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Abstract

Multipartitioning is a strategy for partitioning multi-
dimensional arrays among a collection of processors.
With multipartitioning, computations that require
solving one-dimensional recurrences along each di-
mension of a multi-dimensional array can be par-
allelized effectively. Previous techniques for multi-
partitioning yield efficient parallelizations over three-
dimensional domains only when the number of pro-
cessors is a perfect square. This paper considers
the general problem of computing optimal multipar-
titionings for d-dimensional data volumes on an arbi-
trary number of processors. We describe an algorithm
that computes an optimal multipartitioning for this
general case, which enables multipartitioning to be
used for performing efficient parallelizations of line-
sweep computations under arbitrary conditions.

Finally, we describe a prototype implementation of
generalized multipartitioning in the Rice dHPF com-
piler and performance results obtained when using it
to parallelize a line sweep computation for different
numbers of processors.

1 Introduction

Line sweeps are used to solve one-dimensional recur-
rences along each dimension of a multi-dimensional
discretized domain. This computational method is
the basis for Alternating Direction Implicit (ADI)
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integration — a widely-used numerical technique
for solving partial differential equations such as the
Navier-Stokes equation [4, 13, 15] — and is also at
the heart of a variety of other numerical methods and
solution techniques [15]. Parallelizing computations
based on line sweeps is important because these com-
putations address important classes of problems and
they are computationally intensive.

Recurrences along a dimension that line sweeps are
used solve, serialize computation of each line along
that dimension. If a dimension with such recurrences
is partitioned, it induces serialization between com-
putations on different processors. Using standard
block uni-partitionings, in which each processor is as-
signed a single hyper-rectangular block of data, there
are two classes of alternative partitionings. Static
block unipartitionings involve partitioning some set
of dimensions of the data domain, and assigning each
processor one contiguous hyper-rectangular volume.
To achieve significant parallelism for a line sweep
computation with this type of partitionings requires
exploiting wavefront parallelism within each sweep.
In wavefront computations, there is a tension between
using small messages to maximize parallelism by min-
imizing the length of pipeline fill and drain phases,
and using larger messages to minimize communica-
tion overhead in the computation’s steady state when
the pipeline is full. Dynamic block unipartitionings
involve partitioning a single data dimension, perform-
ing line sweeps in all unpartitioned data dimensions
locally, transposing the data to localize the data along
the previously partitioned dimension, and then per-
forming the remaining sweep locally. While dynamic
block unipartitionings achieve better efficiency during
a (local) sweep over a single dimension compared to
a (wavefront) sweep using static block unipartition-
ings, they require transposing all of the data to per-



form a complete set of sweeps, whereas static block
unipartitionings communicate only data at partition
boundaries.

To support better parallelization of line sweep com-
putations, a third sophisticated strategy for parti-
tioning data and computation known as multiparti-
tioning was developed [4, 13, 15]. Multipartitioning
distributes arrays of two or more dimensions among
a set of processors so that for computations perform-
ing a directional sweep along any one of the array’s
data dimensions, (1) all processors are active in each
step of the computation, (2) load-balance is nearly
perfect, and (3) only a modest amount of coarse-
grain communication is needed. These properties are
achieved by carefully assigning each processor a bal-
anced number of tiles between each pair of adjacent
hyperplanes that are defined by the cuts along any
partitioned data dimension. We describe multiparti-
tionings in detail in Section 2. A study by van der Wi-
jngaart [18] of implementation strategies for hand-
coded parallelizations of ADI Integration found that
3D multipartitionings yield better performance than
both static block unipartitionings and dynamic block
unipartitionings.

All of the multipartitionings described in the liter-
ature to date consider only one tile per processor per
hyperplane of a multipartitioning. The most general
class of multipartitionings described in the literature
is known as diagonal multipartitionings. While di-
agonal multipartitionings are optimal in two dimen-
sions, for three dimensions diagonal multipartition-
ings are optimal only when the number of processors
is a prime or a perfect square. This paper consid-
ers the general problem of computing optimal mul-
tipartitionings for d-dimensional data volumes on an
arbitrary number of processors. We describe an al-
gorithm that computes an optimal multipartitioning
for this general case, which enables multipartitioning
to be used for performing efficient parallelizations of
line-sweep computations under arbitrary conditions.

In the next section, we describe prior work in multi-
partitioning. Then, we present our strategy for com-
puting generalized multipartitionings. This has three
parts: an objective function for computing the cost of
a line sweep computation for a given multipartition-
ing, a cost-model-driven algorithm for computing the
dimensionality and tile size of the best multiparti-
tioning, and an algorithm for computing a mapping
of tiles to processors. Finally, we describe a proto-
type implementation of generalized multipartitioning
in the Rice dHPF compiler for High Performance For-
tran. We report preliminary performance results ob-
tained using it to parallelize a computational fluid
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Figure 1: 3D Multipartitioning on 16 processors.

dynamics benchmark.

2 Background

Johnsson et al. [13] describe a two-dimensional do-
main decomposition strategy, now known as a multi-
partitioning, for parallel implementation of ADI inte-
gration on a multiprocessor ring. They partition both
dimensions of a two-dimensional domain to form a
p × p grid of tiles. They use a tile-to-processor map-
ping θ(i, j) = (i − j) mod p, where 0 ≤ i, j < p. Us-
ing this mapping for an ADI computation requires
each processor to exchange data with only its two
neighbors in a linear ordering of the processors, which
maps nicely to a ring.

