
Irreducible and connected permutations

Martin Klazar∗

Abstract

A permutation π of [n] = {1, 2, . . . , n} is irreducible if π([m]) = [m]
for no m ∈ [n], m < n, and it is connected if for no interval I ⊂ [n],
2 ≤ |I| ≤ n − 1, the image π(I) is an interval. We review enumera-
tion of irreducible permutations and their appearances in mathemat-
ics. Then we enumerate connected permutations. Asymptotically,
there are n!/e2 of them and exactly (for n > 2) their number equals
2(−1)n+1 minus the coefficient of xn in the compositional inverse of
1!x + 2!x2 + · · ·. We show that their numbers are not P-recursive, are
congruent modulo high powers of 2 to 2(−1)n+1, and are congruent
modulo 3 to −Cn−1 + (−1)n where Cn is the Catalan number.

1 Introduction and definitions

A permutation π of [n] = {1, 2, . . . , n}, n ∈ N = {1, 2, . . .}, is reducible iff
there is an m ∈ N, m < n, such that π([m]) = [m]. If π is not reducible,
it is irreducible. For example, (2, 3, 1) is irreducible and (2, 1, 3) is reducible.
The number of irreducible permutations of [n] is denoted ipn. We call π
disconnected iff there is an interval I ⊂ [n], 2 ≤ |I| ≤ n−1, such that its image
π(I) also is an interval. If π is not disconnected, it is connected. For example,
all three permutations of length 1 and 2 are connected, all six permutations
of length 3 are disconnected, and the only connected permutations of length 4
are (2, 4, 1, 3) and (3, 1, 4, 2). The number of connected permutations of [n] is
denoted copn. Irreducible permutations are sometimes called indecomposable
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(or even, in [29], connected) and were introduced and enumerated by Comtet
[9]. Then they appeared in several contexts which we review in Section 2. The
notion of connected permutations seems almost new—Albert [1] calls them
absolutely irreducible permutations but considers them only in the restricted
context of (2, 1, 3)-free permutations. What are the numbers copn? This was
the starting point for the present article. We shall see that the numerical
answer is again hidden in Comtet’s book [9].

In the rest of this section we give further definitions. In Section 2, be-
sides giving some references for the appearances of irreducible permutations,
in Proposition 2.1 and Theorem 2.2 we review their enumeration (in fact,
we need it for the enumeration of connected permutations). In Proposi-
tion 3.1 we characterize connected permutations by means of the permu-
tation containment and in Proposition 3.4 and Theorem 3.5 we enumer-
ate them exactly. Their numbers copn provide a combinatorial interpre-
tation for the coefficients of the compositional inverse of 1!x + 2!x2 + · · ·.
In Proposition 4.2 we present a graph sieve that is needed to prove the
asymptotics copn = (e−2 + O(n−1))n! of Theorem 4.3. Theorem 5.2 gives
a general criterion for non-P-recursiveness of super-exponential sequences
whose ogf’s satisfy certain first order differential equations. It implies that
(cop)n≥1 and (ipn)n≥1 are not P-recursive. In Corollaries 6.3 and 6.5 we
prove, for n > 2, the congruences copn ≡ 2(−1)n+1 mod 2d(n−1)/2e and

copn ≡ − 1
n

(
2n−2
n−1

)
+ (−1)n mod 3, respectively.

The set of n! permutations of [n] is denoted Sn. An interval {a, a +
1, . . . , b} is denoted [a, b], so [1, n] = [n]. For π ∈ Sn the reverted permutation
σ = π ∈ Sn is defined by σ(i) = π(n+1− i). With the exception of (1, 2) and
(2, 1), every connected permutation π is irreducible and so is π. However,
if π is disconnected, then π or π or both may be still irreducible—consider,
e.g., π = (5, 4, 2, 1, 6, 3) that is disconnected but π and π are irreducible.
Obviously, the number of π ∈ Sn such that π is irreducible equals ipn as well.

We denote the identical permutation (1, 2, . . . , n) as ιn. Thus ιn = (n, n−
1, . . . , 1). The substitution of σ1 ∈ Sn1 , σ2 ∈ Sn2 , . . . , σr ∈ Snr in σ ∈ Sr is
the permutation π = σ(σ1, σ2, . . . , σr) ∈ Sn1+n2+···+nr given by

π(i) = n1 + n2 + · · ·+ nσ(j)−1 + σj(i− n1 − n2 − · · · − nj−1)

where j ∈ [r] is the least number such that n1 +n2 + · · ·+nj ≥ i, and empty
sums equal 0. In Atkinson and Stitt [4] (and elsewhere) this construction is
called the wreath product. The partition of [n], n = n1 +n2 + · · ·+nr, in the
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disjoint intervals Ii = [n1 + n2 + · · ·+ ni−1 + 1, n1 + · · ·+ ni], i = 1, 2, . . . , r,
is the interval partition associated with σ(σ1, σ2, . . . , σr). For example, if
σ = (2, 3, 1), σ1 = (4, 2, 3, 1), σ2 = (1), and σ3 = (1, 5, 4, 2, 3), then

σ(σ1, σ2, σ3) = (9, 7, 8, 6, 10, 1, 5, 4, 2, 3)

and the associated interval partition is [1, 4], [5, 5], and [6, 10]. It is clear that
ι1(σ) = σ(ι1, ι1, . . . , ι1) = σ for every permutation σ.

We say that two injections f : X → N and g : Y → N, where X and
Y are finite subsets of N of the same cardinality, are equivalent iff, with
u : X → Y and v : g(Y ) → f(X) being the unique increasing bijections,
for every x ∈ X we have f(x) = v(g(u(x))). For example, the f given by
f(3) = 2, f(1) = 8, and f(100) = 7 is equivalent to the permutation (3, 1, 2).
Every injection from a finite set X ⊂ N, |X| = n, to N is equivalent to a
unique permutation π ∈ Sn. If π ∈ Sn and X ⊂ [n] with |X| = m, we say
that the σ ∈ Sm equivalent with the restricted mapping π : X → [n] is the
restriction of π (to X). We say that a permutation σ is contained in another
permutation π, and write σ ≺ π, if σ is a restriction of π. For example,
(3, 1, 2) ≺ (6, 7, 2, 8, 5, 4, 3, 1) but ι4 6≺ (6, 7, 2, 8, 5, 4, 3, 1). For a permutation
π we set Forb(π) = {σ : π 6≺ σ}. This is an example of a hereditary (or
closed) permutation class X, which is a set of permutations with the property
that σ ≺ π ∈ X always implies σ ∈ X. A set of permutations X is closed
under substitutions if σ(σ1, σ2, . . . , σr) ∈ X whenever all σ, σ1, . . . , σr are in
X.

