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Abstract

Euler’s totient functionp has the property thag(n) is the order of the
groupU (n) of units inZ, (the integers moah). In the early years of the
twentieth century, Carmichael defined a similar funcfiowherei(n) is the
exponent ofJ (n). He called an element &f (n) with orderA(n) a primitive
A-root ofn.

Subsequently, primitiva-roots have not received much attention until
recently, when they have been used in the construction of terraces and dif-
ference sets, and in cryptography.

The purpose of these notes is to outline the theory of primitiveots
and to describe some recent developments motivated by the design-theoretic
applications.

1 Motivation

Consider the following sequence of the elementZ£f

START

10 15 5 3 9 27 11 33 29 17 16 13 4 12 1 21 7/
0

25 20 30 32 26 8 24 2 6 18 19 22 31 23 34 14 /28

FINISH

The last 17 entries, in reverse order, are the negatives of the first 17, which, with
the zero, can also be written

55 56 57‘31 32 33 34 35 36 37 38 39 310 311 312’74 75’0‘
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If we write the respective entries herexagi = 1,2,...,18), then the successive
differencesi 1 — X (i=1,2,...,17) are

5 -10 -2 6 -17 -16 -13 -4 -12 -1 -3 -9 8 -11 -15 -14 -7

Ignoring minus signs, these differences consist of each of the val@es 117
exactly once. Thus the initial sequence of 35 elements is a special typearfe
Indeed, it is anarcissistic half-and-half power-sequence terracsee P, 3] for the
explanation of these terms. Its construction depends in particular on the sequence
3132 ... 311312 (with 312 = 3% = 1) consisting of the successive powers of 3,
which is aprimitive A-root of 35.

Consider now the following sequence of the elementgaf
6 3/2 4 8 1/10|/0|5[14 7 11 3[12 9

This too is a terrace, and is of the same special type as before. Its construc-
tion depends in particular on the segmet4 8 1| which is| 21 22 23 24| (with

2% = 20 = 1); this consists of the successive powers of 2, which is a primitive
A-root of 15. The second, third, fourth and fifth segments of the terrace make up a
Whiteman difference sgt 7, Theorem 1, p. 112], with unsigned differences (writ-
ten under the difference set, with the element initherow being the unsigned
difference of the two elemenisteps apart in the Oth row symmetrically above it)

as follows:
2 4 8 1 10 0 5

Thus primitiveA-roots are important in the construction of both terraces and
difference sets.

We have written these notes in expository style. Basic results on number the-
ory and on finite abelian groups can be found in any standard text, for example
Hardy and Wright [(] or LeVeque [7], and Hartley and Hawkesl[], respec-
tively. We are grateful to Donald Keedwell, Matt Ollis and David Rees for their
comments.



2 Finite abelian groups

In these notesC,, denotes a cyclic group of order (which is usually written
multiplicatively), andZ, denotes the integers moduto(which is additively a
cyclic group of orden but has a multiplicative structure as well).

The Fundamental Theorem of Finite Abelian Grougsserts that every such
group can be written as a direct product of cyclic groups. This statement, however,
needs refining, since the same group may be expressed in several different ways:
for exampleCg = C, x C3.

There are two commonly usednonical formdor finite abelian groups. Each
of them has the property that any finite abelian group is isomorphic to exactly one
group in canonical form, so that we can test the isomorphism of two groups by
putting each into canonical form and checking whether the results are the same.
We refer to Chapter 10 of Hartley and Hawkés][for further details.

2.1 Smith canonical form

Definition The expression
Cny X Cpy x -+ xCp,

is in Smith canonical fornif n; dividesn; 1 fori=1,...,r —1. Without loss of
generality, we can assume that> 1; with this proviso, the form is unique; that
is, if
Cny X xCp =Cyy X -+ X Cpyg

where alsam; dividesm;j ;1 for j =1,...,s—1, thenr =sandn = m for i =
1,....r.

The numbersy,...,n, are called thenvariant factors or torsion invariants
of the abelian group.

The algorithm for putting an arbitrary direct product of cyclic groups into
Smith canonical form is as follows. Suppose that we are given the dgiQup
- x G, wherely, ..., lq are arbitrary integers greater than 1. Define,i for0,

i [
ﬂln’jzlcm<ﬂllkj :1§k1<---<ki§q>-
= =



If r is the least value such thaf, , = 1, then write the numbers,,...,n; in
reverse order:
ni=nqfori=1....r

Then the Smith canonical form is

Chy X Cp, x -+ x Cyy,.
For example, suppose that we are gi@mn C4 x Cg. We have

N, = Icm(2,4,6) =12,
mn, = lcm(8,12,24) = 24,
mnon; = Icm(48) = 48,

so that the Smith canonical form@ x C, x Cyo.

One feature of the Smith canonical form is that we can read oféxipenent
of an abelian group\, the least numbem such thatx™ = 1 for all x € A; this is
simply the numben,, the largest invariant factor.

