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Abstract. Many combinatorial generating functions can be expressed as combinations of symmetric func-

tions, or extracted as sub-series and specializations from such combinations. Gessel has outlined a large class

of symmetric functions for which the resulting generating functions are D-finite. We extend Gessel’s work by

providing algorithms that compute differential equations these generating functions satisfy in the case they

are given as a scalar product of symmetric functions in Gessel’s class. Examples of applications to k-regular

graphs and Young tableaux with repeated entries are given. Asymptotic estimates are a natural application

of our method, which we illustrate on the same model of Young tableaux. We also derive a seemingly new

formula for the Kronecker product of the sum of Schur functions with itself. (This article completes the

extended abstract published in the proceedings of FPSAC’02 under the title “Effective D-Finite Symmetric

Functions”.)

Introduction

A power series in one variable is called differentiably finite, or simply D-finite, when it is solution of a linear
differential equation with polynomial coefficients. This differential equation turns out to be a convenient
data structure for extracting information related to the series and many algorithms operate directly on
this differential equation. In particular, the class of univariate D-finite power series is closed under sum,
product, Hadamard product, and Borel transform, among other operations, and algorithms computing the
corresponding differential equations are known (see for instance [1]). Moreover, the coefficient sequence of a
univariate D-finite power series satisfies a linear recurrence, which makes it possible to compute many terms
of the sequence efficiently. These closure properties are implemented in computer algebra systems [2, 3].
Also, the mere knowledge that a series is D-finite gives information concerning its asymptotic behaviour.
Thus, whether it be for algorithmic or theoretical reasons, it is often important to know whether a given
series is D-finite or not, and it is useful to compute the corresponding differential equation when possible.

D-finiteness extends to power series in several variables: a power series is called D-finite when the vector
space spanned by the series and its derivatives is finite-dimensional. Again, this class enjoys many closure
properties and algorithms are available for computing the systems of linear differential equations generating
the corresponding operator ideals [4, 5]. Algorithmically, the key tool is provided by Gröbner bases in
rings of linear differential operators and an implementation is available in Chyzak’s Mgfun package1. An
additional, very important closure operation on multivariate D-finite power series is definite integration. It
can be computed by an algorithm called creative telescoping, due to Zeilberger [6]. Again, this method takes
as input (linear) differential operators and outputs differential operators (in fewer variables) satisfied by the
definite integral. It turns out that the algorithmic realization of creative telescoping has several common
features with the algorithms we introduce here.

Beyond the multivariate case, Gessel considered the case of infinitely many variables and laid the founda-
tions of a theory of D-finiteness for symmetric functions [7]. He defines a notion of D-finite symmetric series
and obtains several closure properties. The motivation for studying D-finite symmetric series is that new
closure properties occur and can be exploited to derive the D-finiteness of usual multivariate or univariate
power series. Thus, the main application of [7] is a proof of the D-finiteness for several combinatorial counting
functions. This is achieved by describing the counting functions as combinations of coefficients of D-finite
symmetric series, which can then be computed by way of a scalar product of symmetric functions. Under
certain conditions, the scalar product of symmetric functions depending on extra parameters is D-finite in

1This package is part of the algolib library available at http://algo.inria.fr/packages/.
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those parameters, where D-finiteness is that of (usual) multivariate power series. Most of Gessel’s proofs
are not constructive. In this article, we give algorithms that compute the resulting systems of differential
equations for the scalar product operation. Besides Gessel’s work, these algorithms are inspired by methods
used by Goulden, Jackson, and Reilly in [8, 9]. Finally, Gröbner bases are used to help make these methods
into algorithms. One outcome is a simplification of the original techniques of [8, 9].

Considering some enumerative combinatorial problem of a symmetric flavour and parameterized by a
discrete parameter (denoted by k in the examples below), it is often so that the enumeration is solved
by first forming a scalar product of two symmetric functions in k variables. Moreover, in the examples
envisioned (the enumeration of k-regular graphs, of k-uniform tableaux, etc.), this scalar product is the
specialization to k variables of a scalar product between two “closed form” symmetric functions in infinitely
many variables. Both symmetric functions are sufficiently well-behaved that nice “closed form” are obtained
under specialization, leading to descriptions in terms of linear differential operators that are easy to derive.
This nice behaviour is well exemplified by Eq. (6) and Eq. (9) below and is what delimits the scope of our
method in applications.

Additionally, our method extends to more scalar products whose associated adjunctions satisfy a certain
condition of preservation of degree (see Section 9.1), as well as to the Kronecker product of symmetric
functions (see Section 9.2).

This article is organized as follows. After recalling the necessary part of Gessel’s work in Section 1, we
start by focusing on the special situation when a single argument of the scalar product depends on extra
parameters. We present an algorithm for computing the differential equations satisfied by the scalar product
in this case in Section 2. The application to the example of k-regular graphs is detailed in Section 3. Then a
special case where the algorithm can be further tuned is described in Section 4. We treat a variant of Young
tableaux where each element is repeated k times in Section 5. (These are in bijection with a generalization of
involutions [10].) The general form of the main algorithm, when both arguments depend on extra parameters,
is given in Section 6. Termination and correctness of the main algorithms are proved in Section 7. Next, in
Section 8 we employ our algorithms to derive asymptotic estimates of the enumerating sequences of k-regular
graphs for k = 1, 2, 3, 4. Following this approach of experimental mathematics, we state a conjecture for
general k. A discussion on several extensions and applications of the method closes the paper in Section 9,
including the calculation of a seemingly new formula for the Kronecker product of the sum of the Schur
functions with itself.

1. Symmetric D-finite Functions

To begin we recall the facts we need about symmetric functions, D-finite functions, and symmetric D-finite
functions.

1.1. Symmetric functions. We refer the reader to [11, 1] for further definitions, notation, and results
related to symmetric functions.

Denote by λ = (λ1, . . . , λk) a partition of the integer n. This means that n = λ1 + · · · + λk and λ1 ≥
· · · ≥ λk > 0, which we also denote λ ` n. Partitions serve as indices for the five principal symmetric
function families that we use: homogeneous (hλ), power (pλ), monomial (mλ), elementary (eλ), and Schur
(sλ). These are series in the infinite set of variables, x1, x2, . . . over a field K of characteristic 0. When the
indices are restricted to all partitions of the same positive integer n, any of the five families forms a basis for
the vector space of symmetric polynomials of degree n in x1, x2, . . . On the other hand, the family of pi’s
indexed by the integers i ∈ N generates the algebra Λ of symmetric functions over K: Λ = K[p1, p2, . . . ].
Furthermore, the pi’s are algebraically independent over Z.

Generating series of symmetric functions live in the larger ring of symmetric series, K[t][[p1, p2, . . . ]].
There, we have the generating series of homogeneous and elementary functions:

H(t) =
∑

n

hnt
n = exp

(

∑

i

pi
ti

i

)

, E(t) =
∑

n

ent
n = exp

(

∑

i

(−1)ipi
ti

i

)

.



EFFECTIVE SCALAR PRODUCTS OF D-FINITE SYMMETRIC FUNCTIONS 3

1.2. Scalar product and coefficient extraction. The ring of symmetric series is endowed with a scalar
product defined as a bilinear symmetric form such that the bases (hλ) and (mλ) are dual to each other:

(1) 〈mλ, hµ〉 = δλ,µ,

where δλ,µ is 1 if λ = µ and 0 otherwise.
Alternatively, the power notation λ = 1n1 · · · knk for partitions indicates that i occurs ni times in λ,

for i = 1, 2, . . . , k. The normalization constant

zλ := 1n1n1! · · · knknk!

plays the role of the square of a norm of pλ in the following important formula:

(2) 〈pλ, pµ〉 = δλ,µzλ.

The scalar product is a basic tool for coefficient extraction. Indeed, if we write F (x1, x2, . . . ) in the

form
∑

λ fλmλ, then the coefficient of xλ1
1 · · ·xλk

k in F is fλ = 〈F, hλ〉, by (1). Moreover, when λ = 1n, the
identity h1n = p1n yields a simple way to compute this coefficient when F is written in the basis of the p’s:

Theorem 1.1 (Gessel; Goulden & Jackson). Let θ be the K-algebra homomorphism from the algebra of
symmetric functions over K to the algebra K[[t]] of formal power series in t defined by θ(p1) = t, θ(pn) = 0
for n > 1. Then if F is a symmetric function,

θ(F ) =

∞
∑

n=0

an
tn

n!
,

where an is the coefficient of x1 · · ·xn in F .

Gessel also provides an analogue for this theorem when λ = 1n2m and λ = 1n3m [7, Theorems 2–4].
Combinations of other degree patterns quickly become arduous to write explicity.

1.3. Plethysm. Plethysm is a way to compose symmetric functions. An inner law of Λ, denoted u[v] for
u, v in Λ, is defined by the rules [1]

pn[w] =
∑

λ

cλpnλ1
pnλ2

. . . , (αu+ βv)[w] = αu[w] + βv[w], (uv)[w] = u[w]v[w],

where u, v, and w =
∑

λ cλpλ are in Λ, and α, β in K. For example, consider that w[pn] = pn[w], and in
particular that pn[pm] = pnm. In a mnemonic way:

w[pn] = w(p1n, p2n, . . . , pkn, . . .) whenever w = w(p1, p2, . . . , pk, . . .).

1.4. D-finiteness of multivariate series. Recall that a series F ∈ K[[x1, . . . , xn]] is D-finite in x1, . . . , xn
when the set of all partial derivatives and their iterates, ∂i1+···+inF/∂xi11 · · · ∂xinn , spans a finite-dimensional
vector space over the fieldK(x1, . . . , xn). A D-finite description of a series F is a set of (at least n) differential
equations which establishes this property. A typical example of such a set is a system of n differential
equations of the form

q1(x)f(x) + q2(x)
∂f

∂xi
(x) + · · ·+ qk(x)

∂kf

∂xki
(x) = 0,

where i ranges over 1, . . . , n, each qj is in K(x1, . . . , xn) for 1 ≤ j ≤ k, and k and qj depend on i.
The properties we need here are summarized in the following theorem.

Theorem 1.2. (1) The set of D-finite power series forms a K-subalgebra of K[[x1, . . . , xn]] for the usual
product of series;

(2) If F is D-finite in x1, . . . , xn then for any subset of variables xi1 , . . . , xik the specialization of F at
xi1 = · · · = xik = 0 is D-finite in the remaining variables;

(3) If P is a polynomial in x1, . . . , xn, then expP (x) is D-finite in x1, . . . , xn;
(4) If F and G are D-finite in the variables x1, . . . , xm+n, then the Hadamard product F ¯G with respect

to the variables x1, . . . , xn is D-finite in x1, . . . , xm+n.
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(Recall that the Hadamard product of two series
∑

α∈Nk aαu
α ¯∑β∈Nk bβu

β is
∑

α∈Nk aαbαu
α, where

uα = uα1
1 · · ·uαk

k .)
These properties are classical. The first three are elementary, the last one relies on more delicate properties

of dimension and is due to Lipshitz [12].

1.5. D-finite symmetric functions. The definition of D-finiteness for series in an infinite number of
variables is achieved by generalizing Property (2) in Theorem 1.2: F ∈ K[[x1, x2, . . . ]] is called D-finite in
the xi if the specialization of all but a finite choice S of variables to 0 is D-finite for any choice of S. In this
case, all the properties in Theorem 1.2 hold in the infinite multivariate case.

The definition is then tailored to symmetric series by considering the algebra of symmetric series as
generated over K by the set {p1, p2, . . . }: a symmetric series is called D-finite when it is D-finite in the pi’s.

Property (4) in Theorem 1.2 has the following very important consequence:

Theorem 1.3 (Gessel). Let f and g be elements of K[[t1, . . . , tk]][[p1, p2, . . . ]], D-finite in the pi’s and tj’s,
and suppose that g involves only finitely many of the pi’s. Then 〈f, g〉 is D-finite in the tj’s provided it is
well-defined as a power series.

1.6. Effective D-finite symmetric closures. Our work consists in making Theorem 1.3 effective by giving
algorithms for producing linear differential equations annihilating 〈f, g〉. The input to our algorithms consists
of closed forms for g and the specialization of f in the finite number of pi’s required by g, from which
generators of ideals of differential operators which annihilate them can then be computed.

Providing algorithms to manipulate linear differential equations amounts to making the closure properties
of univariate D-finite series effective; similarly, algorithms operating on systems of linear differential operators
make the closure properties of multivariate D-finite series effective. Our title is thus motivated by the fact
that our algorithm makes it possible to compute all the information on a scalar product that can be predicted
from D-finiteness.