Bruno and Cappello [4] devised a three-
dimensional partitioning for parallelizing three-
dimensional ADI integration computations on a
hypercube architecture. They describe how to map a
three-dimensional domain cut into 2d × 2d × 2d tiles
on to 22d processors. They use a tile to processor
mapping θ(i, j, k) based on Gray codes. A Gray
code gs(r) denotes a one-to-one function defined
for all integers r and s where 0 ≤ r < 2s, that
has the property that gs(r) and gs((r + 1) mod 2s)
differ in exactly one bit position. They define
θ(i, j, k) = gd((j + k) mod 2d) · gd((i + k) mod 2d),
where 0 ≤ i, j, k < 2d and · denotes bitwise concate-
nation. This θ maps tiles adjacent along the i or j
dimension to adjacent processors in the hypercube,
whereas tiles adjacent along the k dimension map to
processors that are exactly two hops distant. They
also show that no hypercube embedding is possible
in which adjacent tiles always map to adjacent
processors.

Naik et al. [15] describe diagonal multipartitionings
for two and three dimensional problems. Diagonal
multipartitionings are a generalization of Johnsson
et al’s two dimensional partitioning strategy. This



class of multipartitionings is also more broadly appli-
cable than the Gray code based mapping described by
Bruno and Cappello. The three-dimensional diagonal
multipartitionings described by Naik et al. partition
data into p

3
2 tiles arranged along diagonals through

each of the partitioned dimensions. Figure 1 shows
a three-dimensional multipartitioning of this style for
16 processors; the number in each tile indicates the
processor that owns the block. In three dimensions,
a diagonal multipartitioning is specified by the tile to
processor mapping θ(i, j, k) = ((i− k) mod

√
p)
√

p +
((j − k) mod

√
p) for a domain of

√
p×√

p×√
p tiles

where 0 ≤ i, j, k <
√

p.
More generally, we observe that diagonal multipar-

titionings can be applied to partition d-dimensional
data onto an arbitrary number of processors p by cut-
ting the data into an array of pd tiles. For two dimen-
sions, this yields a unique optimal multipartitioning
(equivalent to the class of partitionings described by
Johnsson et al. [13]). However, for d > 2, cutting
data into so many tiles yields inefficient partitionings
with excess communication. For three or more di-
mensions, diagonal multipartitioning is optimal only
when p

1
d−1 is integral.

3 General Multipartitioning

Bruno and Cappello noted that multipartitionings
need not be restricted to having only one tile per pro-
cessor per hyperplane of a multipartitioning [4]. How
general can multipartitioning mappings be? A suf-
ficient condition to support load-balanced line-sweep
computation is that in any hyperplane of the parti-
tioning, each processor must have the same number
of tiles. We call any hyperplane in which each pro-
cessor has the same number of tiles balanced. This
raises the question: can we find a way to partition
a d-dimensional array into tiles and assign the tiles
to processors so that each hyperplane is balanced?
The answer is yes. However, such an assignment is
possible if and only if the number of tiles in each hy-
perplane along any dimension is a multiple of p. We
describe a “regular” solution (regular to be defined)
to this general problem that enables us to guarantee
that the neighboring tiles of a processor’s tiles along
a direction of a data dimension all belong to a sin-
gle processor — an important property for efficient
computation on a multipartitioned distribution.

In Section 4, we define an objective function that
represents the execution time of a line-sweep compu-
tation over a multipartitioned array. In Section 5,
we present an algorithm that computes a partition-
ing of a multidimensional array into tiles that is op-

timal with respect to this objective. In Section 6,
we develop a general theory of modular mappings for
multipartitioning. We apply this theory to define a
mapping of tiles to processors so that each line sweep
is perfectly balanced over the processors.

We use the following notations in the subsequent
sections:

• p denotes the number of processors. We write
p =

∏s
j=1 α

rj

j , to represent the decomposition of
p into prime factors.

• d is the number of dimensions of the array to be
partitioned. The array is of size n1, . . . , nd. The
total number of array elements n =

∏d
i=1 ni.

• γi, for 1 ≤ i ≤ d, is the number of tiles into which
the array is cut along its i-th dimension. We con-
sider the d-dimensional array as a γ1 × . . . × γd

array of tiles. In our analysis, we assume γi di-
vides ni evenly and do not consider alignment or
boundary problems that must be handled when
applying our mappings in practice if this assump-
tion is not valid.

To ensure each hyperplane is balanced, the number
of tiles it contains must be a multiple of p; namely,
for each 1 ≤ i ≤ d, p should divide

∏
j �=i γj .

4 Objective Function

We consider the cost of performing a line sweep com-
putation along each dimension of a multipartitioned
array. The total computation cost is proportional to
the number of elements in the array, n. A sweep
along the i-th dimension consists of a sequence of γi

computation phases (one for each hyperplane of tiles
along dimension i), separated by γi − 1 communica-
tion phases. The work in each hyperplane is perfectly
balanced, with each processor performing the com-
putation for its own tiles. The total computational
work for each processor is roughly 1

p of the total work
in the sequential computation. The communication
overhead is a function of the number of communica-
tion phases and the communication volume. Between
two computation phases, a hyperplane of array ele-
ments is transmitted – the boundary layer for all tiles
computed in first phase. The total communication
volume for a phase communicated along dimension
i is

∏
j �=i nj elements, i.e., n

ni
. Therefore, the total

execution time for a sweep along dimension i can be
approximated by the following formula:

Ti(p) = K1
n

p
+ (γi − 1)(K2 + K3

n

ni
)



where K1 is a constant that depends on the sequen-
tial computation time, K2 is a constant that depends
on the cost of initiating one communication phase
(start-up), and K3 is a constant that depends of
the cost of transmitting one array element. Define
λi = K2 + K3

n
ni

, λi depends on the domain size,
number of processors and machine’s communication
parameters. The total cost of the algorithm, sweep-
ing in all dimensions, is thus

T (p) = d

(
K1

n

p
− K2 − K3

d∑
i=1

n

ni

)
+

d∑
i=1

γiλi

Remark: if all communications are performed with
perfect parallelism, with no overhead, then the term
with K3 is actually divided by p. We assume here
that, in general, the cost of one communication phase
is an affine function of the volume of transmitted
data.

