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Restorability versus Efficiency in (1:1)n

Protection Schemes for Optical Networks
David Griffith, Kotikalapudi Sriram, SuKyoung Lee, Stephan Klink, and Nada Golmie

Abstract— As network utilization continues to grow in the
coming years, there will be increased pressure on network
operators to use traffic engineering to provision resources more
efficiently. One way to do this is to allow backup paths associated
with disjoint working paths to share bandwidth. Increasing
the amount of sharing will naturally increase the risk that
a failed working path will either be unrecovered or forced
to use dynamic recovery mechanisms. To examine the trade-
offs between robustness and efficiency and to develop useful
performance bounds, we develop theoretical models for (1:1)n

recovery schemes that are independent of the network’s topology
and management plane. We confirm our results using simulations
of uncorrelated failures in a wide-area optical network with
various degrees of resource sharing.

I. I NTRODUCTION

Optical networks are moving from SONET/SDH to
ASON/ASTN architecture and a GMPLS control plane, al-
lowing for more flexible operations but incorporating more
complexity. ASON/ASTN networks must be able to recover
from failures, hence the emerging standards support 1+1, 1:1,
M:N, and other recovery modes for path, subpath, and span
recovery. For the sake of efficiency, backup paths can share
resources. The IETF introduced (1:1)n and (M:N)n notation
to describe recovery schemes that are composed of multiple
recovery schemes that share backup resources [1], [2]. In this
paper, we consider the trade-off between recoverability and
efficiency in (1:1)n schemes. We have already examined the
(M:N)n case in another paper [3].

This paper is organized as follows. In Section II we intro-
duce basic concepts and describe the theoretical framework
that we use in our analysis. In Section III we derive lower
and upper bounds for the recovery blocking probability for
(1:1)n recovery schemes. In Section IV we present numerical
results obtained from network simulations and compare them
to the results of our theoretical analysis.

II. SYSTEM MODEL

A (1:1)n recovery scheme comprisesn 1:1 recovery groups,
each of which consists of a pair of working and backup
paths denoted as(WPi, BPi). Normal traffic is carried on the
working path, while the backup path may be used to carry
extra traffic that would be preempted if the normal traffic
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were displaced by a failure. All WPs are mutually disjoint,
i.e. WPi ∩WPj = ∅ if i 6= j.

For all the models that we will consider, we use a Boolean
sharing matrixS to describe the degree of resource overlap
among the set of backup paths, where each elementsij is
defined as follows.

sij =
{

0, BPi ∩ BPj = ∅
1, BPi ∩ BPj 6= ∅ (1)

For example, a set ofn 1:1 protection groups whose backup
paths do not overlap has a sharing matrix that is then × n
identity matrix.

A connectivity graph for a recovery scheme with sharing
matrix S can be created by associating a labeled vertex
with index i ∈ {0, 1, . . . , n} to each 1:1 protection group
and drawing an edge between each pair of verticesi and
j if sij = 1. If this graph is connected, we say that the
associated recovery scheme isirreducible. A disconnected
connectivity graph corresponds to areduciblerecovery scheme
that can be decomposed into two or more independent irre-
ducible recovery schemes, each of whose size is less than
n. The number of irreducible recovery schemes of sizen is
1, 1, 4, 38, 728, 26704, . . . for n = 1, 2, 3, 4, 5, 6, . . . (Sequence
A001187 in [4]). We obtain this sequence by taking the inverse
Euler transform of the sequencexn = 2n(n−1)/2. From this
discussion, it is clear there are many possible sharing arrange-
ments for a recovery system of sizen, and analyzing them all
is not practical. However, we can generate upper and lower
performance bounds for all possible (1:1)n recovery schemes
by considering systems that feature, respectively, the minimum
and maximum possible degrees of resource sharing. These
bounds will allow a network operator to quickly determine the
amount of backup resource sharing that is acceptable given the
prevailing conditions in the network.

We now provide some definitions that will be used in the
theoretical development. Asymmetricrecovery scheme is one
in which then 1:1 recovery groups can be labeled such that all
the elements of each diagonal of the resulting sharing matrix
S have the same value, i.e.sij = skl if |i − j| = |k − l|. A
minimally connectedsymmetric scheme is characterized by a
sharing matrixS whose elements are given by

sij =
{

1, |i− j|mod n−1 ≤ 1
0, else.