In our examples, we make use of symmetric series that are built by plethysm. Closure properties are given
by Gessel, but our applications require only a simple consequence of Property (3) in Theorem 1.2, namely
that if g is a polynomial in the pi’s, then h[g] and e[g] are D-finite for h = H(1) and e = E(1).

2. Algorithm for Scalar Product: the Simple Case

We proceed to give a new algorithm to compute the differential equation satisfied by a scalar product
of two D-finite symmetric series under the hypotheses of Theorem 1.3 and with the additional simplifying
condition that only one of the symmetric series depends on t. When the number of t variables is 1, the
output is a single differential equation for which existing computer algebra algorithms might find a closed-
form solution. In most cases however, no such solution exists and we are content with a differential equation
from which useful information can be extracted.

The basic tool we use here is non-commutative Gröbner bases in extensions of Weyl algebras. An intro-
duction to this topic can be found in [13]. By Wt, we denote the Weyl algebra

(3) Wt = K
〈

t1, . . . , tk, ∂t1 , . . . , ∂tk [∂ti , tj ] = δi,j , [ti, tj ] = [∂ti , ∂tj ] = 0, 1 ≤ i, j ≤ k
〉

,

where the bracket [a, b] denotes ab − ba and δi,j is the Kronecker notation. This algebra can be identified
with the algebra of linear differential operators with coefficients that are polynomial in t = t1, . . . , tk. We
correspondingly denote Wp for variables p = p1, . . . , pn, as well as ∂t for ∂t1 , . . . , ∂tk , ∂p for ∂p1 , . . . , ∂pn

, etc.
For the algorithm, we work in the extension

Wp,t(t) = K(t)⊗K[t] Wp,t

of the Weyl algebraWp,t =Wp⊗KWt in which the coefficients of the differential operators are still polynomial
in p but rational in t. Suppose F andG belong toK[t][[p]] and are D-finite symmetric series as in Theorem 1.3.
In particular, they both satisfy systems of linear differential equations with polynomial coefficients from
K(t)[p]. We can write these equations as elements of Wp,t(t) acting on F and G. The set IF = annWp,t(t) F
(resp. IG) of all operators of Wp,t(t) annihilating F (resp. G) is then a left ideal of Wp,t(t). Given as
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input Gröbner bases of IF and IG, our algorithm outputs non-zero elements of the annihilating left ideal
annWt(t) 〈F,G〉.

To combine elements of IF and IG in a meaningful way we use the adjunction map, denoted ¦ here2,
defined for an operator P ∈Wp by imposing the relation 〈P · F,G〉 = 〈F, P ¦ ·G〉 for all series F and G. As
a consequence, we have the relation (PQ)¦ = Q¦P ¦ and the adjoint P ¦ is computed formally from p¦i = i∂pi

and ∂¦pi
= pi/i; in particular (pi∂pi

)¦ = pi∂pi
[11]. This makes the adjunction map an involution as well as

an algebra anti-automorphism of Wp. Note that, although adjunction extends to Wp(t) by setting t¦i = ti,
no adjoint for the ∂ti can be defined in any consistent way. Assume that an adjoint ∂¦ti existed. For reasons
to be explained later, this adjoint has to be of the form α∂ti + βti + γ for complex constants α, β, γ, with
αβ 6= 0. Now, for any series F and G we have 〈∂ti · F,G〉 =

〈

F, ∂¦ti ·G
〉

. Choose any nonzero series F
independent of ti; then by the method of variation of constant for series, one finds a series G satisfying
∂¦ti ·G = F . Upon evaluation, we obtain 0 = 〈F, F 〉 6= 0, a contradiction.

We now proceed to outline the algorithm for the simple case, so that from this point on we elect to have
F ∈ K[[p]], i.e., F independent of t. The condition on F that it does not involve t implies that ∂ti · F = 0
for i from 1 to k. We can use this fact to simplify our calculations. In this case, we consider a different
annihilator, annWp

F , hereafter denoted JF . Note that JF = IF ∩Wp.
This allows us to determine the action of combinations of P ∈ J ¦F and Q ∈ IG. For example, given any

S ∈Wp, T ∈Wp,t(t), and U ∈Wt(t),

〈F, (P ¦SU + TQ) ·G〉 = 〈S¦P · F,U ·G〉+ 〈F, TQ ·G〉 = 0.

It follows that, if we can find a combination such that
∑

j P
¦
j SjUj +

∑

j TjQj = R ∈ Wt, we have 0 =

〈F,R ·G〉 = R · 〈F,G〉. Note that each P ¦j Sj is an element of J¦F while each TjQj is an element of IG.
Therefore, we conduct our search for an element of annWt

〈F,G〉 by determining a non-zero element of
(

J¦FWt(t) + IG
)

∩Wt. We shall prove in Section 7.1 that such an element exists. Basically, the goal of our

algorithms is to compute sufficiently many non-zero elements of
(

J¦FWt(t) + IG
)

∩Wt so as to generate a
D-finite description of the scalar product.

Note, however, that while IG is a left Wp,t(t) ideal, J
¦
FWt(t) is a right Wp,t(t)-ideal and the sums P +Q

for P ∈ J¦FWt(t) and Q ∈ IG do not form an ideal. This problem is very similar to the problem of creative
telescoping: given an ideal I ⊂Wp,t(t), the aim in the first step of this method is to determine an element of
∂pWp,t(t)+I that does not involve p. There also, ∂pWp,t(t) :=

∑

j ∂pj
Wp,t(t) is a right ideal. The algorithm

we present thus bears a nonfortuitous resemblance with that of [14].
The structure of the sum J¦FWt(t) + IG that we can use is that of a vector space over K(t). The sum

also has the structure of a module over Wt(t) that we could also try using in this section, but this would
not generalize to the case when also F depends on t. The idea is to use K(t)-linear algebra in the vector
space structure to eliminate the ∂pi

and pi. Roughly speaking, we incrementally generate lines in a matrix
corresponding to generators of J¦FWt(t) + IG, and perform Gaussian elimination to remove the monomials
involving p and ∂p.

The main loop of the algorithm considers monomials of increasing degree with respect to any ordering on
the monomials in p, ∂p, ∂t. We use the notation ¹ to denote the monomial comparison associated with this
ordering. We reduce each monomial α with respect to (the Gröbner bases for) I¦F and IG. Note that the
chosen monomial ordering is the same for both IG and I¦F . As a variant calculation, the remainder of the
reduction of a monomial α with respect to I¦F can be viewed as the adjoint of the remainder of the reduction
of α¦ with respect to IF . However, to reflect the fact that adjunction modifies the variables, when reducing
with respect to IF we need to use a different order, specifically, the ordering ¹¦ defined by β1 ¹¦ β2 on Wp

if and only if β¦1 ¹ β¦2 . In our implementation, we use the ordering DegRevLex(∂t < p < ∂p) which sorts
by total degree first, breaking ties by a reverse lexicographic order on the variables. The order ¹¦ is then
DegRevLex(∂p < p).

2Macdonald denotes the adjunction operator by ⊥.
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Once we have computed these values, we add two rows (and for sufficiently large α only one column) in
a matrix where we perform Gaussian elimination to cancel entries corresponding to monomials involving p
and ∂p.

We now state the algorithm more formally as Algorithm 1, followed by an example in the next section.
After this example, we describe the modifications necessary to handle specific cases more efficiently, and how
to treat the general case. The proofs that these algorithms work and terminate are delayed to Section 7.

Algorithm 1 (Scalar Product).
Input: Symmetric functions F ∈ K[[p]] and G ∈ K[t][[p]], both D-finite in p, t, given by a system of linear
differential operators of Wp and Wp,t(t), respectively.
Output: A system of differential equations satisfied by 〈F,G〉, which describes it as D-finite.

(1) Determine a Gröbner basis GG for the left ideal annWp,t(t)G with respect to any monomial order-
ing ¹, as well as a Gröbner basis GF¦ for the right ideal annWp

F ¦ with respect to the monomial
ordering induced by ¹ on Wp;

(2) B := {};
(3) Iterate through each monomial α in p, ∂p, ∂t;

(a) Write α = βγ with β ∈Wp and γ ∈ K[∂t];
(b) αF :=

(

β − (β red¹ GF¦)
)

γ;
(c) αG := α− (α red¹ GG);
(d) Introduce αF and αG as two new elements into B and reduce so as to eliminate p, ∂p;
(e) Compute the dimension of the ideal generated by B ∩Wt(t). If this dimension is 0, break and

output B ∩Wt(t).

Notice, if m = 1, as is the case in our examples, there is only one variable t, and the dimension condition
in (3e) is simplified to:

If B contains a non-zero element P from Wt(t), break and return P .

Note that Step (1) requires to determine both ideals annWp,t(t)G and annWp
F , not just annWp,t(p,t)G

and annWp(p) F . In other words, one generally needs to pass from a D-finite description {Pi} generating the
ideal annWp(p) F as

∑

iWp(p)Pi to a set {Qi} generating the ideal annWp
F =Wp∩annWp(p) F as

∑

iWpQi,
and similarly for G. The operation of computing such intersections is called Weyl closure, in the terminology
of [15, 16]. It is a non-obvious task, owing to the change of module structure (coefficients in Wp(p) are
replaced with coefficients in Wp). Algorithms are provided in [15, 16].

Sometimes, the input set {Pi} already constitutes a generating set for the Weyl closure. In this case, one
can skip Step (1) of the algorithm. This is the case in our examples.

The remainder of the reduction with respect to the Gröbner basis GG is a multivariate analogue of the
remainder of the Euclidean division. It is such that for any α, αG = α − (α redG) belongs to the ideal
generated by G. A similar statement holds for GF .

For this description we have assumed that Gröbner bases could be computed for both left and right ideals.
If they can only be computed on one side, say for left ideals, then the operators αF can be obtained as follows:
first, determine the monomial ordering ¹¦ induced by adjunction on Wp viewed as a left structure from the
ordering ¹ onWp viewed as a right structure; then, replace the Gröbner basis GF¦ with the Gröbner basis GF
for the left ideal annWp

F with respect to ¹¦; αF is then computed as
(

β − (β¦ red¹¦ G¦F )
)

γ. This way we
get GF¦ = (GF )¦.

The introduction into the basis B, which we view as a matrix, performs the Gaussian reduction of α
with respect to the rows already in B and returns the new value of B. In practice, B can be handled
(not inefficiently) by a computation of Gröbner basis over a module with respect to a monomial order that
eliminates the pi’s and ∂pi

’s.
Finally, some remembering can be done at Step (3b) to avoid reducing the same β again and again, for

different α’s involving the same β.
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3. Example: k-Regular Graphs

The enumeration of regular graphs has been treated by a number of authors, [17, 7, 9, 18], but this case
is instructive and is the simplest in a family of examples, and so we present it here. After introducing how
to express the problem as a scalar product, we describe in detail how our algorithm treats it. We conclude
this section with an indication of how the scenario may be generalized.

3.1. A generating series for graphs as a scalar product. The set of all simple graphs labelled with
integers from N \ {0} can be encoded in the product

G(x) =
∑

G∈G

∏

(i,j)∈E(G)

xixj =
∏

i<j

(1 + xixj),

as each edge (i, j) ∈ E(G) is either in the graph or not. We can similarly make a generating function for
graphs with multiple edges (multigraphs) by

M(x) =
∏

i<j

1

(1− xixj)
.

Clearly both of these are symmetric functions, and in fact, we have the relations G = e[e2] andM = h[e2],
as determined by a method that we discuss in Section 3.4. Both are easily rewritten in terms of the pi’s:

(4) G = exp

(

∑

i

(−1)i(p2i − p2i)/2i
)

and M = exp

(

∑

i

(

p2i + p2i
)

/2i

)

.

In any given term, the degree of xk gives the valency of node k. So, for example, the coefficient gn
of x1 · · ·xn in G, hereafter denoted [x1 · · ·xn]G, gives the number of 1-regular graphs, or perfect matchings

on the complete graph on n vertices, and in general the coefficient g
[k]
n = [xk1 · · ·xkn]G, also given as [mkn ]G,

gives the number of k-regular graphs on n vertices. By virtue of Eq. (1), coefficient extraction amounts to
a scalar product, and the generating function Gk(t) of k-regular graphs is given by

(5) Gk(t) :=
∑

n

g[k]n
tn

n!
= 〈G,Hk〉 , where Hk(t) :=

∑

n

hkn

tn

n!
=
∑

n

(hkt)
n

n!
= exp(hkt).