2.2 Primary canonical form

Using the fact that, i = p'p3?--- p&, wherepy, ..., pr are distinct primes, then
Cn:Cpil chézlz L ERE XCp?r,

we see that any finite abelian group can be written as a direct product of cyclic
groups each of prime power order.

If we order the primes in increasing order, and then order the factors first by
the prime involved and then by the exponent, the resulting expression is unique:
this is theprimary canonical form

For example, the primary canonical form@f x C4 x Cg is

C2><C2><C4><C3.

The exponent is given by taking the orders of the largest cyclic factors for each
prime dividing the group order and multiplying these.

The orders of the factors in the primary canonical form are calleeldraen-
tary divisorsof the abelian group.



3 Mobius inversion

We sketch here the definition of thedidius function and the Bbius inversion for-
mula. These will be used several times without comment below. See Chapter 16
of Hardy and Wright {(].

Definition TheMadbius functions the functionu defined on the positive integers
by the rule

1 ifn=
u(n) = { (—1)k if nis the product ok distinct primes;
0 if n has a square factor greater than 1.

The Mobius inversion formula is the following statement.

Theorem 3.1 Let f and g be functions on the natural numbers. Then the follow-
ing conditions are equivalent:

(a) g(n) ;f

(b) f(n) = 3 u(n/myg(m).

min

For example, Euler’s totiemg is the function on the natural numbers given by the
rule thatg(n) is the number of integers € [0,n— 1] for which gcdm,n) = 1. (In
other words, it is the order of the grouj(n) of units ofZ,: see the next section.)
Now, if gcd(m,n) = d, then gcdm/d,n/d) = 1; there arep(n/d) such integersn,

for each divisod of n. Thus we have

n=Y @n/d) = ¥ o(m).

djn mjn

and so by Mbius inversion,

@) =S un/mm="% p(d)n/d.

min djn

From here it is an exercise to derive the more familiar formula

@n)=n p!):lme (1— %) :

pin
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4 The units modulon

If xis an element o%Z,, (that is, a residue class modulp, andm s a divisor of
n, then we may regara also as a residue class moduto We usually denote
this new residue class by the same symbdBut really, we have a map frofa,
to Zm. This mapb is a ring homomorphism: that i§(x+y) = 6(x) + 6(y) and
B(xy) = 8(x)0(y). We call this thenatural mapfrom Z, to Znm.

The Chinese remainder theoreis crucial for what follows. It asserts that, if
n=ng---n;, whereny,...,n, are pairwise coprime, ar@l is the natural map from
Znto Zp, fori=1,...,r, then the map

X (01(X),...,6r(X))

from Zn to Zn, x - -- X Zp, is @ bijection: indeed, it is an isomorphism frdiq to
the direct sum of the ring, .

Let U (n) denote the group (under multiplication mayl of units of Z,, (the
integers modh). The units are the non-zero elementsZgfwhich are coprime
to n. The number of them ig(n), where@is Euler’s totient function, defined in
the preceding section.

The structure of the groud (n) is given by the following well-known result.
The first part follows immediately from the Chinese remainder theorem.

Theorem 4.1 (a) Letn= pi‘l pgz ---p%, where p, ..., pr are distinct primes and
a,...,a >0. Then

U(n) = U(pf") xU(p3’) x - x U(pf").
(b) If pis an odd prime and & 0, then U(p?) is a cyclic group of order {*(p—
1).

(c) U(2) is the trivial group and, for a> 1, we have U2?) = C, x C,a_2, Where
the generators of the two cyclic factors ard and5.

Thus, ifn= p? or n = 2p?, wherep is an odd prime, thebl (n) is a cyclic
group. A generator of this group is calleghamitive rootof n.
For example,
U(18) ={1,5,7,11,13 17}.

The successive power8,5,... (mod 18 are

1,5,7,17,13,11,
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with 5% = 5% = 1; so 5 is a primitive root of 18.

Forn > 4, the converse is also true: if there is a primitive roab,ghennis an
odd prime power or twice an odd prime power. This is because all the non-trivial
cyclic factors given by Theorerh.1 have even order, so if there are at least two
of them, therCy x C; is a subgroup o) (n); this happens if has two odd prime
divisors, or ifn is divisible by 4 and an odd prime, orrnfis divisible by 8.

The elements dfl (n) can be divided into subsets callpdwer classesthese
are the equivalence classes of the relatigrwherex ~ y if y = xd for somed
with gcd(d, @(n)) = 1. (This relation is symmetric because, if gddp(n)) = 1,
then there existewith de=1 (modg(n)); theny® = x4¢=x. It is easily seen to
be reflexive and transitive.) Said otherwigey y if and only if x andy generate
the same cyclic subgroup bf(n). If x has ordem (a divisor of@(n)), then the
size of the power class containimgs @(m).

Note that all elements of a power class have the same multiplicative order
modn.