(2)

Conversely, amaximally connectedsymmetric scheme is char-
acterized by a sharing matrix in whichsij = 1 for all i andj.
The corresponding resource sharing graph is fully connected,
i.e., each vertex has degreen− 1.
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We provide an example to illustrate these concepts. In
Fig. 1(a) we show an optical network in which four working
paths are organized into a (1:1)4 recovery scheme that is
symmetric and minimally connected. For example, consider
recovery group 1, which consists of a working path whose
route isAB and a backup path whose route isAEFB. Group
1 shares recovery resourcesAE andFB with recovery groups
2 and 4, respectively. These sharing relationships are depicted
in the resource sharing graph shown in Fig. 1(b). From the
form of the graph, we see that the recovery scheme depicted
in Fig. 1(a) is a symmetric minimally connected scheme. The
corresponding sharing matrix is

S =




1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1


 . (3)
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Fig. 1. (a): An example optical network supporting a (1:1)4 recovery scheme.
(b): The associated resource sharing graph.

To model a general (1:1)n recovery scheme, we defineλ to
be the rate of working path failures over the entire network,
and we defineµ to be the rate of repair, so that the mean time
to repair a failed working path is1/µ. Failures and repairs
are characterized by Poisson point processes. We assume that
sufficient resources are available to the network operator so
that failed WPs can be repaired in parallel, i.e., the mean repair
time is not state-dependent. The state of the system is given
by a Boolean vectorw of lengthn, where theith elementwi

is 1 if WPi is in a failed state and its traffic is using BPi and
is 0 otherwise. Thus, if alln working paths are operational,
the state vector has valuew = 0. We defineF (w) to be the
number of failed WPs when the system is in statew. It can
be computed as

F (w) =
n∑

i=1

wi. (4)

If a working path has failed and other backup paths share
resources with its backup path, the ability of those working
paths to recover from failures can be compromised. Consider
an arbitrary working path WPj . The set of working paths
whose respective backup paths share resources with BPj is
{WPi : sij = 1}, so we can definevj =

∑n
i=1 wisij to be

the number of failed working paths, including WPj , that are

using resources that are shared by BPj . Using this definition,
it follows that the row vectorv = {vj} can be computed as
v = wS.

If the (1:1)n system is in statew with F (w) = m, then
n−m WPs are operational, but some of them may not be able
to recover in the event of a failure. We say that a working path
WPi is blocked if there exists at least one backup path BPj

such thatsij = 1 and BPj is being used. Blocked WPs are
assumed to be recovered by using dynamic rerouting while
keeping the same BP. We can determine, for a given state
w, how many functioning WPs are blocked as follows. We
defineB(w) to be the number of functioning WPs that will
be blocked if they fail. A working path WPi is functioning if
wi = 0 and blocked ifvi > 0, so B(w) is given by

B(w) =
n∑

i=1

I{0}(wi)IZ+(vi), (5)

whereZ+ is the set of positive integers and whereIA(x) is
an indication function that returns a Boolean value based on
the membership of the argument elementx in the setA:

IA(x) =
{

0, x 6∈ A
1, x ∈ A.

(6)

Becausew is a Boolean vector,I{0}(wi) = 1−wi is a valid
indication function. Likewise we can useIZ+(vi) = 1−δ(vi),
whereδ(vi) is the Kronecker delta function. This leads to the
following expression:

B(w) =
n∑

i=1

(1− wi)(1− δ(vi)). (7)

Similarly, for a statew, we defineU(w) to be the number of
functioning WPs that will not be blocked if they fail (because
no BPs that share resources with their BPs are being used). A
1:1 group meets this criterion if its WP failure indicatorwi is
zero and if its BP usage measurevi is also zero. ThusU(w)
is

U(w) =
n∑

i=1

I{0}(wi)I{0}(vi) =
n∑

i=1

(1− wi)δ(vi). (8)

By combining (7) and (8) and using (4), we obtain

B(w) + U(w) =
n∑

i=1

(1− wi) = n− F (w), (9)

showing thatB(w) + U(w) + F (w) = n for any statew.
For the discussion that follows, it is useful to partition the

universal set of all allowable states into subsets based on the
number of active backup pathsF (w). If we defineW to be
the set of all statesw, we can define

Wm = {w : F (w) = m} (10)

for m = 0, 1, 2, . . . , n. For example,W0 = {0}. Clearly
{Wm}n

m=0 is a cover ofW, i.e.W =
⋃n

m=0Wm.
We can illustrate the partitioning of the state space using

the following example. Consider the state transition diagram
shown in Fig. 2. Here four 1:1 protection groups are organized
into a minimally connected symmetric recovery scheme of
the type depicted in Fig. 1, withS given by (3). Fig. 2
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shows transition rates between states; for instance, the balance
equation for state[0 0 0 1] can be written by inspection as

