
Generalized Multipartitioning

for Multi-dimensional Arrays∗

Alain Darte†

LIP, ENS-Lyon, 46, Allée d’Italie, 69007 Lyon, France.
Alain.Darte@ens-lyon.fr

Daniel Chavarŕıa-Miranda Robert Fowler John Mellor-Crummey
C. S. Dept., MS-132, Rice University, 6100 Main St, Houston, TX USA

{danich,rjf,johnmc}@cs.rice.edu

Abstract

Multipartitioning is a strategy for parallelizing com-
putations that require solving 1D recurrences along
each dimension of a multi-dimensional array. Previ-
ous techniques for multipartitioning yield efficient par-
allelizations over 3D domains only when the number
of processors is a perfect square. This paper considers
the general problem of computing multipartitionings for
d-dimensional data volumes on an arbitrary number of
processors. We describe an algorithm that computes an
optimal multipartitioning onto all of the processors for
this general case. Finally, we describe how we extended
the Rice dHPF compiler for High Performance Fortran
to generate code that exploits generalized multiparti-
tioning and show that the compiler’s generated code for
the NAS SP computational fluid dynamics benchmark
achieves scalable high performance.

1. Introduction

Line sweeps are used to solve one-dimensional re-
currences along each dimension of a multi-dimensional
discretized domain. This computational method is the
basis for Alternating Direction Implicit (ADI) integra-
tion – a widely-used numerical technique for solving
partial differential equations such as the Navier-Stokes
equation [4, 13, 15] – and is also at the heart of a

∗This research was supported in part by the Los Alamos Na-
tional Laboratory Computer Science Institute (LACSI) through
LANL contract number 03891-99-23 as part of the prime con-
tract (W-7405-ENG-36) between the DOE and the Regents of
the University of California.

†This work performed while a visiting scholar at Rice Uni-
versity.

variety of other numerical methods and solution tech-
niques [15]. Parallelizing computations based on line
sweeps is important because these computations ad-
dress important classes of problems and they are com-
putationally intensive.

However, parallelizing multi-dimensional line sweep
computations is difficult because for each of multi-
ple data dimensions, recurrences serialize computation
along that dimension. Using standard block partition-
ings, which assign a single hyper-rectangular volume of
data to each processor, there are two reasonable paral-
lelization strategies. A static block unipartitioning
partitions one of the array dimensions for the entire
computation. To achieve significant parallelism with
this type of partitioning, one must exploit wavefront
parallelism within each sweep. In wavefront computa-
tions, there is a tension between using small messages
to maximize parallelism by minimizing the length of
pipeline fill and drain phases, and using larger mes-
sages to minimize communication overhead in the com-
putation’s steady state when the pipeline is full. A dy-
namic block partitioning involves partitioning some
subset of the dimensions, performing line sweeps in all
unpartitioned dimensions locally, and then transpos-
ing the data (when necessary) between sweeps so that
each of the sweeps, in turn, can be performed locally.
While a dynamic block partitioning achieves better ef-
ficiency during a (local) sweep over a single dimension
compared to a (wavefront) sweep using a static block
unipartitioning, the cost of its data transposes can be
substantial.

To support better parallelization of line sweep com-
putations, a third sophisticated strategy for partition-
ing data and computation known as multipartition-
ing was developed [4, 13, 15]. This strategy partitions
arrays of d ≥ 2 dimensions among a set of proces-

sors so that for a line sweep computation along any
dimension of an array, all processors are active in each
step of the computation, load-balance is nearly perfect,
and only coarse-grain communication is needed. These
properties are achieved by (1) assigning each processor
a balanced number of tiles in each hyper-rectangular
slab defined by a pair of adjacent cuts along a par-
titioned data dimension and (2) ensuring that for all
tiles mapped to a processor, their immediate tile neigh-
bors in any one coordinate direction are all mapped to
some other single processor. We later refer to these two
properties as the balance property, and the neigh-
bor property respectively. A study by van der Wijn-
gaart [18] of strategies for hand-coded parallelizations
of ADI Integration found that 3D multipartitionings
yield better performance than static block or dynamic
block partitionings.

All of the multipartitionings described in the liter-
ature to date consider only one tile per processor per
hyper-rectangular slab along a partitioned dimension.
The most broadly applicable of the multipartitioning
strategies in the literature is known as diagonal mul-
tipartitioning. In 2D, these partitionings can be per-
formed on any number of processors, p; however, in 3D
they are only useful if p is a perfect square. We con-
sider the general problem of computing optimal mul-
tipartitionings for d-dimensional data volumes for an
arbitrary number of processors.

In the next section, we describe prior work in mul-
tipartitioning. Then, we present our strategy for com-
puting generalized multipartitionings. This has three
parts: an objective function for computing the cost of
a line sweep computation for a given multipartition-
ing, a cost-model-driven algorithm for computing the
dimensionality and tile size of the best multipartition-
ing, and an algorithm for computing a mapping of tiles
to processors. Finally, we describe an implementation
of generalized multipartitioning in the Rice dHPF com-
piler for High Performance Fortran. We show that it
yields scalable high performance when used to paral-
lelize the NAS SP [3] computational fluid dynamics
benchmark.