It follows from Theorem5.2 (and is easy to prove directly) that, given any
finite abelian grou, there are only a finite number of positive integarsuch
thatU (n) = A.

Problem 1 Is it true that, in general, arbitrarily many valueshafan be found for
which the groups) (n) are all isomorphic to one another?

For example, the groupgd(n) for n = 35, 39, 45, 52, 70, 78 and 90 are all
isomorphic toCy x C12. There are ten values ofless than 1000000 for which
U(n) 2 U(n+1), namely 3, 15, 104, 495, 975, 22935, 32864, 57584, 131144
and 491535. This is sequence A003276 in@eLine Encyclopedia of Integer
Sequencefl 5], where further references appear.

Problem 2 (&) Are there infinitely many values affor whichU (n) 2U (n+1)?

(b) All the above examples except floe= 3 satisfyn =4 or 5 mod 10. Does this
hold in general?

5 Carmichael’s lambda-function

Euler’s functiong has the property thai(n) is the order of the groug (n) of units
of Zn. R. D. Carmichael] introduced the functioi:



Definition For a positive integem, letA(n) be the exponent df (n) (the leasm
such thag™ = 1 for alla € U (n)).

From the structure theorem for(n) (Theorem4.1), we obtain the formula for
A(N):

Proposition 5.1 (a)lfn= pi‘l pgz ---p&, where p, p2,..., pr are distinct primes
and a,ap,...,a; > 0, then

A(n) = lem(A(p"), A (p3%), ... A(pF¥)).

(b) If p is an odd prime and & 0, thenA(p?) = @(p?) = p* L(p—1).
() A(2) =1, A\(4) = 2, and, for a> 3, we have\(2?3) = 222 = (2?) /2.

The values ok (n) appear as sequence A002322 in@eLine Encyclopedia
of Integer Sequencds5]. The computer systerAP [9] has the functiom
built-in, with the namd.ambda.

Givenm, what can be said about the valuesndbr which A(n) = m? There
may be no such values: this occurs, for example, for any odd numbed. (If
n> 2, then the unit-1 € U(n) has order 2, sa(n) is even.) Also, there is no
with A(n) = 14, as we shall see.

To get around this problem, we proceed as follows.

Theorem 5.2 (a) If n; divides n, thenA(ny) dividesA(ny).

(b) For any positive integer m, there is a largest n such that) divides m.
Denoting this value b*(m), we have that
@) if n | A*(m), thenA(n) | m;
(i) A(n) = mif and only if n divided*(m) but n does not divida*(l) for
any proper divisor | of m.
(c) The number of n such thatn) = m is given by the formula
m

Y u(T)d ),

Iim

where dn) is the number of divisors of n.



Proof (a) Suppose that; dividesn,. The natural map from Zp, to Zp, induces
a group homomorphism frord (nz) to U(ng). We claim thatf is onto. It is
enough to prove this in the case whepgn; is a primep.

If p does not dividen;, thenU (n2) = U(n;) x U(p), and the conclusion is
obvious. Suppose that | n;. Then if 0< a < nj, we have gcta,n) = 1 if
and only if gcda,nz) = 1; so these elements bf(n,) are inverse images of the
corresponding elements Of(ny).

Now, if 8" = 1 for all a € U(ny), thenb™ =1 for allb € U(ny) (since every
suchb has the fornB(a) for somea € U (n)). So the exponent df (n;) divides
that ofU (ny), as required.

(b) Suppose thanis given. IfA(n) dividesm, thenA(p?) dividesm for each
prime power factop? of n. In particular, if p is odd, thenp — 1 must dividem,
so there are only finitely many possible prime divisors;adnd for each prime,
the exponent is also bounded, sincgg® 1 or p* 2 must dividem. Hence there
are only finitely many possible valuesmfand so there is a largest valg m).

By part (a), ifn | A*(m), then

A(n) [ AN (m)) [ m.

Conversely, the construction &ff(m) shows that it is divisible by everg for
whichA(n) dividesm.
(c) This follows from (b) by Mbbius inversion.

Remark If m> 2 andmis even, then the summation in part (c) can be restricted
to even values df. For, if mis divisible by 4, theru(m/I) = 0 for oddl; and ifm

is divisible by 2 but not 4 andh > 2, then each odd value bhasd(A*(l)) = 2,

and the contributions from such values cancel out.

The calculation oA*(m) is implicit in the proof of the theorem. Explicitly,
the algorithm is as follows. Ifnis odd, therh*(m) = 2. If mis even, ther\*(m)
is the product of the following numbers:

(a) 272, where 2 || m;
(b) p*+1, for each odd prime such thatp— 1 | m, wherep? || m.