Now, as hk =
∑

λ`k pλ/zλ (where the sum is over all partitions λ of k), the exponential generating

function Hk(t) is also exp
(

t
∑

λ`n pλ/zλ
)

, an exponential in a finite number of pi’s. By Property (3) in
Theorem 1.2, this is D-finite. Further, as a result of scalar product property (2), we can rewrite Eq. (5) as

(6) Gk(t) =

〈

exp





∑

i even, i≤k

(−1)i/2 p
2
i

2i
+
pi
i
+

∑

i odd, i≤k

p2i
2i



, exp

(

t
∑

λ`k

pλ
zλ

)〉

and now by Theorem 1.3 this generating function Gk(t) is D-finite.
Note how the closed form for G in (4), in infinitely many variables, and the closed form for Hk(t) in (5),

in terms of the h’s, have led to the scalar product (6) between two closed forms, explicitly written in terms
of finitely many pi for each k. This reduction is what has made the algorithm applicable.

3.2. Effective Computation for k = 2. To illustrate a typical calculation, we calculate G2(t), the gener-
ating function for 2-regular graphs which, according to Eq. (6), is determined by

G2(t) =
〈

exp
(

(p21 − p2)/2− p22/4
)

, exp
(

t(p21 + p2)/2
)〉

.

Algorithm 1 calculates that G2(t) satisfies the differential equation

2(1− t)G′2(t)− t2G2(t) = 0,

which is easily solved to find G2(t) = e−
1
4 t(t+2)/

√
1− t.

In order to appeal to Algorithm 1, set F = exp((p21 − p2)/2 − p22/4) and G = exp(t(p21 + p2)/2) and
determine the Gröbner bases GF and GG of their annihilating ideals respectively:

G¦F = {p2 + 2∂p2 + 1, p1 − ∂p1} and GG = {p21 + p2 − 2∂t, 2∂p2 − t, ∂p1 − tp1}.
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2-regular graphs
φ0 −t2
φ1 −2t+ 2
φ2 0

3-regular graphs
φ0 t3(t4 + 2t2 − 2)2

φ1 −3(t10 + 6t8 + 3t6 − 6t4 − 26t2 + 8)
φ2 −9t3(t4 + 2t2 − 2)

4-regular graphs
φ0 −t4(t5 + 2t4 + 2t2 + 8t− 4)2

φ1
−4(t13 + 4t12 − 16t10 − 10t9 − 36t8 − 220t7 − 348t6

−48t5 + 200t4 − 336t3 − 240t2 + 416t− 96)
φ2 16t2(t− 1)2(t5 + 2t4 + 2t2 + 8t− 4)(t+ 2)2

Table 1. Differential equation φ2G
′′
k + φ1G

′
k + φ0Gk = 0 satisfied by Gk(t), k = 2, 3, 4.

(Leading monomials with respect to the monomial ordering are underlined.)
The initial value of B is empty. We run the algorithm until α becomes p1∂p1 and then illustrate the steps

of the main loop. The value of B is now

(7) B =
{

p21 − 2∂t − t, tp1 − p1, 2∂2 + p2 + 1, ∂1 − p1, p2 + t+ 1
}

.

The algorithm computes

αf = α− (α red¹ G¦F ) = α− (α¦ red¹¦ GF )¦ = p1∂p1 − p21
and αg = α− (αred¹ GG

) = p1∂p1 + tp2 − 2t∂t.

Next, we update B to include these two values. We can insert αF directly into B, since B does not involve
the monomial p1∂p1 . This insertion adds a new column corresponding to this new monomial. This step leads
to

B := B ∪ {p1∂p1 − p21}.
Then the algorithm inserts αg. Its leading monomial p1∂p1 is already present in B, leading to an initial
reduction to p21+ tp2−2t∂t. We now reduce the leading monomial by the first element in Eq. (7). This gives

tp2+2∂t− 2t∂t. After one final reduction by t times the final element in Eq. (7), we see that after this step,

B := B ∪ {2(1− t)∂t − t2}.
The intersection of this and Wt(t) is non-trivial, and the algorithm outputs 2(1 − t)∂t − t2. We conclude
that G2(t) satisfies the differential equation

2(1− t)G′2(t)− t2G2(t) = 0.

Table 1 summarizes the results by the same algorithm for k = 2, 3, 4. These match with the results in [9].

3.3. Efficient enumeration of k-regular graphs. An efficient procedure for the enumeration of k-regular
graphs derives immediately from the differential equations for the generating series of k-regular graphs
collected in Table 1. Indeed, one simply needs to convert the differential equation for Gk(t) into a recurrence

relation for its coefficients g
[k]
n and to determine sufficiently many starting values g

[k]
0 , g

[k]
1 , . . . , from which

unrolling the recurrence enables one to compute g
[k]
n for any n efficiently.

Implementations are available to help with this approach. For example, the Maple package gfun3 by
Salvy and Zimmerman [3] contains commands dedicated to the conversion step and the iterative calculations
based on a linear recurrence. Computations in the case k = 4 result in a recurrence relation of order 15

3This package is part of the algolib library, which is available at http://algo.inria.fr/packages/.
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already published by Read and Wormald [18] and can be found as a formula accompanying sequence number
A005815 in Sloane’s encyclopedia of integer sequences [19]. From this recurrence relation and initial terms,
it is then a matter of seconds to compute the exact integer values for hundreds of terms in the sequence.

It should be stressed that this method proves much more efficient than the direct computation of the
scalar product based on a term wise expansion and application of formula (2). For example, Stembridge’s
implementation in the package SF for symmetric function manipulation in Maple [20] already requires several

minutes to compute the g
[4]
n for n up to 15, and becomes unsuitable to handle the symmetric functions that

would be necessary to obtain g
[4]
20 . Far from showing any weakness of SF’s general approach, this illustrates

the computational progress provided by our techniques in the specific setting of differentiably finite series.

3.4. Generalization using the theory of species. The series given by Eq. (4) is determined combina-
torially in a direct fashion using the theory of species [21]. The essential idea is to view a graph as a set of
unordered pairs of the colours 1, 2, . . . , n, where a colour represents a label. Under this view, the family of
labelled graphs is encoded using the asymmetry index series of multisort sets, composed with sets of cardi-
nality two. The composition is reflected in the series by plethysm, allowing one to deduce immediately that
G = e[e2]. Likewise, the cycle index series of this species yields the generating series h[h2], which encodes
graphs with repeated edges and loops permitted. In general either the cycle index series or the asymmetry
index series can be used to determine the symmetric series encoding objects which are sets of smaller objects,
such as collections of cycles and hypergraphs under similar uniformity constraints.

4. Hammond Series

In the example above, it turned out that apart from the monomials of degree 1, examining only the two
monomials p21 and p1∂p1 was necessary to reach the solution. However, depending on the monomial ordering,
the algorithm might well consider many monomials before it adds the ones that eliminate the pi’s and ∂pi

’s.
The problem becomes far more serious as the number of variables and the degree of the monomials increase.
It turns out that in the frequent case when the scalar product is of the type 〈F,Hk(t)〉 it is possible to modify
the approach and eliminate the pi and the ∂pi

in a more efficient manner using the Hammond series4 (or
H-series) introduced by Goulden, Jackson, and Reilly in [9]: for F ∈ K[[p1, p2, . . . ]], the Hammond series
of F is defined as

H(F )(t1, t2, . . . ) =

〈

F,
∑

λ

hλt
λ/m(λ)!

〉

,

where the sum is over all partitions, and if λ = 1m1 · · · kmk then tλ = tm1
1 · · · tmk

k andm(λ)! = m1!m2! · · ·mk!.
These are very closely related to the Hammond operators, defined by Hammond [22] and used extensively
by MacMahon [23]. A Hammond operator can be described as h¦λ, and thus the Hammond series of F with
all of the t variables set to 1 results essentially in a sum of Hammond operators acting on F .

Observe that the generating function for k-regular graphs is

Gk(t) = H(G)(0, . . . , 0, t, 0, . . . )

where the t occurs in position k. This is true for any generating function which takes the form 〈F,Hk(t)〉
for some F .

A theorem from [9] is specially useful: Goulden, Jackson, and Reilly’s H-series theorem states that
H(∂pn

· F ) and H(pnF ) can be expressed in terms of the ∂ti · H(F )’s. In terms of Gröbner bases, this
corresponds to introducing the additional variables t1, . . . , tk (instead of t = tk alone) and work with the
series Hk(t1, . . . , tk) =

∑

λ hλt
λ/m(λ)! with sum over partitions λ whose largest part is k (instead of working

with the univariate Hk(t)). The H-series theorem therefore implies that for an appropriate monomial order,
there is a Gröbner basis of the ideal IHk

of all operators of Wp,t annihilating Hk, with elements of the form

(8) pi − Pi(t, ∂t), ∂pi
−Qi(t, ∂t), i = 1, . . . , k,

where all the Pi and Qi are polynomials in t, ∂t.

4In [8, Sec. 3.5] this is referred to as the Gamma series of F .
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The algorithm in this case is as follows.

Algorithm 2 (Hammond Series).
Input: An integer k, and F ∈ K[[p1, . . . , pn]].
Output: A differential equation satisfied by

〈

F,
∑

i

hkitik

〉

= H(F )(0, . . . , 0, tk, 0, . . . )

where tk is in position k.

(1) Compute GF , a Gröbner basis for the left ideal JF annihilating F in Wp;
(2) Compute GHk

, a Gröbner basis of the form (8);
(3) For each U ∈ GF , compute rU ∈Wt as the reduction of U¦ by GHk

for an order which eliminates p, ∂p.
Let R0 be the set of rU ’s;

(4) For i from 1 to k− 1 eliminate ∂ti from Ri−1 and set ti = 0 in the resulting polynomials; call Ri the
new set;

(5) Return Rk−1.

As with Algorithm 1, the first step is to determine an annihilating ideal in Wp. Again, one can possibly
first determine a D-finite description and use Weyl closure [15, 16] to obtain the annihilating ideal.

After Step (3), all the pi’s and ∂pi
’s have been eliminated and R0 contains a set of generators of a D-finite

Wt(t)-ideal annihilating 〈F,Hk〉. Then, in order to obtain differential equations satisfied by the specialization
at t1 = · · · = tk−1 = 0, Step (4) proceeds in order by eliminating differentiation with respect to ti and then
setting ti = 0 in the remaining operators.

Note that the Gröbner basis of Step (2) can be precomputed for the required k’s (although most of the
time is actually spent in Step (4)).

In order to compute the elimination in Step (4), one should not compute a Gröbner basis for an elimination
order, since this would in particular perform the unnecessary computation of a Gröbner basis of the eliminated
ideal. Instead, one can modify the main loop in the Gröbner basis computation so that it stops as soon as
sufficient elimination has been performed or revert to skew elimination by the non-commutative version of
the extended Euclidean algorithm as described in [5]. This is the method we have adopted in the example
session given in Appendix B5.

This calculation is comparatively rapid since the size of the basis is greatly reduced. Further, it reduces as
it progresses, on account of setting variables to 0. We can compute the case of 4-regular graphs in a second,
in place of a couple of minutes using the general algorithm. The 5-regular expression requires significantly
more computation time, and we could not compute it.

A mathematically equivalent but slightly faster way of performing Step (3) is to compute rU by simply

replacing each monomial pα1
1 · · · pαn

n ∂β1
p1 · · · ∂βn

pn
in U with the product Qβn

n · · ·Qβ1

1 P
αn
n · · ·Pα1

1 .
In order to explain the relative speed of Algorithm 2, compared to Algorithm 1, it need be said that

the Hammond series approach searches a smaller space, which can well result in a differential equation of
order higher than that obtained by Algorithm 1. This occurs, for instance, in the case of 4-regular graphs:
Algorithm 2 returns a differential equation of order 3 only when that returned by Algorithm 1 is of order 2.

In the same vein, note that the order in which the eliminations are done in Step (4) could be changed,
possibly leading to a different (but correct) output.

4.1. Proof of Termination and Correctness. Termination of Algorithm 2 is obvious. On the other
hand, the full proof of correctness requires technical results to be proved in Section 7. The following
corollary articulates a property of D-finite functions in the simple language of symmetric functions and
D-finite descriptions, and is a direct consequence of Proposition 7.4 that will be proved independently.