2. Background

Johnsson et al. [13] describe a 2D domain decom-
position strategy, now known as a multipartitioning,
for parallel implementation of ADI integration on a
multiprocessor ring. They partition both dimensions
of a 2D domain to form a p × p grid of tiles. They
use a tile-to-processor mapping θ(i, j) ≡ (i − j) mod p,
0 ≤ i, j < p, to map from the [i, j] coordinates of

12

13

14

15

0

1

2

3

4

5

6

7

8

10

11

9

12

13

14

15

0

1

2

3

4

5

6

7

10

11

9

8

0

1

2

3

4

5

6

7

10

9

12

13

14

15

8

11

0

1

2

3

4

5

6

7

10

11

8

9

14

15

13

12

k

j

i

Figure 1. A 3D Multipartitioning.

each tile to its corresponding processor. This parti-
tioning is an instance of a latin square [10]. Using
this mapping for an ADI computation, each processor
exchanges data with only its 2 neighbors in a linear or-
dering of the processors, which maps nicely to a ring.

Bruno and Cappello [4] devised a 3D partitioning
for parallelizing 3D ADI integration computations on
a hypercube architecture. They describe how to map a
3D domain cut into 2d × 2d × 2d tiles on to 22d proces-
sors with a tile-to-processor mapping θ(i, j, k) based
on Gray codes: θ maps tiles adjacent along the i or
j dimension to adjacent processors in the hypercube,
whereas tiles adjacent along the k dimension map to
processors that are exactly two hops distant. They also
show that no hypercube embedding is possible in which
adjacent tiles always map to adjacent processors.

Naik et al. [15] describe diagonal multipartition-
ings for 2D or 3D problems. Diagonal multiparti-
tionings are a generalization of Johnsson et al.’s 2D
partitioning strategy that are more broadly applicable
than the Gray code based mapping described by Bruno
and Cappello. The 3D diagonal multipartitionings de-
scribed by Naik et al. partition the data into p

3
2 tiles,

with each processor’s tiles arranged along wrapped di-
agonals through the 3D volume. Figure 1 shows a 3D
multipartitioning of this style for 16 processors; the
number in each tile indicates the processor that owns
the block. This 3D diagonal multipartitioning (there
are many) is specified by the tile to processor mapping
θ(i, j, k) ≡ ((i− k) mod

√
p)
√

p +((j − k) mod
√

p) for
a domain of

√
p×√

p×√
p tiles where 0 ≤ i, j, k <

√
p,

where
√

p = 4.
More generally, we observe that diagonal multiparti-

tionings can be applied to partition d-dimensional data
onto an arbitrary number of processors p by cutting the
data into p slices in each dimension, i.e., into an array
of pd tiles. In 2D, this yields an optimal multiparti-
tioning (equivalent to those described by Johnsson et
al.). We call a multipartitioning optimal for a particu-

lar number of processors if no other multipartitioning
exists that has lower communication cost according to
a cost model that considers both fixed overhead for
communicating and overhead proportional to the size
of the hyper-surfaces that must be communicated. For
d > 2, diagonal multipartitionings are only optimal
and efficient when p

1
d−1 is integral.

Bruno and Cappello noted that multipartitionings
need not be restricted to having only one tile per
processor per hyper-rectangular slab of a multiparti-
tioning [4]. How general can multipartitioning map-
pings be? A necessary condition to support load-
balanced line-sweep computation is that in any hyper-
rectangular slab defined by adjacent cuts along a par-
titioned dimension, each processor must have the same
number of tiles. We call any such slab in which each
processor has the same number of tiles balanced. This
raises the question: can we find a way to partition
a d-dimensional array into tiles and assign the tiles
to processors so that the mapping possesses the bal-
ance and neighbor properties of a multipartitioning?
The answer is yes. We show that such an assignment
is possible if and only if the number of tiles in each
hyper-rectangular slab along any partitioned dimen-
sion is a multiple of p (“if” being the difficult part of
the proof). We describe a “regular” solution (regu-
lar to be defined) that enables us to guarantee that
the neighboring tiles along any one coordinate direc-
tion of all tiles mapped to a processor all belong to a
single processor. This property of multipartitionings is
essential for fully-vectorized, directional-shift commu-
nication to be efficient.

In Section 3.1, we define an objective function that
represents the execution time of a line-sweep computa-
tion over a multipartitioned array, and in Section 3.3,
we present an algorithm that computes a partitioning
of a multi-dimensional array into tiles that is optimal
with respect to this objective. In Section 4, we develop
a general theory of modular mappings for multiparti-
tioning. We apply this theory to define a mapping of
tiles to processors so that each line sweep is perfectly
balanced over the processors.

We use the following notation:

• p denotes the number of processors. We write p =∏s
j=1 α

rj

j to represent the decomposition of p into
prime factors, αj .

• d is the number of dimensions of the array to be
partitioned. The array is of size η1, . . . , ηd. The
total number of array elements η =

∏d
i=1 ηi.

• γi is the number of tiles into which the array is cut
along its i-th dimension. We consider the array of

elements as a γ1 × . . . × γd array of tiles. In our
analysis, we assume that γi divides ηi evenly and
do not consider alignment or boundary problems
that must be handled when applying our map-
pings in practice if this assumption is not valid.

To ensure that each slab is balanced, the number of
tiles it contains must be a multiple of p; namely, for
each 1 ≤ i ≤ d, p should divide

∏
j �=i γj . When this is

true, we say that (γi) is a valid partitioning.