(Here the notatiop? || mmeans thap? is the exact power op dividing m.)
For example, whem= 12, the odd primep such thapp— 1| 12 are 35,7,13;
and so
A*(12) =2%.32.5.7.13=65 520
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For another example, leh = 2qg, whereq is a prime congruent to 1 mod 6.
Then 21+ 1 is not prime, so the only odd prim@for which p— 1 divides 2 is
p = 3, and we have
A(2g) = 23.3=24=\%(2).

Thus, there is no numberwith A(n) = 2q.
Other numbers which do not occur as values of the functiomtlude:

(@ m=2q102- - - qr, Whereqs,qp, .. .,qr are primes congruent to 1 mod 6 (they
may be equal or distinct); for example, 98, 182, 266, ... ;

(b) m= 29?, whereq is any prime greater than 3; for example, 50, 98, 242, ... .

We do not have a complete description of such numbers.

Another observation is that, @fis a Sophie Germain prime (a prime such that
29+ 1 is also prime, seed]), andq is greater than 3, then there are just eight
values ofn for whichA(n) = 2g, namelyn = (2q+ 1) f, wheref is a divisor of 24.
We do not know whether other numbersalso occur just eight times as values
of A.

Sierpiski [14] remarks that the only numbens< 100 which satisfy the equa-
tion A(n) = A(n+1) aren= 3, 15 and 90. But this is not a rare property: a short
GAP computation reveals that there are 143 numbetsl 000000 for which the
equation holds.

The formulae show up a couple of errors on p. 2365f giving values ofn
for prescribed\(n). The entry 136 foi(n) = 6 should read 126, and the value
528 is missing foi(n) = 20.

Note that, for a fixed even exponemt= A(n), the maximum valu@*(m) of
n also maximises the value gfn). For it is easily checked that, iif; is a proper
divisor of nz, theng(ny) < @(ny), with equality only ifn; is odd anch, = 2ng; but
if mis even, ther\*(m) is divisible by 8.

For example, the numbers with A(n) = 6, and the corresponding values
of @(n), are given in the following table. (The functidf(n) is defined to be
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n @n) &n

79,1418 6 1
21283642 12 2
56,7284 24 4
63,126 36 6
168 48 8

252 72 12
504 144 24

Note that the values af(n) are not monotonic im for fixed A(n).

The order of magnitude of Carmichael’s lambda-function was investigated by
Erdbds, Pomerance and Schmu#}.[ They showed, among other things, that for

x> 16,
1 X Bloglogx
;n;)\(n) - IogxeXp<IogIoglogx(1+o(1)))

for some explicit constari.

A composite positive integenis called aCarmichael numbeif A(m) divides
m— 1. (For such numbers, a converse of the little Fermat theorem hdéld$:= 1
(modm) for all residuesc coprime tom.) The smallest Carmichael number is 561,
with A(561) = 80.

5.1 Denominators of Bernoulli numbers

The sequencé24,240,504,480 264, ...) of values ofA*(2m) agrees with se-
guence A006863 in thEncyclopedia of Integer Sequenges]. It is is described
as “denominator oBym/(—4m), whereBy, are Bernoulli numbers”.

The Bernoulli numbers arise in many parts of mathematics, including modular
forms and topology as well as number theory. We won't try to give an account
of all the connections here (but see the entry for “Eisenstein series” in Math-
World [16] for some of these); we simply prove that the formula given in the
Encyclopedia agrees with the definition)df(2m).

The mth term an, of the Encyclopediasequence is the gcd & (k™ — 1),
wherek ranges over all natural numbers dnds “as large as necessary”. To see
how this works, consider the case= 3. Takingk = 2, we see thaag divides
2L(26 — 1), soag is a power of 2 times a divisor of 63. Similarly, with= 3,
we find thatag is a power of 3 times divisor of 728. We conclude thgdivides
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504. Itis not yet clear, however, that 504 is the final answer, since in principle all
values ofk must be checked.

We show thaiay, (as defined by this formula) is equal ’3(2m). First, let
n = am, and choose arywith gcdk, n) = 1. Thenn dividesk-(k?™ — 1). Sincek
is coprime ton, we havek’™ =1 (modn). So the exponent df (n) divides an,
andn dividesA*(2m).

In the other direction, let = A*(2m); we must show that dividesk" (k?™— 1)
for all k (with large enouglt). Since

(kake)((kak2)™™ ~ 1) = (kako) (™~ 1) + (kake) (™~ 1),
it is enough to prove this whdn= p is prime. Writen = p®ny, wherep does not

divide n;. Thenny | A*(2m), soA(ny) | 2m by Theorenb.2; that is,ny | p?™ — 1.
Son| p?(p?™ - 1), as required.

5.2 p-rank and p-exponent

Definition Let p be a prime. The-rankof an abelian group is the number of
its elementary divisors which are powerspyfand thep-exponenis the largest of
these elementary divisors.

The 2-rank and 2-exponent of the group of units nmochn be calculated as
follows.

Suppose that = 22pf* - .. p, wherepy, ..., pr are odd primesay, ..., & >0,
anda > 0. Then the 2-rank df (n) is equal to

r ifa<li,
{r+1 ifa=2,
r+2 ifa>3.