5An implementation of the algorithms presented here is available in the Maple package ScalarProduct available at http://

www.lacim.uqam.ca/~mishna.
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Corollary 4.1. Let F and G be D-finite symmetric series in K[[p1, . . . , pn]] and K[t1, . . . , tk][[p1, . . . , pn]],
respectively, with corresponding annihilators JF ⊂ Wp and IG ⊂ Wp,t(p, t). Under these conditions, the
vector space

(J¦FWt(t) + IG) ∩Wt(t)

is non-trivial and contains a D-finite description of 〈F,G〉.
Proposition 4.2. Algorithm 2 terminates and is correct.

Proof. First, we remark that for fixed k,

Hk(t1, . . . , tk) = exp





k
∑

j=1

hjtj





is a D-finite symmetric series by Theorem 1.2 since each hj is a finite combination of p1, . . . , pn. Thus,
f = H(F )(t1, . . . , tk) = 〈Hk(t1, . . . , tk), F 〉 is a D-finite function of t1, . . . , tk, by Theorem 1.3.

We proceed by proving the following invariant of the main loop: the set Ri−1 generates a D-finite de-
scription of H(F )(0, . . . , 0, ti, ti+1, . . . , tk). This establishes the result since it implies that Rk−1 contains a
D-finite description of H(F )(0, . . . , 0, tk), in this case, a single differential equation. This is precisely what
the algorithm claims to determine.

To prove the base case of this invariant, note that R0 contains the generators of the intersection

(J¦FWt(t) + IHk
) ∩Wt(t).

We appeal to Corollary 4.1, to conclude that R0 contains a D-finite description of H(F )(t1, . . . , tk).
The general case is proven with the known result [5] that given a D-finite description of a function

F (x1, x2, . . . , xn), one can compute the D-finite description of F (x1, . . . , xn−1, 0), for example, by first eli-
mininating ∂xn

, removing factors of xn in the remaining polynomials, and finally, setting xn = 0 in the
equations, precisely the process outlined in Algorithm 2. ¤

5. Example: k-Uniform Tableaux

Another family of combinatorial objects whose generating function can be resolved with our method is a
certain class of Young tableaux, namely k-uniform Young tableaux.

For a partition λ = (λ1, . . . , λk) ` n, a Young tableau of shape λ is an array T = (Ti,j) of positive
integers Ti,j defined when 1 ≤ i ≤ k and 1 ≤ j ≤ λi. When a Young tableau is strictly increasing on each
of its rows and columns (Ti,j < Ti+1,j and Ti,j < Ti,j+1, whenever this makes sense) and the n integers Ti,j
are all integers from 1 to n, it is called standard.

Standard Young tableaux are in direct correspondence with many different combinatorial objects. For
example, Stanley [1] has studied the link between standard tableaux and paths in Young’s lattice, the lattice
of partitions ordered by inclusion of diagrams. This link was generalized by Gessel [24] to tableaux with
repeated entries. Gessel remarks that such paths have arisen in the work of Sundaram on the combinatorics
of representations of symplectic groups [25].

The weight of a tableau is µ = (µ1, . . . , µk) where µ1 is the number of 1’s, µ2 is the number of 2’s, etc.,
in the tableau entries. Here we consider Young tableaux that are column strictly increasing and row weakly
increasing, and with weight µ = 1k2k · · ·nk: each entry appears k times. We call Young tableaux with
these properties k-uniform. These correspond to paths in Young’s lattice with steps of length k. The set of
k-uniform tableaux of size kn is also in bijection with symmetric n × n matrices with nonnegative integer
entries with each row sum equal to k. Gessel notes that for fixed k, the generating series of the number of
k-uniform tableaux is D-finite [7]. Our method makes this effective.

Two observations from [11] are essential. First, [xµ1

1 · · ·xµk

k ]sλ is the number of (column strictly increasing,
row weakly increasing) tableaux with weight µ. Secondly,

∑

λ

sλ = h[e1 + e2] = exp

(

∑

i

p2i /2i+
∑

i odd

pi/i

)

,
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1-uniform tableaux
φ0 −(t− 1)
φ1 1
φ2 0

2-uniform tableaux
φ0 t2(t− 2)
φ1 −2(t− 1)2

φ2 0
3-uniform tableaux

φ0 (t11 + t10 − 6t9 − 4t8 + 11t7 − 15t6 + 8t5 − 2t3 + 12t2 − 24t− 24)
φ1 −3t(t10 − 2t8 + 2t6 − 6t5 + 8t4 + 2t3 + 8t2 + 16t− 8)
φ2 9t3(−t2 − 2 + t+ t4)

4-uniform tableaux
φi (See Appendix A)

Table 2. Differential equation φ2Y
′′
k + φ1Y

′
k + φ0Yk = 0 satisfied by Yk(t), k = 1, . . . , 4.

k y
[k]
0 , y

[k]
1 , y

[k]
2 , . . .

1 1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152, 568504

2
1, 1, 3, 11, 56, 348, 2578, 22054, 213798, 2313638, 27627434, 360646314,

5107177312, 77954299144

3
1, 1, 4, 23, 214, 2698, 44288, 902962, 22262244, 648446612, 21940389584,

849992734124

4
1, 1, 5, 42, 641, 14751, 478711, 20758650, 1158207312, 80758709676,

6877184737416, 701994697409136

Table 3. The number, y
[k]
n , of k-uniform tableaux of size kn.

which is D-finite. Define y
[k]
n to be the number of k-uniform tableaux of size kn, and let Yk be the generating

series of these numbers. The previous two observations imply

(9) Yk(t) =
∑

n

y[k]n tk =

〈

exp

(

k
∑

i=1

p2i /2i+
k
∑

i odd

pi/i

)

,
∑

n

hkntn

〉

,

This problem is well-suited to our methods since again we treat an exponential of a polynomial in the pi’s,
with an explicit closed form in terms of k for this polynomial.

Calculating the equations for k = 1, 2, 3, 4 is rapid with either Algorithm 1 or Algorithm 2. The resulting
differential equations are listed in Table 2. For k = 1, 2 these results accord with known results [26, 1], and
are the entries A000085 and A000985 respectively in Sloane’s encyclopedia of integer sequences [19]. The

first few values of y
[k]
n are summarized in the following table. For k = 3, 4 these appear to be new.

Concerning the dual problem, where instead n is fixed and k varies, the sequences
(

y
[k]
n

)

k
appear re-

spectively as A019298, A053493, and A053494 for n = 3, 4, 5. Stanley [27, Prop. 4.6.21] reports that the

generating functions Gn(x) =
∑

k y
[k]
n xk are rational with denominator of the form (1− x)s(1− x2)t where

s and t are positive integers.

6. Algorithm for Scalar Product: the General Situation

So far, we have limited the scope of the algorithms to pairs of D-finite symmetric functions where only
one of the two functions depends on the variables t1, . . . , tk. While this is sufficient in many applications, it
is possible to modify Algorithm 1 in order to accommodate the ti’s in both functions and thus make the full
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power of Theorem 1.3 effective. While no additional ideas are to be used, the description of the algorithm is
more technical.

Algorithm 1 manipulates monomials α and reduces them modulo the ideals IF and IG in order to
determine equations of the form

(10)
〈

F,
(

α− (α red¹ I¦F )
)

·G
〉

= 0 and
〈

F,
(

α− (α red¹ IG)
)

·G
〉

= 0,

where on the left, α supposedly does not involve any of the ∂ti ’s. What makes the situation of Algorithm 1
and the left-hand identity in (10) simple is the assumption that F does not depend on t, making the action
of Wt on 〈F,G〉 act on the right-hand argument only. The difficulty in generalizing lies in that now, the
action of ∂ti on F may be non-trivial and must be considered in the differentiation rule for scalar products,

(11) ∂ti · 〈F,G〉 = 〈∂ti · F,G〉+ 〈F, ∂ti ·G〉 ,
which itself stems from the differentiation rule for usual products on the level of coefficients.

The idea is therefore to manipulate operators in three sets of ∂ti ’s: one which acts on the full scalar
product 〈F,G〉, and one for each of its components, acting directly on the component. To facilitate the
description of this situation, we denote the former by ∂ti , the one acting on the left component by ∂`i , and
the one acting on the right component ∂ri

. Using this notation, we wish to view Eq. (11) as

(12) ∂ti = ∂`i + ∂ri
.

We thus modify Algorithm 1 by enlarging the family of monomials over which we iterate, and use Eq. (12)

to eliminate the ∂`i ’s before we begin Gaussian elimination. Here, we iterate over monomials α∂β` ∂
γ
r of the

free commutative monoid [p, ∂p, ∂`, ∂r] with α ∈ [p, ∂p] to examine the following generalizations of Eq. (10):

(13)
〈

(

α¦∂βt − (α¦∂βt redGF )
)

· F, ∂γt ·G
〉

= 0 and
〈

∂βt · F,
(

α∂γt − (α∂γt redGG)
)

·G
〉

= 0,

or, with a change of notation,
(

α¦∂β` − (α¦∂β` redGF )
)

∂γr · 〈F,G〉 = 0and ∂β`
(

α∂γr − (α∂γr redGG)
)

· 〈F,G〉 = 0.

Upon making use of Eq. (12) and applying adjunction to the first equation in Eq. (13), we get a linear

combination of terms of the form ∂β
′

t · 〈F, α′ ·G〉 with coefficients in K[t], where β′ ∈ Nk, and α′ ∈ Wp,t(t).
The algorithm proceeds as before by performing Gaussian elimination over K(t) to eliminate p, ∂p, and ∂r. In
our implementation, the monomial order ¹ is DegRevLex(p < ∂p < ∂` < ∂r). The algorithm is summarized
in Algorithm 3.

Algorithm 3 (General Scalar Product).
Input: F ∈ K[t][[p]] and G ∈ K[t][[p]], both D-finite in p, t.
Output: A system of differential equations satisfied by 〈F,G〉, which describes it as D-finite.

(1) Determine a Gröbner basis GG for the left ideal annWp,t(t)G with respect to any monomial or-
dering ¹, as well as a Gröbner basis GF¦ for the right ideal annWp,t

F ¦ with respect to the same
ordering;

(2) B := {};
(3) Iterate through each monomial α in p, ∂p, ∂`, ∂r in any order;

(a) αl := α|∂`=∂t,∂r=1;
(b) αF := αl − (αl red¹ GF¦);
(c) αr := α|∂r=∂t,∂`=1;
(d) αG := αr − (αr red¹ GG);
(e) Introduce (αF |∂`=∂t−∂r

)(α|p=∂p=∂`=1) and (α|p=∂p=∂r=1)αG into B and reduce so as to elimi-
nate p, ∂p, ∂r;

(f) Compute the dimension of the ideal generated by B ∩Wt(t). If this dimension is 0, break and
output B ∩Wt(t).

As in Algorithm 1, if m = 1, there is only one variable t, and the condition in (3f) is simplified to:

If B contains a non-zero element P from Wt(t), break and return P .
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The same remarks as those made after Algorithm 1 at the end of Section 2 also apply here.

7. Termination and Correctness of Algorithms 1 and 3

7.1. Sketch of the proof. The common goal of Algorithms 1 and 3 is to find differential equations satisfied
by 〈F,G〉, which is equivalent to non-zero elements in Wt which annihilate 〈F,G〉. Although Algorithm 1 is
a specialisation of Algorithm 3, parts of the proof would become artificially more involved if restricted to the
simple case. We thus treat both algorithms simultaneously. The discussion at the beginning of Section 2 has
illustrated how to manipulate the annihilators of F and G to determine a combination P ¦S+TQ ∈Wt with
P ∈ I¦F , Q ∈ IG, S ∈ Wp(t), T ∈ Wp,t(t), which annihilates 〈F,G〉. Not all of the elements in annWt

〈F,G〉
are of this form, however, as the following simple example illustrates. If F = p1 − p2 and G = p1 + p2/2,
then 〈F,G〉 = 1− 1 = 0 and thus 1 ∈ annWt

〈F,G〉. However, it can be established that 1 can not be written
as a combination of the form P ¦S + TQ for those F and G. Nonetheless, we show that the annihilating
elements that can be written this way form a non-trivial subideal of annWt

〈F,G〉, which we generate with
the algorithms.

Although this problem of finding differential equations first appears inherently analytic in nature, we
rephrase it algebraically into a question amenable to the theory of D-modules. The adjunction properties
of the scalar product are naturally accommodated by tensor products. Specifically, the proof below centers
around a certain Wt-module S whose elements are tensors, and where, for example,

(i−1pi · u)⊗ v = (u · ∂pi
)⊗ v = u⊗ (∂pi

· v),

which corresponds to the equivalence
〈

(i−1pi) · F,G
〉

= 〈F, ∂i ·G〉. (See also Eq. (14–17) below.) On the
other hand, the ∂`i and ∂ri

that are involved in the description of Algorithm 3 really are the operators ∂ti⊗1
and 1⊗ ∂ti acting on S, respectively, where 1’s denote identity maps.