If π ∈ Sn and I ⊂ [n] is an interval such that π(I) is an interval, the
contraction of π on I produces the permutation σ ∈ Sn−|I|+1 defined as
the restriction of π to ([n]\I) ∪ {i}, where i ∈ I is arbitrary (σ does not
depend on the choice of i). If I = {I1, I2, . . . , Ir} are mutually disjoint
subintervals of [n] such that every π(Ii) is an interval, the contraction of π on
I is defined as the restriction of π to ([n]\(I1∪ I2∪ . . .∪ Ir))∪{i1, i2, . . . , ir},
where ij ∈ Ij are arbitrary. Note that if π = σ(σ1, σ2, . . . , σr) ∈ Sn and
I = {I1 < I2 < . . . < Ir} is the associated interval partition of [n], then σ is
the contraction of π on I and every σi is the restriction of π to Ii.

For a power series F ∈ C[[x]], the coefficient at xn is denoted [xn]F .
Recall that if F ∈ C[[x]] is such that F = a1x+ a2x

2 + · · · with a1 6= 0, then
there exists a unique G ∈ C[[x]] of the same form, the compositional inverse
G = F 〈−1〉 of F , such that F (G) = G(F ) = x. By the Lagrange inversion
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formula (see [35, Theorem 5.4.2]), its coefficients satisfy

[xn]F 〈−1〉 =
1

n
[xn−1]

(
x

F (x)

)n

.

2 Irreducible permutations

The results in Proposition 2.1 and Theorem 2.2 are well known. We state and
prove them for completeness because we need them later. We give Proposi-
tion 2.1 also for comparison with the less straightforward Proposition 3.4.

Irreducible permutations were introduced by Comtet [9, p. 262] (he called
them indecomposable permutations) who in [8] derived the asymptotic series
for their numbers ipn (see also [9, p. 295]); it begins ipn = n!(1 − 2n−1 −
(n(n− 1))−1 − 4(n(n− 1)(n− 2))−1 +O(n−4)). The sequence starts

n 1 2 3 4 5 6 7 8 9 10
ipn 1 1 3 13 71 461 3447 29093 273343 2829325

and Sloane [34] records it as A003319. Irreducible permutations made their
way as an example in several basic texts on enumeration and combinatorics:
Flajolet and Sedgewick [12, Example 13 on p. 57], Gessel and Stanley [14,
p. 1030], Goulden and Jackson [15, Exercise 2.4.19], Knuth [22, Exercise
99], and Odlyzko [28, Example 7.4]. King [18] investigates their Gray codes,
see also [22, Exercise 99]. It turns out that they label natural base of free
quasi-symmetric functions, see Aguiar and Sottile [2], Duchamp et al. [11],
and Poirier and Reutenauer [31]. Ossona de Mendez and Rosenstiehl [29]
constructed a bijection between irreducible permutations of [0, d] and pointed
hypermaps with d darts, and a bijection between irreducible fixed-point-free
involutions on [0, 2m+ 1] and pointed maps with m edges. Not surprisingly,
the decomposition in Proposition 2.1 plays an important role in enumeration
of hereditary permutation classes, see Atkinson et al. [3], Atkinson and Stitt
[4], and Kaiser and Klazar [16].

Besides combinatorics and algebra, irreducible permutations appear in
ergodic theory and number theory. Let π ∈ Sn be given and λ = {I1 <
I2 < . . . < In} and κ = {J1 < J2 < . . . < Jn} be two partitions of the
real interval [0, 1) into intervals of type [a, b) such that |Ii| = |Jπ(i)| for every
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i ∈ [n]; κ arises by permuting λ by π. The interval exchange transform
T = T (π, λ) is the permutation of [0, 1) which sends x ∈ Ii to T (x) =
x−|I1|− · · ·− |Ii−1|+ |J1|+ · · ·+ |Jπ(i)−1|. Thus Ii, sent by π to Jπ(i), carries
with itself the point x to its new place T (x). Keane [17] proved that if π is
irreducible and λ is irrational (this means that the lengths |Ii| are linearly
independent over Q), then the orbit Ox = {T k(x) : k ∈ Z} of every point x is
dense in [0, 1). In 1979 he conjectured that for every irreducible π and almost
every λ (in the sense of the probabilistic Lebesgue measure on the set of all
λ’s) every orbit Ox is uniformly distributed in [0, 1). This conjecture was
proved independently by Masur [27] and Veech [36]. For further properties
and applications of interval exchange transforms associated with irreducible
permutations, see de Oliveira and Gutierrez [10], Chaves and Noguiera [7],
Kontsevich and Zorich [23], Rauzy [32], and Vuillon [37].

Interestingly, there is a link between irreducible permutations and the
Prime number theorem. The PNT says that π(x), the number of primes not
exceeding x, satisfies π(x) = x(1 + o(1))/ log x. In 1808, Legendre made a
more precise but incorrect conjecture that π(x) is roughly x/(log x−1.08366).
Panaitopol [30] pointed out that for every r ∈ N,

π(x) =
x

log x− 1−∑r−1
n=1 kn log−n x− kr(1 + o(1)) log−r x

where, in fact, kn = ipn+1.

Proposition 2.1 The set of permutations of the form π = ιr(σ1, σ2, . . . , σr),
where r ≥ 1 and all σi are irreducible, equals to the set of all permutations.
This decomposition of π is unique.

Proof. We prove the first claim by induction on n in π ∈ Sn. For n = 1 we
have the representation ι1 = ι1(ι1). For n > 1 let m ∈ [n] be the least number
such that π([m]) = [m]. The restriction σ1 of π to [m] is irreducible. Ifm = n,
then σ1 = π and we have π = ι1(σ1). If m < n, we have π = ι2(σ1, σ) where σ
is the restriction of π to [m+ 1, n]. We apply on σ the inductive assumption
and obtain for π the stated decomposition.