The 2-exponent o) (n) is the 2-part ofA(n). It is the maximum of 2 and the
powers of 2 dividingp; — 1 fori=1,...,r, where

0 ifa<i,
b= { 1 ifa=2,
a—2 ifa>3.
In particular, the 2-exponent &f(n) is 2 if and only if
(a) the power of 2 dividing is at most 3;

(b) all odd primes dividingn are congruent to 3 mod 4.

We leave as an exercise the description ofgfrank andp-exponent otJ (n)
for odd p.
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6 Primitive lambda-roots

Carmichael §] defined primitiveA-roots as a generalisation of primitive roots, to
cover cases where the latter do not exist.

Definition A primitive A-root ofnis an element of largest possible order (namely,
A(n))inU(n).

We also pug(n) = @(n)/A(n), where (as notedp(n) is the order olJ (n); thus
there is a primitive root of if and only if §(n) = 1. (Carmichael calls a primitive
root aprimitive @-root.)

Since elements of a power class all have the same order, we see:

Proposition 6.1 Every element in the power class of a primith4oot is a prim-
itive A-root.

Proposition 6.2 For any n, eithef(n) = 1 or &(n) is even.

Proof Theorem4.1shows thag(n) =1 if and only ifn = p? or n = 2p?, where
p is an odd prime. Suppose that this is not the case. Thendivisible by
either two odd primes or a multiple of 4. In the first casenlet p*q°m wherep
andq are distinct odd primes not dividing. Theng(n) = @(p?)e(q®)e(m) and
A(n) = lem{@(p?), ®(g°),A(m)}; sinceq(p?) andg(gP) are both eveng(n) /A(n)

is even. In the second caseaif> 2 then@(22) = 2\ (22), and sop(22m) /A (2%m)

is even for any oddain.

For example, consider the case- 15. We havep(15) = ¢(3)¢(5) = 8, while
A(15) = lem(@(3),9(5)) = 4, and&(15) = 2. The groupJ (15) consists of the
elements 12,4,7,8,11, 13,14, and their powers are given in the following table:

elementx powers ofx

1 1

2 1,2,4,8
4 1,4

7 1,7,4,13
8 1,8,4,2
11 111

13 113,4,7
14 114
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The primitiveA-roots are thus Z, 8,13, falling into two power class€®,8} and
{7,13}.

Corollary 6.3 If A(n) > 2, then the number of primitive-roots of n is even.

Proof The number of PLRs in a power class@&\(n)); and@(m) is even for
m> 2.

Proposition 6.4 The group Un) of units mod n is generated by primitive lambda-
roots; the least number of PLRs required to generate the group is equal to the
number of invariant factors.

Proof We can writdJ (n) = Ax B, whereAis a cyclic group of ordek(n) gener-
ated by a primitive lambda-roat Clearly every element dk lies in the subgroup
generated by the primitive lambda-roots. For anyB, the elemenébis a prim-
itive lambda-root; for ifmis a proper divisor oA(n), then(ab)™ = a™™ and
a™ £ 1. Sob is the product of the primitive lambda-roais! andab.

The number of generators &f(n) is not less than the number of invariant
factors. Suppose that,...,a, are generators of the invariant factorslbfn),
wherea; is a PLR. Then the elemends,ajay, ..., a1a, are all PLRs and clearly
generatéJ (n).

How many primitiveA-roots ofn are there? The answer is obtained by putting
m= A(n) in the following result:

Theorem 6.5 Let A= Cy,, X Ciy, X --- x Gy, be an abelian group. Then, for any
m, the number of elements of order min A is

%“(?) ]ngd(',m).

Proof Leta= (ai,ap,...,a) € A. Thena”=1if and only ifa" =1 fori =
1,...,r. The number of elementsc Cn, satisfyingx™ =1 is gcdm, m;), so the
number of elementa € A satisfyinga™ = 1 is g(m) = []{_;gcdm,m;). Now
a" = 1 if and only if the order of dividesm; sog(m) = ¥, f (1), wheref(l)
is the number of elements of ordein A. Now the result follows by Mbius
inversion.
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For examplel (65) = U (5) x U (13) = C4 x Cy2, S0 thatA(65) = 12; and the
number of primitive\-roots is

; u(12/1)ged4,1)ged121).
T2

The only non-zero terms in the sum occur foe 12,6,4,2, and the required
number is

4.12—-2.6—4-4+2.2=24

Since@(12) = 4, there are 244 = 6 power classes of primitive-roots; these are
{2,32,33, 63}, {3,22,42,48}, {6,11,41 46}, {7,28,37,58}, {17,23 43,62} and
{19,24,54,59}.