3. Finding the Partitioning

3.1. Objective Function

We consider the cost of performing a line sweep com-
putation along each dimension of a multipartitioned ar-
ray. The total computation cost is proportional to η,
the number of elements in the array. A sweep along
the i-th dimension consists of a sequence of γi com-
putation phases (one for each hyper-rectangular slab
of tiles along dimension i), separated by γi − 1 com-
munication phases. The work in each slab is perfectly
balanced, with each processor performing the compu-
tation for its own tiles. The total computational work
for each processor is roughly 1

p of the total work in
the sequential computation. The communication over-
head is a function of the number of communication
phases and the communication volume. Between two
computation phases, a hyperplane of array elements is
transmitted – the boundary layer for all tiles computed
in first phase. The total communication volume for a
phase communicated along dimension i is

∏
j �=i ηj el-

ements, i.e., η
ηi

, yielding a communication volume per
processor of η

pηi
. The total execution time for a sweep

along dimension i can be approximated by:

Ti(p) = K1
η

p
+ (γi − 1)(K2 + K3(p)

η

ηi
)

where K1 is a constant that depends on the sequen-
tial computation time per data element, K2 is a con-
stant that depends on the cost of initiating one com-
munication phase (start-up), and K3(p) is a function of
p that reflects the bandwidth-sensitive communication
cost per element of hyper-surface area along a cut in
dimension i.1 Define λi = K2+K3(p) η

ηi
; λi depends on

the domain size, number of processors and machine’s
communication parameters. The total cost, sweeping

1On a parallel machine in which the network bandwidth avail-
able is directly proportional to the number of processors, K3(p)
would be proportional to 1

p
, whereas on a bus-based system for

which available bandwidth is fixed, K3(p) would be a constant.

in all dimensions, is thus

T (p) = d

(
K1

η

p
−

d∑
i=1

λi

)
+

d∑
i=1

γiλi

Assuming that p, η, and the ηi’s are given, the first
term is a constant, and what we want to minimize is
the second term

∑d
i=1 γiλi.

Remark: If the number of phases is the critical term,
the objective function can be simplified to

∑
i γi. If

the volume of communications is the critical term, the
objective function can be simplified to

∑
i

γi

ηi
, which

means it is preferable to partition dimensions that are
larger into relatively more pieces. For example, in 3D,
even for a square number of processors (e.g., p = 4),
if the data domain has a short extent in one dimen-
sion, it is preferable to use a 2D partitioning of the
other 2 dimensions rather than a 3D partitioning. In-
deed, if η1 and η2 are at least 4 times larger than η3,
then cutting each of the first 2 dimensions into 4 pieces
(γ1 = γ2 = 4, γ3 = 1) leads to a smaller volume of com-
munication than a “classical” 3D partitioning in which
each dimension is cut into 2 pieces (∀i, γi = 2). The
extra communication while sweeping along the first 2
dimensions is offset by the absence of communication
in the local sweep along the last one.

We now address the problem of minimizing
∑

i γiλi

with the constraint that, for any fixed i, p divides the
product of the γj ’s, j �= i. We give a practical al-
gorithm, based on an (optimized) exhaustive search,
exponential in s (the number of distinct factors) and
the ri’s (see the decomposition of p into prime factors),
but whose complexity in p grows slowly. From a the-
oretical point of view, we do not know whether this
minimization problem is NP-complete, even for a fixed
dimension d ≥ 3, even if ∀i, λi = 1, or if there is an
algorithm polynomial in log p or even in the s values
log ri. If p has only one prime factor, a greedy approach
leads to a polynomial (polynomial in log p) algorithm
(see [8]). However, we do not know if an extension of
this greedy approach can lead to a polynomial algo-
rithm for an optimal partitioning in the general case.

3.2. Elementary Partitionings

If (γi) is a valid partitioning such that
∑

i γiλi is
minimized, we say that (γi) is an optimal partition-
ing. Using the fact that for each 1 ≤ i ≤ d, p divides∏

j �=i γj and that the objective function increases when
the γi increase (the λi are positive), we can show the
following result. (The proof is not difficult, we omit it
due to space constraints.)

Lemma 1 Let (γi) be an optimal partitioning. Then,
each factor αj of p, appearing rj times in the decom-
position of p, appears exactly (rj + mj) times in (γi),
where mj is the maximum number of occurrences of αj

in any γi. Furthermore, the number of occurrences of
αj is mj in at least two γi’s.

We can thus restrict to elementary partitionings,
those that satisfy the conditions of Lemma 1. We can
interpret (and manipulate) an elementary partitioning
as a distribution of the factors of p into d bins, sat-
isfying a particular constraint on the number of oc-
currences. Elementary partitionings are those which
are not a “multiple” of another possible size; in other
words, these are the sizes for which a multipartition-
ing exists that cannot be obtained by composing it (by
paving) from multiple instances of a smaller multipar-
titioning. For example, in 3D, with 8 processors, only
the partitionings 4× 4× 2, 8× 8× 1, and their permu-
tations are elementary. With p = 5 × 3 × 2, only the
partitionings 10×15×6, 15×30×2, 10×30×3, 5×30×6,
30 × 30 × 1 (and permutations) are elementary.

3.3. Exhaustive Enumeration

We now give an algorithm that finds an optimal
partitioning by generating all possible elementary par-
titionings (γi), which satisfy the necessary optimality
conditions given by Lemma 1, and determining which
one yields the lowest cost partitioning. We also evalu-
ate how many candidate partitions there are to give the
complexity of our algorithm. For the complexity, we
are not interested in the exact number of elementary
partitionings, but in the order of magnitude, especially
when the number of bins d is fixed (and small, equal
to 3, 4, or 5), but when p can be large (up to 1000
for example), since this is the situation we expect to
encounter in practice when computing multipartition-
ings.