To prove its uniqueness, we assume that

π = ιr(σ1, σ2, . . . , σr) = ιs(ρ1, ρ2, . . . , ρs) ∈ Sn

where all σi and ρi are irreducible. Let the associated interval partitions
I1 < I2 < . . . < Ir and J1 < J2 < . . . < Js of [n] be distinct. Then there is a
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k ≥ 1 such that I1 = J1, I2 = J2, . . . , Ik−1 = Jk−1, and Ik 6= Jk. So Ik = [a, b]
and Jk = [a, c] with b 6= c. If b < c, ρk([b−a+1]) = σk([b−a+1]) = [b−a+1]
and ρk is reducible, which is a contradiction. Similarly, b > c contradicts the
irreducibility of σk. Hence we must have r = s, I1 = J1, . . . , Ir = Jr, and
σ1 = ρ1, . . . , σr = ρr. The uniqueness is proved. 2

Theorem 2.2 Let I(x) =
∑

n≥1 ipnx
n = x + x2 + 3x3 + · · · be the ogf of

irreducible permutations and ϕ(x) =
∑

n≥1 n! ·xn = x+2x2 +6x3 + · · ·. Then

I(x) =
ϕ(x)

1 + ϕ(x)
= 1− 1

1 + ϕ(x)

and thus ipn = −[xn](1 + ϕ(x))−1 for every n ∈ N.

Proof. It follows from Proposition 2.1 that 1 + ϕ(x) =
∑

r≥0 I(x)
r = (1 −

I(x))−1. Solving this for I(x) we get the stated formula. 2

Thus we have the recurrence ipn = [xn]I(x) = [xn]ϕ(x)(1 − I(x)) = n! −∑n−1
k=1(n− k)! · ipk.

3 Connected permutations

The following result was our motivation to introduce connected permutations.

Proposition 3.1 Let τ ∈ St. The set Forb(τ) is closed under substitutions
if and only if τ is connected.

Proof. If Forb(τ) is not closed under substitutions, then it happens that

τ ≺ π = σ(σ1, σ2, . . . , σr) ∈ Sn

although none of σ, σ1, . . . , σr contains τ . Let X ⊂ [n] be such that the
restriction of π to X is τ , and I1 < I2 < . . . < Ir be the interval partition
of [n] associated with the substitution. It is not possible that X ⊂ Ii for
some i and that |X ∩ Ii| ≤ 1 for all i because σi 6� τ for all i and σ 6� τ .
Thus 2 ≤ |X ∩ Ik| ≤ |X| − 1 for some k, 1 ≤ k ≤ r. Let X = {x1 < x2 <
. . . < xt} and X ∩ Ik = {xi, xi+1, . . . , xj} where 1 ≤ j − i ≤ t− 2. It follows
from the definition of substitution that τ([i, j]) is an interval and thus τ is
disconnected.
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Let τ be disconnected. Then t ≥ 3 and τ([i, j]) is an interval for some i, j
with 1 ≤ j − i ≤ t − 2. Let σ ∈ St−j+i be the contraction of τ on [i, j] and
ρ be the restriction of τ to [i, j]. Then τ = σ(ι1, . . . , ι1, ρ, ι1, . . . , ι1) with ρ
on the i-th place. But none of σ, ι1, and ρ contains τ because all are shorter
than τ . So Forb(τ) is not closed under substitutions. 2

To enumerate connected permutations, in Proposition 3.4 we uniquely
decompose by means of them any permutation. We need two simple lemmas.

Lemma 3.2 Let I1 < I2 < . . . < Ir and J1 < J2 < . . . < Js, where r, s ≥ 2,
be two distinct interval partitions of [n]. Then (i) I1 ∪ Js = [n] or (ii)
J1∪Ir = [n] or (iii) some Ii intersects at least two and at most s−1 intervals
Jj or (iv) some Ji intersects at least two and at most r − 1 intervals Ij.

Proof. We may assume that r ≤ s. Let k, 0 ≤ k ≤ r − 1, be such
that I1 = J1, I2 = J2, . . . , Ik = Jk and Ik+1 6= Jk+1. Clearly, k exists and
Ik+1 = [a, b] and Jk+1 = [a, c] with b 6= c. First, let k = 0 and b < c. Then
we have (ii) or (iv) with i = 1. If k = 0 and b < c, we have (i) or (iii) with
i = 1. If k ≥ 1, we have (iii) with i = k + 1 or (iv) with i = k + 1. 2

Lemma 3.3 If π ∈ Sn and I, J are intervals in [n] such that I 6= [n], J 6= [n],
I ∪ J = [n], and both π(I) and π(J) are intervals, then π is reducible or π is
reducible.

Proof. It follows from the assumptions that 1 ∈ I and n ∈ J or vice versa.
Let us assume that 1 ∈ I. By the same argument, 1 ∈ π(I) and n ∈ π(J)
or vice versa. In the former case π is reducible, and in the latter case π is
reducible. 2

In general the decomposition π = σ(σ1, σ2, . . . , σr) with connected σ is
not unique, for example π = (2, 1, 4, 3, 6, 5) has three decompositions π =
ι1(π) = ι2((2, 1), (2, 1, 4, 3)) = ι2((2, 1, 4, 3), (2, 1)). However, if ι1, ι2, and ι2
are forbidden for σ, then we get a unique decomposition.

Proposition 3.4 Consider the following four sets of permutations: (i) S1,
(ii) the reducible permutations, (iii) the permutations π such that π is re-
ducible, and (iv) the permutations of the form π = σ(σ1, σ2, . . . , σr) where
r ≥ 4, σ is connected, and σi are arbitrary. These sets are mutually disjoint,
their union is the set of all permutations, and the decomposition of π in the
form (iv) is unique.

7



Proof. It is clear that the sets (i), (ii), and (iii) are mutually disjoint, as
well as the sets (i) and (iv). We show that every π ∈ Sn of the form (iv) is
irreducible. Suppose that π = σ(σ1, σ2, . . . , σr) ∈ Sn as in (iv) and π([a]) =
[a] for some 1 ≤ a < n. Let I1 < I2 < . . . < Ir be the interval partition of [n]
associated with the substitution and I1, I2, . . . , Ik, 1 ≤ k ≤ r, be all intervals
intersected by [a]. It follows that σ([k]) = [k], σ([k+1, r]) = [k+1, r], and if
k = r then σ([r − 1]) = [r − 1]. For any k we have a contradiction with the
connectedness of σ (r > 2). Thus the sets in (iv) and (ii) are disjoint, and
similarly for (iv) and (iii).