The following table gives the number of primitiveroots, and the smallest
primitive A-root, for certain values at.

n @n) A(n) #PLRs Smallest PLR
15 8 4 4
24 8 2 7
30 8 4 4
35 24 12 8
63 36 6 24
65 48 12 24
91 72 12 32
105 48 12 16
117 72 12 32
143 120 60 32
168 48 6 20
189 108 18 54
275 200 20 96

NNOPRPNDNRNDNNNNDYNODN

We havelU (15) 2 U (30) = C, x C4, andU (91) = U (117) = Cg x C12, explaining
the equal numbers and orders of primitivgoots in these cases. On the other
hand,@(65) = ¢(105), butU (65) = C4 x C12, while U (105) = C, x C4 x Cg; these
groups are not isomorphic (the Smith canonical forrd ¢£05) is C; x Cy x C12).
Note that, fom = 143, the proportion of units that are PLRs is less thas. 1n
this connection, we have the following result and problem:

Proposition 6.6 The proportion of units which are primitiveroots can be arbi-
trarily close toO.
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Proof If n= pis prime, then the proportion of units which are PLRs is

op-1/(p-1- [] (1-7):

r
rlp—1

Choosingp to be congruent to 1 modulo the product of the fikgtrimes (this is
possible, by Dirichlet's Theorem) ensures that the product on the right is arbitrar-
ily small. In order to obtain proper PLRs, also chogse 1 (mod 4); then the
proportion for 4 is the same as fqp.

Problem 3 Can the proportion of units which are primitikeroots be arbitrarily
close to 1? Numbens which are of the form\*(m) seem to be particularly good
for this problem. For example, if

n = A (53130
= 460765909369981425841156813418098240135472867 831112

then the proportion of PLRs in the group of units differs from 1 by less than one
part in two million.

Li [ 13] has considered the analogue for PLRs of Artin’s conjecture for primi-
tive roots, that is, the functioN,(x) whose value is the number of positive integers
n < xsuch thatis a PLR ofn. This function is more erratic than the correspond-
ing function for primitive roots: the lim inf of 3 1-a<xNa(X)) /X? is zero, while
the lim sup of this expression is positive.

6.1 Another formula

Here is another, completely different, method for calculating the number of primi-
tive lambda-roots ofi. This depends on knowing the elementary divisond (f).

Theorem 6.7 Let n be a positive integer. For any prime p dividipg), let 2(P)
be the largest p-power elementary divisor ofrl), and let nip) be the number
of elementary divisors of h) which are equal to §P. Then the number of
primitive lambda-roots of n is

)

ple(n)
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Proof Write U(n) =Py x --- x P, whereP, is the p;-primary part ofU (n) (the
product of all the cyclic factors gfi-power order in the primary decomposition of
U (n)). Now an element df (n) is a primitive lambda-root if and only if, for each
i with 1 <i <r, its projection intd? is of maximum possible ordqslia(pi). So we
have to work out the fraction of elements Bfwhich are of maximum possible
order.

Dropping the subscripts, &= Cpa x - -- x Cpa x Q, where there armfactors
p?, andQ is a product of cyclicp-groups of orders smaller thgo. Then an
element ofP has orderp?® if and only if its projection into(Cya)™ has ordem?.
So the fraction of elements of maximal orderRris the same as ifCpa)™. Now
the elements of the latter group of order less tpamre precisely those lying in
the subgrougC.1)™, a fraction ¥ p™ of the group. So a fraction-11/p™ have
order equal tq®.

This result has a curious corollary. rifis such that primitive roots af exist
(that is, ifnis an odd prime power, or twice an odd prime power, or 4), then the
number of primitive roots ofi is @(@(n)). Now for anyn, compare the formula in
the theorem with the formula

1
®(@(n)) = @(n) 1-—.
p|<:(|n) ( p)

We see that the number of PLRs is at le@&f(n)), with equality if and only if
m(p) = 1 for all p dividing @(n). In other words:

Corollary 6.8 For any n, the number of primitive lambda-roots of n is at least
@(@(n)). Equality holds if and only if, for each prime p which dividgsn), the
largest p-power elementary divisor ofb) is strictly greater than all the other p-
power elementary divisors of n. An equivalent condition is that the second largest
invariant factor of Un) dividesA(n)/a(A(n)), wherea(m) is the product of the
distinct prime divisors of m.

Proof The first part follows from the prefatory remarks. The equivalence of the
last condition with the condition involving the elementary divisors is clear.
This raises a curious humber-theoretic problem.

Problem 4 What proportion of numbenrs have the property that the number of
PLRs ofnis equal top(g(n))?
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A computer search shows that nearly 60% of all numbers below 100000 have
this property (to be precise, 57996 of them do).

The condition in this proposition comes up in a completely different context,
namely, a relationship between the number of power classes of PLRs and the

function&(n) = @(n)/A(n).

Proposition 6.9 For any positive integer n, the number of power classes of PLRs
of n is at leasg (n). Equality holds if and only if, for any prime divisor p @fn),

the largest p-power elementary divisor is strictly greater than any other p-power
elementary divisor.

