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Abstract. The eigenvalues of the Schrödinger operator on a graphG are related via an exact
trace formula to periodic orbits onG. This connection is used to calculate two-point spectral
statistics for a particular family of graphs, called star graphs, in the limit as the number of edges
tends to infinity. Combinatorial techniques are used to evaluate both the diagonal (same orbit) and
off-diagonal (different orbit) contributions to the sum over pairs of orbits involved. In this way,
a general formula is derived for terms in the (short-time) expansion of the form factorK(τ) in
powers ofτ , and the first few are computed explicitly. The result demonstrates thatK(τ) is neither
Poissonian nor random matrix, but an intermediate between the two. Off-diagonal pairs of orbits
are shown to make a significant contribution to all but the first few coefficients.

1. Introduction

The Schr̈odinger operator on a graph provides a model for investigating quantum spectral
statistics and their relation to periodic orbit theory. The trace formula, which links the
eigenvalues to the classical periodic orbits of a graph, is an identity, and numerical studies have
shown that the universal random-matrix features observed in the energy-level correlations of
classically chaotic systems are present in the spectra of typical graphs [4–6].

The trace formula relates the two-point spectral correlation functionR2(x) to a sum
over all pairs of periodic orbits. In the case of ‘generic’ graphs, standard semiclassical
techniques [1–3], based on approximating this sum by only evaluating the diagonal (same
orbit, modulo symmetry) contributions, can be used to explain some universal features of
R2(x) as the number of edges tends to infinity [4,5]. Specifically, they show that the first term
in the expansion of the form factorK(τ)—the Fourier transform ofR2(x)—in powers ofτ
aroundτ = 0 coincides with the corresponding random-matrix results.

Alternatively, combinatorial methods have been used [6] to show that the two-point spectral
correlations of small graphs coincide with those of correspondingly small random matrices.

In this paper we concentrate on a family of graphs, calledstar graphs, which have a
particularly simple structure. Av-star graph consists of a vertex connected tov other vertices
in a star shape, as the name suggests. The form factor was computed numerically for a
number of star graphs and evaluated using a method equivalent to the diagonal approximation
in [5]. The results suggest that when the number of edges is large, the two-point statistics are
intermediate between those of random matrix theory and a Poisson distribution. We confirm
this here by developing a general combinatorial method for calculating terms in the expansion
of K(τ) in powers ofτ aboutτ = 0, in the limit as the number of edges tends to infinity, and
under some restrictions on the individual lengths of the edges. The first few terms are obtained
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explicitly. Crucially, this method enables us to evaluate both the diagonal and off-diagonal
(different orbit) contributions. The off-diagonal contribution is nonzero for all but the first few
coefficients.

Quantum graphs and their spectral statistics are described in more detail in section 2.
We calculate the coefficients in the expansion of the form factor in section 3. Finally, in
section 4, we discuss the diagonal approximation and compare it with the full expansion.
Some combinatorial parts of the analysis are deferred until the appendix.

2. Quantum eigenvalues on graphs

LetG = (V ,E) be a graph, whereV is the set of vertices (nodes) andE ⊂ V ×V is the set of
edges (bonds). It is assumed that ife = (i, j) ∈ E thenē = (j, i) ∈ E. Every edgee ∈ E has
a lengthle (le = lē) associated with it, and we shall assume that these lengths are rationally
independent (incommensurate).

Define a Schr̈odinger equation on the edgee = (k, j):

− d2

dx2
9e(x) = λ29e(x) (1)

wherex ∈ [0, le] is the distance alonge, with x = 0 corresponding to the vertexk andx = le
to the vertexj . We require the wavefunctions on different edges to be matched at the vertices

9e1(0) = 9e2(0) if e1 = (k, j1) e2 = (k, j2) (2)

and to satisfy the Neumann current conservation condition,∑
j

d

dx
9kj

∣∣∣∣
x=0

= 0. (3)

Solving (1) and applying the boundary conditions we get the following equation for the
eigenvaluesλ [5]:

det(I − exp{−iλL}S) = 0 (4)

whereL is the diagonal|E| × |E|matrix with the lengthsle as its diagonal elements, and the
elements of the matrixS are given by

S(j,k),(k,j ′) = −δj,j ′ + 2/vk (5)

wherevk = #{j : (k, j) ∈ E} is the valency of the vertexk, andδj,j ′ is the Kronecker delta.
S can be interpreted as the matrix of weights of the corresponding edge-to-edge transitions.
The transition from the edge(j, k) to the edge(k, j) is calledbackscattering, while other
transitions are referred to asnormalscattering.