To prove the second claim, we take an arbitrary π ∈ Sn, n ≥ 2, such that
π and π are irreducible and express π in the form (iv). We define a maximal
interval I as a subinterval I ⊂ [n] such that 1 ≤ |I| ≤ n − 1, π(I) is an
interval, and I is maximal to inclusion with respect to these properties. It
follows that maximal intervals are pairwise disjoint. Indeed, let I and J be
distinct maximal intervals with I∩J 6= ∅. If I∪J 6= [n] then I∪J contradicts
the maximality of I or of J because π(I ∪ J) is interval. If I ∪ J = [n],
Lemma 3.3 shows that we have a contradiction with the irreducibility of π
and of π. Hence we have an interval partition I1 < I2 < . . . < Ir of [n] into
maximal intervals. We have r ≥ 2 but r = 2 is impossible by Lemma 3.3.
Thus r ≥ 3. We define σ ∈ Sr as the contraction of π on {I1 < I2 < . . . < Ir}
and σi, 1 ≤ i ≤ r, as the restriction of π to Ii. Then π = σ(σ1, σ2, . . . , σr).
Suppose that for some interval I ⊂ [r], 2 ≤ |I| ≤ r − 1, σ(I) is an interval.
It follows that π(

⋃
i∈I Ii) is an interval, which contradicts the maximality of

each of the intervals Ii, i ∈ I. So σ is connected and r = 3 is impossible
because no permutation in S3 is connected.

To prove the last claim, we assume that

π = σ(σ1, σ2, . . . , σr) = ρ(ρ1, ρ2, . . . , ρs) ∈ Sn

where r, s ≥ 4 and both σ and ρ are connected. Let I1 < I2 < . . . < Ir
and J1 < J2 < . . . < Js be the associated interval partitions of [n]. If they
are distinct, we apply Lemma 3.2. By Lemma 3.3, the cases (i) and (ii)
cannot occur (we know from the proof of the first claim that π and π are
irreducible). Suppose that the case (iii) occurs and Ii intersects the intervals
Jk, Jk+1, . . . , Jl where 1 ≤ l − k ≤ s − 2. Since ρ is connected, there are
j ∈ [s]\[k, l] and p, q ∈ [k, l] such that ρ(p) < ρ(j) < ρ(q). But then π(Jp) <
π(Jj) < π(Jq) which implies min π(Ii) < π(Jj) < maxπ(Ii), and thus π(Ii)
is not an interval. On the other hand, π(Ii) must be an interval because Ii
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is one of the intervals associated with the substitution π = σ(σ1, σ2, . . . , σr).
This contradiction shows that the case (iii) of Lemma 3.3 cannot occur. By
an analogous argument, the case (iv) cannot occur as well. Thus the two
interval partitions must be equal and we have r = s, I1 = J1, . . . , Ir = Jr,
σ1 = ρ1, . . . , σr = ρr, and σ = ρ. The uniqueness is proved. 2

Theorem 3.5 Let C(x) =
∑

n≥1 copnx
n = x + 2x2 + 2x4 + · · · be the ogf of

connected permutations and ϕ(x) =
∑

n≥1 n! · xn = x+ 2x2 + 6x3 + · · ·. Then

C(x) = 2

(
x+ x2 − x2

1 + x

)
− ϕ(x)〈−1〉

and thus cop1 = 1, cop2 = 2 and copn = −[xn]ϕ(x)〈−1〉+(−1)n+1 ·2 for every
n > 2.

Proof. By Proposition 2.1 and Theorem 2.2, the ogf of the numbers of
reducible permutations π equals

∑
r≥2

I(x)r =
I(x)2

1− I(x)
=

ϕ(x)2

1 + ϕ(x)

and the same formula holds for reducible π. By Proposition 3.4,

ϕ(x) = x+
2ϕ(x)2

1 + ϕ(x)
+ (C(x)− x− 2x2) ◦ ϕ(x)

where on the right the first x counts the set (i), the second summand counts
the sets (ii) and (iii), and the last composition counts the set (iv). Substi-
tuting for x the inverse series ϕ(x)〈−1〉 and solving the result for C(x), we
get the stated formula. 2

The coefficients of ϕ(x)〈−1〉, and more generally of (ϕ(x)〈−1〉)k, were consid-
ered by Comtet [9, p. 174] (who gave for them no combinatorial interpreta-
tion); this is the only reference for these numbers known to us. We denote
[xn]ϕ(x)〈−1〉 by Comn and call it the Comtet number. Thus, for n 6= 2,
copn = −Comn + (−1)n+1 · 2. The sequences (Comn)n≥1 and (copn)n≥1 start
as follows.
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n 1 2 3 4 5 6 7 8 9 10
Comn 1 −2 2 −4 −4 −48 −336 −2928 −28144 −298528
copn 1 2 0 2 6 46 338 2926 28146 298526

The sequence (Comn)n≥1 (normalized by omitting the minus signs) is in [34]
listed as A059372.

We remark that the notion of connected permutations has counterpart
in the class of set partitions. A set partition P of [n] is called connected
(see Bender, Odlyzko and Richmond [5], Bender and Richmond [6], Lehner
[25], and Klazar [21]) iff there is no interval I ⊂ [n], 1 ≤ |I| ≤ n − 1, such
that every block of P lies either completely inside I or completely outside I.
Similarly to the relation of C(x) and ϕ(x) in Theorem 3.5, the ogf of numbers
of connected partitions can be expressed in terms of the compositional inverse
of the total ogf of Bell numbers.

4 A forest sieve and the asymptotics of num-

bers of connected permutations

By the results of Comtet, ipn = (1 − O(n−1)) · n! and therefore for big n
almost every π ∈ Sn is irreducible. For connected permutations the situation
is different. We prove that copn = (e−2 +O(n−1)) ·n!. We need two auxiliary
results which are of independent interest.

For a graph G = (V,E), a subset X ⊂ V is independent if it spans no
edge. In the opposite case (at least one edge of G has both endpoints in X)
we say that X is dependent. Note that every dependent X satisfies |X| ≥ 2
and that all X with 0 ≤ |X| ≤ 1 are independent. For a graph G = (V,E)
and a vertex v ∈ V we set

α±(G) =
∑

X⊂V
X independent

(−1)|X| and α±(G, v) =
∑

v 6∈X⊂V
X independent

(−1)|X|.

If G is disconnected with components G1, . . . , Gk then we have the product
formula α±(G) =

∏k
i=1 α

±(Gi). A forest is a graph with no cycle.