The C program shown in Figure 2 generates, in lin-
ear time, all possible distributions of rj instances of a
factor αj of p into d bins that satisfy the (rj + mj)
optimality condition of Lemma 1. This program is in-
spired by a program [16] for generating all partitions
of a number, which is a well-studied problem (see [17])
since the mathematical work of Euler and Ramanujam.
The procedure Partitions first selects the maximal
multiplicity m of the factor under consideration that
may appear in any bin, and uses the recursive proce-
dure P(n,m,c,t,d) to generate all distributions of n
elements in (d − t + 1) bins (from index t to index d),
where each bin can have at most m instances of the
factor and at least c bins must have m instances of the
factor. Therefore, the initial call is P(r+m,m,2,1,d).

// Precondition: d >= 2

void Partitions(int r, int d) {

int m;

for (m = (r+d-2)/(d-1); m <= r; m++)

P(r+m,m,2,1,d);

}

void P(int n, int m, int c, int t, int d) {

int i;

if (t==d)

bin[t] = n;

else {

for (i=max(0,n-(d-t)*m);

i<=min(m-1,n-c*m); i++) {

bin[t] = i;

P(n-i,m,c,t+1,d);

}

if (n>=m) {

bin[t] = m;

P(n-m,m,max(0,c-1),t+1,d);

}

}

}

Figure 2. Program for generating all possible
distributions for one factor.

We now prove the correctness of the program. The
procedure P selects a number of elements for the bin
number t and makes a recursive call with parameter
t + 1 for the selection in the next bin. It is thus clear
that all generated solutions are different since each iter-
ation of the loop selects a different number of elements
for the current bin. It remains to prove that all so-
lutions generated by P are valid (the total number of
elements should be r+m, each bin should have at most
m elements, and there should be at least c bins with
m elements), and that all solutions are generated. For
that, we prove that P(n,m,c,t,d) is always called with
parameters for which there exists at least one valid
partitioning, that all possible numbers of elements are
selected and only those.

Let us first consider the loop in function
Partitions. Thanks to Lemma 1, it is easy to see
that the maximal number of elements in a bin is be-
tween � r

d−1	 and r. Furthermore, for each such m,
there is indeed at least one valid solution with (r + m)
elements and two maxima equal to m (if d ≥ 2), for
example the solution where the first two bins have m
elements and the (d − 2) other bins contain a total of
(r−m) elements; for instance, the r−m elements could
be distributed so that q =
 r−m

m � bins contain m ele-
ments and one contains (r −m−mq) elements. Thus,

if the function P is correct, Partitions is also correct.
To prove the correctness of the function P, we prove

by induction on d−t+1 (the number of bins) that there
is at least one valid solution if and only if c ≤ d− t + 1
and cm ≤ n ≤ (d− t + 1)m and that P generates all of
them if these conditions are satisfied. These conditions
are simple to understand: we need at least cm elements
(so that at least c bins have m elements) and at most
(d − t + 1)m elements, otherwise at least one bin will
contain more than m elements.

The terminal case is clear: if we have only one bin
and n elements to distribute, the bin should contain n
elements. Furthermore, if there is a solution, we should
have c ≤ 1 and n = m if c = 1, i.e., c ≤ d − t + 1 and
cm ≤ n ≤ (d − t + 1)m.

The general case is more tricky. We first select the
number of elements i in the bin number t and recur-
sively call P for the remaining bins. If we select strictly
less than m elements (this selection is in the loop), we
will still have to select c bins with m elements for the
remaining (d−t) bins, with (n−i) elements. Therefore,
the number i that we select should not be too small, nor
too large, and we should have cm ≤ n − i ≤ (d − t)m,
i.e., n−(d−t)m ≤ i ≤ n−cm. Furthermore, i should be
strictly less than m, nonnegative, and at most n. Since
c is always positive, the constraint i ≤ n − cm ensures
i ≤ n. If the parameters are correct for the bin number
t, we also have c ≤ d − t + 1 and if c = d − t + 1, then
the loop has no iteration, thus for an i selected in the
loop, we have c ≤ d − t. Therefore, the recursive call
P(n-i,m,c,t+1,d) has correct parameters. Finally, if
we select m elements for the bin t (after the loop), this
is possible only if m is at most n of course, and then
it remains to put (n − m) elements into (d − t) bins,
with a maximum of m, and at least max(0, c−1) max-
ima. Again, the recursive call has correct parameters
since we decreased both c and (d − t) and removed m
elements.

For generating all optimal solutions to our mini-
mization problem, we first decompose p into prime fac-
tors (complexity O(

√
p) by a standard algorithm, but

could be less), we then generate all elementary parti-
tionings, which satisfy Lemma 1 for each factor, with
the function Partitions and we combine them while
keeping track of the best overall solution. The overall
complexity (excluding the cost of the decomposition of
p into prime factors) is the product of the complexity
of the function Partitions (which is the number of so-
lutions generated by the algorithm) times (log2 p)3 (to
built the γi’s and evaluate them). We proved that the
total number of generated solutions (i.e., the number of

elementary partitionings) is O

((
d(d−1)

2

) (1+o(1)) log p
log log p

)

and that this bound is tight. (The proof is too long
to be provided here but is available in the extended
version of this paper [8].)

4. Finding the Mapping

In Section 3, we determined a particular way of cut-
ting the array so as to optimize communications: after
partitioning, we get an array (of tiles) whose size is (γi)
for which the objective is minimized. Up to this point,
we have assumed that we will be able to assign tiles to
processors so that the assignment posesses the balance
and neighbor properties of a multipartitioning. This
has not yet been shown, and we need to prove it. We
point out that an assignment with the balance property
is a generalization of the notion of latin square that
is known as as an F-hyper-rectangle [10, page 392].
However, despite this reference, we have not found any
paper that gives a construction for such an assignment,
or even an existence proof, for our general case. Fur-
thermore, even if such a proof exists, which we are not
aware of, our constructive proof is of interest because:

• its tile-to-processor mappings have the neighbor
property,

• its tile-to-processor mappings are given by a sim-
ple formula, and conversely, for each processor, the
list of tiles assigned to it can be easily formulated,
which is handy for use in a run-time library,

• it gives a new insight to the properties of “modu-
lar” mappings (defined below).

