€4. Let us first
understand intuitively why this is so. When the suffix length j >1,€={ --- (¢—3j) ¢ -+ q)
describes a tree that is perfectly balanced over its suffix, but the rest is at least j levels shorter.
The Huffman algorithm will construct such a tree only when the final 2k weights of w™ are
all of similar size, but wyp_2x—1 is much larger. Specifically, wn_1 + wn < Wn_2r—1, and
Wpn—2k—1 18 constrained to be larger than the sum of the 271 subsequent weights, or the
Huffman algorithm would construct a different tree. But wy,_2x—_1 is also constrained to be
small by the inequality in the definition of the Huffman algorithm; if it becomes too large,
we get s = £ instead of s = £4. These two constraints turn out to not be simultaneously
satisfiable when 7 > 1.

Supposing that j > 1 and s = €4, then, since wyp_1 + wn < Wp_26—1 We have two cases:

1. wp—3 2 wp—1 + wy.
Let W = wn_3. Then wp_ok_1 > wn_ok + (ZJ_1 — l)W and 2W > wp_ar > W,
since j > 1implies 2k > 4 by Theorem 3.1, £,_2x_1 = (¢—j), and £ = Huffman(w ™)
is constructed by the Huffman algorithm. These give the first bound

Wno2hzl 14 @7 —1)2 = P42
Wn—2k

However, from wyp_2k—1 — (j—1) wn—2r < wp_1 + wy it follows that
Wn—ok—1 > Wp_ok + (27T -1)W
Z Wn_2k + (2J_1 - 1) (wn—l + wn)
> wnook + (2270 = 1) (wpe2k1 — (5—1) wn—ok).

When j = 2, this simplifies to wp_25—1 > wp—_25—1, a contradiction. When 5 > 2,
it gives the second bound

W21 (—1) — 1)@~ =1
Wn_2k 1 — 1/(29-1 = 1)

However this contradicts the first bound for all 57 > 2.

2. Wn—2k—1 > Wp—1 + Wp > Wp—_3.
Like the previous case, but this time when W = w,,_3 we can derive only the weaker
condition W > (wn_1 + wy)/2, because wp_3 > wp_1 > wy. Still, the same first
bound, essentially the second bound (with (2?~' — 1) divided by 2), and the same
contradictions, are derivable.

Thus all cases reach a contradiction, implying as required that, in the second possibility,
j=1land £=s".0

5.3. The importance of submodularity in Dynamic Programming. To-
gether, Theorems 5.4 and 5.5 show that Huffman coding (finding the most balanced code

97 is a dynamic programming problem that can be solved in various

that minimizes g¢w
ways, because the problem enjoys elegant recursive properties.

Huffman coding gives another example of a dynamic programming problem that can be
sped up considerably because the objective function is submodular over the solution space.

Lawler [24] remarked:

24 D.S. PARKER AND P. RAM

If a discrete optimization problem can be solved efficiently, it is quite Iikely
that submodularity is responsible. In recent years there has been a growing
appreciation of the fact that submodularity plays a pivotal role in discrete
optimization, not unlike that of convexity in continuous optimization.

Submodularity has a long history in dynamic programming. By 1781, Monge had found
a form of submodularity to be important in simplifying the transportation problem [17].
In 1970, Edmonds [6] related submodularity to matroids and greedily-solvable optimization
problems. In 1980, Yao [42] generalized upon Knuth’s famous O(r?) algorithm for optimum
binary search trees [21] by giving an O(n?) algorithm for the dynamic programming problem

c(i,iy = 0

(i) = wij) + minicng (c(ib=1) +e(k,§)) (i <j)
w(i,f) < w(lj’) (i <i<j <)

wiyj) + w(@) < wly) + owig) (< <G <)

Yao called the final constraint the quadrangle inequality, noting that it implies the (in-
verse) triangle inequality. Writing 7 = [4, 5] and J = [¢,j'], defining a lattice of intervals
of indices in the dynamic programming array, these two constraints require the function
W ([a,b]) = —w(a,b) to be monotone decreasing (W(I) > W(J) if I C J) and submodular
W+ W(J)>W({INJ)+W(IU.J)). Results from exploiting the quadrangle inequality
in dynamic programming appear in [2, 7, 35] for problems ranging from DNA sequencing to
minimum cost matching.

Mirroring Theorem 4.7, the Monge condition w;; 4+ wit1,41 < Wit1,; + Wij41
on an n X n weight matrix W is also equivalent to the requirement that, ignoring its first
column and row, the matrix 8 W 8 T s nonpositive. Burkard et al. have also compiled a
comprehensive survey of many incarnations of the Monge condition in [4].