Lemma 4.1 If F is a forest then α±(F ) = −1, 0 or 1.
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Proof. By the product formula, we may assume that F is a tree. We proceed
by induction on |V (F )|. For |V (F )| ≤ 2 the statement holds: α±(K1) = 0
and α±(K2) = −1. Let |V (F )| ≥ 3, u be a leaf of F , v the neighbor of u,
and u1, . . . , uk, k ≥ 1, be the neighbors of v distinct from u. Let F ′ = F − u
and Fi be the component of F − v containing ui. To obtain α±(F ), we split
F in ({u}, ∅) = K1 and F ′ and use the product formula. But since u and
F ′ are connected by the edge {u, v}, we must subtract the choices of the
independent sets X1 in ({u}, ∅) and X2 in F ′ such that u ∈ X1 and v ∈ X2.
The contribution of the only X1 is −1 and the contribution of the X2’s is
−∏k

i=1 α
±(Fi, ui). Thus

α±(F ) = α±(K1)α
±(F ′)− (−1) ·

(
−

k∏
i=1

α±(Fi, ui)

)
= −

k∏
i=1

α±(Fi, ui).

If Fi = K1 then α±(Fi, ui) = 1. If Fi has more than one vertex then, denoting
the components of Fi − ui by G1, . . . , Gl, we have α±(Fi, ui) =

∏l
j=1 α

±(Gj)
and α±(Fi, ui) ∈ {−1, 0, 1} by the inductive assumption. Thus also α±(F ) ∈
{−1, 0, 1}. 2

It is not hard to count that Pn, the path on n vertices, has
(

n+1−k
k

)
indepen-

dent sets of size k. On the other hand, the recurrence from the previous proof
specializes for Pn to α±(Pn) = −α±(Pn−3), where α±(P1) = 0, α±(P2) = −1,
and α±(P3) = −1. We obtain combinatorial proof of the binomial identity

(α±(Pn) =)
(n+1)/2∑

k=0

(−1)k

(
n+ 1− k

k

)
=

{
0 . . . n = 3m+ 1
(−1)m . . . n = 3m, 3m− 1.

See Klazar [19] for counting independent and maximal independent sets in
rooted plane trees.

If A1, A2, . . . , An are some events in a probability space and X ⊂ [n] is a
set, we denote

AX =
∧
i∈X

Ai.

The following inequality belongs to the area of graph sieves, see Lovász [26,
Problem 2.12] and Galambos and Simonelli [13, I.3].

Proposition 4.2 For every forest F = ([n], E) and events A1, A2, . . . , An in
a probability space, ∣∣∣∣ ∑

X⊂[n]
X dependent

(−1)|X|Pr[AX ]
∣∣∣∣ ≤ ∑

e∈E

Pr[Ae].

11



Proof. By Rényi’s 0-1 principle ([13, Theorem I.1] and [26, Problem 2.6]),
it suffices to prove the inequality only when every Pr[Ai] is 0 or 1. Without
loss of generality we assume that every Pr[Ai] is 1. Then we have to prove,
denoting the sum of (−1)|X| over all dependent X ⊂ [n] by S, that |S| ≤ |E|.
Since the sum of (−1)|X| over all subsets X ⊂ [n] is zero, we have

0 = α±(F ) + S

and it suffices to prove |α±(F )| ≤ |E|. This is by Lemma 4.1 obviously true
if F has at least one edge. If F has no edge, it is also true because then
α±(F ) = 0 and |E| = 0. 2

If F = kK2 consists of k disjoint edges, B1, . . . , Bk are k mutually exclusive
events (with Pr[Bi] ≤ 1/k) and we associate with the endpoints of the i-
th edge of F two copies of Bi, then the inequality holds as an equality.
In general it does not hold if F is not a forest. Consider the graph kK3.
Since α±(K3) = −2, the product formula gives α±(kK3) = (−2)k. For
F = 4K3 and all Pr[Ai] = 1, the left hand side of the inequality equals
|α±(4K3)| = 16 and the right hand side is |E(4K3)| = 12. The inequality
holds for every class of graphs G that is closed on induced subgraphs and
such that |α±(G)| ≤ |E(G)| for every G ∈ G.

Theorem 4.3 For n→∞,

copn = (e−2 +O(n−1)) · n! = (0.13533 . . .+O(n−1)) · n!

where e = 2.71828 . . . is Euler number.

Proof. We take a random permutation π ∈ Sn from the uniform distribution
and calculate the probability that π is (dis)connected. Let AI be, for an
interval I ⊂ [n], the event that π(I) is an interval, and Ek, 2 ≤ k ≤ n−1, be
the event

∨
|I|=k AI , that is, the event that for some interval I ⊂ [n], |I| = k,

π(I) is an interval. For |I| = k we have

Pr[AI ] = (n− k + 1) ·
(
n

k

)−1

because there are n−k+1 image intervals π(I) in [n] and for two fixed k-sets

X, Y ⊂ [n] we have Pr[π(X) = Y ] = 1/
(

n
k

)
(the events that π(X) is a fixed

12



k-set are equiprobable and mutually exclusive). Thus

Pr[Ek] ≤
∑
|I|=k

Pr[AI ] = (n− k + 1)2 ·
(
n

k

)−1

.

For k = 2 this gives nothing but for the remaining k we get

Pr[E3 ∨ E4 ∨ . . . ∨ En−1] ≤
n−1∑
k=3

Pr[Ek] ≤
n−1∑
k=3

(n− k + 1)2(
n
k

) = O(n−1).

It follows that

Pr[π is disconnected] = Pr[E2] +O(n−1).

For i ∈ [n− 1] we set Bi = A{i,i+1}. By the inclusion-exclusion principle,

Pr[E2] = Pr[B1 ∨B2 ∨ . . . ∨Bn−1] = −
∑

∅6=X⊂[n−1]

(−1)|X|Pr[BX ]

where BX =
∧

i∈X Bi. Let P be the path with the vertex set [n − 1] and
the edges {i, i + 1}, i ∈ [n − 2]. We split the last sum in the sum over X
independent on P and the sum over X dependent on P . By Proposition 4.2
and the above calculations,

∣∣∣∣ ∑
X⊂[n−1]

X dependent

(−1)|X|Pr[BX ]
∣∣∣∣ ≤ n−2∑

i=1

Pr[Bi ∧Bi+1] ≤
∑
|I|=3

Pr[AI ] = O(n−1).

Thus

Pr[π is disconnected] =
∑

∅6=X⊂[n−1]
X independent

(−1)|X|+1Pr[BX ] +O(n−1).