Assuming that p, n, and the ni’s are given, what
we can try to minimize is

∑d
i=1 γiλi.

There are several cases to consider. If the number
of phases is the critical term, the objective function
can be simplified to

∑
i γi. If the volume of communi-

cations is the critical term, the objective function can
be simplified to

∑
i

γi

ni
, which means it is preferable

to partition dimensions that are larger into relatively
more pieces. For example, in 3D, even for a square
number of processors (e.g., p = 4), if the data domain
has one very small dimension, then it is preferable to
use a 2D partitioning with the two larger ones rather
than a 3D partitioning. Indeed, if n1 and n2 are
at least 4 times larger than n3, then cutting each of
the first two dimensions into 4 pieces (γ1 = γ2 = 4,
γ3 = 1) leads to a smaller volume of communication
than a “classical” 3D partitioning in which each di-
mension is cut into 2 pieces (γ1 = γ2 = γ3 = 2). The
extra communication while sweeping along the first
two dimensions is offset by the absence of communi-
cation in the local sweep along the last dimension.

5 Finding the Partitioning

In this section, we address the problem of minimiz-
ing

∑
i γiλi for general λi’s, with the constraint that,

for any fixed i, p divides the product of the γj ’s ex-
cluding γi. We give a practical algorithm, based on
an exhaustive search, exponential in s (the number
of factors) and the ri’s (see the decomposition of p
into prime factors), but whose complexity in p grows
slowly.

From a theoretical point of view, we do not know
whether this minimization problem is NP-complete,

even for a fixed dimension d ≥ 3, even if all λi are
equal to 1, or if there is an algorithm polynomial in
log p or even in log s and the log ri’s. We suspect
that our problem is strongly NP-complete, even if
the input is s and the ri’s, instead of p. If p has
only one prime factor, we point out that a greedy
approach leads to a polynomial (i.e., polynomial in
log r) algorithm (see [10]). However, we do not know
if an extension of this greedy approach can lead to a
polynomial algorithm for an optimal solution in the
general case.

5.1 Properties of Potentially Optimal
Partitionings

We say that (γi)1≤i≤d – or (γi) for short – is a valid
solution if, for each 1 ≤ i ≤ d, p divides

∏
j �=i γj .

Furthermore, if
∑

i γiλi is minimized, we say that
(γi) is an optimal solution. We start with some
basic properties of valid and optimal solutions.

Lemma 1 Let (γi) be given. Then, (γi) is a valid so-
lution if and only if, for each factor α of p, appearing
rα times in the decomposition of p, the total num-
ber of occurrences of α in all γi is at least rα + mα,
where mα is the maximum number of occurrences of
α in any γi.

Proof: Suppose that (γi) is a valid solution. Let
α be a factor of p appearing rα times in the decom-
position of p, let mα be the maximum number of
occurrences of α in any γi, and let i0 be such that α
appears mα times in γi0 . Since p divides the product
of all γi excluding γi0 , α appears at least rα times in
this product. The total number of occurrences of α
in all of the γi is thus at least rα + mα. Conversely,
if this property is true for any factor α, then for any
product of (d−1) different γi’s, the number of occur-
rences of α is at least rα + mα minus the number of
occurrences in the γi that is not part of the product,
and thus must be at least rα. Therefore, p divides
this product and (γi) is a valid solution. �

Thanks to Lemma 1, we can interpret (and ma-
nipulate) a valid solution (γi) as a distribution of the
factors of p into d bins. If a factor α appears rα times
in p, it must appear (rα + mα) times in the d bins,
where mα is the maximal number of occurrences of
α in a bin. As far as the minimization of

∑
i λiγi

is concerned, no other prime number can appear in
the γi without increasing the objective function. The
following lemma refines the result of Lemma 1 for a
potentially optimal solution.



Lemma 2 Let (γi) be an optimal solution. Then,
each factor α of p, appearing rα times in the decom-
position of p, appears exactly (rα +mα) times in (γi),
where mα is the maximum number of occurrences of
α in any γi. Furthermore, the number of occurrences
of α is mα in at least two γi’s.

Proof: Let (γi) be an optimal solution. By
Lemma 1, each factor α, 0 ≤ j < s, that appears rα

times in p, appears at least (rα + mα) times in (γi).
The following arguments hold independently for each
factor α.

Suppose mα occurrences of α appear in some γi0

and no other γi. Remove one α from γi0 . Now, the
maximum number of occurrences of α in any γi is
mα − 1 and we have (rα + mα) − 1 = rα + (mα − 1)
occurrences of α. By Lemma 1, we still have a valid
solution, and with a smaller cost. This contradicts
the optimality of (γi). Thus, there are at least two
bins with mα occurrences of α.