The module S can be expressed in terms of the ideal annWt
(F ¦ ⊗ G), itself contained in annWt

〈F,G〉.
The former ideal is non-trivial and in fact, is sufficient to describe the scalar product as holonomic, a
property whose definition is recalled shortly and which implies D-finiteness. In fact, we demonstrate that
the algorithms calculate a Gröbner basis for annWt(t)(F

¦ ⊗G), in other words a D-finite description of the
scalar product 〈F,G〉.

The main result is summarised by the following theorem.

Theorem 7.1. Suppose F and G are symmetric functions subject to the conditions of Algorithm 1 (resp.
Algorithm 3). Then, Algorithm 1 (resp. Algorithm 3) determines, in finite time, a Gröbner basis for a
non-zero D-finite ideal contained in annWt(t) 〈F,G〉.

The notion of holonomy to be used in the proof follows [28, 29]. Introduce a filtration of Wt by the K-
vector spaces Fd of all operators in Wt of total degree at most d in t, ∂t. These spaces are finite-dimensional,
of dimension

(

d+2k
2k

)

= O
(

d2k
)

as d goes to infinity. AWt-moduleM =
∑

iWt ·gi generated by a finite family

of generators gi is holonomic whenever the K-vector spaces
∑

i Fd · gi have dimension growing like O
(

dk
)

.
A function of t that is an element of a holonomic Wt-module is called holonomic. From the definition, it is
a basic result that a holonomic function is D-finite; the converse is a more difficult result to be found in [30,
Th. 2.4 and Appendix 6]. Similar definitions apply to Wp,t-modules, with a dimension growth of O

(

dk+n
)

in place of O
(

dk
)

.
The discussion so far has not relied on the definition of the scalar product. Rather, remark that Algorithms

1 and 3 are essentially parameterized by the adjunction property of the symmetric scalar product, and can
easily be redefined and adapted to other adjunctions. It suits our needs for the proof to consider adjoints for
the usual scalar product of functions, 〈f |g〉 :=

∫

f(x)g(x) dx. To avoid confusion, we notationally distinguish
〈f |g〉 from 〈F,G〉 for the two scalar products, as well as ? from ¦ for the respective adjunction operations.

Indeed, guided by existing results concerning the preservation of holonomy under operations involving the
usual scalar product, we link the symmetric case to the usual one with a map from one adjunction to the
other. This reduction also demonstrates how algorithms analogous to Algorithms 1 and 3 for other scalar
products could be shown to terminate with the correct output. (See Section 9.1.)
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To raise this comparison to the level of intuition, we could identify 〈F,G〉 with the integral
∫

Rn

L
(

q 7→ F (q1, 2q2, . . . , nqn)
)

(p)G(p) dp1 · · · dpn,

where L is the modified Laplace transform

L(F )(p) =
∫

Rn

F (q)e−(p1q1+···+pnqn) dq,

which satisfies
L
(

q 7→ qiF (q)
)

(p) = −(∂pi
◦ L)(F )(p).

Notice, for example:

(14)
〈

i−1pi · F,G
〉

=

∫

Rn

L
(

q 7→ qiF (q1, . . . , nqn)
)

(p)G(p) dp1 · · · dpn

= −
∫

Rn

(∂pi
◦ L)(F )(p) (∂qi

·G)(p) dp1 · · · dpn

=

∫

Rn

L
(

q 7→ F (q1, . . . , nqn)
)

(p) (∂qi
·G)(p) dp1 · · · dpn = 〈F, ∂pi

·G〉 .

Formally, we must work on the level of abstract modules, however. This avoids situations where the integral
is not convergent or the Laplace transform is not defined as a function.

Thus, to prove Theorem 7.1, we show Corollary 7.5 below which states that annWt
(F ¦ ⊗G) is a non-zero

subideal of annWt
〈F,G〉 such that the quotient Wt/ annWt

(F ¦ ⊗G) is a holonomic module. This is done in
several stages. First, in Section 7.2, we define S, the algebraic structure in which our calculations take place,
and prove that it is holonomic by reducing the problem to the usual scalar product analogue, where similar
results are known. This analogue is detailed in Section 7.3. Next, in Section 7.4 we express S as a quotient.
Corollary 7.5 follows from this discussion. Finally, to conclude that the algorithm terminates, we relate S
to the algorithm in more detail and prove in Section 7.5 that all of the generators are determined in finite
time. Together, these results prove Theorem 7.1 and thus the correctness and termination of Algorithms 1
and 3.

7.2. The symmetric scalar product. We now formally define the Wt-module S. Begin with U =Wp,t ·F
and V =Wp,t ·G, two holonomicWp,t-modules. We shall denote by U¦ the adjoint module of U : as K-vector
spaces, U = U¦, and a right Wp[t]-action is defined on U¦ by u · P = P ¦ · u for any u ∈ U¦ and P ∈ Wp[t],
where the last operation is taken for the left structure of U . Set S as the tensor product U ¦⊗Wp[t] V , which
makes it a K[t]-module. This has the desirable effect of encoding the scalar product adjunction relations:
for all u ∈ U and all v ∈ V ,

(∂pi
· u)⊗ v = (u · ∂¦pi

)⊗ v = (u · i−1pi)⊗ v = u⊗ (i−1pi · v),(15)

(pi · u)⊗ v = (u · p¦i )⊗ v = (u · i∂pi
)⊗ v = u⊗ (i∂pi

· v),(16)

ti · (u⊗ v) = (ti · u)⊗ v = (u · ti)⊗ v = u⊗ (ti · v).(17)

To endow S with a Wt-module structure, let ∂ti act on a pure tensor u⊗ v by

(18) ∂ti · (u⊗ v) = (∂ti · u)⊗ v + u⊗ (∂ti · v),
and extend to S by K-linearity. In other words, ∂ti = ∂`i + ∂ri

after defining ∂`i = ∂ti ⊗ 1 and ∂ri
= 1⊗ ∂ti ,

where 1’s are identity maps.
Armed with this definition and Theorem 7.2 (formally stated and proven independently in Section 7.3),

we prove that S is holonomic. Theorem 7.2 is an analogous result for the usual scalar product, corresponding
adjunction, and corresponding adjoint module M ? of a module M . It states that for holonomic M and N ,
M?⊗Wp[t]N is a holonomicWt-module under the action of ∂ti given by (18). We shall appeal to this theorem
with an appropriate choice for M and N .

To determine the relationship between the two scalar products and make our choice for M and N , we
compare both adjunction operations. In the symmetric case, adjunction is defined as the anti-automorphism ¦
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which maps pi to i∂pi
and ∂pi

to i−1pi, for all i, and the usual scalar product adjunction is defined as the
anti-automorphism ? which maps ∂pi

to −∂pi
, and leaves the pi variables unchanged. One way to connect

both adjunctions is to factor ¦ into the composition of three algebra morphisms:

(1) the automorphism τ mapping (pi, ∂i) to (ipi, i
−1∂i). This corresponds to the dilation which maps a

function F to p 7→ F (p1, 2p2, . . . , npn);
(2) the automorphism F mapping (pi, ∂i) to (−∂i, pi) and named ‘Fourier transform’ in D-module theory

(see [28, proof of Th. 3.1.8] or [29, p. 39]). Informally speaking, this corresponds to mapping a
function F to its Laplace transform L(F );

(3) the anti-automorphism ? mapping (pi, ∂i) to (pi,−∂i).
The important property to note is that each of these three maps preserves holonomy since they preserve total
degree, hence are filtration-preserving bijections. A direct calculation on pi and ∂i verifies that ¦ = ?◦F ◦ τ ,
so that the composite ¦ also is a holonomy-preserving linear bijection. Thus, we introduce two holonomic
modules, M = (F ◦ τ)(U) also denoted UF◦τ , and N = V , so as to appeal to Theorem 7.2. One concludes
that

(19) S = U¦ ⊗Wp[t] V =
(

UF◦τ
)? ⊗Wp[t] V =M? ⊗Wp[t] N

is a holonomicWt-module. After we have deduced the quotient structure of S in Section 7.4, this information
is used to prove that annWt

(F ¦ ⊗ G) is non-trivial and that the quotient module Wt/ annWt
(F ¦ ⊗ G) is

holonomic, a fact we use to show that the algorithms terminate.

7.3. Preservation of holonomy under the usual scalar product. In the previous section, we reduced
the proof of the holonomy of S = U ¦ ⊗Wp[t] V to an analogous result in terms of the usual scalar product,
to be proven in this section: the module T =M ? ⊗Wp[t] N is holonomic when M and N are.

The following notion will be used in the proof: the integral of a Wp,t-module P , denoted
∫

P =
∫

P dp1 · · · dpn, is defined as P
/ (
∑

i ∂pi
· P
)

. It is the image of composed maps: the Fourier trans-
form F , the inverse image π∗ under the projection π from Kn+m to Kn defined by π(p, t) = t, and the
inverse Fourier transform. Specifically we have,

∫

P = F−1π∗F(P ). These maps preserve holonomy (see [28,
Th. 3.3.4] or [29, Th. 18.2.2 and Sec. 20.3]), so that the integral of a holonomic Wp,t-module is a holonomic
Wt-module. (See also [28, Th. 3.1.8].)

The module T fits naturally in between an existing holonomy-preserving surjection from the Wt-module
∫

M ⊗K[p,t] N to the space 〈M |N〉. Factoring this map to pass through T =M ? ⊗Wp[t] N yields:

(20)

∫

M ⊗K[p,t] N
φ−→M? ⊗Wp[t] N

ψ−→ 〈M |N〉 ,

where ψ surjectively maps m⊗n to 〈m|n〉, and φ is a naturalWt-linear surjection that we are about to define
in the course of the next theorem. After proving that the first module in (20) is holonomic, the surjectivity
of φ implies the holonomy of T .

Theorem 7.2. Suppose that M and N are two holonomic Wp,t-modules, and define T as M? ⊗Wp[t] N .
Then, T is a holonomic Wt-module under the action of ∂ti given by

∂ti · (m⊗ n) = (∂ti ·m)⊗ n+m⊗ (∂ti · n).
Proof. First, we focus our attention on the module

∫

M ⊗K[p,t] N in (20). Consider the Wp,t-module
P := M ⊗K[p,t] N , with action of ∂pi

defined by ∂pi
· (m ⊗ n) = (∂pi

·m) ⊗ n +m ⊗ (∂pi
· n), and action

of ∂ti defined similarly. We can also write this as the inverse image ι∗ (M ⊗K N), where ι is the map from
Km+n to K(n+m)+(n+m) which sends (p, t) to (p, t, p, t). The advantage of the second presentation is that
the holonomy of P is obtained from the holonomic closure under inverse image under embeddings (see [28,
Th. 3.2.3] or [29, Sec. 15.3 and Ex. 15.4.5]) and the holonomic closure under tensor product over K [29,
Cor. 13.4.2]. Therefore,

∫

P is also holonomic.
Next, we define a Wt-linear surjection to T . Define a map from M ×N to T which sends (m,n) to m⊗n.

This map is K[p, t]-balanced, K[p, t]-bilinear, and surjective. By the universality of the tensor product, this
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induces a surjective map φ from P = M ⊗K[p,t] N to T . Observe that each derivation ∂pi
maps P into the

kernel of φ, as the following calculation indicates:

φ
(

∂pi
· (m⊗ n)

)

= φ
(

(∂pi
·m)⊗ n+m⊗ (∂pi

· n)
)

= (∂pi
·m)⊗ n+m⊗ (∂pi

· n) = m⊗ (−∂pi
· n) +m⊗ (∂pi

· n) = 0.

In other words,
∑

i ∂pi
·P ⊂ kerφ, and thus φ also induces a well-defined surjective map from

∫

P to T . Any
good filtration of

∫

P will induce a good filtration for T (see [28, Prop. 1.11] or [29, Lemma 7.5.1]). Thus,
T is finitely generated with dimension bounded by that of

∫

P . Therefore, T is holonomic. ¤

7.4. The quotient structure of S. Subsequent developments to express S as a quotient involve modules
over Wp,t and ideals of Wp,t, rather than Wp,t(t). We therefore introduce the annihilators IF = annWp,t

F
and IG = annWp,t

G, to be used in place of IF = annWp,t(t) F and IG = annWp,t(t)G, respectively. Note
that IF = IF ∩Wp,t and IF = K(t)⊗K[t] IF , and similarly for G. Finally, although adjunction has not been
defined for ∂t, we use the notation W ¦

p,t to denote Wp,t endowed with both a structure of Wt-module on the
left and a structure of Wp[t]-module on the right.