(λ + µ)p[0 0 0 1] = λp[0 0 0 0] + µp[0 1 0 1], (11)

wherepw is the steady state probability that the system is in
statew. The dashed lines in the figure indicate the partitioning
of W into subsetsW0, W1, andW2, based on the value of
F (w) associated with each state. Note thatW3 = W4 = ∅.
In fact, for any symmetric irreducible recovery scheme of size
n, Wm = ∅ if m > bn/2c, wherebxc is the largest integeri
that satisfiesi ≤ x.

λ
µ

0 0 0 0

1 0 1 0

0 0 1 01 0 0 0

0 1 0 1

0 1 0 0 0 0 0 1
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µ
λ

µ
λ

µ
λ
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µ

µ
λ

λ
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 (   ) = 0F w

 (   ) = 1F w

 (   ) = 2F w

Fig. 2. State spaceW for a minimally connected recovery scheme where
n = 4, showing transition rates and partitioned into subsetsWm based on
the value ofF (w).

In order to compute performance metrics for different (1:1)n

recovery schemes, we need to determine the steady state
probabilitiespw for all w ∈ W. The solution for a (1:1)n

recovery scheme with an arbitrary sharing matrixS is given
by the following theorem.

Theorem 1:Given a recovery scheme with sharing matrix
S. For any statew ∈ W, if F (w) = m, then pw = rmp0,
wherer = λ/µ andp0 is the steady-state probability of being
in statew = 0.

Proof: Because the arrival and departure processes that
characterize the system are Poisson, it is not possible to have
multiple simultaneous failure or repair events, since these
occur in an interval of length∆t with probability o(∆t). For
any statew ∈ Wm, the only allowable transitions to or from
other states involve statesw′ whose Hamming distance from
w, d(w,w′) =

∑n
i=1 |wi − w′i|, is unity. SinceF (w) = m,

the states to which the system can transition fromw can be
grouped into two sets,Am−1 ⊆ Wm−1 andAm+1 ⊆ Wm+1,
wherex ∈ Am−1 if F (x) = m − 1 and d(w,x) = 1, and
similarly for y ∈ Am+1. F (w) and U(w) are the size of
setsAm−1 andAm+1, respectively. The portion of the state
transition diagram consisting of the states inAm−1 ∪ {w} ∪
Am+1 is shown in Fig. 3. Other transitions from the states in
Am−1 andAm+1 may exist, but we do not show these for
the sake of clarity. The global balance equation forw can be
written as

0 = −(U(w)λ + F (w)µ)pw + λ
∑

x∈Am−1

px + µ
∑

y∈Am+1

py. (12)

This equation can be decomposed into a set of local balance
equations as follows, wherer = λ/µ:

pw = rpx ∀x ∈ Am−1 (13)

py = rpw ∀y ∈ Am+1 (14)

(   )F w
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λµ

λµλ µ

λ µλ
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...

states

states(   )U w

Fig. 3. Probability flux into and out of statew. The states at the top compose
setAm−1 while those at the bottom compose setAm+1.

Letting w = 0 produces a set ofU(0) = n local balance
equations whose solution ispy = rp0 ∀y ∈ A1 = W1. If
we assume that there exists a positive integerk such that
pw = rmp0 ∀w ∈ Wm, wherem = 0, 1, . . . , k, then using
the local balance equations for eachw ∈ Wk+1 gives pw =
r(rkp0) = rk+1p0. So by induction we havepw = rmp0

∀w ∈ Wm. Furthermore, inserting this result into the global
balance equation (12),

0 = −(U(w)
λm+1

µm
+ F (w)

λm

µm−1
)p0

+ F (w)λ
λm−1

µm−1
p0 + U(w)µ

λm+1

µm+1
p0, (15)

produces an expression that holds for allw ∈ W.
Applying the normalization condition

∑
w∈W pw = 1, we

have

1 = p0 +
n∑

m=1

∑

w∈Wm

pw. (16)

Using the result of Theorem 1 in (16), we obtain the following
expression forp0:

p0 =

(
1 +

n∑
m=1

rm|Wm|
)−1

. (17)