Recently Klein explored the connection between dynamic programming and submodu-
larity [20]. Also Golin and Rote [14] developed dynamic programming algorithms for prefix
codes when the codeword letters have differing costs, a useful case not handled by Huffman’s
algorithm; and they recently extended this work to exploit the Monge property.

6. Other Applications. The results here also can be used to gain further insight
about submodular dynamic programming, the Huffman coding problem, and perhaps also
about the applications of lattice concepts in coding. Almost all of the theorems proved
here admit interesting extensions and/or special cases. For example, a direct corollary of
Theorem 4.3 (using w = (1 --- 1)) is that the function mapping a path-length sequence to
its level of balance is submodular on the imbalance lattice. It would be interesting to extend
the work here for the t-ary codes discussed in [19].

Majorization, we believe, can be exploited further in characterizing optimal codes. We
have established that the imbalance ordering on tree path-length sequences £ is isomorphic
to the majorization ordering on exponentiated tree path-length sequences x = 2_£. Thus
any function that is Schur convex (i.e., ‘majorization-preserving’: monotone with respect
to the majorization ordering) on exponentiated path-length sequences and hence monotone
on the (continuous) majorization lattice, will also be monotone on the (discrete) imbalance
lattice. Negative entropy is an important example of such a function; related functions are
discussed in [32].

Furthermore, the methods developed above hold out hope for entirely new approaches
to Huffman coding. We sketch two possibilities.

6.1. Continuous Approximation of Huffman Codes. One possibility is that
we can attack the combinatorial problem of Huffman coding with a continuous, real-valued
optimization problem. Recall Huffman coding can be expressed as an optimization problem:

minimize Z:;l w; 4

subject to :.;1 27t = 1, £; >0, integer (1 <1:¢<mn).

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 25

Dropping the integrality constraint gives an interesting continuous relaxation of Huffman
coding that can be attacked numerically. For example, by treating the constraint as a
penalty function, the problem above can be solved numerically with something like the
system of equations J/9¢; (Z:;l wi £ + 101°(1 — 22‘;1 274)2) =001 <35 <n).
Using the example weight sequence w = (189 95 73 71 23 21 18 9 1) studied earlier, a
simple program found a unique real solution £ ~ (1.4 2.4 2.82.84.44.84.85.89.0) for
these equations, with objective &~ 1241. As expected, this solution is near the optimal
Huffman code (133355566), with cost 1276.

When the relaxation is faithful to the original, it will be possible to find optimal solutions
quickly. The relaxed solution can be used to jump to the right neighborhood in the imbalance
lattice, from which balancing exchanges will walk to the optimal code. The penalty function
could clearly be varied, and perhaps could be changed to encourage near-integral solutions.

Interior point methods on the majorization lattice may also be possible. Among other
things, it may be possible to define s A t in terms of —og, (2_5 mn 2_t) and define s V t in

terms of —log, (2_5 u 2_t): they are often identical, and always satisfy
2—5/\t j 2—5 |_|2—t’ 2—5 |_|2_t j 2—5\/t

(because 27° M 27% and 27° U 27F are the glb and lub with respect to majorization).
For perspective, if &« = 7 —log,(12) ~ 3.4150375 and § = (a — 1), the following set
of examples represent the unusual cases with n = 9 where og, (2_5 n 2_t) # (s A t)or

—log, (2_5 u 2_t) #(s V)

s t —og, (275 1 27%) sAt
(124555555) (133345677) (133a55555) (133445555)
(124555555) (222345677) (222a55555) (222445555)
(134444455) (222345677) (220444455) (223344455)

s t —og, (27° U 27%) sVt
(144444444) (222345677) (145345677) (133345677)
(144444444) (222346666) (143346666) (133346666)
(144444444) (222355566) (144355566) (133355566)
(144444444) (222444566) (145444566) (133444566
(144444444) (222445555) (145445555) (133445555)

These examples suggest there may be algorithms that ‘round up’ —og, (2_5 n 2_t) to
give s A t, and ‘round down’ —og, (2_5 u 2_t) to give s V t.

6.2. Practical Applicationsin Adaptive Coding. In many practical situations
it is difficult or impossible to know a priori the weights w used in Huffman coding. A natural
idea, which occurred independently to Faller [8] and Gallager [11], is to allow the weights to be
determined dynamically, and have the Huffman code ‘evolve’ over time. Dynamic Huffman
coding is the strategy of repeatedly constructing the Huffman code for the input so far, and
using it in transmitting the next input symbol. Knuth presented an efficient algorithm
for dynamic Huffman coding in [22], and his performance results for the algorithm show
it consistently producing compression very near (though not surpassing) the compression
attained with static Huffman code for the entire input.