Proposition 7.3. The module S = (Wp,t · F )¦ ⊗Wp[t] (Wp,t ·G) is isomorphic to

(W ¦
p,t ⊗Wp[t] Wp,t)/(I

¦
F ⊗Wp[t] Wp,t +W ¦

p,t ⊗Wp[t] IG).

Proof. TheWt-module S = U¦⊗Wp[t]V is also aW ¦
p,t⊗Wp[t]

Wp,t-module. As such, it is generated by F ¦⊗G.
Consider the two exact sequences of respectively right and left Wp[t]-modules

0 → I¦F
ρ−→ W ¦

p,t
α−→ U¦ → 0,

0 → IG
σ−→ Wp,t

β−→ V → 0,

where α(P ) = F ¦ · P , β(Q) = Q ·G, and ρ and σ are inclusions. (Here, F and F ¦ denote the same element
of the set U , but we write F ¦ when viewed as an element of the right module U ¦, F when viewed as in the
left module U .) We combine them to make a third exact sequence:

(21) ker(α⊗ β) → W ¦
p,t ⊗Wp[t] Wp,t

α⊗β−−−→ S → 0,
P ⊗Q 7−→ (F ¦ · P )⊗ (Q ·G)

where, by [31, II.59, Proposition 6],

ker(α⊗ β) = im(ρ⊗ 1Wp,t
) + im(1W¦

p,t
⊗ σ) = I¦F ⊗Wp[t] Wp,t +W ¦

p,t ⊗Wp[t] IG

as K[t]-modules. We conclude that, as Wt-modules,

S ' (W ¦
p,t ⊗Wp[t] Wp,t)/ ker(α⊗ β) ' (W ¦

p,t ⊗Wp[t] Wp,t)/(I
¦
F ⊗Wp[t] Wp,t +W ¦

p,t ⊗Wp[t] IG).

¤

To be more explicit, note that this isomorphism maps the class of 1 ⊗ 1 in the quotient to F ¦ ⊗ G ∈ S.
Remark also that, as Wt-modules,

ker(α⊗ β) =
{

P ⊗Q ∈W ¦
p,t ⊗Wp,t : (α⊗ β)(P ⊗Q) = 0

}

=
{

P ⊗Q ∈W ¦
p,t ⊗Wp,t : (F

¦ · P )⊗ (Q ·G) = 0
}

=
{

P ⊗Q ∈W ¦
p,t ⊗Wp,t : (P ⊗Q) · (F ¦ ⊗G) = 0

}

= annW¦
p,t⊗Wp[t]Wp,t

(F ¦ ⊗G),

so that we also have

(22) annW¦
p,t⊗Wp[t]Wp,t

(F ¦ ⊗G) = ker(α⊗ β) = I¦F ⊗Wp[t] Wp,t +W ¦
p,t ⊗Wp[t] IG.
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Proposition 7.4. The Wt-module S′ =Wt · (F ¦ ⊗G) is a submodule of S, isomorphic to

W ′
t

/ (

(I¦F ⊗Wp[t] Wp,t +W ¦
p,t ⊗Wp[t] IG) ∩W ′

t

)

,

where W ′
t ' Wt is the smallest K-subalgebra of W ¦

p,t ⊗Wp[t] Wp,t generated by K[t], 1 ⊗ ∂t1 + ∂t1 ⊗ 1, . . . ,
1⊗∂tk +∂tk⊗1. In the simplified situation when IF = ∂tWp,t+WtJF for JF = annWp

F , S′ is isomorphic to

Wt

/ (

(WtJ
¦
F + IG) ∩Wt

)

.

We first prove this proposition, then in the next section we discuss how to connect the description of S ′

above directly to the algorithm and how to apply it to show that the algorithms terminate.

Proof. The annihilator of F ¦ ⊗G in W ′
t · (F ¦ ⊗G)

annW ′
t
(F ¦ ⊗G) = annW¦

p,t⊗Wp[t]Wp,t
(F ¦ ⊗G) ∩W ′

t .

In view of the action of Wt on S′ through the isomorphism between Wt and W ′
t , we thus have that S′ is

isomorphic to Wt/ annWt
(F ¦ ⊗G), itself isomorphic to

W ′
t/ annW ′

t
(F ¦ ⊗G) =W ′

t/
(

annW¦
p,t⊗Wp[t]Wp,t

(F ¦ ⊗G) ∩W ′
t

)

.

Owing to (22), this proves the general quotient expression for S ′ in the proposition statement.
Now, to prove the formula in the simpler case, observe that when IF = ∂tWp,t +WtJF ,

I¦F ⊗Wp[t]
Wp,t = ∂tW

¦
p,t ⊗Wp[t]

Wp,t +WtJ
¦
F ⊗Wp[t]

Wp,t = ∂tWt ⊗K[t] Wp,t +Wt ⊗K[t] WtJ
¦
F

whileW ¦
p,t⊗Wp[t] IG =Wt⊗K[t] IG, whence the relation ker(α⊗β) = ∂tWt⊗K[t]Wp,t+Wt⊗K[t] (WtJ

¦
F +IG).

Since W ¦
p,t ⊗Wp[t] Wp,t =Wt ⊗K[t] Wp,t, we obtain

S 'Wp,t/(WtJ
¦
F + IG),

as (Wt⊗K[t]Wp,t)/ ker(α⊗β) ' (K[t]⊗K[t]Wp,t)/
(

K[t]⊗K[t] (WtJ
¦
F + IG)

)

'Wp,t/(WtJ
¦
F + IG). Following

these isomorphisms, W ′
t can be identified as the copy of Wt included in Wp,t in the last quotient above.

Therefore, the submodule S ′ of S is isomorphic to the quotient announced in the proposition statement. ¤

Corollary 7.5. The ideal annWt
(F ¦ ⊗G) is:

(1) isomorphic to (I¦F ⊗Wp[t] Wp,t +W ¦
p,t ⊗Wp[t] IG) ∩W ′

t as a Wt-module;
(2) a non-trivial ideal contained in annWt

〈F,G〉 and such that the quotient Wt/ annWt
(F ¦⊗G) ' S′ is

holonomic.

Proof. From (22),

(23) annW ′
t
(F ¦ ⊗G) =

(

annW¦
p,t⊗Wp[t]Wp,t

(F ¦ ⊗G)
)

∩W ′
t =

(

I¦F ⊗Wp[t] Wp,t +W ¦
p,t ⊗Wp[t] IG

)

∩W ′
t ,

and we have shown (1) in the corollary statement. The Wt-module S′ 'Wt/ annWt
(F ¦ ⊗G) is a holonomic

Wt-module, as a submodule of the holonomic module S. Now asWt is not, annWt
(F ¦⊗G) must be non-trivial

by a simple dimension argument. Finally, we recall that this non-trivial ideal is contained in annWt
〈F,G〉,

since there is a surjection from S ′ to Wt/ annWt
〈F,G〉 given by ψ : (u⊗ v) 7→ 〈u, v〉. This proves (2) in the

corollary statement. ¤

7.5. Termination. We now link the modules S and S ′ to the algorithms and prove their termination. The
termination of Algorithm 3 is more technical to prove than that of Algorithm 1 since ∂ti can act separately
on F and G. Thus, for ease of presentation, we consider Algorithms 1 and 3 in turn, to show that they
eventually generate a Gröbner basis for annWt(t)(F

¦ ⊗G).
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7.5.1. Termination of Algorithm 1. The basic idea of Algorithm 1 is to compute filtrations of IF and IG
independently and incrementally and to recombine them at each step. The algorithm terminates when
condition (3e) in the algorithm description is satisfied. We show that the algorithm will satisfy this condition
by eventually producing a Gröbner basis for annWt(t)(F

¦ ⊗G). This subideal describes F ¦ ⊗G and 〈F,G〉
as D-finite.

Proof. (Theorem 7.1, Algorithm 1) Algorithm 1 places a constraint on F that allows us to take advantage
of the simpler Wt-structure of U = Wp,t · F : since each ∂ti · F is 0, we have U = K[t] ⊗K (Wp · F )
and IF = ∂tWp,t +WtJF . Taking the intersection with W ′

t is then far more transparent: from the previous
section, we obtain the following simplification of Eq. (23):

(24) annWt
(F ¦ ⊗G) = (J¦FWt + IG) ∩Wt.

Considering the monoid of monomials generated by p, ∂p, ∂t, ordered by the monomial order ¹ specified by
the algorithm, we denote by Vβ the filtration

⊕

γ¹βK(t)γ.
Assume that Algorithm 1 fails to terminate on some input F and G. For any β, Algorithm 1 thus

eventually reaches a value for the main loop index α such that all the monomials that have been considered
in the algorithm span a vector space containing Vβ . After Step (3d) in the main loop for this value α of the
loop index, B generates a vector space containing

Lβ :=
(

J¦FWt(t) ∩ Vβ
)

+
(

IG ∩ Vβ
)

.

By our choice of elimination term order, B ∩Wt(t) consists of generators of a vector space which contains
the intersection Lβ ∩Wt(t).

Next, for each γ,
(

J¦FWt(t)+IG
)

∩Vγ is a subspace of Lβ for some β. Indeed, since Vγ is finite-dimensional,
so is the intersection under consideration. Let us introduce a basis b1, . . . , bd of it. Each bi can be written in
the form fi + gi for fi ∈ I¦F = J¦FWt(t) and gi ∈ IG, so that, provided β = max{maxi deg fi,maxi deg gi},
the intersection

(

J¦FWt(t) + IG
)

∩ Vγ =

d
⊕

i=1

K(t)(fi + gi)

is a subspace of
d
∑

i=1

K(t)fi +

d
∑

i=1

K(t)gi ⊂
(

Wt(t)J
¦
F ∩ Vβ

)

+
(

IG ∩ Vβ
)

= Lβ .

Since annWt(t)(F
¦ ⊗ G) is finitely generated by noetherianity of Wt(t), we can choose a finite set of

generators for it, and set γ to their maximal leading monomial. Consequently, the chosen generators are in

annWt(t)(F
¦ ⊗G) ∩ Vγ =

(

Wt(t)J
¦
F + IG

)

∩Wt(t) ∩ Vγ .
By the reasoning above, the latter is a subspace of Lβ for some β, and when the loop index reaches a
sufficiently high α, annWt(t)(F

¦ ⊗ G) is a subideal of the ideal generated in Wt(t) by B ∩ Wt(t). Since,
by Corollary 7.5, Wt/ annWt

(F ¦ ⊗ G) is a holonomic module, annWt(t)(F
¦ ⊗ G) is of dimension 0, and

condition (3e) is satisfied. The algorithm terminates, a contradiction to our assumption. ¤

A limitation of the algorithm is that we cannot predict in advance how many monomials must be tested,
and hence cannot estimate the running time.

7.5.2. Termination of Algorithm 3. The termination of Algorithm 3 can be proved similarly, but we must
use greater care when treating the ∂ti .

Proof. (Theorem 7.1, Algorithm 3) Since there is no adjoint action for ∂ti , we consider occurrences of ∂ti
in the left argument of the scalar product differently from those on the right side. This is modelled in S
by tensoring over Wp[t], where ∂t is absent and thus, ∂ti ⊗ 1 differs from 1 ⊗ ∂ti . Both still obey the same
commutation law with ti as ∂ti . Denote the former by ∂`i and the latter by ∂ri

.
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Having distinguished these two cases, we rewrite several of the important elements from the previous
proof using this new notation. For example,

W ¦
p,t ⊗Wp[t] Wp,t = K

〈

p, t, ∂p, ∂`, ∂r; [∂pi
, pj ] = [∂`i , tj ] = [∂ri

, tj ] = δi,j ,

[pi, pj ] = [pi, tj ] = [ti, tj ] = [∂`i , pj ] = [∂ri
, pj ] = [∂pi

, tj ] = 0
〉

,

and its subalgebra W ′
t is generated by K[t], ∂`1 + ∂r1 , . . . , ∂`k + ∂rk

. We can also rewrite I¦F ⊗Wp[t] Wp,t +

W ¦
p,t ⊗Wp[t] IG in the form I¦F

∣

∣

∂t=∂`
K[∂r] +K[∂`]IG

∣

∣

∂t=∂r
. Algorithm 3 actually computes with coefficients

that are rational functions in t, and so with elements of I¦F
∣

∣

∂t=∂`
K[∂r] +K[∂`]IG

∣

∣

∂t=∂r
.