III. R ECOVERY BLOCKING PROBABILITY BOUNDS

We define the recovery blocking probabilityPB to be the
probability that an arbitrary working path failure is blocked
due to a lack of backup resources. Consider theith 1:1
recovery group in a (1:1)n recovery scheme. The group can be
in one of two states, as shown in Fig. 4. The group transitions
from state 0 to state 1 only if its backup path is available;
otherwise it uses dynamic recovery to reroute the working
path. Once the group is in state 1 it waits an average of
1/µ units of time before the working path is repaired and
then transitions to state 0. The steady-state probability that
the group’s working path is using its backup path is

P1 =
λ(1− PB)

λ(1− PB) + µ
. (18)

The recovery blocking probabilityPB is therefore

PB =
λ− P1(λ + µ)

λ(1− P1)
=

r − P1(r + 1)
r(1− P1)

. (19)
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Fig. 4. State diagram for theith 1:1 recovery group in a (1:1)n recovery
scheme.

In order to find PB , we must first computeP1. Since the
recovery scheme is symmetric,P1 is the same for all 1:1
recovery groups (WPi,BPi), 1 ≤ i ≤ n. P1 is found by
summing the probabilities of all statesw wherewi = 1:

P1 =
∑

w∈W
wi=1

pw. (20)

We are now in a position to derive upper and lower bounds
for the recovery blocking probability, which are respectively
associated with maximally and minimally connected symmet-
ric recovery schemes. We examine the maximally connected
case first.

A. Maximally Connected Symmetric Recovery Schemes

Recall from our definition that a maximally connected
scheme is characterized by a sharing matrix in whichsij = 1
for all i andj. In such a scheme, the failure of a single working
path will cause the system to enter a state belonging toW1.
Now, |W1| = n, and∀w ∈ W1, F (w) = 1 andB(w) = n−1.
In other words, if any one working path fails the remaining
n− 1 working paths will be blocked. Thus the state space is
W = {0} ∪W1, andWm = ∅ for m > 1. From Theorem 1,
pw = rp0 for all w ∈ W1. We use (17) and find thatp0 is

p0 =
µ

µ + nλ
=

1
1 + nr

. (21)

HenceP1 = r/(1 + nr). Using this fact in (19), we get

PBU =
(n− 1)r

1 + (n− 1)r
(22)

as the upper bound for the recovery blocking probability.

B. Minimally Connected Symmetric Recovery Schemes

Next we consider the minimally connected case. We obtain
the recovery blocking probability by computing (20) and
inserting the result into (19). We have

P1 =
bn/2c∑
m=1

∑

w∈Wm
wi=1

pw

= p0

bn/2c∑
m=1

rm|{w : w ∈ Wm, wi = 1}|. (23)

In order to evaluate the above expression, we need to
computep0 and |{w : w ∈ Wm, wi = 1}|. Examining
(17), we find that meeting the first objective requires that we
determine|Wm| for m = 1, 2, . . . , bn/2c, which we do in the
following theorem.

Theorem 2:For a minimally connected symmetric recovery
scheme of sizen, the number of elements in the setWm is

|Wm| = n

m

(
n−m− 1

m− 1

)
. (24)

Proof: Each element of the setWm is a statew where
F (w) = m and no more than one working path uses a given
shared backup path. In the minimally connected case, the
degree of each vertex in the sharing graph is 2. Thus, if WPi

has failed, WPi−1 and WPi+1 (modulon) cannot be in a failed
state since BPi, which is in use, shares resources with BPi−1

and BPi+1. We can represent the configuration of WP failures
associated with each state inWm by modeling the sharing
graph as a ring of consecutively numbered urns{1, 2, . . . , n}.
A failed working path WPi is denoted by placing a single ball
into the corresponding urni. Thus a statew ∈ Wm can be
represented by placingm indistinguishable balls into the urns
so that there is no more than one ball in any urn and there
is at least one empty urn between any two urns with balls in
them.