Therefore, we make no further reference to latin
squares and F-hyper-rectangles and proceed with a
presentation of our proof.

The only property we know so far is that the (γi) is a
valid partitioning, namely, for each i, p divides

∏
j �=i γj .

Our main result is that this condition is sufficient to
guarantee a mapping of processors to tiles that pos-
sesses both the balance and neighbor properties. Our
proof is constructive. For any valid partitioning (γi),
optimal or not, with or without the additional prop-
erty of Lemma 1, we give an automatic way to assign
a processor number to each tile so that the properties
are satisfied. This assignment is done through the use
of modular mappings, defined below. The proof of our
construction is much too long to be given here. We re-
fer the reader to the extended version of this paper [8]
for details of the proof and interesting properties of
modular mappings.

The solution we build is one particular assignment,
out of a set of legal mappings. It is not unique, and

more experiments might show that they are not all
equivalent in terms of execution time, for example be-
cause of communication patterns. But, currently, with
our objective function (Section 3.1), the network topol-
ogy is not taken into account yet and all valid mappings
are considered equally good.

Consider the assignment in Figure 1. Can we give
a formula that describes it? There are 16 processors
that can be represented as a 2-dimensional grid of size
4 × 4. For example the processor number 7 = 4 + 3
can be represented as the vector (3, 1), in general (r, q)
where r and q are the remainder and the quotient of
the Euclidean division by 4. The assignment in the
figure corresponds to (i−k mod 4, j−k mod 4), which
is what we call a multi-dimensional modular map-
ping, i.e., a mapping M�m from �

d to �d′
defined by an

integral d×d′ matrix M and an integral positive vector
�m of dimension d′ with M�m(�i) = (M�i) mod �m. With
such a mapping, each tile is assigned to a “processor
number” in the form of a vector. The product of the
components of �m is equal to the number of processors.
It then remains to define a one-to-one mapping from
the hyper-rectangle {�j ∈ �

d′ | �0 ≤ �j < �m} onto the
processor numbers. This can be done by viewing the
processors as a virtual grid of dimension d′ of size �m.
The mapping M�m is then an assignment of each tile
(described by its coordinates in the d-dimensional ar-
ray of tiles) to a processor (described by its coordinates
in the d′-dimensional virtual grid). (Actually, we need
only the case d′ = d − 1.)

The following definitions summarize the notions of
modular mappings and of modular mappings that sat-
isfy the load-balancing property. Given �b ∈ �

n , the
hyper-rectangle defined by �b is the set I�b = {�i ∈
�

n | �0 ≤ �i < �b} (component-wise). A slice I�b(i, ki)
of I�b is defined as the set of all elements of I whose
i-th component is equal to ki (an integer between 0
and bi − 1). Given a hyper-rectangle I�b (or any more
general set), a modular mapping M�m is one-to-one
from I�b onto I�m if and only if for each �j ∈ I�m there
is one and only one�i ∈ I�b such that M�m(�i) = �j. M�m is
equally-many-to-one from I�b onto I�m if and only
if the number of �i ∈ I�b such that M�m(�i) = �j does not
depend on �j. Finally, M�m has the load-balancing
property for I�b if and only if for any slice I�b(i, ki),
the restriction of M�m to I�b(i, ki) is equally-many-to-
one onto I�m.

Because a modular mapping is linear, it is easy to see
that the load-balancing property needs to be checked
only for the slices that contain �0 (the slices I�b(i, 0)).
Furthermore, if �b[i] denotes the vector obtained from �b
by removing the i-th component and M [i] denotes the

matrix obtained from M by removing the i-th column,
then the images of I�b(i, 0) under M�m are the images of
I�b[i] under the modular mapping M [i]�m. We therefore
have the following properties.

Lemma 2 Given an hyper-rectangle I�b, a modular
mapping M�m has the load-balancing property for I�b if
and only if each mapping M [i]�m is equally-many-to-one
from I�b[i] to I�m.

Lemma 3 If M�m is a one-to-one modular mapping
from I�b′ onto I�m, then M�m is an equally-many-to-one
modular mapping from any multiple I�b of I�b′ onto I�m.

Lemmas 2 and 3 explain why we focus on one-to-one
modular mappings first, then on equally-many-to-one
modular mappings, and finally on modular mappings
with the load-balancing property. In the extended ver-
sion of this paper [8], we explore the properties of such
modular mappings, in order to define a provably ad-
equate matrix M and shape �m for the virtual grid of
processors. Our results are linked to previous works on
one-to-one modular mappings by Lee and Fortes [14]
and Darte, Dion, and Robert [7]. As in [7], the theory
we developed is linked to a famous (in covering/packing
theory) theorem due to Hajós [12], which has previ-
ously been used to generate “juggling schedules” for
systolic-like array designs (see [9]). These earlier pa-
pers all consider “one-to-one”-like problems; however,
many questions remain open in the equally-many-to-
one case because the extension of Hajós’ theorem to
a similar “equally-many-to-one” case is true only up
through 3 dimensions. Also, while it is easy to build a
one-to-one mapping (just take �m = �b and the identity
matrix), here we need a more constrained matrix such
that any submatrix obtained by removing one column
is equally-many-to-one for the corresponding �b and �m.
In other words, to use the terminology in [9], we need
to juggle simultaneously in all dimensions.