If c, the number of occurrences of α in (γi), is such
that c > rα+mα, then we can remove one α from any
nonempty bin, containing fewer than mα occurrences.
We now have c−1 ≥ rα+mα occurrences of α and the
maximum is still mα (since at least two bins had mα

occurrences of α). Therefore, according to Lemma 1,
we still have a valid solution, and with smaller cost,
again a contradiction. �

We can now give some upper and lower bounds for
the maximal number of occurrences of a given factor
in any bin.

Lemma 3 In any optimal solution, for any factor
α appearing rα times in the decomposition of p, we
have � rα

d−1� ≤ mα ≤ rα ≤ (d− 1)mα where mα is the
maximal number of occurrences of α in any bin and
d is the number of bins.

Proof: By Lemma 2, we know that the number of
occurrences of α is exactly rα + mα, and at least two
bins contain mα elements. Thus, rα+mα = 2∗mα+e
where e is the total number of elements in (d − 2)
bins, excluding two bins of maximal size mα. Since
0 ≤ e ≤ (d − 2)mα, then mα ≤ rα ≤ (d − 1)mα.
Finally, any valid solution requires that p divides the
product of all of the factor instances in each group of
d − 1 bins. Thus, there must be rα instances of α in
d − 1 bins, and thus mα ≥ � rα

d−1�. �

5.2 Exhaustive Enumeration of Po-
tentially Optimal Partitionings

We now give an algorithm that finds an optimal solu-
tion by generating all possible partitionings (γi) that
satisfy the necessary optimality conditions given by
Lemma 2, and determining which one yields the low-
est cost partitioning. We also evaluate how many
candidate partitions there are and present the com-
plexity of our algorithm. For the complexity, we are
not interested in the exact number of solutions that
respect the conditions of Lemma 2, but in the order
of magnitude, especially when the number of bins d
is fixed (and small, equal to 3, 4, or 5), but when p
can be large (up to 1000 for example), since this is
the situation we expect to encounter in practice when
computing multipartitionings.

The C program of Figure 2 generates, in linear
time, all possible distributions into d bins, satisfy-
ing the (r + m) optimality condition of Lemma 2, of
a given factor appearing r times in the decomposition
of p. It is inspired by a program [16] for generating all
partitions of a number, which is a well-studied prob-
lem (see [17]) since the mathematical work of Euler
and Ramanujam. The procedure Partitions first
selects the maximal number m in a bin, and uses the
recursive procedure P(n,m,c,t,d) that generates all
distributions of n elements in (d−t+1) bins (from in-
dex t to index d), where each bin can have at most m
elements and at least c bins should have m elements.
Therefore the initial call is P(r+m,m,2,1,d).

We now prove the correctness of the program. The
procedure P selects a number of elements for the bin
number t and makes a recursive call with parameter
t + 1 for the selection in the next bin. It is thus
clear that all generated solutions are different since
each iteration of a loop selects a different number of
elements for each bin. It remains to prove that all
solutions generated by P are valid (the total number
of elements should be r + m, each bin should have
less than m elements, and there should be at least
c bins with m elements), and that all solutions are
generated. For that we prove that P(n,m,c,t,d) is
always called with parameters for which there exists
at least a valid solution, that all possible numbers of
elements are selected and only those.

Let us first consider the loop in function
Partitions. Thanks to Lemma 3, we know that
the maximal number of elements in a bin is between
� r

d−1� and r. Furthermore, for each such m, there
is indeed at least one valid solution with (r + m) el-
ements and two maxima equal to m (if d ≥ 2), for
example the solution where the first two bins have m
elements and the (d − 2) other bins contain a total



// Precondition: d >= 2

void Partitions(int r, int d) {

int m;

for (m = (r+d-2)/(d-1); m <= r; m++)

P(r+m,m,2,1,d);

}

void P(int n, int m, int c, int t, int d) {

int i;

if (t==d)

bin[t] = n;

else {

for (i=max(0,n-(d-t)*m);

i<=min(m-1,n-c*m); i++) {

bin[t] = i;

P(n-i,m,c,t+1,d);

}

if (n>=m) {

bin[t] = m;

P(n-m,m,max(0,c-1),t+1,d);

}

}

}

Figure 2: Program for generating all possible distri-
butions for one factor.

of (r − m) elements, one possibility being with the
r − m elements distributed so that q = � r−m

m � bins
contain m elements and one contains (r − m − mq)
elements. Therefore, if the function P is correct, the
function Partitions is also correct.

To prove the correctness of the function P we prove
by induction on d − t + 1 (the number of bins) that
there is at least one valid solution if and only if c ≤
d − t + 1 and cm ≤ n ≤ (d − t + 1)m and that P
generates all of them if these conditions are satisfied.
These conditions are simple to understand: we need
at least cm elements (so that at least c bins have m
elements) and at most (d−t+1)m elements, otherwise
at least one bin will contain more than m elements.

The terminal case is clear: if we have only one bin
and n elements to distribute, the bin should contain
n elements. Furthermore, if there is a solution, we
should have c ≤ 1 and n = m if c = 1, i.e., c ≤ d−t+1
and cm ≤ n ≤ (d − t + 1)m.