Suppose that X ⊂ [n − 1] consists of k ≥ 1 elements, no two of them
consecutive. Pr[BX ] is the probability that each π({i, i + 1}), i ∈ X, is an

interval. We have
(

n−k
k

)
k!2k possible restrictions of π to

⋃
i∈X{i, i+1} because

the π({i, i+1})’s are k mutually disjoint 2-element intervals J1, . . . , Jk in [n]

and, as we already know, there are
(

n−k
k

)
of them, there are k! assignments

of the Jj’s to the intervals {i, i + 1}, i ∈ X, and there are two ways for

13



π({i, i + 1}) = Jj. The probability of a fixed restriction of π to a given
A ⊂ [n] is 1/(n(n− 1) . . . (n− |A|+ 1)). Thus

Pr[BX ] =

(
n− k

k

)
k!2k

n(n− 1) . . . (n− 2k + 1)

and

Pr[π is disconnected] =
n/2∑
k=1

(
n− k

k

)2
(−1)k+1k!2k

n(n− 1) . . . (n− 2k + 1)
+O(n−1).

Rearranging the summand, we rewrite the last sum as

−
n/2∑
k=1

(−2)k

k!
·

k−1∏
i=0

(
1− k

n− i

)
= −

n/2∑
k=1

(−2)k

k!
· P (k, n).

For all k ≤ n/2, 0 ≤ P (k, n) < 1 and for 0 < k ≤ n1/4, by standard estimates,
uniformly P (k, n) = 1− k2/n+O(n−1). Hence the last sum equals

n1/4∑
k=1

(−2)k(1 +O(n−1))

k!
− 1

n

n1/4∑
k=1

k2(−2)k

k!
+

∑
n1/4<k≤n/2

(−2)k

k!
· P (k, n)

=
∞∑

k=1

(−2)k

k!
+O(n−1) +O(

∑
k>n1/4 2k/k!)

= e−2 − 1 +O(n−1)

and Pr[π is disconnected] = 1− e−2 +O(n−1). Finally,

Pr[π is connected] = 1− (1− e−2 +O(n−1)) = e−2 +O(n−1)

and copn = (e−2 +O(n−1)) · n!. 2

Theorems 3.5 and 4.3 give the asymptotics of Comn.

Corollary 4.4 For n→∞,

Comn = [xn]

( ∞∑
n=1

n!xn

)〈−1〉

= (−e−2 +O(n−1)) · n!.

To obtain asymptotics of some combinatorially defined numbers, one usually
applies to their generating function analytic and algebraic methods. In the
derivation of Corollary 4.4 we proceeded the other way around — we obtained
asymptotics of the coefficients of a power series by using their combinatorial
representation.
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5 Non-P-recursiveness

A sequence of numbers (an)n≥0 is called P-recursive if it satisfies a linear
recurrence with polynomial coefficients. A power series is called D-finite
if it satisfies a linear differential equation with polynomial coefficients. A
sequence (an)n≥0 is P-recursive if and only if its ogf A(x) =

∑
n≥0 anx

n is
D-finite. More information on D-finiteness and P-recursiveness can be found
in Stanley [35, Chapter 6]. If an = n! then an−nan−1 = 0 for n ∈ N, a0 = 1,
and thus (n!)n≥0 is P-recursive. We show that on the other hand neither
(ipn)n≥0 nor (copn)n≥0 is P-recursive. By Theorem 3.5, instead of the latter
sequence we can work with (Comn)n≥0.

Proposition 5.1 The power series I(x) =
∑

n≥1 ipnx
n = x+ x2 + 4x3 + · · ·

and ψ(x) = ϕ(x)〈−1〉 =
∑

n≥1 Comnx
n = x − 2x2 + 2x3 − · · · satisfy the

differential equations

I ′ = −x−2I2 + (x−2 + x−1)I − x−1 and ψ′ =
ψ2

x− (1 + x)ψ
.

Proof. It follows from the recurrence for n! that ϕ(x) =
∑

n≥1 n!xn satisfies
x + xϕ + x2ϕ′ = ϕ. Thus ϕ′ = ((1 − x)ϕ − x)/x2. Combining this with
ϕ = I/(1 − I) (Theorem 2.2), we obtain the differential equation for I(x).
Similarly, ψ′ = 1/ϕ′(ψ) = ψ2/((1−ψ)x−ψ) which is the differential equation
for ψ(x). 2

In Klazar [20] we used the following method to show that (an)n≥0 is
not P-recursive. Suppose that the ogf A(x) is nonanalytic and satisfies a
first order differential equation A′ = R(x,A) where R is some expression.
Differentiating it and replacing A′ by R(x,A), we express the derivatives of
A as A(k) = Rk(x,A); R0(x,A) = A and R1(x,A) = R(x,A). Substituting
Rk(x,A) in the equation of D-finiteness

b0A+ b1A
′ + b2A

′′ + · · ·+ bsA
(s) = 0,

where s ≥ 1, bi ∈ C(x) and bs 6= 0, we get a non-differential equation∑s
k=0 bkRk(x,A) = 0. If R is such that the expressions R0, R1, R2, . . . are (i)

analytic or even algebraic and (ii) linearly independent over C(x), we have
a nontrivial analytic equation for A. This implies, see [20] for more details,
that A is analytic, which is a contradiction. So A cannot be D-finite and the
sequence of its coefficients cannot be P-recursive.
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To state the result of [20] precisely, we remind the reader that a power se-
ries R(x, y) ∈ C[[x, y]] is analytic if it absolutely converges in a neighborhood
of the origin and that R(x, y) ∈ C((x, y)) is an analytic Laurent series if, for
some k ∈ N, (xy)kR(x, y) ∈ C[[x, y]] is analytic. Theorem 1 of [20] says that
if A ∈ C[[x]] is nonanalytic, R(x, y) ∈ C((x, y)) is analytic, A′ = R(x,A),
and R contains at least one monomial axiyj, a 6= 0, with j < 0, then A is not
D-finite. This result applies directly neither to I(x) nor ψ(x) (see Proposi-
tion 5.1) because in the case of I(x) the last condition on R is not satisfied
and in the case of ψ(x) the right hand side R even cannot be expanded as a
Laurent series.

However, the substitution x − (1 + x)ψ(x) = θ(x) turns the second dif-
ferential equation of Proposition 5.1 to

θ′ = − x2

1 + x
· 1

θ
+

1 + 2x

1 + x
.