In order to endowW ¦
p,t⊗Wp[t]Wp,t with a filtration, let us extend the ordering¹ to monomials in p, ∂p, ∂`, ∂r

by considering any ordering which, after setting ∂` = ∂t, ∂r = 1 or ∂r = ∂t, ∂` = 1, respectively, induces the
ordering ¹. We denote the extended ordering by ¹ as well. Then, we let Uβ denote the filtration

⊕

γ¹βK(t)β

for β, γ ranging over the monomials in the variables p, ∂p, ∂r, ∂`. Turning our attention to W ′
t (t), let V ′β be

the image of the Vβ of the previous section, under the same transformation which takes Wt(t) to W ′
t (t),

that is,

V ′β =
⊕

pa∂b
p∂

c
t¹β

K(t)pa∂bp (∂` + ∂r)
c
.

For each β, there is β′ such that V ′β ⊂ Uβ′ .
Assume that Algorithm 3 fails to terminate on some input F and G. Since the main loop enumerates all

monomials in p, ∂p, ∂`, ∂r in some order, for any β there exists a value of the index loop α such that when
the loop reaches it, all monomials that have been enumerated span a vector space containing Uβ . After the
algorithm has introduced (variants of) αF and αG at Step (3e) for this value of α, let us call Vα the vector
space generated by the set B. Setting ∂` = ∂t − ∂r maps Vα to a vector space which contains

Hβ :=
(

I¦F
∣

∣

∂t=∂`
K[∂r]

)

∩ Uβ +
(

K[∂`]IG
∣

∣

∂t=∂r

)

∩ Uβ .

We use this fact to conclude termination.
At this point we show that for each γ, the vector space X ∩ V ′γ where

X = I¦F ⊗Wp(t) Wp,t(t) +Wp,t(t)
¦ ⊗Wp(t) IG

is a subspace of Hβ for some β. Indeed, choose γ′ such that V ′γ ⊂ Uγ′ , so that X ∩ V ′γ ⊂ X ∩ Uγ′ . The
latter intersection is finite-dimensional, since Uγ′ is so. Suppose it has for basis b1, . . . , bd, with each bi
of the form bi = firi + ligi, where fi ∈ I¦F

∣

∣

∂t=∂`
, gi ∈ IG

∣

∣

∂t=∂r
, ri ∈ K[∂r], and li ∈ K[∂`], and set

β = max{maxi deg firi,maxi deg ligi}, where here deg extracts the leading monomial. Then,

X ∩ V ′β ⊂
d
⊕

i=1

K(t)(firi + ligi) ⊂
d
∑

i=1

K(t)firi +

d
∑

i=1

K(t)ligi ⊂ Hβ .

By noetherianity, we can choose a finite set of generators for annWt(t)(F
¦ ⊗ G), and set γ to their

maximal leading monomial. The generators are thus elements of annWt(t)(F
¦⊗G)∩Vγ , which is isomorphic

to annW ′
t (t)

(F ¦ ⊗ G) ∩ V ′γ . By (23) the latter is also X ∩ V ′γ , and, as explained above, there is β such that
this is a subspace of Hβ .

By our earlier loop invariant, the same generators, after setting ∂` = ∂t − ∂r, are contained in the space
spanned by B when the loop index reaches a sufficiently high α′. Thus, it suffices to run the algorithm until
this α and generators of annWt

(F ¦ ⊗ G) will be contained in B. At this point the termination conditions
are satisfied, and the algorithm terminates. ¤

8. Asymptotic Estimates

We now illustrate how the differential equations computed by our algorithms may be exploited in order
to derive asymptotic estimates of combinatorial quantities.
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8.1. Outline of the method. A very general principle in asymptotic analysis is that the asymptotic
behaviour of a sequence is governed by the local behaviour of its generating series at its singularity of
smallest modulus, see for instance [32, Section 10]. Our approach is thus based on applying the classical
analysis of linear differential equations as presented in textbooks such as [33, 34] in order to derive asymptotic
estimates for the coefficients. Moreover, large parts of this analysis can be automated thanks to the algorithms
described in [35, 36, 37], many of which have been implemented in computer algebra systems6 . An alternative
approach based on Birkhoff’s work can be found in [38].

In the special case of solutions of linear differential equations, the possible location of singularities is
restricted to the roots of the coefficient of the highest derivative. Then, the analysis depends on the nature of
the singularity. The classical theory distinguishes two kinds of singular points: regular singular points, where
the solutions have an algebraic-logarithmic behaviour; and irregular singular points where the solutions have
an essential singularity of the type exponential of a rational power. Accordingly, the asymptotic behaviour
of the coefficients is deduced either by singularity analysis [39, 40], or by the saddle-point method [41, 42];
both approaches are implemented in the algolib library.

This asymptotic analysis of D-finite generating series extends to the divergent case. Indeed, the coeffi-
cients un of a divergent D-finite series grow at most like a power of n! with a rational exponent p/q which can
be computed (see example below). Then one constructs an auxilliary differential equation satisfied by the
convergent generating series of un/(n(n−q)(n−2q) · · · r)p (where r denotes the remainder of the division of n
by q), to which the previous method applies. This construction is achieved thanks to the closure properties
of D-finite series, by multiplying un with the solution of the recurrence (n + q)pvn+q = vn, which, up to a

constant, grows like n!p/qnp(q−1)/2q. This operation is implemented in the gfun package.

8.2. k-uniform Young tableaux. We now illustrate this method in the special case of the k-uniform Young
tableaux of Section 5. We treat in detail the case k = 3; other cases are similar. To the best of our knowledge,
these asymptotic estimates are new.

We start from the differential equation for k = 3 to be found in Table 2. This is a second-order differential
equation and its leading coefficient vanishes at the origin. This indicates a possible singularity of Y3(t) at
the origin, which would be reflected by the divergence of this series. Indeed, from this differential equation,

a linear recurrence is readily computed for the coefficients un := y
[3]
n :

un + un+1 − (3n+ 12)un+2 − 4un+3 + (6n+ 35)un+4 − 15un+5

+ (9n2 + 93n+ 242)un+6 + (18n+ 126)un+7 − (9n2 + 159n+ 698)un+8

+ (9n2 + 147n+ 606)un+9 − (18n2 + 366n+ 1884)un+10

− (48n+ 552)un+11 + (24n+ 288)un+12 = 0.

8.2.1. Divergence. From this recurrence it is easy to compute a couple hundred coefficients and observe their
rapid growth. Simple experiments indicate that the growth of these coefficients is of order

√
n!. That this

is the exact exponent of n! in the behaviour follows upon considering the degrees of the coefficients in the
recurrence: the terms of order 12 and 11 have coefficients of degree 1, while the term of order 10 has a
coefficient of degree 2 (the maximal degree). Thus, up to first order, the behaviour is dictated by

24nun+12 = 18n2un+10,

which leads to a growth of order ( 34 )
n/2n!1/2. In order to derive a more precise estimate, we compute a

linear differential equation satisfied by the convergent generating function of y
[3]
n vn where vn satisfies vn+2 =

vn/(n + 2). This differential equation is obtained by first computing a linear recurrence for y
[3]
n vn, which

exists thanks to the closure properties of linear recurrent sequences. This closure operation produces a linear
recurrence of order 24 with coefficients of degree 29. From there we obtain a linear differential equation of
order 29 with coefficients of degree 37, which we now analyze.

6In Maple, this functionality is provided by DEtools[formal sol].
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1 C1
exp

√
n√

n!n1/4
C1 ≈ 0.347829

2 C2
exp

√
2n√
n

C2 ≈ 0.282094

3 C3

√
n!

(√
3

2

)n
exp

√
3n

n3/4
C3 ≈ 0.377200

4 C4n!

(

2

3

)n
exp 2

√
n

n
C4 ≈ 0.831565

Table 4. Asymptotic number of k-uniform Young tableaux

8.2.2. Singular behaviour. The leading coefficient of the previous equation is t27(3t2 − 4), up to a constant

factor. This reveals a dominant singularity at ρ = 2/
√
3, thus confirming the growth order (3/4)n/2 expected

from the previous stage7. The next step consists in analyzing the behaviour of our convergent generating
series in the neighbourhood of ρ. A local analysis of the differential equation reveals that all solutions of this
equation of order 29 behave like

g(u) + λ
exp

(

3
4u

)

√
u

(

1− 145

144
u− 8591

41472
u2 +O

(

u3
)

)

, 1− z/ρ = u→ 0,

where g is an analytic function at 0, and λ is a constant depending on the solution.

8.2.3. Asymptotic estimate. This behaviour is typical of an irregular singular point and can thus be dealt
with using the saddle-point method. Putting everything together, we finally obtain

y[3]n = C3n!
1/2

(√
3

2

)n
exp

√
3n

n3/4
(1 +O(1/n)),

for some constant C3, and where the O-term hides the beginning of an expansion in descending powers of n
that could be computed with the same method.

The constant C3 can then be approximated numerically by using Romberg’s acceleration method, adapted
to powers of n−1/2, and we get:

C3 ≈ 0.377200.

8.2.4. Other values of k. The computation of the asymptotic behaviour of y
[k]
n for other values of k is

completely similar, provided one has computed the differential equation. We summarize our results in
Table 4. This serves to illustrate a typical use of our techniques in experimental mathematics to obtain
conjectures such as the following.

Conjecture 1. The number y
[k]
n of k-uniform Young tableaux of size n behaves asymptotically according to

y[k]n ∼ 1√
2

(

ek−2

2π

)k/4

n!k/2−1
(

kk/2

k!

)n
exp(

√
kn)

nk/4
, n→∞.

This conjecture is proved for k = 1 and k = 2: the constant is obtained from a closed form solution of the
differential equation. For k = 3 and k = 4, only the value of the constant is conjectural. The proof of the
general case of the conjecture requires techniques such as those of [43, 44], which fall outside of the scope of
this article.

7We could also have incorporated this factor in the recurrence for vn.
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8.3. Conclusion. The main advantages of our method are: its general applicability, its ability to produce
full asymptotic expansions up to one constant factor, the availability of computer algebra programs that
automate many of its steps. The price to pay for this generality is that the method can only produce
numerical estimates for the constant factor. In some special cases, specific approaches often exist that
provide this constant term.

9. Conclusions and Directions for Future Work

9.1. Applying the method to other scalar products. Let us note that the method of this article can
be applied in the case of other scalar products, provided that the corresponding adjunction ¦ (no longer
denoting the symmetric adjunction) is a linear involution that preserves the total degree (in p, ∂p) of the
differential operators. In effect, one should simply set M = (U ¦)? and N = V to obtain a suitable analogue
to (19) and prove the holonomy, thus D-finiteness, of the scalar product: M is holonomic if and only if U is.
Since the statement and proof of Algorithm 1 and 3 do not make use of any other special property of ¦ than
being a degree-preserving involution, correctness of the algorithms can then be established along the same
lines as for the symmetric scalar product case.

We use this idea in the next two sections by introducing various scalar products given by an adjunction
relation involving a formal parameter.

9.2. Calculating the Kronecker product of symmetric functions. Another symmetric function op-
eration, closely related to the scalar product, is the Kronecker product, also known as the tensor product.
One can define it on the power basis as pλ ∗ pµ = 〈pλ, pµ〉 pλ. Gessel showed in [7] that given two D-finite
symmetric series F and G, the Kronecker product F ∗G is also a D-finite symmetric series. Algorithm 1 can
be used to make this fact effective via the following observation:

pλ ∗ pµ =
〈

pλt
λ, pµ

〉 ∣

∣

ti=pi
.

More precisely, we rewrite a Kronecker product as a scalar product by multiplying each pi in F by ti. In the
system which results we make the substitution ti = pi and ∂ti = ∂pi

.
We formalize this in the following algorithm, which merely calls Algorithm 1 on modified input systems.

Algorithm 4 (Kronecker Product).
Input: Symmetric functions F ∈ K[[p]] and G ∈ K[[p]], both D-finite in p, each given by a system of linear
differential operators of Wp.
Output: A system of differential equations satisfied by F ∗G, which describes it as D-finite.

(1) Call G the system defining G and set G ′ = {t1∂t1 − p1∂p1 , . . . , tn∂tn − pn∂pn
};

(a) For each element in G, replace pi with tipi, ∂pi
with t−1i ∂pi

and add to G′;
(b) For each element in G, replace pi with tipi, ∂pi

with p−1i ∂ti , clear denominators, and add to G ′;
(2) Follow the steps of Algorithm 1 on the input system for F and the modified system G ′ for G;
(3) In the output of Algorithm 1 make the substitution ti = pi and ∂ti = ∂pi

and return this value.