The general case is more tricky. We first select the
number of elements i in the bin number t and re-
cursively call P for the remaining bins. If we select
strictly less than m elements (this selection is in the
loop), we will still have to select c bins with m ele-
ments for the remaining (d− t) bins, with (n− i) ele-
ments. Therefore, the number i that we select should
not be too small, nor too large, and we should have

cm ≤ n−i ≤ m(d−t), i.e., n−(d−t)m ≤ i ≤ n−cm.
Furthermore, i should be strictly less than m, non-
negative, and less than n. Since c is always positive,
the constraint i ≤ n − cm ensures i ≤ n. If the pa-
rameters are correct for the bin number t, we also
have c ≤ d − t + 1 and if c = d − t + 1, then the
loop has no iteration, thus for an i selected in the
loop, we have c ≤ d − t. Therefore the recursive call
P(n-i,m,c,t+1,d) has correct parameters. Finally,
if we select m elements for the bin t (after the loop),
this is possible only if m is less than n of course, and
then it remains to put (n − m) elements into (d − t)
bins, with a maximum of m, and at least max(0, c−1)
maxima. Again, the recursive call has correct pa-
rameters since we decreased both c and (d − t) and
removed m elements.

5.3 Complexity of the Exhaustive
Enumeration

For generating all optimal solutions to our minimiza-
tion problem, we first decompose p into prime fac-
tors (complexity O(

√
p) by a standard algorithm, but

could be less), we then generate all potentially op-
timal solutions that satisfy Lemma 2 for each fac-
tor (with the function Partitions), and we combine
them while keeping track of the best overall solution.
For evaluating each solution, we need to build the cor-
responding (γi)’s and add them. Each γi is at most
p and is obtained by at most

∑
i ri ≤ log2 p multipli-

cations of numbers less than p. Therefore, building
each γi costs at most (log2 p)3. The overall complex-
ity (excluding the cost of the decomposition of p into
prime factors) is thus the product of the complexity
of the function Partitions (which is the number of
solutions generated by the algorithm) times (log2 p)3.
Therefore, it remains to evaluate the number of solu-
tions generated by the function Partitions.

Consider first the case of a number p, product of
simple prime factors, in particular the product of the
first s prime numbers: p =

∏s
i=1 πi where πi is the

i-th prime number. For each factor, there are d(d−1)
2

possible distributions (picking two bins where to put
one copy of each element), so the total number of

solutions is
(

d(d−1)
2

)s

. Now, the i-th prime number
is approximated by i log i (see for example the Prime
Pages [5]). Therefore, when p grows, we have

log p =
s∑

i=1

log πi ∼
s∑

i=1

log(i log i)

∼
s∑

i=1

log i ∼
∫ s

1

log xdx ∼ s log s



since divergent series with equivalent nonnegative
terms are equivalent. Therefore log p ∼ s log s and

log p
log log p ∼ s. The total number of solutions for p

is thus
(

d(d−1)
2

) log p
log log p (1+o(1))

, thus at least of order

p
f(d)(1+o(1))

log log p , for a small function f(d) of d. We can
prove that this situation (when p is the product of
single prime factors) is actually representative of the
worst case (in order of magnitude). The proof is too
long to be provided here but is available in the ex-
tended version of this paper [10].

Theorem 1 When p grows, the total number of gen-
erated solutions is less than p

f(d)(1+o(1))
log log p where f(d) is

a small function of d.

6 Finding the Mapping

In Section 5, we determined a particular way of cut-
ting the array so as to optimize communications: af-
ter partitioning, we get an array (of tiles) whose size
is (γi) for which the objective is minimized. But until
now, we made the assumption that we will be indeed
able to assign tiles to processors so that each slice of
the array contains exactly the same number of tiles
per processor (load-balancing property). This is not
certain yet.

The only property we have until now is that the
(γi) form is a valid solution: for each 1 ≤ i ≤ d, p
divides

∏
j �=i γj , the defining property of a completely

balanced multipartitioning. Our main result is that
this condition is sufficient to guarantee a mapping of
processors to tiles. Our proof is constructive. For
any valid solution (γi), optimal or not, with or with-
out the additional property of Lemma 2, we give an
automatic way to assign a processor number to each
tile so that the load-balancing property is satisfied.
This assignment is done through the use of modular
mappings, defined below. The proof of our construc-
tion is much too long to be given here. We refer
the reader to the extended version of this paper [10]
for details of the proof and interesting properties of
modular mappings.

The solution we build is one particular assignment,
out of a set of legal mappings. It is not unique, and
more experiments might show that they are not all
equivalent in terms of execution time, for example
because of communication patterns. But, currently,
with our objective function (Section 4), the network
topology is not taken into account yet and all valid
mappings are considered equally good.

6.1 Modular Mappings

Consider the assignment in Figure 1. Can we give
a formula that describes it? There are 16 proces-
sors that can be represented as a 2-dimensional grid
of size 4 × 4. For example the processor number
7 = 4 + 3 can be represented as the vector (3, 1),
in general (r, q) where r and q are the remainder and
the quotient of the Euclidean division by 16. The as-
signment in the figure corresponds to the assignment
(i − k mod 4, j − k mod 4), which is what we call a
multi-dimensional modular mapping.

Definition 1 A mapping Mm : �
d −→ �

d′
de-

fined by Mm(�i) = (M�i) mod �m where M is an inte-
gral d×d′ matrix and �m is an integral positive vector
of dimension d′ is a modular mapping.

With a multi-dimensional mapping, each tile is as-
signed to a “processor number” in the form of a vec-
tor. The product of the components of �m is equal
to the number of processors. It then remains to de-
fine a one-to-one mapping from the hyper-rectangle
{�j ∈ �d′ | �0 ≤ �j < �m} (inequalities component-wise)
onto the processor numbers. This can be done by
viewing the processors as a virtual grid of dimension
d′ of size �m. The mapping M�m is then an assign-
ment of each tile (described by its coordinates in the
d-dimensional array of tiles) to a processor (described
by its coordinates in the d′-dimensional virtual grid).
(Note: in our construction, we will need only the case
d′ = d − 1.)