An exact trace formula for the eigenvalues{λk}was derived in [5]. Ifd(λ) =∑ δ(λ−λn)
is the spectral density, then

d(λ) = L

2π
+ π−1

∑
n,p∈P̃n

lp

rp
Ap cos(λlp) (6)

wherep = (p0, p1, . . . , pn), pi ∈ E, labels a periodic orbit of periodn (p0 = pn), rp is the
repetition number of the orbitp, L is the sum of lengths of all the edges,̃Pn is the set of all
(up to a shift) periodic orbits of periodn, lp =

∑n
i=1 l

pi is the length of the periodic orbitp,
andAp =

∏n
i=1 Spi−1,pi is the product of the matrix elements ofS along the orbit.

In the present work we study one spectral function, the form factor (defined in section 3)
for a special family of graphs, known asstar graphs. These are graphs withv + 1 vertices
marked 0 tov andE = {(0, i), (i, 0) : i = 1 . . . v}; see figure 1. In this case the valency of
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Figure 1. Examples of a graph (a) and a star graph (b).

vertex 0 isv and the valency of the other vertices is 1. This simplifies the matrixS; for example,
backscattering from the vertices 1. . . v has weight 1. We shall call such backscatteringstrivial .
As for transitions through the vertex 0, backscattering has weightv−2

v
while normal scattering

has weight 2/v. It is clear that in the limitv→∞ the leading-order contributions come from
orbits with the maximum number of nontrivial backscatterings. This will form the basis of our
analysis.

3. Expansion of the form factor

3.1. General formulae

To study statistics of the spectrum we introduce the following functions. The two-point
autocorrelation function is defined by

R2(x) ≡
(

2π

L

)2 〈
d(λ)d

(
λ− 2πx

L

)〉
≡
(

2π

L

)2

lim
3→∞

1/(23)
∫ 3

−3
d(λ)d

(
λ− 2πx

L

)
dλ. (7)

The form factorK(τ) is the Fourier transform of the autocorrelation function

K(τ) =
∫ ∞
−∞
(R2(x)− 1) exp(2π ixτ) dx. (8)

Inserting the trace formula (6) into the definition of the autocorrelation function and
performing the Fourier transform we obtain

K(τ) = 1

L2

∞∑
n=2

∑
p,q∈P̃n

lp

rp

lq

rq
ApAqδ

(
τ − lp

L

)
δlp,lq (9)

whenτ > 0 (K is an even function). Loosely speaking, the form factor is a sum of delta
functions positioned at the lengths of the periodic orbits and weighted by the factorsAp. Note
the coupling between different orbits of the same length which is present due to the Kronecker
delta. We will refer to classes of orbits of the same length asdegeneracy classes. The condition
that the individual lengths of the edges are incommensurate implies that for two orbits to have
the same length they have to traverse thesame set of edges† although in a different order. As
a consequence, all orbits in a degeneracy class have the same period. This allows us to write

K(τ) = 1

L2

∞∑
n=2

∑
`

`2δ

(
τ − `

L

)( ∑
p∈P̃n,lp=`

Ap

rp

)2

(10)

† Or, rather, the samemultisetof edges, because the number of traversals of each edge is what is important here.
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where the first (outmost) sum is over all periods, the second is over all degeneracy classes,
characterized by the length̀of their orbits, and the last is over the orbits within a given
degeneracy class.

In what follows we assume that the individual lengths of the edges are densely distributed
around their average, which, without loss of generality, we take to be unity; for example, they
might have uniform distribution on the interval [1− 1/(2v), 1 + 1/(2v)] in such a way that
L = 2v. Note that the distribution changes with the valencyv. This is done in such a way that
the orbits of period 2k (in star graphs all periods are even) have their lengths distributed in the
interval [2k − k/v, 2k + k/v] and, therefore, whenk/v < 1 the corresponding delta functions
are concentrated in the interval[

k

v
− k

2v2
,
k

v
+
k

2v2

]
⊂
[
k

v
− 1

2v
,
k

v
+

1

2v

]
. (11)

Thus, forτ = k/v < 1, the contribution from orbits of different period will be confined to
nonintersecting intervals. To approximate the form factor aroundk/v we integrate it against
the characteristic function of the corresponding interval and divide by the length 1/v of the
interval. This contribution is equal to

K̃(τ ) = lim
v→∞

v

L2

∑
`

`2

( ∑
p∈P̃2k ,lp=`

Ap

rp

)2

(12)

whereτ = k/v. It is clear thatK̃(τ ) is the weak limit ofK(τ) in the generalized sense as
v→∞.

Under the above conditions on the distribution of the lengths, the form factorK(k/v)

is well approximated by another quantity,〈|Tr S2k|2〉/(2L), the periodic orbit expansion for
which can be obtained from (12) by substituting` = 2k. In what follows we make the
approximatioǹ ≈ 2k (i.e. consider〈|TrS2k|2〉/(2L) instead ofK(k/v)) but still refer to the
resulting expression as the form factor.