For m = 1, there aren possible outcomes (ball in urn 1,
ball in urn 2, etc.), so|W1| = n. For m ≥ 2, there aren
places to put the first ball. Once the ball is placed into an urn,
no balls can be put into that urn or the two urns on either
side of it. We can therefore remove those three urns from the
ring, leaving a chain ofn − 3 urns into which we must put
the remainingm− 1 balls such that the two above conditions
are satisfied. Them − 1 balls, if placed in such a manner,
will partition the chain into groups of empty urns. We use
the symbol£ to represent an urn that contains a ball, and we
definexi to be the number of empty urns in theith group of
empty urns in the chain, where the first group is located at
the left end of the chain. If a ball is placed in the leftmost
urn, thenx1 = 0. Likewise, if a ball is placed in the rightmost
urn, thenxm = 0. Thus we can represent the chain of urns as
follows:

x1 £ x2 £ x3 £ · · ·£ xm−1 £ xm

wherex1 ≥ 0, x2 > 0, x3 > 0, . . ., xm−1 > 0, andxm ≥ 0.
Now definey1 = x1+1, y2 = x2, y2 = x3, . . ., y2 = xm−1,

andym = xm + 1. The ball placement problem is isomorphic
to determining that number of ways thaty1, y2, . . ., ym can be
added to producen−m. It is well known (see for instance [5])
that there areN−1CR−1 length-R vectors of positive integers
whose elements can be added to produceN . Thus there are
n−m−1Cm−1 ways thatm−1 failures can be arranged over a
chain ofn−3 nodes. Since the balls are indistinguishable, we
must divide this term bym, since we used one ball to break
the circle. We must also multiply this term byn because there
are n urns into which we can place the first ball. This gives
(24), completing the proof.

This leads immediately to the following corollary.
Corollary 3:

|{w : w ∈ Wm, wi = 1}| =
(

n−m− 1
m− 1

)
. (25)
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Proof: Let the first ball be dropped into urni. From
the proof of Theorem 2, the number of ways to arrange the
remainingm− 1 balls isn−m−1Cm−1.
Using the results of Theorem 2 and Corollary 3 in (23), we
obtain

P1 =

∑bn/2c
m=1 rm

(
n−m−1

m−1

)

1 +
∑bn/2c

m=1
nrm

m

(
n−m−1

m−1

) , (26)

which, using (19), gives

PBL = 1−
∑bn/2c

m=1 rm−1
(
n−m−1

m−1

)

1 +
∑bn/2c

m=1
(n−m)rm

m

(
n−m−1

m−1

) (27)

as the lower bound on the recovery blocking probability.
In Fig. 5 we plot values ofPBU andPBL. The upper limit

on r corresponds to a mean repair time that is 1% of the
mean time between failures, e.g. a mean repair time of 4
hours while a failure occurs every 17 days, on average. All
of the lower bound curves nearly overlap, so that they are not
distinguishable in the figure. Ifr is small, then a high degree of
sharing is possible; if we impose a constraint thatPB < 0.01,
we can use maximal sharing forn < 8 if r < 0.0015. Minimal
sharing works forr < 0.005 for all n; this suggests that we can
chain together large numbers of backup paths without penalty
as long as the probability is small that a WP’s neighbors in
the sharing graph fail while the WP is failed.
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Fig. 5. Theoretical upper and lower bounds onPB for n = 3, 4, . . . , 8.

IV. SIMULATION RESULTS AND ANALYSIS

We used the GLASS [6] simulation tool to perform discrete
event simulations for the case of minimally and maximally
connected symmetric recovery schemes for values ofn =
3, 4, . . . , 8. In each case we simulated the behavior of a single
recovery scheme of sizen; because the current practice is to
use dedicated backup resources for each new working path,
it is unlikely that (1:1)n schemes will incorporate more than
eight shared backup paths in the near future. Each of then
working paths was independently transitioned between failed
and healthy states with exponentially distributed durations

of 1/µ = 4 hours and400 hours ≤ 1/λ ≤ 4000 hours,
respectively. We computed the recovery blocking probability
by taking the ratio of the number of blocked failures to the
total number of failures (50,000 and 250,000 for the upper
and lower bounds, respectively) in each simulation run. In
Fig. 6, we plot the recovery blocking probabilities averaged
over three simulation runs. The error bars in the figure indicate
one standard deviation in the data. 40% of the data deviated
from the theoretical results in Fig. 5 by less than 1%; 10%
deviated by more than 3.1% and the greatest error was 5.7%.
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Fig. 6. Upper and lower recovery blocking probability bounds obtained from
simulation forn = 3, 4, . . . , 8.

V. SUMMARY

We have presented analytical models for (1:1)n shared
protection schemes, considering both maximally and mini-
mally shared schemes. We have validated the results of the
analytical models with the help of network simulation results.
The analysis and results reported in this paper are useful
for quantifying the trade-offs between the resource sharing
benefits vs. performance in terms of protection blocking.
Network operators can use these results to determine the
level of resource efficiency they can achieve for a specified
connection availability (or robustness) requirement.
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