The following definitions summarize the notions of
modular mappings and of modular mappings that
satisfy the load-balancing property.

Definition 2 Given a positive integral vector �b, the
rectangular index set defined by �b is the set Ib =
{�i ∈ �n | 0 ≤�i < �b} (component-wise) where n is the
dimension of �b.

Definition 3 Given a rectangular index set Ib, a
slice Ib(i, ki) of Ib is defined as the set of all ele-
ments of I whose i-th component is equal to ki (an
integer between 0 and bi − 1).

Definition 4 Given an hyper-rectangle (or any more
general set) Ib, a modular mapping Mm is a one-to-
one mapping from Ib onto Im if and only if for
each �j ∈ Im there is one and only one �i ∈ Ib such
that Mm(�i) = �j.

Definition 5 Given an hyper-rectangle (or any more
general set) Ib, a modular mapping Mm is a many-
to-one modular mapping from Ib onto Im if and
only if the number of �i ∈ Ib such that Mm(�i) = �j
does not depend on �j.



Definition 6 Given a rectangular index set Ib,
a modular mapping Mm has the load-balancing
property for Ib if and only if for any slice Ib(i, ki),
the restriction of Mm to Ib(i, ki) is a many-to-one
mapping onto Im.

Because a modular mapping is linear, it is easy to
see that the load-balancing property can be checked
only for the slices that contain 0 (the slices Ib(i, 0)).
Furthermore, if �b[i] denotes the vector obtained from
�b by removing the i-th component and M [i] denotes
the matrix obtained from M by removing the i-th
column, then the images of Ib(i, 0) under Mm are the
images of Ib[i] under the modular mapping M [i]m.
We therefore have the following property.

Lemma 4 Given an hyper-rectangle Ib, a modular
mapping Mm has the load-balancing property for Ib

if and only if each mapping M [i]m is a many-to-one
modular mapping from Ib[i] to Im.

We also have the following straightforward result.

Lemma 5 If Mm is a one-to-one modular mapping
from Ib′ onto Im, then Mm is a many-to-one modular
mapping from any multiple Ib of Ib′ onto Im.

Lemmas 4 and 5 explain why we focus on one-to-one
modular mappings first, then on many-to-one modu-
lar mappings, and finally on modular mappings with
the load-balancing property. In the extended ver-
sion of this paper [10], we explore the properties of
such modular mappings, in order to define a prov-
ably adequate matrix M and shape �m for the virtual
grid of processors. Our results are linked to previous
works by Lee and Fortes [14] and Darte, Dion, and
Robert [9] to the case of one-to-one modular map-
pings. As in [9], the theory we developed is linked to
a famous (in covering/packing theory) theorem due
to Hajos [12]. Our results are also connected (through
the use of Hajos’ theorem) to scheduling techniques
used in systolic-like array design (see [8] and [11])
for generating “juggling schedules”. However, unlike
these two works, which are “one-to-one”-like prob-
lems, many questions remain open in the many-to-
one case because the extension of Hajos’ theorem to
a similar “many-to-one” case is true only up to di-
mension 3 included. Also, while it is easy to build a
one-to-one mapping (just take �m = �b and the iden-
tity matrix!), here we need a much more constrained
matrix, such that any submatrix obtained by remov-
ing one column is many-to-one for the corresponding
�b and �m. In other words, to use the terminology [11],
we need to juggle simultaneously in all dimensions!

We just give here the steps of our construction.
We build a modular mapping Mm with the load-
balancing property for an index set Ib (which is given,
�b is the vector whose components are the γi’s of Sec-
tion 5). The freedom we have is that we can choose
the matrix M and the modulo vector �m, but with
the constraint that the cardinality of Im (the prod-
uct of the components of �m) is also given, (equal to
the number of processors p). The only property of
�b we exploit is that �b is a valid solution (with the
meaning of Section 5), which means that the product
of any (d − 1) components of �b is a multiple of p.

We choose the matrix M with the following form:

M =
(

N 0
�λ 1

)

where N will be computed by induction. Therefore,
finally, M will be even triangular, with 1’s on the
diagonal. We have the following preliminary result.

Lemma 6 Suppose that md divides bd, and that the
modular mapping Nm′ – in dimension (d − 1) – de-
fined by N and �m′ has the load-balancing property
for Ib′ , where �b′ and �m′ are the vectors defined by the
(d− 1) first components of �b and �m. Then, the mod-
ular mapping Mm defined by M and �m has the load-
balancing property for Ib if it is many-to-one from
the last slice Ib(0, d) onto Im.

Proof: In order to check that the mapping defined
by M and �m has the load-balancing property for the
rectangular index set Ib, we have to make sure that
it is many-to-one for all slices Ib(0, i), 1 ≤ i ≤ d
(Lemma 4). To prove this lemma, we only have to
prove that this is true for the slices Ib(0, i), i < d if
N has the properties stated.