We start by dividing all orbits intov groups, based on the numberj of differentedges the
orbit traverses. This number is an invariant of the degeneracy class; thus the sums over the
degeneracy classes will remain intact. In every degeneracy class the leading-order contribution
comes from the orbits with the maximum number of backscatterings from the central vertex;
that is, from the orbits withk− j nontrivial backscatterings (for an example, see section 3.4).
Our approach will be to extract this contribution and regroup the remaining orbits based on
how many backscatterings short of the maximum they are. Thus we write

K̃(τ ) = K1(τ ) + lim
v→∞

v

L2

∞∑
j=2

(2k)2
(
v

j

)(
2

v

)2j (
v − 2

v

)2k−2j

Dj (v) =
∞∑
j=1

Kj(τ) (13)

where

• K1(τ ) is the contribution from the orbits that are confined to one edge. This term will be
treated separately.
• L = 2v is the total length of the graph,
• (2k)2 is the approximate squared length of the orbits,
• the binomial coefficient is the number of ways to choosej traversed edges out of the

availablev,
• ( 2

v
)2j ( v−2

v
)2k−2j is the factorA2

p for an orbit which traversesj different edges and has the
maximum number of backscatterings,k − j ,
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• and

Dj(v) =
∑

(s1,...,sj )∑
si=k

D2
(s1,...,sj )

(v) (14)

is the sum of the contributionsD(s1,...,sj )(v) of the degeneracy classes, withsi being the
number of the traversings of the edgei by an orbit from a particular class. Here we count
the traversals in one direction only, e.g. the traversals from the centre to periphery.

We now have that

D(s1,...,sj )(v) =
k−j∑
m=0

(
2

v

)m (2− v
v

)−m
Qm(j) =

k−j∑
m=0

( −2

v − 2

)m
Qm(j) (15)

whereQm(j) represents how many orbits withk − j − m backscatterings (that is,m less
than the maximum) there are in this degeneracy class. Here we have ignored the influence of
repetitions, on the grounds that these give an exponentially subdominant contribution.

Taking the limit asv→∞ in (13) termwise and withτ = k/v fixed, we find

K̃(τ ) = K1(τ ) +
∞∑
j=2

4j

j !
Djτ

2 exp(−4τ) (16)

whereDj = limv→∞ v1−jDj (v).

3.2. Calculation ofK1(τ )

K1(τ ) is the contribution from orbits which are confined to only one edge. All factors inK1(τ )

are the same as for generalj , with the exception that we take into account the repetitions. Or,
rather, we cannot afford to ignore them, because in this case all contributing orbits are just
pure repetitions withrp = k. There are no degeneracies, therefore

K1(τ ) = lim
v→∞

v

L2
22v

(
v − 2

v

)2k

= lim
v→∞

(
1− 1

v/2

)4τv/2

(17)

and so, taking the limit while holdingτ fixed,

K1(τ ) = exp(−4τ). (18)

3.3. Thej = 2 contribution

Thej = 2 contribution is relatively simple and can be considered separately to illustrate our
approach. It has the form

K2(τ ) = 42

2!
τ 2 exp(−4τ)D2 (19)

whereD2 = limv→∞ D2(v)

v
. We now use the fact that asv → ∞ the sum inD2(v) can be

replaced by an integral, so

D2(v) ≈ v
∫ τ

0
D2(q1, τ − q1) dq1 (20)

whereD(q1, q2) is thev→∞ limit of D(s1,s2)(v), the contribution from orbits which traverse
only two edgess1 ands2 times respectively, andqi = si/v. D(s1,s2)(v) can be expanded as

D(s1,s2)(v) ≈ 1 +
1

2
P
s1
2 P

s2
2

(
2

v − 2

)2

+
1

3
P
s1
3 P

s2
3

(
2

v − 2

)4

+ · · ·

=
∞∑
m=0

1

m + 1
P
s1
m+1P

s2
m+1

(
2

v − 2

)2m

(21)



7832 G Berkolaiko and J P Keating

whereP sg =
(
s−1
g−1

)
is the number of partitions of an interval of lengths into g nonintersecting

subintervals of integer length. The idea of the decomposition is based on the fact that aj = 2
orbit may be represented in general as

(1, . . . ,1︸ ︷︷ ︸
a0

,

b0︷ ︸︸ ︷
2, . . . ,2, 1, . . . ,1︸ ︷︷ ︸

a1

, . . . ,1, . . . ,1︸ ︷︷ ︸
am

,

bm︷ ︸︸ ︷
2, . . . ,2) (22)

corresponding toa0 traversals of the first edge, thenb0 traversals of the second, then another
a1 of the first, and so on. The sum

∑m
i=0 ai is equal tos1 and

∑m
i=0 bi = s2. In the general

term in (21),P s1m+1 is the number of ways to decomposes1 into a sum ofai , P
s2
m+1 is the number

of ways to decomposes2 into a sum ofbi multiplied by the weight factor (2m backscatterings
less then the maximum possible numberk − 2) and divided bym + 1, which, again ignoring
repetitions, corresponds approximately to the cyclic symmetry. This approximation is the only
one in (21). When compared with (15),Q2m(2) = 1

m+1P
s1
m+1P

s2
m+1 andQ2m+1(2) = 0.