Proof We can writeU (n) = A x B, whereA is a cyclic group of ordeA(n),

generated by (which is a PLR). Now, for each element B, the productbis a

PLR. We claim that distinct elements Bfgive rise to distinct power classes. For

suppose thaib; andaby, lie in the same power class. Thah, = (ab;)™ for some

mwith gcdA(n),m) = 1. This implies tha = a™, so thatm=1 (modA(n)),

from which it follows thatb, = b = b;. So there are at least as many power

classes as elementsBf Since|B| = @(n) /A(n) = &(n), the inequality is proved.
Equality holds if and only if, whenevere A, b € B, andabis a PLR, it follows

thatais a PLR. Suppose that the condition on elementary divisors holds. For any

p dividing A(n), the p-elementary divisors d8 divide A\(n)/p, and sa*"/P =1,

Hencea("/P = (ab)»("/P o£ 1. Since this holds for alp, the order ofais A(n),

and soa is a PLR. Conversely, suppose that the condition on elementary divisors

fails, and suppose that the larg@stlementary divisor oB is p" and is thep-part

of A(n). Choose an elemebte B of orderp’. ThenaP bis a PLR, bugP is not.

For another proof that the cases of equality in the two results coincide, note
that@(n) andA(n) have the same prime divisors, and so

@) _ @A(n)

o) A(n) 7

so that§(n) = @(@(n))/@(A(n)), whereas the number of power classes is the num-
ber of PLRs divided byp(A(n)).
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Example Forn=360=23.3.5, we have
U(Nn) 22 Cp x Cp x Cg x C4 = C4 x C3 x Cs,
SO

#PLRs=@(@(n)) = 32
#PCs=¢&(n) = 8.

Forn=720=2*.32.5, we have
U(n) =2 Cy x Cq x Cg x Cq =2 CZ x C2 x Ca,
SO

#PLRs=96, @(@(n)) = 64,
#PCs=24 &(n)=16.

6.2 Fraternities

Definition Two PLRsx andy of n are said to bératernalif x> =y?> (modn).
This is an equivalence relation on the set of PLRs; its equivalence classes are
calledfraternities

Recall the definition of 2-rank and 2-exponent from Subsedii@n

Proposition 6.10 Suppose that & 2. Let the2-rank and2-exponent of Un) be
s and2° respectively. Then the size of a fraternity of PLRs of n is equal to

25 ife>1,
25-1 ife=1

Proof LetA={ucU(n):u*>=1 (modn)}. Clearly|A| = 25. Sincex? = y? if
and only ifx = yu for someu € A, each fraternity is the intersection of the set of
PLRs with a coset oA.

Let a coseC of A contain an element of even ordem2 If mis even, then
every element of has order &. Suppose thanis odd. Then, foue C, u™ e A,
andu-u™ has ordem; all other elements of have order g.

In particular, the number of PLRs in a cosetfois 2 if e> 1, and is 21 if
e=1.
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Remark We worked out in Subsectidn2the necesary and sufficient conditions
fore=1.

Proposition 6.11 Suppose that o 2, and letA(n) = 2m. The intersection of the
power class and the fraternity containing a PLR x of n is equdbdpif m is odd,
and is{x,x™1} if m is even. The number of fraternities is divisiblegg(n)) if
m is odd, and byp(A(n))/2 if m is even.

Proof The elements of the power classdfave the formxd, where gcdd, A(n)) =
1. Nowx andxd are fraternal if and only k391 = 1, which holds if and only if
d=1+A(n)/2=m+1. Now gcdm+1,2m) = 1 if and only ifmis even.

The last part follows from the fact that each power class has cardigglty)).

Corollary 6.12 The number of fraternities of PLRs is even, unless n di\2d€s
in which case there are three fraternities iEn80 or n = 240, and 1 otherwise.

Proof Suppose firstthat(n) =2 (mod 4). Then eithei(n) =2, or@(A(n)) is
even. In the first case,divides 24, and every PLR satisfigs= 1, so there is just
one fraternity. In the second, the number of fraternities meeting each power class
is even.

Now suppose thak(n) =0 (mod4). Then eithefA(n) = 4, or @A(n)) is
also divisible by 4. In the first casedivides 240, and a finite amount of checking
establishes the result. In the second, the number of fraternities meeting every
power class is even.

Examples Forn =40 we haves= 3 ande = 2, so the size of a fraternity is
23 = 8; all PLRs belong to a single fraternity

Forn =56, we haves= 3 ande = 1, so the size of a fraternity i$2- 1= 7;
the 14 PLRs fall into two fraternities. Sind€n) = 6, one fraternity contains the
inverses of the elements of the other.