Many interesting problems which use this operation require an infinite number of pn, and are thus at first
glance seemingly unsuitable for direct application of our algorithms. However, applying our algorithms for
several truncations of a combinatorial problem can serve as a means to generate information upon which
reasonable conjectures can be formulated. For example, Eq. (26) below was initially conjectured after a
clear pattern emerged from a sequence of appeals to Algorithm 4. For each of these, we render the problem
applicable by setting most pn’s to 0. In some cases, notably symmetric series arising from plethysms, there
is sufficient symmetry and structure which can be exploited to verify these guesses by applying one of
Algorithm 4 to well chosen subproblems. That is, in certain cases, such as the example that follows, the
Kronecker product of two functions each with an infinite number of pn variables can be reduced to a finite
number of symbolic calculations.

For example, if two symmetric series F and G can be expressed respectively in the form

F (p1, p2, . . .) =
∏

n≥1

fn(pn) and G(p1, p2, . . .) =
∏

n≥1

gn(pn),
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for functions fn, gn, then one can easily deduce that

(25) F ∗G =
∏

n≥1

fn(pn) ∗ gn(pn).

Remark that series which arise as plethyms of the form h[u] or e[u], where u can be written as a sum
∑

n un(pn), for some functions un, are precisely of this form. For example, we can use this fact to compute
the Kronecker product of the sum of all Schur functions

F (p1, p2, . . .) =
∑

λ

sλ = h[p1 + 1/2p21 − 1/2p2] = exp

(

∑

i

p2i
2i

+
p2i−1
2i− 1

)

,

and itself. Due to the patterns present, we can reduce the calculation of the entire product to two symbolic
calculations. More precisely, in order to determine a system of differential equations satisfied by G = F ∗ F
we consider only the even and odd cases, and set

f2n = exp(p22n/4n) and f2n−1 = exp((p22n−1/2 + p2n−1)/(2n− 1)).

All of the functions g2n = f2n ∗ f2n are obtained from a single computation by our Algorithm 4, adapted to
handle a formal parameter. This modification is of the same nature of that described in Section 9.1. Here
we introduce the scalar product given by the adjunction formula p¦ = n∂ for a formal parameter n from
the field K. Thus computing exp(p2/4n) ∗ exp(p2/4n) with this variant algorithm results in a first-order
operator in p and ∂, which, once interpreted back in terms of pn becomes:

(1− p2n)
∂gn(pn)

∂pn
+ pngn(pn) = 0, for even n.

A second calculation for g2n−1 = f2n−1 ∗ f2n−1 results in:

n(1 + pn)(1− pn)2
∂gn(pn)

∂pn
−
(

1 + (n+ 1)pn − np2n
)

gn(pn) = 0, for odd n.

These linear equations are satisfied respectively by the functions

g2n =
(

1− p22n
)−1/2

andg2n−1 = exp

(

p2n−1
(2n− 1)(1− p2n−1)

)

(

1− p22n−1
)−1/2

.

Applying Eq. (25) above, we get the following result.

Proposition 9.1. The Kronecker product of the sum of the Schur functions with itself is

(26)

(

∑

λ

sλ

)

∗
(

∑

λ

sλ

)

= exp





∑

n≥1

p2n−1
(2n− 1)(1− p2n−1)









∏

n≥1

(

1− p2n
)





−1/2

.

9.3. A q-analogue. A q-calculus parameter can be incorporated in symmetric functions in several ways.
Apart from the scalar product defined by (1), several other ones are of interest in relation to symmetric

functions, notably the following two, which lead to the definitions of Hall and Macdonald polynomials
respectively:

〈pµ, pλ〉 = zλδµ,λ

l(λ)
∏

i=1

(1− tλi) and 〈pµ, pλ〉 = zλδµ,λ

l(λ)
∏

i=1

(1− tλi)

1− qλi
,

where `(λ) is the length k of a partition λ = (λ1, . . . , λk). The same approach as in this article works in this
setting and our Maple code has been adapted very easily8.

As a related problem, the ring homomorphism θq : Λ→ K[q][[t]] defined as

θq
(

f(x1, x2, . . .)
)

= f
(

(1− q)t, (1− q)qt, (1− q)q2t, . . .
)

8This variant is also available at http://www.lacim.uqam.ca/~mishna.
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is useful for studying partitions and for counting permutations [1]. This is one possibility for a q-analogue
to the map θ from Theorem 1.1 (named exponential specialization in [1]), since limq→1 θq(F ) = θ(F )(x). An
algorithm to compute θq, possibly mapping differential equation to Dq equation should be of interest.

9.4. Other conditions for D-finite closure. Remark that Theorem 1.3 requires that g be a function
of only a finite number of pn. The necessity of this condition is evident in the following example. Find a
sequence cn such that

∑

cnt
n is not D-finite. However, according to the given definition of D-finite symmetric

series,
∑

n cnpn is D-finite, as is
∑

n pnt
n/n. The series 〈

∑

n cnpn,
∑

n pnt
n/n〉 =

∑

n cnt
n is not D-finite by

construction.
On the other hand, the condition is not essential. We have that 〈H(1), H(t)〉 = 1

1−t , which is D-finite
despite H being a function of all pn. Perhaps a closer investigation on the level of modules could reveal a
refined condition.
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tions as an interesting area of study. The second author also extends gratitude towards NSERC for funding,
and to Projet Algo, Inria, for their generous invitations during which much of the work was completed.

Appendix A. 4-Uniform Young Tableaux

The differential equation satisfied by Y4(t) is

64t4(t− 2)2(t+ 1)4α(t)Y
(3)
4 (t)− 16t2(t− 2)(t+ 1)2β(t)Y

(2)
4 (t)

+ 4γ(t)Y ′4(t)− δ(t)Y4(t) = 0

where α(t), β(t), γ(t), δ(t) are irreducible polynomials given by

α(t) = t14 − t13 − 5t12 − 7t11 + 6t10 + 35t9 + 39t7 − 50t6 − 162t5 − 92t4

+ 228t3 + 424t2 + 248t+ 48,

β(t) = t29 − 3t28 − 16t27 + 24t26 + 147t25 + 14t24 − 770t23 − 666t22 + 1416t21

+ 3567t20 − 916t19 − 16598t18 + 17766t17 + 40678t16 − 102556t15

− 53272t14 + 390656t13 + 364080t12 − 707936t11 − 1406336t10 − 552544t9

+ 1397664t8 + 2020864t7 + 176256t6 − 916864t5 + 304896t4 + 1283328t3

+ 877056t2 + 253440t+ 27648,

γ(t) = t28 − t27 − 14t26 − 20t25 + 111t24 + 278t23 − 196t22 − 1216t21

− 1384t20 + 2765t19 + 3170t18 − 3400t17 + 12140t16 + 15588t15

− 70280t14 − 108946t13 + 121796t12 + 349056t11 + 116992t10 − 481704t9

− 706320t8 + 3040t7 + 581184t6 + 158688t5 − 297408t4 − 173952t3

+ 22272t2 + 35712t+ 6912,

δ(t) = 2t21 − 3t20 − 17t19 − 2t18 + 74t17 + 105t16 − 108t15 − 172t14 − 252t13

+ 432t12 − 667t11 + 1500t10 + 7336t9 − 3772t8 − 23056t7 − 20584t6

+ 15504t5 + 38160t4 + 17904t3 − 4512t2 − 5568t− 1152.

Appendix B. Sample Maple Session for 3-Regular Graph Computation

The following Maple session indicates the user-level routines required to program Algorithm 2. It requires
the library algolib, which is available at http://algo.inria.fr/packages/.
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# Load the packages.

with(Ore_algebra): with(Mgfun): with (Groebner):

# Determine the DE satisfied by the generating function

# for 3-regular graphs.

k:=3: Fp:= exp(1/2*p1^2-1/4*p2^2-1/2*p2+p3^2/6):

Gp:=exp(1/6*t3*p1^3+1/2*t2*p1^2+t1*p1+1/2*t3*p2*p1

+1/2*t2*p2+1/3*t3*p3):

# Define the variables.

vars:= seq(p||i, i=1..k): dvars:= seq(d||i, i=1..k):

tvars:= seq(t||i, i=1..k): dtvars:= seq(dt||i, i=1..k):

# Define the algebra.

A:= diff_algebra(seq([dvars[i], vars[i]], i=1..k),

seq([dtvars[i], tvars[i]], i=1..k), polynom={vars}):

At:= diff_algebra(seq([dtvars[i], tvars[i]], i=1..k)):

# Define the monomial orders.

T[g]:=termorder(A, lexdeg([dvars, vars],[dtvars])):

T[f]:=termorder(A,tdeg(vars, dvars, dtvars)):

# Define the systems.

sys[g]:=dfinite_expr_to_sys(Gp, F(seq(p||i::diff, i=1..k),

seq(t||i::diff, i=1..k))):

newsys[g]:=subs(

[seq(diff(F(vars,tvars),vars[i])=dvars[i],i=1..k),

seq(diff(F(vars, tvars), tvars[i])=dtvars[i], i=1..k),

F(vars,tvars)=1], sys[g]):

# Find the Groebner basis for G.

GB[g]:=gbasis(newsys[g],T[g]);

# Do the same for F.

sys[f]:=dfinite_expr_to_sys(Fp, F(seq(p||i::diff, i=1..k))):

newsys[f]:=subs([seq(diff(F(vars),vars[i])=dvars[i],i=1..k),

F(vars)=1],sys[f]);

GB[f]:=gbasis(newsys[f],T[f]);

# Define the adjoint and reduction procedures.

star:= x->subs(

[seq(d||i=1/i*p||i, i=1..k),seq(p||i=d||i*i, i=1..k)],x):

rdc[f] := x->star(star(x)-map(normalf, star(x), GB[f], T[f]));

rdc[g] := x->normalf(x, GB[g], T[g]);

# Reduce the Groebner basis of F.

for pol in GB[f] do m[pol]:=rdc[g](pol) end do:

# Small optimization: we will always try to reduce with respect

# to a linear term when possible.

lpol:=[seq(m[i],i=subsop(1=NULL,GB[f])),m[GB[f][1]]]:

for indelim from k-1 by -1 to 1 do
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# eliminate dt.indelim

for j from 2 to nops(lpol) do

newpol[j]:=skew_elim(lpol[j],lpol[1],dt||indelim,At)

end do;

# set t.indelim = 0

lpol:=map(primpart,subs(t||indelim=0,

[seq(newpol[j],j=2..nops(lpol))]),[dtvars])

end do:

# The only term left is the correct one.

ode:=op(lpol):

# Convert to recurrence.

REC:=diffeqtorec(

{applyopr(ode, F(t||k), At), F(0)=1}, F(t||k), a(n)):

# Calculate some terms.

GRAPH:=rectoproc(REC, a(n),list)(20):

[seq(GRAPH(10)[i]*(i-1)!,i=1..20)];

[1,0,0,0,1,0,70,0,19355,0,11180820,0,11555272575,0,

19506631814670,0,50262958713792825,0,187747837889699887800,0]
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[13] M. Saito, B. Sturmfels, N. Takayama, Gröbner deformations of hypergeometric differential equations, Vol. 6 of Algorithms

and Computation in Mathematics, Springer-Verlag, Berlin, 2000.
[14] N. Takayama, An algorithm of constructing the integral of a module — an infinite dimensional analog of Gröbner basis,

in: Proceedings of ISSAC’90, Kyoto, ACM, 1990, pp. 206–211.

[15] H. Tsai, Weyl closure of a linear differential operator, J. Symbolic Comput. 29 (4-5) (2000) 747–775, symbolic computation

in algebra, analysis, and geometry (Berkeley, CA, 1998).

[16] H. Tsai, Algorithms for associated primes, Weyl closure, and local cohomology of D-modules, in: Local cohomology and

its applications (Guanajuato, 1999), Vol. 226 of Lecture Notes in Pure and Appl. Math., Dekker, New York, 2002, pp.
169–194.

[17] L. Comtet, Advanced combinatorics, enlarged Edition, D. Reidel Publishing Co., Dordrecht, 1974, the art of finite and

infinite expansions.

[18] R. C. Read, N. C. Wormald, Number of labeled 4-regular graphs, J. Graph Theory 4 (2) (1980) 203–212.
[19] N. J. A. Sloane (Ed.), The On-Line Encyclopedia of Integer Sequences, 2003,

http://www.research.att.com/~njas/sequences/.
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