Now all conditions are satisfied (ϕ(x) is clearly nonanalytic which implies that
ψ(x) and θ(x) are nonanalytic) and thus θ(x) is not D-finite by Theorem 1
of [20]. The dependence of ψ(x) and C(x) =

∑
n≥1 copnx

n on θ(x) and the
fact that D-finite power series form a C(x)-algebra ([35, Theorem ?]) show
that ψ(x) and C(x) are not D-finite too. We conclude that the sequences
(Comn)n≥0 and (copn)n≥0 are not P-recursive.

We use this opportunity to complement Theorem 1 of [20] in which R ∈
C((x, y)) by the following theorem which treats the case R ∈ C(x, y). Neither
of the theorems subsumes the other because not every rational function in x
and y can be represented by an element of C((x, y)) (as we have seen) and,
of course, not every Laurent series sums up to a rational function. However,
the next theorem seems to be more useful because in both examples in [20]
and both examples here the right hand side R(x, y) is, in fact, a rational
function.

Theorem 5.2 Let P,Q ∈ C[x, y] be two nonzero coprime polynomials and
A ∈ C[[x]] be a nonanalytic power series which satisfies the differential equa-
tion

A′ =
P (x,A)

Q(x,A)
.

If degy Q = 0 and degy P ≤ 1 then A is, trivially, D-finite. In all remaining
cases A is not D-finite.
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Proof. The first claim is clear. If degy Q = 0 and r = degy P ≥ 2 then
A′ = a0+a1A+· · ·+arA

r where ai ∈ C(x), r ≥ 2, and ar 6= 0. Differentiation
by x gives

A(k) = Rk(x,A) = a0,k + a1,kA+ · · ·+ akr−k+1,kA
kr−k+1

where ai,j ∈ C(x) and

akr−k+1,k = r(2r − 1)(3r − 2) . . . ((k − 1)r − k + 2)ak
r 6= 0.

Thus Rk(x, y) ∈ C(x)[y] have y-degrees kr − k + 1, k = 0, 1, 2, . . ., which is
for r ≥ 2 a strictly increasing sequence. Therefore R0, R1, R2, . . . are linearly
independent over C(x) and, by the above discussion, A is not D-finite.

In the remaining case degy Q ≥ 1. Differentiation of A′ = R(x,A) =

P (x,A)/Q(x,A) by x gives A(k) = Rk(x,A) where Rk(x, y) ∈ C(x, y). For
example,

R2 =
(Px + PyR1)Q− P (Qx +QyR1)

Q2

=
PxQ− PQx

Q2
+
P (PyQ− PQy)

Q3
.

Let α, Q(x, α) = 0, be a pole of R1(x, y) of order ordα(R1) = ordα(P/Q) =
−ordα(Q) = l ≥ 1. We have ordα((PxQ−PQx)Q

−2) ≤ 2l and ordα(P (PyQ−
PQy)Q

−3) = 3l+ordα(PyQ−PQy) = 2l+1 since ordα(P ) = 0, ordα(PyQ) ≤
−l, and ordα(PQy) = −l + 1. So ordα(R2) = 2l + 1. In general, the same
argument shows that ordα(Rk+1) = 2 · ordα(Rk) + 1. Hence ordα(Rk) =
2k−1l + 2k−1 − 1, k = 1, 2, . . .. This is a strictly increasing sequence and we
conclude again, since R0, R1, R2, . . . are linearly independent over C(x), that
A is not D-finite. 2

Proposition 5.1 and Theorem 5.2 give the following corollary.

Corollary 5.3 The sequences (ipn)n≥1, (Comn)n≥1, and (copn)n≥1 are not
P-recursive.

6 Congruences

By the Lagrange inversion formula (recalled at the end of Section 1),

n · Comn = [xn−1]

∑
k≥0

(−1)k(2!x+ 3!x2 + · · ·)k

n

.
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We use this representation to derive modular properties of the numbers
Comn. For a prime p, let ordp(n) denote the largest m ∈ N0 such that
pm divides n. It is an interesting fact that the Comtet numbers are divisible
by high powers of 2:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ord2(Comn) 0 1 1 2 2 4 4 4 4 5 5 15 13 12 12

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
8 8 9 9 10 10 12 12 14 14 15 15 17 17 22

In Theorem 6.2 we give a lower bound on ord2(Comn) which is tight for
infinitely many n and we completely characterize the values of n for which
the equality is attained.

Recall some properties of ordp(·): ordp(ab) = ordp(a) + ordp(b), ordp(a+
b) ≥ min(ordp(a), ordp(a)), and ordp(a+b) = min(ordp(a), ordp(b)) whenever
ordp(a) 6= ordp(b).

Lemma 6.1 For every m ∈ N,

ord2((m+ 1)!) ≥
⌈
m

2

⌉
a where the equality holds iff m = 1 or 2. Also, ord3(m!) ≤ m− 1 for every
m ∈ N.

Proof. This follows from the more general formula

ordp(m!) =

⌊
m

p

⌋
+

⌊
m

p2

⌋
+ · · ·

which is well-known. In particular, ord2(m!) = m − d(m) for every m ∈ N,
where d(m) is the number of unit digits in the binary expansion of m, and
the stated results on ord2 follow. As for ord3, ord3(1) = 0 and for m ≥ 2,
ord3(m!) ≤ m(1/3 + 1/32 + · · ·) = m/2 ≤ m− 1. 2
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Theorem 6.2 Let n ∈ N and m = bn/2c. Then

ord2(Comn) ≥
⌈
n− 1

2

⌉

and the equality holds if and only if
(

3m
m

)
is odd. In other words, the equality

holds if and only if the binary expansion of m has no two consecutive unit
digits.

Proof. Let the numbers bk, k ≥ 0, be defined by∑
k≥0

bkx
k =

∑
k≥0

(−1)k(2!x+ 3!x2 + · · ·)k.

Thus b0 = 1 and for k ∈ N,

bk =
∑

c1,c2,...,cs≥1
c1+c2+···+cs=k

(−1)s · (c1 + 1)! · (c2 + 1)! · . . . · (cs + 1)!.

By the above formula for Comn,

n · Comn =
∑

k1,k2,...,kn≥0
k1+k2+···+kn=n−1

bk1bk2 . . . bkn .

By Lemma 6.1, ord2((c+ 1)!) ≥ c/2 for every c ∈ N. Hence, for every k ≥ 0
and n ∈ N,

ord2(bk) ≥
k

2
and ord2(n · Comn) ≥ n− 1

2
.