Taking the limitv→∞ termwise, we obtain

D(q1, q2) = 1 +
1

2
q1q222 +

1

3

1

2!
q2

1
1

2!
q2

224 + · · · (23)

=
∞∑
m=0

(4q1q2)
m

m!(m + 1)!
= I1(4

√
q1q2)

2
√
q1q2

whereq1 = s1/v, q2 = s2/v andI1(x) is a Bessel function, and so, using the substitution
q1 = (τ + τ cosφ)/2 we evaluate

lim
v→∞D2(v)/v =

∫ τ

0

I 2
1 (4
√
q1(τ − q1))

4q1(τ − q1)
dq1 = 1

2τ

∫ π

0

I 2
1 (2τ sinφ)

sinφ
dφ

= 1

4τ 2
(I1(4τ)− 2τ). (24)

Thus,

K2(τ ) = 2 exp(−4τ)(I1(4τ)− 2τ). (25)

3.4.Kj(τ) for generalj

We now proceed to calculate the degeneracy factorD(s1,...,sj )(v) of (15) for generalj . We
begin with some examples forj = 3:

• the orbit (1, 1, 1, 3, 3, 2, 2, 2, 2) has the maximum number of backscatterings and
therefore will be counted inQ0(3).
• the orbit(1, 1, 3, 3, 1, 2, 2, 2, 2) is one backscattering short of the maximum number and

will be counted inQ1(3).
• the orbit(1, 1, 2, 2, 3, 3, 2, 1, 2) is three backscatterings short of the maximum number,

and so belongs toQ3(3).

The orbits fromQ0(j) are the simplest. They achieve the maximum number of the
backscatterings and consist ofj blocks of edges, like the orbit in the first example above.
There are(j − 1)! different orbits inQ0(j) (j ! permutations divided byj due to the cyclic
symmetry).

The structure of the orbits inQ1(j) is as follows. We take an orbit fromQ0, for example
the orbit(1 . . .1, 2 . . .2, . . . , j . . . j ), partition one of thej blocks of edges into two blocks
and permute the resultingj + 1 blocks, obtainingj ! variants. For example, take the block of
1’s of the orbit

(1, 1, 1, 1, 1, 2, 2, 3, 3, 3) (26)
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Figure 2. Obtaining the orbits fromQ1(3).
Different shapes correspond to different edges. First
we choose an orbit fromQ0(3), then partition the
block of triangles into two parts (indicated by the
filling), and then we permute the resulting four
blocks, getting six orbits. Finally, we discard those
which have blocks of triangles standing next to each
other. The orbits (c) and (f) are discarded due to the
cyclic symmetry.

divide it into two blocks,A1 = (1, 1) andA2 = (1, 1, 1) and permute with the others, resulting
in j ! = 6 variants, see figure 2. However, one has to take care of the permutations where the
blocksA1 andA2 stand next to each other, because such orbits belong toQ0(j). Of these there
are(j − 1)! permutations withA1 standing immediately afterA2 plus(j − 1)! permutations
with A1 standing in front. Thus the resulting number isj ! − 2(j − 1)!. This is multiplied by
P
s1
2 /2!, the number of partitions† of the block of 1’s.

Finally, taking into account that we can also partition the blocks of other edges, we arrive
at

Q1(j) = (j ! − 2(j − 1)!)
j∑
i=1

1
2P

si
2 . (27)

Applying a similar algorithm forQ2(j) we note that there are two types of orbit in this
case. The first is obtained by partitioning one block into three and permuting with the other
blocks, while the second is obtained by partitioning two blocks, each into two parts. The result
is

Q2(j) = ((j + 1)! − 6j ! + 6(j − 1)!)
j∑
i=1

1

3!
P
si
3

+((j + 1)! − 4j ! + 4(j − 1)!)
j∑

i,k=1
i 6=k

1
2P

si
2

1
2P

sk
2 . (28)