Vitter [40, 41] then developed a dynamic Huffman algorithm that improves on Knuth’s
in the following way: rather than simply revise the Huffman tree after each input symbol,
Vitter also finds a new Huffman tree of minimal external path length Zl £; and height
max; £;. With this modification Vitter was actually able to surpass the performance of static
Huffman coding on several benchmarks.

A small contribution we can make is to clarify the improvement of Vitter. Basically,
Vitter’s algorithm differs from Knuth’s in constructing the optimal path-length sequence that
s also as balanced as possible. Note that minimizing the external path length Zi& is

26 D.S. PARKER AND P. RAM

identical to maximizing the level of balance. Since there can be more than one optimal code,
and unnecessary imbalance tends to penalize the symbol currently being encoded, insisting
on maximally balanced codes improves performance.

Another contribution of the lattice perspective here is to encourage development of new
adaptive coding schemes. As suggested in Section 5.1, a move between adjacent points in
the lattice corresponds to minor alteration of codes, and by moving through the lattice we
incrementally modify the cost of a code. Hill-climbing then gives greedy coding algorithms,
and on-line hill-climbing gives adaptive coding algorithms. Although we have shown that the
codes produced by hill-climbing are not guaranteed to be optimal, lattice-oriented adaptive
coding algorithms may still have a role to play in some coding situations, since the Huffman
notion of optimality is not really what is needed in the (currently popular and enormously
important) adaptive context.

For example, adaptive coding algorithms can start at any point in the lattice, as long as
both ends of the communication know which one. Rather than rely on the dynamic Huffman
algorithm to derive reasonable operating points for the code, or rely on Knuth’s ‘windowed’
algorithm [22], one can immediately begin with a mutually-agreed-upon, ‘reasonable’ initial
code (depending on the type of information being transmitted), and then adapt this code
using some mutually-agreed-upon greedy algorithm for moving in the imbalance lattice.

Acknowledgements. We are very grateful to Pierre Hasenfratz for insightful com-
ments that improved this paper. A conversation with Mordecai Golin, who provided us with
an expanded version of [14], inspired us to discuss dynamic programming explicitly in this
paper. He also pointed out the survey [4] to us. Also, we are indebted to two anonymous
referees for clarifications of the exposition, especially of the significance of submodularity
and of Shannon’s work [38].

REFERENCES

[1] J. ABraHAMS, Code and Parse Trees for Lossless Source Encoding, Proc. Compression & Com-
plexity of Sequences (SEQUENCES’97), Positano, Italy, 1997, IEEE Press, to appear.

[2] A. AGGARWAL, A. Bar-Noy, S. KHULLER, D. KRAVETS, B. SCHIEBER, Efficient Mintmum Cost
Matching and Transportation using the Quadrangle Inequality, J. Algorithms, 19:1 (July
1995), pp. 116-143.

[3] A. BERMAN, R.J. PLEMMONS, Nonnegative matrices in the mathematical sciences, SIAM, 1994.

R.E. BurkaArD, B. KLINZ, R. RUDOLF, Perspectives of Monge properties in optimization, Dis-

crete Applied Math., 70 (1996), pp. 95-161.
[5] B.A. Davey, H.A. PRIESTLEY, Introduction to Lattices and Order, Cambridge U. Press, 1990.
[6] J. EDMONDS, Submodular Functions, Matroids and Certain Polyhedra, in Combinatorial Struc-
tures and their Applications, R. Guy et al., eds., Gordon & Breach, 1970, pp. 69-87.
[7] D. EppsTEIN, Z. GALIL, R. GiaNCARLO, G.F. ITALIANO, Sparse dynamic Programming. II.
Convez and concave cost functions, Journal of the ACM, 39:3 (July 1992), pp. 546-567.
[8] N. FALLER, An adaptive system for data compression, Pacific Grove, CA: Record of the Tth
Asilomar Conference on Circuits, Systems, and Computers, 1973, pp. 593-597.
[9] S. FuJisHIGE, Submodular functions and optimization, North-Holland Elsevier, 1991.
[10] R.G. GALLAGER, Information Theory and Reliable Communications, J. Wiley, 1968.
[11] R.G. GALLAGER, Vartations on a theme by Huffman, IEEE Trans. Information Theory, IT-24:6
(November 1978), pp. 668—674.

[12] E.N. GILBERT, Codes Based on Inaccurate Source Probabilities, IEEE Trans. Information The-
ory, IT-17:3 (May 1971), pp. 304-314. g(NN) is analyzed on p. 309.

[13] C.R. GLasseYy AND R.M. KaRP, On the optimality of Huffman trees, SIAM J. Appl. Math., 31

(1976), pp. 368-378.

[14] M.J. GoLIN, G. ROTE, A dynamic programming algorithm for constructing optimal prefiz-free
codes for unequal letter costs, Proc. ICALP 95, Z. Fulop, F. Gecseg, eds., Springer-Verlag,
1995, pp. 256-267.