Here we present our construction of a modular map-
ping M�m with the load-balancing property for an index
set I�b (which is given,�b is the vector whose components
are the γi’s found in Section 3.3). The freedom we have
is that we can choose the matrix M and the modulo
vector �m, but with the constraint that the cardinality
of I�m (the product of the components of �m) is also
given (equal to the number of processors p). The only
property of�b we exploit is that �b is a valid partitioning:
the product of any (d−1) components of�b is a multiple
of p. We choose the matrix M with the following form:

M =
(

N 0
�λ 1

)

where N will be computed by induction. Therefore,
finally, M will be even triangular, with 1’s on the di-
agonal. We have the following preliminary result.

Lemma 4 Suppose that md divides bd and that the
modular mapping N�m[d] – in dimension (d − 1) – has
the load-balancing property for I�b[d]. Then, the modular
mapping M�m – in dimension d – has the load-balancing
property for I�b if it is equally-many-to-one from the last
slice I�b(d, 0) onto I�m.

Proof: In order to check that the mapping defined
by M and �m has the load-balancing property for the
rectangular index set I�b, we have to make sure that it
is equally-many-to-one for all slices I�b(i, 0), 1 ≤ i ≤ d
(Lemma 2). Since we assume that this is true for i = d,
we only have to prove it for the slices I�b(i, 0) with i < d.

Without loss of generality, let us consider the first
dimension, i.e., the first slice I�b(1, 0). Given�j ∈ I�m, let
us count the number of vectors �i ∈ I�b such that M�i =
�j mod �m and i1 = 0. By definition of M and N , (M�i =
�j mod �m) ⇔ (N�i[d] = �j[d] mod �m[d] and �λ.�i[d] + id =
jd mod md) where �λ is the row vector formed by the
first (d − 1) component of the last row of M . Be-
cause N�m[d] has the load-balancing property for I�b[d],

there are exactly n vectors �i′ ∈ I�b[d] such that i′1 = 0

and N�i′ = �j[d] mod �m[d], where n is a positive in-
teger that does not depend on �j[d]. It remains to
count the number of values id, between 0 and bd − 1,
such that id = jd − �λ.�i′ mod md. Since md divides
bd, there are exactly bd/md such values, whatever the
value x = (jd − �λ.�i′ mod md). These are the values
x + kmd, with 0 ≤ k < bd/md. Therefore, �j has ex-
actly (nbd)/md pre-images in I�b(1, 0) and this number
does not depend on �j. �

We define the vector �m according to the following
formula:

∀i, 1 ≤ i ≤ d, mi =
gcd

(
p,
∏d

j=i bj

)
gcd

(
p,
∏d

j=i+1 bj

)
(By convention, an “empty” product is equal to 1.)
Thanks to the previous lemma and the properties of
the vector �m defined this way, we will be able to build
M in a recursive manner (see [8]). Because m1 = 1, we
will be able to drop, at the end, the first component of
the mapping and get a mapping from �

d into a sub-
group of �d−1 (or of smaller dimension if some other
components of �m are equal to 1). Once N is built, we
write:

M =
(

N 0
�λ 1

)
=

⎛
⎝ 1 0 0

�u T 0
ρ �z 1

⎞
⎠

// Precondition: d >= 2

void ModularMapping(int d) {

int i,j,r,t;

for (i=1; i<=d; i++)

for (j=1; j<=d; j++)

if ((j==1) || (i==j)) M[i][j] = 1;

else M[i][j] = 0;

for (i=2; i<=d; i++) {

r = m[i];

for (j=i-1; j>=2; j--) {

t = r/gcd(r, b[j]);

for (k=1; k<=i-1; k++) {

M[i][k] -= t*M[j][k];

}

r = gcd(t*m[j],r);

}

}

}

Figure 3. Program for generating a mapping
with the load-balancing property.

and we define ρ and �z (a row vector) such that �z = −�tT
and ρ = 1 − �t�u, where the row vector �t, with (d − 2)
components, is defined by the following (decreasing)
recurrence (with the help of an intermediate vector �r):

• rd−1 = md,

• for 1 ≤ i ≤ d − 2, ti = ri+1
gcd(bi+1,ri+1)

and ri =
gcd(timi+1, ri+1).

This recurrence is linked to the symbolic computation
of some Hermite form that we use to be able to ap-
ply Lemma 4 and prove the validity of the recursive
construction. See details in [8].

This schema is implemented by the C program
shown in Figure 3 (rows and columns are from 1 to
d). In our actual implementation of this algorithm, we
augment the basic kernel presented to compute the fi-
nal matrix modulo the corresponding values of �m as
well as apply some strategies (e.g., alternating signs
of �t, or pre-permuting the components of �b) to make
coefficients smaller.

5. Experiments

We extended the Rice dHPF compiler for High Per-
formance Fortran to generate code based on general-
ized multipartitionings.

Multipartitioning within the dHPF compiler is im-
plemented as a generalization of BLOCK-style HPF par-

titionings [5, 6]. The dHPF compiler analyzes commu-
nication and reduces loop bounds as if a multiparti-
tioned template is a standard BLOCK partitioned tem-
plate mapped onto an array of processors of symbolic
extent. The main difference comes in the interpreta-
tion that the compiler gives to the PROCESSORS direc-
tive. When using multipartitioning, the number of pro-
cessors cannot be specified on a per dimension basis for
dimensions of the template because each hyperplane
defined by a partitioning along a multipartitioned tem-
plate dimension is distributed among all processors. A
multipartitioned template is partitioned into tiles ac-
cording to the rank and extent of the virtual processor
array. These tiles are then assigned in a skewed-cyclic
fashion to the processors as described in previous sec-
tions.