While it is easy to predict that the general formula forQi(j) takes the form

Qm(j) =
∑
g1,...,gj
G=m+j

P(g1,...,gj )(j)

j∏
i=1

P sigi

gi !
(29)

wheregi > 1 is the number of partitions of theith block andG =∑j

i=1 gi , it is not so easy to
calculate the polynomialsP(g1,...,gj )(j). The general combinatorial question can be formulated

as follows: we haveG =∑j

i=1 gi objects ofj different types (gi objects of typei, etc). How

† We refer to partitions of the integers into k = 2 non-zero summands, modulo permutation of the summands. For
example, the partitions 2 + 3 and 3 + 2 are counted as one. The number of such partitions is approximated by its
first-order asymptotic ass → ∞, namelyP sk /k!. Note that in what follows we take the limitv → ∞ termwise,
which corresponds to the limits →∞.
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many permutations of these objects are there without any objects of the same type standing
next to each other? This question is studied in the appendix. The answer is

P(g1,...,gj )(j) = (−1)G−j
∞∑
N=0

(−1)N
∂j−1+N

∂xj−1+N

[
1

x

j∏
i=1

hgi (x)

]∣∣∣∣
x=0

(30)

where

hg(x) =
g∑
s=1

(
g − 1

g − s
)
g!

s!
xs. (31)

Going back toD(s1...sj )(v) we obtain

D(s1...sj )(v) =
k−j∑
m=0

( −2

v − 2

)m
Qm(j)

=
k−j∑
m=0

∑
g1,...,gj
G=m+j

(
2

v − 2

)m ∞∑
N=0

(−1)N
∂j−1+N

∂xj−1+N

[
1

x

j∏
i=1

P sigi

gi !
hgi (x)

]∣∣∣∣
x=0

=
∞∑
N=0

(−1)N
∂j−1+N

∂xj−1+N

[
1

x

k−j∑
m=0

∑
g1,...,gj
G=m+j

j∏
i=1

(
2

v − 2

)gi−1 P sigi

gi !
hgi (x)

]∣∣∣∣
x=0

=
∞∑
N=0

(−1)N
∂j−1+N

∂xj−1+N

[
1

x

j∏
i=1

( ∞∑
gi=1

(
2

v − 2

)gi−1P sigi

gi !
hgi (x)

)]∣∣∣∣
x=0

(32)

whereP sg =
(
s−1
g−1

)
and the limit of the innermost sum has been extended to infinity since

P sg = 0 for g > s. Taking the limitv→∞ termwise, again withsi/v = qi fixed, gives

D(q1, . . . , qj ) =
∞∑
N=0

(−1)N
∂N+j−1

∂xN+j−1

[
1

x

j∏
i=1

( ∞∑
gi=1

(2qi)gi−1

(gi − 1)!gi !
hgi (x)

)]∣∣∣∣
x=0

. (33)

Now expanding the functionshgi (x) and resumming the series
j∏
i=1

( ∞∑
gi=1

(2qi)gi−1

(gi − 1)!gi !
hgi (x)

)
=

j∏
i=1

( ∞∑
gi=1

gi∑
s=1

(2qi)gi−1

(gi − 1)!gi !

(
gi − 1

gi − s
)
gi !

s!
xs
)

=
j∏
i=1

( ∞∑
s=1

xs

s!(s − 1)!

∞∑
gi=s

(2qi)gi−1

(gi − s)!
)

=
j∏
i=1

(
x

∞∑
s=1

(2xqi)s−1

s!(s − 1)!

∞∑
gi=s

(2qi)gi−s

(gi − s)!
)

=
j∏
i=1

(
x exp(2qi)

∞∑
s=1

(2xqi)s−1

s!(s − 1)!

)

= xj exp(2τ)
j∏
i=1

R(2xqi) (34)

whereR(y) = y−1/2I1(2
√
y) = ∑∞

i=0
yi

i!(i+1)! andτ = ∑j

i=1 qi = k/v, as before. Thus we
obtain

D(q1, . . . , qj ) = exp(2τ)
∞∑
N=0

(−1)N
∂N+j−1

∂xN+j−1

[
xj−1

j∏
i=1

R(2xqi)

]∣∣∣∣
x=0

. (35)
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For derivatives of the functionR(2xqi) one has

∂n

∂xn
R(2xqi)

∣∣∣∣
x=0

= (2qi)n

(n + 1)!
and

∂n+1

∂xn+1
xR(2xqi)

∣∣∣∣
x=0

= (2qi)n

n!
(36)

therefore, in (35),

∞∑
N=0

(−1)N
∂N+j−1

∂xN+j−1

[
xj−1

j∏
i=1

R(2xqi)

]∣∣∣∣
x=0

=
∞∑
N=0

(−1)N2N
∑

n1+···+nj=N
(N + j − 1)!

j∏
i=1

q
ni
i

ni !(ni + 1)!
(37)

where the second sum is performed overj variablesn1, . . . , nj and the rule

∂N+j−1

∂xN+j−1

j∏
i=1

xj−1fi(x)

=
∑

n1+···+nj=N
(N + j − 1)!