=

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 27

R.L. GrRAHAM, Applications of the FKG Inequality and its Relatives, in Mathematical Program-
ming: The State of the Art, B. Korte, A. Bachem, M. Grotschel, eds., Springer-Verlag, 1983,
pp. 115-131.

G.H. HarDy, J.E. LITTLEWOOD, G. POLYA, Inequalities, Cambridge University Press, 1934.

A.J. HoFFMAN. On Simple Linear Programming Problems, in Convexity, Proc. Seventh Sym-
posium in Pure Mathematics, Vol. VII, V. Klee, ed., AMS, 1961, pp. 317-327.

D.A. HUFFMAN, A method for the construction of minimum redundancy codes, Proc. IRE, 40
(1951), pp. 1098-1101.

F.K. HwaNG, Generalized Huffman Trees, SIAM J. Appl. Math., 37 (1979), pp. 124-127.

C.M. KLEIN, A submodular approach to discrete dynamic programming, European J. Opera-
tional Research, 80:1 (Jan. 1995), pp. 145-155.

D.E. KNUTH, Optimum Binary Search Trees, Acta Informatica, 1 (1971), pp. 14-25.

D.E. KNUTH, Dynamic Huffman Coding, J. Algorithms, 6 (1985), pp. 163-180.

E. LAWLER, Combinatorial Optimization: Networks € Matroids, Holt-Rinehart-Winston, 1976.

E.L. LAWLER, Submodular Functions & Polymatroid Optimization, in Combinatorial Optimiza-
tion: Annotated Bibliographies, A.H.G. Rinnooy Kan, M. O’hEigeartaigh, J.K. Lenstra,
eds., J. Wiley & Sons, 1985, pp. 32—-38.

L. Lovasz, Submodular functions and convexity, in Mathematical Programming: The State of
the Art, B. Korte, A. Bachem, M. Grétschel, eds., Springer-Verlag, 1983, pp. 235-257.

U. MANBER, Introduction to Algorithms, Addison-Wesley, 1989.

A.W. MARSHALL, I. OLKIN, Inequalities: Theory of Majorization and Its Applications, Aca-
demic Press, 1979.
H. NARAYANAN, Submodular functions and electrical networks, North-Holland Elsevier, 1997.
A. OSTROWSKI, Sur gquelques applications des fonctions convexes et concaves au sens de I
Schur (offert en homage ¢ P. Montel), J. Math. Pures Appl., 31 (1952), pp. 253-292.
J.M. PaLLO, Enumerating, ranking and unranking binary trees, Computer Journal, 29:2 (April
1986), pp. 171-175.

J.M. PaALLO, Some properties of the rotation lattice of binary trees, Computer Journal, 31:6
(Dec. 1988), pp. 564-565.

D.S. PARKER, Conditions for Optimality of the Huffman Algorithm, SIAM J. Comput., 9:3
(August 1980), pp. 470-489.

D.S. PARKER, P. RaM, Greed and Majorization, November 1994. Issued as Technical Report
CSD-960003, UCLA Computer Science Dept., March 1996.

D.S. PARKER, P. RaM, A Linear Algebraic Reconstruction of Majorization, Technical Report
CSD-970036, UCLA Computer Science Dept., September 1997.

U. PFERscHY, R. RuDoLF, G.J. WOEGINGER, Monge matrices make mazimization manageable,
Operations Research Letters, 16 (1994), pp. 245-254.

G.-C. RoTa, On the Foundations of Combinatory Theory I. Theory of Mdébius Functions, Z.
Wahrscheinlichkeitstheorie, 2 (1964), pp. 340-368.

I. SCHUR, Uber eine Klasse von Muttelbildungen mit Anwendungen auf die Determinantenthe-
orie, Sitzungsber. Berl. Math. Ges., 22 (1923), pp. 9-20.

C.E. SHANNON, The Lattice Theory of Information, Proc. IRE Trans. Information Theory, 1
(1950). Reprinted in Claude Elwood Shannon: Collected Papers, IEEE Press, 1993.

N.J.A. SLOANE, S. PLOUFFE, The Encyclopedia of Integer Sequences, Academic Press, 1995.

J.S. VITTER, Design and Analysis of Dynamic Huffman Codes, J. ACM, 34:4 (October 1987),
pPp. 825-845.

J.S. VITTER, Algorithm 673: Dynamic Huffman Coding, ACM TOMS, 15:2 (June 1989),
pp. 158-167.

F.F. Yao, Efficient dynamic programming using quadrangle inequalities, Los Angeles, CA:
Proc. 12th Annual ACM Symp. on Theory of Computing, 1980, pp. 429-435.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