Without loss of generality, let us consider the
first dimension, i.e., the first slice Ib(0, 1). Given
�j ∈ �

d/�m�, let us count the number of vectors
�i ∈ Ib, such that M�i = �j mod �m and i1 = 0. Now
(M�i = �j mod �m) ⇔ (N�i′ = �j′ mod �m′ and �λ.�i′+id =
jd mod md), where�i′ and �j′ are defined the same way
as �b′ and �m′, and �λ is the row vector formed by the
first (d − 1) component of the last row of M . Now,
because of the load-balancing property of Nm′ , there
are exactly n vectors �i′ ∈ Ib′ such that i1 = 0 and
N�i′ = �j′ mod �m′, where n is a positive integer that
does not depend on �j′. It remains to count the num-
ber of values id, between 0 and bd − 1, such that
id = jd − �λ.�i′ mod md. Since md divides bd, there
are exactly bd/md such values, whatever the value
x = (jd−�λ.�i′ mod md). These are the values x+kmd,



with 0 ≤ k < bd/md. Therefore, �j has (nbd)/md pre-
images in Ib and this number does not depend on �j.
�

We define the vector �m according to the following
formula:

∀i, 1 ≤ i ≤ d, mi =
gcd

(
p,
∏d

j=i bj

)
gcd

(
p,
∏d

j=i+1 bj

) (1)

(By convention, an “empty” product is equal to 1).
The vector �m defined this way has several properties
that will make a recursive construction of M possible
(see [10] again).

Because m1 = 1, we will be able to drop, at the
end of the construction, the first component of the
mapping, and end up with a mapping from �

d into
a subgroup of �d−1 (or of smaller dimension if some
other components of m are equal to 1). Once N is
built, we write:

M =
(

N 0
�λ 1

)
=

⎛
⎝ 1 0 0

�u T 0
ρ �z 1

⎞
⎠

and we define ρ and �z such that �z = −�tT and ρ = 1−
�t.�u, where the row vector �t, with (d−2) components,
is defined by the following (decreasing) recurrence:

• rd−1 = md,

• for 1 ≤ i ≤ d − 2, ti = ri+1
gcd(bi+1,ri+1)

and ri =
gcd(timi+1, ri+1).

This schema corresponds to the C program of Fig-
ure 3 (where the matrix M has rows and columns
from 1 to d as in the presentation of this paper). In
our current implementation, we of course take the
final matrix modulo the corresponding values of �m.
We also play some tricks, variants of the previous
program (alternating signs of t for example, or pre-
permuting the components of �b) to make coefficients
smaller. We also use Theorem 3 in [9] (injectivity of
Mλm for Iλb) to reduce the components of M , divid-
ing the components of �b by their gcd. But the basic
kernel is the one presented in Figure 3.

7 Multipartitionings in dHPF

We have implemented preliminary support for gener-
alized multipartitionings in the Rice dHPF compiler
for High Performance Fortran.

Multipartitioning within the dHPF compiler is im-
plemented as a generalization of BLOCK-style HPF

// Precondition: d >= 2

void ModularMapping(int d) {

for (i=1; i<=d; i++)

for (j=1; j<=d; j++)

if ((i==1) || (i==j)) M[i][j] = 1;

else M[i][j] = 0;

for (i=2; i<=d; i++) {

r = m[i];

for (j=i-1; j>=2; j--) {

t = r/gcd(r, b[j]);

for (k=1; k<=i-1; k++) {

M[i][k] -= t*M[j][k];

}

r = gcd(t*m[j],r);

}

}

}

Figure 3: Program for generating a mapping with the
load-balancing property.

partitioning [6, 7]. The partitioned dimensions of the
template are distributed onto a virtual array of pro-
cessors that has the correct size for the rank of the
multipartitioning. Internally, the compiler analyzes
communication and loop bounds reduction as if the
multipartitioned template was a standard BLOCK par-
titioned template onto a larger array of processors.
The main difference comes in the interpretation that
the compiler gives to the PROCESSORS directive. For a
BLOCK partitioned template, the number of processors
onto which each dimension is partitioned determines
the data sizes of the tiles. The number of processors
may be different for each dimension (i.e. processors
p(2, 3); distribute t(block, block) onto p).

In the case of multipartitionings, the number of
processors cannot be specified on a per dimension ba-
sis. All multipartitioned dimensions are distributed
onto the number of processors corresponding to the
leftmost dimension of the PROCESSORS directive. The
tiles are partitioned according to the rank of the mul-
tipartitioning and then assigned in a skewed-cyclic
fashion to the processors (as presented in section 2).
Figure 1 illustrates a 3D diagonal multipartitioning
on 16 processors.

There are several important issues for correctly
generating efficient code for diagonal multiparti-
tioned distributions:

• Tile Iteration Order: The order in which a
processor’s tiles are enumerated has to satisfy
any loop-carried dependences present in the orig-



inal loop from which the multipartitioned loop
has been generated. If the tiles are not enumer-
ated in the order indicated by the loop-carried
dependences, then it is possible to execute the
loop correctly, but in a serialized manner induced
by data exchange-related synchronization.

• Inter-loop nest Communication Aggrega-
tion: Communication, which has effectively
been vectorized out of a loop nest, should not
be performed on a tile-by-tile basis, but instead
should be executed once for all of a processor’s
tiles. This is possible because multipartitioning
guarantees that the neighboring tiles for a par-
ticular processor will be the same for all of its
owned tiles.

In the case of generalized multipartitionings, we
might have distributions in which we have more than
one tile per processor on a single hyperplane. In order
to generate high-performance code, we had to address
these challenges:

• Extended Tile Iteration Order: For a single
hyperplane, a processor may need to enumerate
several tiles. The enumeration order does not
have any bearing on correctness because depen-
dences are being carried across hyperplanes in-
stead of within a single hyperplane.

• Intra-loop nest Communication Aggrega-
tion: Communication caused by a loop-carried
dependence may require several of a processor’s
tiles on a single hyperplane to send or receive
data. We desire that this communication event
should be executed as a single unit, instead of
once per tile. This is possible because general-
ized multipartitionings provide the same neigh-
borhood guarantee as simpler, diagonal multi-
partitionings.