1

n1!

∂n1

∂xn1
f1(x)

j∏
i=2

1

(ni + 1)!

∂ni+1

∂xni+1
xfi(x) (38)

was used. Thus we arrive at

D(q1, . . . , qj ) = exp(2τ)
∞∑

n1+···+nj=0

(−1)N2N(N + j − 1)!
j∏
i=1

q
ni
i

ni !(ni + 1)!
(39)

whereN = ∑j

i=1 ni . Using the fact, once again, that asv → ∞ the summation in (14) can
be replaced by the integral

Dj =
∫
∑j

i=1 qi=τ
D2(q1, . . . , qj ) dq1 . . .dqj−1 (40)

and applying the rule∫
∑j

i=1 qi=τ
q
m1
1 . . . q

mj
j dq1 . . .dqj−1 = m1! . . . mj !

(M + j − 1)!
τM+j−1 (41)

whereM =∑j

i=1mi , gives

Dj = exp(4τ)
∞∑

k1+···+kj=0
n1+···+nj=0

(−2)N+KτN+K+j−1 (N + j − 1)!(K + j − 1)!

(N +K + j − 1)!

×
j∏
i=1

(ni + ki)!

ni !ki !(ni + 1)!(ki + 1)!
(42)

whereK =∑j

i=1 ki andN =∑j

i=1 ni . Therefore, the final result forKj(τ) is

Kj(τ) = 4j

j !

∞∑
M=0

CMτ
M+j+1 (43)

and so

K(τ) = K1(τ ) +
∞∑
j=2

∞∑
M=0

4j

j !
CMτ

M+j+1 (44)
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where

CM = (−2)M
∑

k1+···+kj+n1+···+nj=M

(K + j − 1)!(N + j − 1)!

(M + j − 1)!

j∏
i=1

(
ni+ki
ni

)
(ni + 1)!(ki + 1)!

(45)

with K = ∑j

i=1 ki , N =
∑j

i=1 ni , and the sum being performed over the 2j variableski
andni .

This is our main result. It constitutes a general formula for computing the coefficients in
the expansion ofK(τ) for star graphs in powers ofτ aroundτ = 0. Note that asτ → 0, the
sum in (44) tends to zero asτ 3, and so it follows from (18) thatK(τ)→ 1 in this limit. This is
the same as for the Poisson form factor, and unlike the random-matrix results, which all tend
to zero linearly inτ . However, the Poisson form factor is independent ofτ , andK(τ) here
clearly is not: after an initial decrease asτ increases, it eventually rises to a limiting value of
one. In this sense, the result is intermediate between the Poisson and random-matrix forms.

The expression forCM can be written in another form that is more suitable for computation.
Defining

F1(K,N) =
(
K+N
N

)
(N + 1)!(K + 1)!

(46)

and using∑
k1+···+kj+n1+···+nj=M

(K + j − 1)!(N + j − 1)!

(M + j − 1)!

j∏
i=1

(
ni+ki
ni

)
(ni + 1)!(ki + 1)!

=
∑

K+N=M

(K + j − 1)!(N + j − 1)!

(M + j − 1)!

∑
k1+···+kj=K
n1+···+nj=N

j∏
i=1

(
ni+ki
ni

)
(ni + 1)!(ki + 1)!

(47)

it follows that

CM = (−2)M
M∑
K=0

(K + j − 1)!(M −K + j − 1)!

(M + j − 1)!
Fj (K,M −K) (48)

where

Fj (K,N) =
K∑
k=0

N∑
n=0

F1(k, n)Fj−1(K − k,N − n) (49)

which is a form of convolution. Expression (48) for the coefficientsCM is computationally
more convenient because there is a clear recursive relation for the coefficientsFj (K,N)which
can be facilitated using the discrete Fourier transform. The results of numerical computations
with the first few coefficients of the expansion are shown in figure 3.

4. A summable approximation

One possible approximation tõK(τ) can be made by ignoring two contributions:

(1) the off-diagonal terms in (9). We call a term in the summation in (9) diagonal if it
corresponds top = q, otherwise we call it off-diagonal. In symbolic form, the diagonal
approximation is

K(τ) ≈ Kdiag(τ ) = 1

L2

∞∑
n=2

∑
p,∈P̃n

(
lp

rp

)2

A2
pδ

(
τ − lp

L

)
. (50)
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Figure 3. The first 11 terms (solid curve) and the first seven terms (dashed curve) in the expansion
for K(τ), compared with data from the numerical simulation by Kottos and Smilansky [5] for
〈|TrS2k |2〉/(4v), v = 50 (circles). The dotted curve corresponds to the diagonal approximation
(52).