There are several important issues for correctly gen-
erating efficient code for multipartitioned distributions.
First, the order in which a processor’s tiles are enu-
merated has to satisfy any loop-carried dependences
present in the original loop from which the multipar-
titioned loop has been generated. Second, commu-
nication that has been fully vectorized out of a loop
nest should not be performed on a tile-by-tile basis;
instead it should be performed for all of a proces-
sor’s tiles at once. Communication aggregation is more
tricky than for diagonal multipartitionings since gener-
alized multipartitionings have multiple tiles per hyper-
rectangular slab, but it is possible because generalized
multipartitionings also possess the neighbor property
described earlier in Section 1. Third, communication
caused by loop-carried dependences should not be per-
formed on a tile-by-tile basis either. Instead, communi-
cation should be vectorized for all tiles within a hyper-
rectangular slab along the partitioned dimension.

By using a multipartitioned data distribution in
conjunction with sophisticated data-parallel compiler
optimizations, we are closing the performance gap be-
tween compiler-generated and hand-coded implemen-
tations of line-sweep computations. Earlier results and
details about dHPF’s compilation techniques can be
found elsewhere [6, 5, 1, 2]. Here we present results
from applying generalized multipartitioning in the con-
text of a compiler-based parallelization of the NAS
SP computational fluid dynamics application bench-
mark [3, 6] for the “class B” problem size of 1023.

The most important analysis and code generation
techniques used to obtain high-performance multipar-
titioned applications by the dHPF compiler are: par-
tial replication of computation to reduce communica-
tion frequency and volume, communication vectoriza-
tion, aggressive communication placement, and com-
munication aggregation to reduce the number of mes-

CPUs hand-coded dHPF % diff.
1 0.95 0.91 3.84
2 1.43
4 2.96 2.93 1.00
6 5.06
8 7.57
9 7.95 8.04 -1.14
12 11.80
16 16.64 16.25 2.34
18 18.54
20 19.03
24 22.25
25 27.44 24.32 11.38
32 32.22
36 38.46 38.83 -0.97
45 39.78
49 48.37 51.49 -6.46
50 47.35
64 76.74 59.84 22.02
72 66.96
81 81.40 70.63 13.23

Table 1. Comparison of hand-coded and
dHPF speedups for NAS SP (class B).

sages. In addition, we use an extended on-home direc-
tive (inspired by the HPF/JA EXT HOME directive[11])
to partially replicate computation into a processor’s
shadow regions, and the HPF/JA LOCAL directive to
eliminate unnecessary communication for values that
were previously explicitly computed in a processor’s
shadow region.

We performed these experiments on a SGI Origin
2000 with 128 250MHz R10000 CPUs, each CPU has
32KB of L1 instruction cache, 32KB of L1 data cache
and an unified, two-way set associative L2 cache of
4MB.

Table 1 compares the performance of a hand-coded
MPI version of the SP benchmark developed at NASA
Ames Research Center with an MPI version generated
by the dHPF compiler.2 The hand-coded version uses
3D diagonal multipartitioning and thus can only be run
on a perfect square number of processors. The dHPF-
generated code MPI uses generalized multipartitioning
which enables the code to be run on arbitrary numbers
of processors. As Table 1 shows, the performance of the
dHPF-generated code is quite close to (and sometimes
exceeds) the performance of the hand-coded MPI for

2All speedups presented are relative to the original sequential
version of the code.

numbers of processors that are perfect squares. When
the number of processors is a perfect square, the gener-
alized multipartitionings used by the dHPF-generated
code are exactly diagonal multipartitionings. These
measurements show that our implementation of gener-
alized multipartitionings is efficient in the case of di-
agonal multipartitionings, in which each processor has
one tile per hyperplane of the partitioning. Both the
hand-coded and dHPF-generated versions of SP deliver
roughly linear speedup on numbers of processors that
are perfect squares.

In the measurements taken of the dHPF-generated
code for numbers of processors that are not perfect
squares, we see that generalized multipartitionings de-
liver near linear speedup in these cases as well. The
cases we have measured exploiting generalized multi-
partitioning are ones in which the factors of the num-
ber of processors are small primes. Performance would
be less for numbers of processors that are prime or
have large prime factors because computation would
be divided into a large number of phases and commu-
nication volume grows in proportion to the number of
phases. Currently, the code generated by dHPF cannot
exploit generalized multipartitionings when the block
size on any processor falls below the shift width asso-
ciated with communication operations, which happens
when a dimension is partitioned many times (as occurs
with large primes and prime factors). This limitation
prevents experiments with generalized multipartition-
ings using the 1023 problem size of the SP benchmark
on numbers of processors that are large primes or have
large prime factors.3

Overall, these preliminary experiments show that
generalized multipartitionings are of practical as well
as theoretical interest and can be used to efficiently
parallelize applications using multipartitioning in a
wider range of cases.

6. Conclusions

This paper describes an algorithm for computing
an optimal multipartitioning of d-dimensional arrays,
d > 2, onto an arbitrary number of processors, p. Our
algorithm minimizes cost according to an objective
function that measures communication in line sweep
computations. Previously, optimal multipartitionings
could be computed only when p

1
d−1 is integral. We

show that a partitioning in which the number of tiles
in each hyperrectangular slab is a multiple of the num-

3To be perfectly clear, this limitation applies only to code
generated by the dHPF compiler; the technique of generalized
multipartitioning itself is completely general.

ber of processors — an obvious necessary condition —
is also a sufficient condition for a multipartitioned map-
ping of tiles to processors. We present a constructive
method for building the mapping of tiles to processors
using new techniques based on modular mappings and
demonstrate experimentally that code using general-
ized multipartitionings is both scalable and efficient.