8 Preliminary Results

Our implementation of multipartitioning in dHPF
currently supports generalized multipartitionings.
By using a multipartitioned data distribution in con-
junction with sophisticated data-parallel compiler op-
timizations, we are closing the performance gap be-
tween compiler-generated and hand-coded implemen-
tations of line-sweep computations. Earlier results
and details about dHPF’s compilation techniques can
be found elsewhere [7, 6, 1, 2]. Here we present some
preliminary results applying generalized multiparti-
tioning in a compiler-based parallelization of the NAS

# CPUs hand-coded dHPF % diff.
1 0.80 0.87 -8.30
2 1.30
4 2.86 2.60 10.16
6 4.14
8 6.35
9 7.74 6.98 10.84
12 9.72
16 13.00 13.97 -6.87
18 15.84
20 16.44
25 22.15 21.32 3.87
32 27.84
36 36.51 32.38 12.79
49 51.78 41.32 25.32
50 38.88
64 74.95 51.43 13.44

Table 1: Comparison of hand-coded and dHPF
speedups for NAS SP (class B).

SP application benchmark [3, 7], a computational
fluid dynamics code.

The most important analysis and code generation
techniques used to obtain high-performance multi-
partitioned applications by the dHPF compiler are:

• partial replication of computation to reduce com-
munication frequency and volume,

• communication vectorization,

• aggressive communication placement, and

• intra-variable and inter-variable communication
aggregation.

We performed these experiments on a SGI Origin
2000 with 128 250MHz R10000 CPUs, each CPU has
32KB of L1 instruction cache, 32KB of L1 data cache
and an unified, two-way set associative L2 cache of
4MB.

Table 1 shows the speedups obtained for both
the dHPF-generated and hand-coded versions of the
NAS SP benchmark using the class ’B’ problem size
(1023). The hand-coded version implements three-
dimensional diagonal multipartitionings, thus its re-
sults are only available for numbers of processors
which are perfect squares. The compiler-generated
version uses generalized multipartitioning to execute
on other numbers of processors. The table presents
the speedups for the hand-coded version (where avail-
able), the dHPF version and the differences between



them. All speedups presented are relative to the se-
quential version of NAS SP. Overall, the performance
of the compiler-generated code is similar to that of
the hand-coded versions with the exception of the
gap between the versions for a 49 processor execu-
tion, which is wider for reasons that are currently
unknown.

The performance differences observed between the
hand-coded and compiler-generated versions are due
in large part to a difference how off-processor val-
ues are stored and accessed in the two versions. In
the dHPF-generated code, each data tile is extended
with overlap areas (ghost regions around the tile’s
boundary) into which off-processor data is unpacked.
Overlap areas enable a loop operating on the tile to
reference all data uniformly without having to dis-
tinguish between local and off-processor data. The
hand-coded version uses a clever buffering scheme in
which iterations of a loop that need off-processer data
are peeled off the main body of the loop. Then, in
the peeled loop references to off-processor data read
their values directly out of a message buffer without
having to unpack it. In the dHPF-generated code,
the use of extra data space for overlap areas degrades
data cache efficiency, which appears to account for
most of the observed performance differences.

One other factor that effects the execution effi-
ciency of the dHPF-generated code when the num-
ber of tiles per hyperplane of a multipartitioning is
greater than one (e.g., when the number of processors
in a 3D partitioning is not a perfect square) is that
the dHPF-generated code fails to effectively exploit
reuse of data tiles across multiple loop nests. Cur-
rently, for a sequence of loop nests, dHPF-generated
code executes one loop nest for each of the data tiles
in a hyperplane of the data and then advances to the
next loop nest. For a sequence of loop nests with com-
patible tile enumeration order, the tile enumeration
loops could be fused so that all of the compatible loop
nests in the sequence are performed on one tile before
advancing to the next tile. When data tiles are small
enough to fit into one or more caches, this strategy
this would improve cache utilization by facilitating
reuse of tile data among multiple loop nests.

9 Conclusions

The paper describes an algorithm for computing mul-
tipartitioned data distributions. These distributions
are important because they support fully parallel ex-
ecution of line-sweep computations. For arrays of
two or more dimensions, our algorithm will compute
an optimal multipartitioning that minimizes cost ac-

cording to an objective function that measures com-
munication in line sweep computations. Previously,
optimal multipartitionings could be computed for d

dimensional data only when p
1

d−1 is integral. Our ex-
tensions enable optimal multipartitionings to be com-
puted for d dimensions.

We have shown that, having a partitioning in which
the number of tiles in each slice is a multiple of the
number of processors — an obvious necessary condi-
tion — is also a sufficient condition for a balanced
mapping of tiles to processors. We also give a con-
structive method for building this mapping using new
techniques based on modular mappings. This method
assigns the tiles defined by the partitioning algorithm
to the physical processors that should compute upon
them.

One currently unresolved issue is that when we
compute a multipartitioning for p processors, we force
all processors to participate in the computation. In
some cases, it might be more efficient to simply drop
back to the nearest perfect square number of proces-
sors and let others sit idle. The extra communication
overhead incurred by including them might dominate
benefit of computation they could perform.

We have constructed a prototype code generator
that exploits generalized multipartitionings in the
Rice dHPF compiler; however, these partitionings
could be exploited by hand-coded implementations
as well. Preliminary performance results for general-
ized multipartitioning code generated by dHPF show
encouraging scalability for small numbers of proces-
sors.
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