(2) all orbits for which the number of backscatterings is less than the maximum in their
degeneracy class. For example, the orbits(1, 1, 4, 6, 6, 6) and(1, 1, 6, 4, 6, 6) belong to
the same degeneracy class. The first orbit has three nontrivial backscatterings which is
the maximum for this class; therefore its contribution will be counted while the second
orbit will be ignored. It is not hard to see that out of each degeneracy class only(j − 1)!
orbits will survive this approximation, wherej , as before, is the number of distinct edges
traversed by the orbit.

The result of the above approximations is that the contribution of the degeneracy classes
in (13) is reduced to a factor of(j − 1)!, the contribution of one degeneracy class, multiplied
by the number of degeneracy classes,

(
k−1
j−1

)
:

Kdiag(τ ) ≈ K1(τ ) + lim
v→∞

(2k)2v

L2

∞∑
j=2

(
v

j

)(
2

v

)2j (
v − 2

v

)2k−2j

(j − 1)!

(
k − 1

j − 1

)
. (51)

Taking the limit asv→∞ termwise, withτ = k/v fixed, we arrive at

Kdiag(τ ) ≈ K1(τ ) + τ 2
∞∑
j=2

22j exp(−4τ)
τ j−1

j !

= exp(−4τ) + τ exp(−4τ)
∞∑
j=2

(4τ)j

j !

= exp(−4τ) + τ − τ exp(−4τ)(4τ + 1)

= τ + exp(−4τ)(1− τ − 4τ 2) (52)

which, in the limit of largev with τ = k/v fixed, is exactly equal to an approximation to
〈|TrS2k|2〉/(4v) obtained in [5] using a different approach. Interestingly, the first four terms
in the expansion ofKdiag in powers ofτ agree with those ofK computed in the last section.
The rest do not.
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It is worth remarking that one can get exactly the same asymptotic formula forKdiag(τ )

using only assumption (1). Following [5], we obtain from (50) (n = 2k)

Kdiag(τ ) = lim
v→∞

4kv

L2

∑
p∈P̃2k

k

r2
p

A2
p

≈ K1(τ ) + lim
v→∞

4kv

L2

( ∑
p∈P̃2k

k

rp
A2
p − v

(
v − 2

v

)2k)
(53)

where we have splitKdiag(τ ) intoK1(τ ) and ‘the rest’, as before, partly ignored the repetitions
and are now going to evaluate ‘the rest’ using a sum rule. We note that

∑
p∈P̃2k

k
rp
A2
p = TrAk,

where the matrixA is given by

Ae1,e2 = S2
e1,e2

(54)

with S the matrix defined by (5). Thev × v matrixA has the eigenvalues{1, v−4
v
, . . . , v−4

v
}

and, therefore,

TrAk = 1 + (v − 1)

(
v − 4

v

)k
. (55)

Using this we write

Kdiag(τ ) ≈ K1(τ ) + lim
v→∞ τ

(
1 + (v − 1)

(
v − 4

v

)k
− v

(
v − 2

v

)2k
)

(56)

= K1(τ ) + lim
v→∞ τ

(
1−

(
v − 4

v

)k
+ v

{(
v − 4

v

)k
−
(
v − 2

v

)2k
})

(57)

= exp(−4τ) + τ (1− exp(−4τ)− 4τ exp(−4τ))

which is exactly the same as before. This means that the orbits ignored in the second assumption
above do not contribute to the diagonal approximation in the limitv→∞. The fact that they do
contribute to the full expansion ofK(τ) shows the limitations of the diagonal approximation.
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Appendix. Permutations without liaisons

We have addressed the question of how many permutations ofG distinguishable objects ofj
different types there are, under the condition that no objects of the same type may stand next to
each other. By a ‘permutation’ we mean a cyclic ordering of the objects so that, for example,
the permutations(1, 2, 3, 2) and(2, 3, 2, 1) are considered to be the same.

Note that the problem as stated is purely combinatorial: in this appendix we ignore the
underlying structure of the objects as blocks of edges.

If two objects of the same type stand next to each other, we say that they form aliaison.
Since all the objects are distinguishable, the liaisons are order dependent. For example, ifa1,
a2 anda3 are objects of the same type thena1a2 is one liaison,a2a1 is a different one, and
a1a2a3 is a group of two liaisons, see figure A1. The maximal possible number of liaisons is
lmax= G− j .
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Figure A1. Different liaisons. The type of an object is
indicated by its shape.

Figure A2. A collection of four objects and its six
permutations. In the collection the objects 1 and 2 are
counted as one since they are bound by a liaison (solid
arrow). Note that in four of the permutations an additional
liaison appears (dashed arrow).

The answer to our question, of course, depends on the numbersgi , the number of objects
of typei, which satisfyG =∑j

i=1 gi . We derive the answer in four stages.