Currently, when we multipartition a d-dimensional
array onto p processors, we force all processors to par-
ticipate in the computation; however, this may lead
to suboptimal performance. If the partitioning is not
compact, i.e., the number of tiles per processor is
large relative to a diagonal multipartitioning (more
precisely, when

∏d
i=1 γi is large compared to p

d
d−1),

and the cost of communicating at tile boundaries is
not small compared to the cost of the computation on
tile data (the relative cost of communication to com-
putation is proportional to the surface to volume ratio
in the partitioning:

∑
i=1,d

γi

ηi
), it will be faster to drop

back to a nearby lower number of processors for which
a compact partitioning exists. For example, table 1
shows that for the 1023 problem size, a 5× 10× 10 de-
composition on 50 processors is slower than a 7× 7× 7
decomposition on 49 processors for NAS SP. Given a
cost function (see Section 3.1) that models the cost of
computation as well as communication, our algorithm
could be used to search for the most efficient partition-
ing, which will occur on some number of processors

between
p 1
d−1 �d−1

(for which a diagonal multiparti-
tioning is possible) and p as long as the communication
term is not dominant.

Acknowledgments

The authors wish to gratefully acknowledge the
anonymous reviewers for their thoughtful comments
which helped us improve the presentation of this paper.

References

[1] V. Adve, G. Jin, J. Mellor-Crummey, and Q. Yi. High
Performance Fortran compilation techniques for par-
allelizing scientific codes. In SC’98: High Performance
Computing and Networking, Orlando, FL, Nov. 1998.

[2] V. Adve and J. Mellor-Crummey. Using integer sets
for data-parallel program analysis and optimization.
In SIGPLAN’98 Conference on Programming Lan-
guage Design and Implementation, Montreal, Canada,
Jun. 1998.

[3] D. Bailey, T. Harris, W. Saphir, R. van der Wijn-
gaart, A. Woo, and M. Yarrow. The NAS paral-
lel benchmarks 2.0. Technical Report NAS-95-020,
NASA Ames Research Center, Dec. 1995.

[4] J. Bruno and P. Cappello. Implementing the beam
and warming method on the hypercube. In 3rd Con-
ference on Hypercube Concurrent Computers and Ap-
plications, pages 1073–1087, Pasadena, CA, Jan. 1988.

[5] D. Chavarŕıa-Miranda and J. Mellor-Crummey. To-
wards compiler support for scalable parallelism. In
5th Workshop on Languages, Compilers, and Runtime
Systems for Scalable Computers, LNCS 1915, pages
272–284, Rochester, NY, May 2000. Springer-Verlag.

[6] D. Chavarŕıa-Miranda, J. Mellor-Crummey, and
T. Sarang. Data-parallel compiler support for mul-
tipartitioning. In European Conference on Paral-
lel Computing (Euro-Par), Manchester, United King-
dom, Aug. 2001.

[7] A. Darte, M. Dion, and Y. Robert. A characterization
of one-to-one modular mappings. Parallel Processing
Letters, 5(1):145–157, 1996.

[8] A. Darte, J. Mellor-Crummey, R. Fowler, and
D. Chavarŕıa. On efficient parallelization of line-
sweep computations. Research Report RR2001-45,
LIP, ENS-Lyon, France, 2001.

[9] A. Darte, R. Schreiber, B. R. Rau, and F. Vivien. A
constructive solution to the juggling problem in sys-
tolic array synthesis. In International Parallel and
Distributed Processing Symposium (IPDPS’00), pages
815–821, Cancun, Mexico, May 2000.

[10] J. Dénes and A. D. Keedwell. Latin Squares: New
Developments in the Theory and Applications. North
Holland, 1991.

[11] J. A. for High Performance Fortran. HPF/JA
language specification (version 1.0). Available at
URL http://www.tokyo.rist.or.jp/jahpf/spec/

index-e.html, Jan. 1999.
[12] G. Hajós. Über einfache und mehrfache Bedeckung

des n-dimensionalen Raumes mit einen Würfelgitter.
Math. Zschrift, 47:427–467, 1942.

[13] S. L. Johnsson, Y. Saad, and M. H. Schultz. Alternat-
ing direction methods on multiprocessors. SIAM Jour-
nal of Scientific and Statistical Computing, 8(5):686–
700, 1987.

[14] H. J. Lee and J. A. Fortes. On the injectivity of mod-
ular mappings. In Application Specific Array Proces-
sors, pages 237–247, San Francisco, California, Aug.
1994. IEEE Computer Society Press.

[15] N. Naik, V. Naik, and M. Nicoules. Parallelization of
a class of implicit finite-difference schemes in compu-
tational fluid dynamics. International Journal of High
Speed Computing, 5(1):1–50, 1993.

[16] J. Sawada. C program for computing all numerical
partitions of n whose largest part is k. Information
on Numerical Partitions, http://www.theory.csc.

uvic.ca/~cos/inf/nump/NumPartition.html, 1997.
[17] N. J. A. Sloane. The on-line encyclopedia of integer

sequences. http://www.research.att.com/~njas/

sequences, 2001.
[18] R. F. Van der Wijngaart. Efficient implementation

of a 3-dimensional ADI method on the iPSC/860. In
Supercomputing 1993, pages 102–111. IEEE Computer
Society Press, 1993.

