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We start with some terminology from differential topology [1]. Let C be a circle
and n ≥ 2 be an integer. An immersion f : C → R

n is a smooth function whose
derivative never vanishes. An embedding g : C → R

n is an immersion that is one-
to-one. It follows that g(C) is a manifold but f (C) need not be (f is only locally
one-to-one, so consider the map that twists C into a figure eight).

A knot is a smoothly embedded circle in R
3; hence a knot is a closed spatial

curve with no self-intersections. Two knots J and K are equivalent if there is a
homeomorphism R

3 → R
3 taking J onto K. This implies that the complements

R
3 − J and R

3 −K are homeomorphic as well.
A link is a compact smooth 1-dimensional submanifold of R

3. The connected
components of a link are disjoint knots, often with intricate intertwinings. Two links
L and M are equivalent if, likewise, there is a homeomorphism R

3 → R
3 taking L

onto M .
We can project a knot or a link into the plane in such a way that its only self-

intersections are transversal double points. Ambiguity is removed by specifying at
each double point which arc passes over and which arc passes under. Over all possible
such projections ofK or L, determine one with the minimum number of double points;
this defines the crossing number of K or L.

There is precisely 1 knot with 0 crossings (the circle), 1 knot with 3 crossings (the
trefoil), and 1 knot with 4 crossings. Note that, although the left-hand trefoil TL is not
ambiently isotopic (i.e., deformable) to the right-hand trefoil TR, a simple reflection
about a plane gives TR as a homeomorphic image of TL. Under our definition of
equivalence, chiral pairs as such are counted only once.

There are precisely 2 knots with 5 crossings, and 5 knots with 6 crossings. In
particular, there is no homeomorphism R

3→ R
3 taking the granny knot TL#TL onto

the square knot TL#TR, where # denotes the connected sum of manifolds [2, 3]. (See
Figure 1.) Also, there are precisely 8 knots with 7 crossings, and 25 knots with 8
crossings.

A link L is splittable if we can embed a plane in R
3, disjoint from L, that

separates one or more components of L from other components of L. There are
precisely 1, 0, 1, 1, 3, 4, 15 nonsplittable links with 0, 1, 2, 3, 4, 5, 6 crossings,
respectively.
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Figure 1: Four famous knots (TL and TR are prime and equivalent; TL#TR and TL#TL
are composite and distinct).

Figure 2: All two-component prime links with crossing number ≤ 5.

A knot K or nonsplittable link L is prime if it is not a circle and if, for any plane
P that intersects K or L transversely in exactly two points, P slices off merely an
unknotted arc away from the rest. (See Figure 2.) Otherwise it is composite. For
example, TL#TL and TL#TR are composite knots, each being nontrivial connected
sums of knots. Every knot decomposes as a unique connected sum of prime knots [4].

People have known for a long time that there exist non-equivalent links with
homeomorphic complements [5, 6]. This cannot happen for knots, as recently proved
by Gordon & Luecke [7, 8].

Let B denote the compact unit ball in R
3 and ∂B denote its boundary. A tangle

U is a smooth 1-dimensional submanifold of B meeting ∂B transversely at the four
points
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Figure 3: All prime alternating tangles with crossing number ≤ 3.

and meeting ∂B nowhere else. Thus U is a union of two smoothly embedded line
segments in B with distinct endpoints on ∂B, together with an arbitrary number of
smoothly embedded circles in the interior of B, all disjoint but often intertwined. Two
tangles U and V are (strongly) equivalent if there is a homeomorphism B → B

that takes U onto V , is orientation-preserving on B, and leaves ∂B fixed pointwise.
The crossing number of a tangle is defined via projections as before. Tangles form the
building blocks of knots and links [9, 10, 11]; the first precise asymptotic enumeration
results discovered in this subject concerned tangles (as we shall soon see).

A tangle is trivial if it is only the union of the two line segments NW -NE and
SW -SE, or the union of the two line segments SW -NW and SE-NE. A tangle U is
prime if it is not trivial; if, for any sphere S in B that is disjoint from U , no portion
of U is enclosed by S; and if, for any sphere S in B that intersects U transversely in
exactly two points, S encloses merely an unknotted arc of U . (See Figures 3 and 4.)

Finally, a knot, link or tangle is alternating if, for some projection, as we proceed
along any connected component in the projection plane from beginning to end, the se-
quence of underpasses and overpasses is strictly alternating. The first non-alternating
knots appear with crossing number ≥ 8. General references on knot theory include
[12, 13, 14, 15, 16, 17].
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Figure 4: Five of the 4-crossing prime alternating tangles; the other five are obtained
by rotating through 90◦ (and switching crossings to maintain the convention that the
NW strand is an underpass).

0.1. Prime Alternating Tangles. Let an denote the number of prime alternat-
ing tangles with n crossings (up to strong equivalence) and let A(x) =

∑∞
n=1

anx
n be

the corresponding generating function. Then [18]

A(x) = x+2x2+4x3+10x4+29x5+98x6+372x7+1538x8+6755x9+30996x10+ · · ·

satisfies the equation

A(x)(1 + x)−A(x)2 − (A(x) + 1)r(A(x))− x− 2
x2

1− x
= 0

where the algebraic function r(x) is defined by

r(x) =
(1 − 4x)

3

2 + (2x2 − 10x− 1)

2(x+ 2)3
− 2

1 + x
− x+ 2

Further, A(x) satisfies the irreducible quintic equation

0 = (x4 − 2x3 + x2)A(x)5 + (8x4 − 14x3 + 8x2 − 2x)A(x)4 +

(25x4 − 16x3 − 14x2 + 8x+ 1)A(x)3 + (38x4 + 15x3 − 30x2 − x+ 2)A(x)2 +

(28x4 + 36x3 − 5x2 − 12x+ 1)A(x) + (8x4 + 17x3 + 8x2 − x)

Sundberg & Thistlethwaite [19] proved the above remarkable formulas, as well as the
following asymptotics:

an ∼ 3α

4
√
π
n−

5

2λn−
3

2 ∼ 3

4

√
β

π
n−

5

2λn
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where

α =
5
7

2

35
√
2

√√√√(21001 + 371
√
21001)3

(17 + 3
√
21001)5

= 3.8333138762...