Stage 1. To count the permutations without liaisons we apply an analogue of the inclusion-
exclusion principle. Fixl liaisons. Any objects bound by liaison(s) are considered to be
one object now. Permuting the resultingG − l objects while imposing no restrictions apart
from holding the selected liaisons fixed, we obtain(G− l)!/(G− l) permutations (the factor
1/(G − l) is due to the cyclic symmetry). Note that in some permutations the number of
liaisons will be greater than the initiall; for an example see figure A2.

Now letF(l) be the number of ways to fixl liaisons in the group ofG objects. Then

P(g1,...,gj ) =
lmax∑
l=0

(−1)lF (l)(G− l − 1)! (58)

is the number of permutations without any liaisons.
Indeed, take a permutationP with k liaisons. How many times is it counted in thelth

term,l 6 k, of the sum in (58)? We can obtainP by fixing l liaisons out of the givenk in the
initial group ofG objects; thenP will be a permutation of the resulting collection ofG − l
objects. Thus,P is counted once in the term forl = 0,

(
k

1

)
times in the term forl = 1 (see

figure A3), and, generally,
(
k

l

)
times in thelth term, where

(
k

l

)
is the number of ways to choose

the subset ofl liaisons from the set ofk. Since
k∑
i=0

(−1)l
(
k

l

)
= (1− 1)k = δk,0 (59)

the permutation withk liaisons is not counted inP(g1,...,gj ) unlessk = 0.

Stage 2. Form the polynomial

P(g1,...,gj )(x) =
lmax∑
l=0

F(l)xl. (60)
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Figure A3. The permutationP with k = 2 liaisons
is counted twice in thel = 1 term of the sum in
(58), because it can be obtained from two different
collections,C1 andC2, each having one liaison.

Figure A4. Where can we put the object number 7? We
can either add it to the existing liaison chains in one of
2g− l = 2×6−3 places (dashed triangles) or we can leave
it free (dotted triangle). The existing liaisons are marked by
solid arrows.

Then

P(g1,...,gj )(x) =
j∏
i=1

P(1,...,gi ,...,1)(x) ≡
j∏
i=1

Pgi (x). (61)

This decomposition follows from the fact that the numberF(g1,...,gj )(l) of ways to choose
l liaisons is

F(g1,...,gj )(l) =
∑

l1+···+lj=l

j∏
i=0

F(1,...,gi ,...,1)(li) ≡
∑

l1+···+lj=l

j∏
i=0

Fgi (li). (62)

That is, for every decompositionl1 + · · · + lj = l of l, there are
∏j

i=0Fgi (li) ways to choosel
liaisons in such a way that among the objects of typei we chooseli liaisons.

The problem is now greatly reduced. We have to answer the following question: how
many ways are there to choosel liaisons in a group ofg objects of the same type? This number
is denoted byFg(l).

Stage 3. Note that all objects are distinguishable. We derive a recursion forFg(l) using the
following reasoning. Take one of the configurations fromFg(l) and add another object to it.
It can be added in two different ways: the object, numberedg + 1, can either be free or it can
be engaged in a liaison. For any configuration fromFg(l) there are 2g − l ways to add it in
such a way that it forms a liaison; see figure A4. And, obviously, there is only one way to add
a free object.

It is clear that this argument is uniquely reversible, i.e. for any configurationC inFg+1 there
is one and only one configuration inFg from which we can obtainC by adding the(g + 1)th
object. Therefore, we can write the recursion

Fg+1(l + 1) = Fg(l + 1) + (2g − l)Fg(l). (63)

The general solution, obtained using [7], is

Fg(l) =
(
g − 1

l

)
g!

(g − l)! (64)

which can be verified by the direct substitution.
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Stage 4. Now that we can computeP(g1,...,gj )(x), we need to get back toP(g1,...,gj ). We use
the formula

P(g1,...,gj ) =
lmax∑
l=0

(−1)lF (l)(G− l − 1)!

=
lmax∑
l=0

(−1)l
∂G−l−1

∂xG−l−1
[xG−1P(g1,...,gj )(1/x)]

∣∣∣∣
x=0

(65)

to obtain the final solution

P(g1,...,gj ) =
lmax∑
l=0

(−1)l
∂G−l−1

∂xG−l−1
xG−1

[ j∏
i=1

gi−1∑
`i=0

Fgi (`i)x
−`i
]∣∣∣∣
x=0

= (−1)lmax

∞∑
k=0

(−1)k
∂j+k−1

∂xj+k−1

[
x−1

j∏
i=1

gi∑
si=1

(
gi − 1

gi − si

)
gi !

si !
xsi
]∣∣∣∣
x=0

(66)

where the substitutionsk = lmax− l andsi = gi − `i have been made and the upper limit in
the first sum has been extended to infinity since all higher derivatives are equal to zero.
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