In particular, for odd n we have ord2(Comn) = ord2(n · Comn) ≥ (n− 1)/2.
We claim that, more precisely,

ord2(bk)


= k/2 . . . for even k
= (k + 1)/2 . . . for k ≡ 1 mod 4
> (k + 1)/2 . . . for k ≡ 3 mod 4.

For the proof we look more closely at the sum for bk. Let k be even. Then
the sum has exactly one summand with ord2 equal to k/2, namely that with
c1 = c2 = . . . = ck/2 = 2 (by Lemma 6.1, ord2((c + 1)!) = c/2 only if c = 2),
and the other summands have ord2 bigger than k/2. Hence ord2(bk) = k/2.
Let k be odd. Then each summand has an odd number of odd ci’s. The
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summands t with three and more odd ci’s satisfy ord2(t) ≥ (k + 3)/2 (each
odd ci contributes 1/2 to k/2). The same is true if t has only one odd ci but
that ci is not 1 (by Lemma 6.1, ord2((c+ 1)!) ≥ (c+ 3)/2 for odd c > 1), or
if some even ci is not 2 (Lemma 6.1). The remaining summands t, in which
ci = 2 with multiplicity (k−1)/2 and once ci = 1, satisfy ord2(t) = (k+1)/2.
We see that, for odd k, ord2(bk) = (k+ 1)/2 iff the number of the remaining
summands is odd. This number equals (k − 1)/2 + 1 = (k + 1)/2. So
ord2(bk) = (k + 1)/2 iff k is of the form 4l + 1.

Let n = 2m+1 be odd. If s is a summand of the above sum for n ·Comn,
then ord2(s) = (n − 1)/2 iff all ki in s are even; other summands t have
ord2(t) > (n− 1)/2. It follows that ord2(Comn) = (n− 1)/2 iff the number
of the former summands s is odd. This number equals

[xn−1]

∑
r≥0

x2r

n

= [xn−1]
1

(1− x2)n
= [xn−1]

∑
r≥0

(
n+ r − 1

r

)
x2r =

(
3m

m

)
.

Let n = 2m be even. We know that ord2(bk) = k/2 for even k and
ord2(bk) ≥ (k + 1)/2 for odd k. In the sum for n · Comn, every composition
k1 + k2 + · · ·+ kn = n− 1 of n− 1 has an odd number of odd parts. For any
t-tuple l1, l2, . . . , lt, where t and all li are odd and l1 + · · ·+ lt ≤ n− 1, we let
S(l1, l2, . . . , lt) denote the sum of those bk1bk2 . . . bkn with k1 +k2 + · · ·+kn =
n− 1 in which ki = li, 1 ≤ i ≤ t, and ki is even for i > t. It follows that

n · Comn =
∑(

n

t

)
S(l1, l2, . . . , lt)

where we sum over all mentioned t-tuples l1, l2, . . . , lt. By the properties of
ord2 and of the numbers bk, ord2(S(l1, l2, . . . , lt)) ≥ (n + t − 1)/2. Also, for

odd t we have ord2(
(

n
t

)
) = ord2(

n
t

(
n−1
t−1

)
) = ord2(n)− ord2(t)+ord2(

(
n−1
t−1

)
) ≥

ord2(n), and ord2(
(

n
1

)
) = ord2(n). It follows that ord2(Comn) ≥ n/2 and,

moreover, ord2(Comn) = n/2 iff

ord2

 ∑
l≤n, l odd

S(l)

 = n/2.

In the last sum still many summands have ord2 bigger than n/2: if l ≡ 3
mod 4 then ord(S(l)) > n/2. On the other hand, if l ≡ 1 mod 4 then each
summand blbk2 . . . bkn in S(l) has ord2(blbk2 . . . bkn) = n/2. We conclude that
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ord2(Comn) = n/2 iff the number c(n) of compositions of n− 1 into n parts,
where the first part is ≡ 1 mod 4 and the remaining n − 1 parts are even
(zero parts are allowed), is odd. We have

c(n) = [xn−1]
x

1− x4
· 1

(1− x2)n−1
= [xn−1]

x

1 + x2
· 1

(1− x2)n

≡ [xn−1]
x

1− x2
· 1

(1− x2)n
= [xn−1]

x

(1− x2)n+1
mod 2

=

(
3m− 1

m− 1

)
≡ 3m

m

(
3m− 1

m− 1

)
mod 2

=

(
3m

m

)
.

It was noted by Kummer in [24], see also Singmaster [33], that ordp(
(

a+b
b

)
)

equals to the number of carries required when adding a and b in the p-ary
notation. Applying this for p = 2, a = m, and b = 2m, we get the stated
criterion. 2

Corollary 6.3 For every n ∈ N, n ≥ 3,

copn ≡
{

2 mod 2(n−1)/2 for odd n
−2 mod 2n/2 for even n.

Let

Cn =
1

n+ 1

(
2n

n

)
be the nth Catalan number.

Proposition 6.4 For every n ∈ N,

Comn ≡ Cn−1 mod 3.

Proof. Let n ∈ N. We have, for every k ∈ N0,

(2!x+ 3!x2 + · · ·)k = (2x)k + 3ak(x)

21



with ak(x) ∈ Z[[x]]. Thus

∑
k≥0

(−1)k(2!x+ 3!x2 + · · ·)k =
1

1 + 2x
+ 3

∑
k≥0

(−1)kak(x)

=
1

1 + 2x
+ 3b(x)

with b(x) ∈ Z[[x]]. Let m = ord3(n). Since ord3(k!) ≤ k − 1 for every k ∈ N
(Lemma 6.1), we have

ord3

(
3k
(

n
k

))
≥ m+ 1 for k = 1, 2, . . . , n.

By the above formula for Comn,

n · Comn = [xn−1]
(

1

1 + 2x
+ 3b(x)

)n

≡ [xn−1]
1

(1 + 2x)n
mod 3m+1

= (−2)n−1

(
2n− 2

n− 1

)
.

Canceling in the last congruence the common factor 3m, we get

n

3m
· Comn ≡

(−2)n−1

3m

(
2n− 2

n− 1

)
≡ 1

3m

(
2n− 2

n− 1

)
mod 3.

Since n/3m 6≡ 0 mod 3, we can divide by it and get

Comn ≡
1

n

(
2n− 2

n− 1

)
mod 3.

2

Corollary 6.5 For every n ∈ N, n > 2,

copn ≡ −Cn−1 + (−1)n mod 3.
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