β = α2λ−3 = 0.0632356411...

and

λ =
101 +

√
21001

40
= 6.1479304437...

A completely different approach to the solution of this problem appears in [20].
Let ân denote the number of n-crossing prime alternating tangles with exactly two

components. That is, no circles are allowed. A two-component tangle is also known
as a knot with four external legs. The sequence [18, 21, 22]

{ân}∞n=1 = {1, 2, 4, 8, 24, 72, 264, 1074, 4490, 20296, 92768, . . .}
is believed to possess a leading term of the form λ̂n with λ̂ < λ, but more intensive
analysis is needed to compute λ̂.

0.2. Prime Alternating Links. Let bn denote the number of prime alternating
links with n crossings (up to equivalence), then the sequence [23, 24]

{bn}∞n=1 = {0, 1, 1, 2, 3, 8, 14, 39, 96, 297, 915, 3308, 12417, . . .}
satisfies the following asymptotics [25]:

bn ∼ 3

16γ

√
β

π
n−

7

2λn

where

γ =
1

2

(
371√
21001

− 1

)
= 0.7800411357...

and λ, β are as before. This is a somewhat more precise result than that proved in
[19].

Let cn denote the number of prime links with n crossings (including both alter-
nating and non-alternating links), then we have [23, 26, 27]

{cn}∞n=1 = {0, 1, 1, 2, 3, 9, 16, 50, 132, 452, 1559, . . .}
The value c12 is not known. Stoimenow [28], building on Ernst & Sumners [29] and
Welsh [30], proved that

4 ≤ liminf
n→∞

c1/nn ≤ limsup
n→∞

c1/nn ≤
√
13681 + 91

20
= 10.3982903484...
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but further improvements in the upper bound are likely. The two-component analogs
[23]

{b̂n}∞n=1 = {0, 1, 0, 1, 1, 3, 6, 14, 42, 121, 384, 1408, 5100, 21854, . . .}

{ĉn}∞n=1 = {0, 1, 0, 1, 1, 3, 8, 16, 61, 185, 638 . . .}
also await study.

0.3. Prime Alternating Knots. Let dn denote the number of prime alternating
knots with n crossings (up to equivalence), then the sequence [31]

{dn}∞n=1 = {0, 0, 1, 1, 2, 3, 7, 18, 41, 123, 367, 1288, 4878, 19536, . . .}

is more difficult and only conjectured to satisfy the following asymptotics [32]:

dn ∼ η · nξ · κn

where

ξ = −
√
13 + 1

6
− 3 = −3.7675918792...

Thistlethwaite [33] proved that

limsup
n→∞

d1/nn < λ

and further claimed that limn→∞ d1/nn exists. If the conjectured asymptotic form for
dn is true, it would follow that κ < λ. Again, more intensive analysis is needed to
compute κ. Might it be true that κ = λ̂ [22]?

Let en denote the number of prime knots with n crossings (including both alter-
nating and non-alternating knots), then we have [31]

{en}∞n=1 = {0, 0, 1, 1, 2, 3, 7, 21, 49, 165, 552, 2176, 9988, 46972, . . .}

The value e17 is not known. Welsh [30] proved that

2.68 ≤ liminf
n→∞

e1/nn

and clearly Stoimenow’s upper bound 10.40 applies to the limit superior. Sharper
bounds for both {cn} and {en} would be good to see.
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Figure 5: All closed planar curves with crossing number ≤ 2.

0.4. Planar Curves. Here are enumeration problems that seem to be even more
complicated than those in knot theory [34, 35, 36, 37, 38]. A closed planar curve is
a smoothly immersed circle in R

2 whose only self-intersections are transversal double
points. Define an equivalence relation between closed planar curves in the same
manner as between knots, with the additional condition that the homeomorphism
R
2 → R

2 is orientation-preserving. (See Figure 5.)
An open planar curve is a smoothly immersed line in R

2, given by h : R → R
2,

whose only self-intersections are transversal double points and which satisfies h(x) =
(x, 0) for all sufficiently large |x|. Such a curve is also known as a knot with two

external legs. Define an equivalence relation between open planar curves in the
same manner as between closed planar curves. Note that, unlike closed curves, open
curves are oriented from the initial point (−∞, 0) to the final point (∞, 0). (See
Figure 6.)

Let pn and qn denote the number of n-crossing closed curves and open curves,
respectively. The sequences [39, 40]

{pn}
∞

n=0
= {1, 2, 5, 20, 82, 435, 2645, 18489, 141326, 1153052, 9819315, . . .}

{qn}
∞

n=0
= {1, 2, 8, 42, 260, 1796, 13396, 105706, 870772, 7420836, 65004584, . . .}

are conjectured to satisfy the following asymptotics [32]:

pn ∼
1

4
qn ∼ ω · nθ · µn

where θ = ξ + 1 = −2.7675918792.... Numerically, we have µ = 11.4... [22]. There is
a great amount of work to be done in this area.
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Figure 6: All open planar curves with crossing number ≤ 2.
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