Forn =75, we haves = 2 ande = 2, so the size of a fraternity is 4; the 16
PLRs fall into four fraternities.
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7 Some special structures for the units

Theorem 7.1 Suppose that the Smith canonical form @hlJis
U(n) =2 Cyn) x -+ X Cyn) (r factors),
with r > 1. Then either
(@) n=8, 120r 24; or

(b) n=p?(p?— p®1+1) or2p?(p?— p*1+1), where pand p— p> 1+ 1lare
odd primes.

In particular, r < 3, and r= 3 only in the case B- 24.

Proof Suppose first thagp(n) is a power of 2. Them = 22p;--- ps, where
P1,...,Ps are distinct Fermat primes, atti(n) = U(2%) x Cy,_1 X -+ x Cp_1.
Since all the cyclic factors have the same order, eshe0, ors= 1, p; = 3; the
cases where there are more than one cyclic facton ar&, 12 and 24.

Now suppose thap(n) is not a power of 2; let haves odd prime factors. The
number of 2-power cyclic factors &f (n) is s, plus one or two if the power of 2
dividingnis 4 or at least 8, respectively; the number of cyclic factors of odd prime
power order is at mo® Son must be odd or twice odd; we may assume thist
odd. We haves=r.

Letn= p"i‘l .-+ p&. The decomposition

U(n) =U(pp*) x - x U (p¥)
must coincide with the Smith normal form Bf(n), so we must have
PP H(p—1) == p¥ H(pr - 1)

Clearlya = 1 can hold for at most one value bf But, if & > 1, thenp; is the
largest prime divisor opf“*l(pi —1). We conclude that = 2 and that (assuming
p= p1 < pz anda = a;) we havep; = p? (p—1)+1 anday = 1.

The odd numbera < 1000000 occurring in case (b) of the theorem are

63 = 9.7,
513 = 27.19,
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2107 = 49.43
12625 = 125.101,
26533 = 169 157,
39609 = 243-163 and
355023 = 729.487.

There are various possibilities for the structur@) = C, x Cy ) X Cy(n) With
a| A(n); for example, for odah, we have

n:3-72-43, U (n) = Cy x Cg2 x Cyp;
n=232.72.43  U(n) 2 Cg x Cs2 x Cs;
n=3.53.101, U(n)
n=11-53.101, U(n)

For evern, the valuesi=4-p! - (p)~1(p—1)+ 1), wherepandp/~1(p—1)+1
are odd primes, give examples.

Problem 5 Can the multiplicity ofA(n) as the order of an invariant factordi n)
be arbitrarily large? Again, numbers of the forre= A*(m) are particularly fruitful
here: forn = A*(157 080, a number with 122 digits, the multiplicity @57 goin
the Smith normal form o (n) is 16.

8 Negating and non-negating PLRs

Suppose that is a primitiveA-root. We can ask:
(a) Is—x also a primitivex-root?
(b) If so, is—xin the same power class &3

In an abelian group, the order of the product of two elements divides the Icm
of the orders of the factors. Singe= (—1)(—x), we see that, ik is a PLR, then
the order of—x must be eithek(n) or A(n)/2, and the latter holds only X(n)/2
is odd. Thus, we have:

Proposition 8.1 Let x be a primitivex-root of n, where n> 2. Then—x is also
a primitive A-root if either n has a prime factor congruent 1o (mod 4), or n is
divisible by16.
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Note that, if—x has ordei(n)/2, then we have

() = (=1) x (=x),

so that—1 and—x are both powers of in this case. Conversely, X(n)/2 is odd
and—1 is a power of, then—x is an even power af and so has ordex(n)/2.
Thus, in the cases excluded in the above Proposition, we seesthat primitive
A-root if and only if —1 is not a power ok. Necessary and sufficient conditions
for this are given in Subsectidh3 below.

Definition The PLRx of nis negatingif —1 is a power ofk, andnon-negating
otherwise.

Now clearly—xis a power ofx if and only if X is negating.

Corollary 8.2 Suppose that(n) is twice an odd number (so that n is not divisible
by 16 or by any prime congruent tb (mod 4)).

(@) If n=4or n=2p? for some prime =3 (mod 4), then for every primitive
A-root X, we have that-x is not a primitive\-root.

(b) Otherwise, some primitivie-roots x have the property thatx is a primitive
A-root, and some have the property that it is not.

The PLRx s negating if and only if-1 belongs to the cyclic group generated
by x; so we see:

Proposition 8.3 If a primitive A-root is negating, then so is every element of its
power class.

In the next two sections, after a technical result, we will determine for wiich
there exist negating PLRs, and count them. We conclude this section with some
open problems.

Problem 6 Is it possible for—1 to be the only unit which is not a power of a
PLR? More generally, which units can fail to be powers of PLRs?

Problem 7 For which values ohf is it true that the product of two PLRs is never
a PLR? (This holds fon = 105, for example.) For other values of can we
characterise (or count) the number of pdixg,x2) of PLRs whose product is a
PLR?
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8.1 A refined canonical form

While the invariant factors and the elementary divisors of a finite abelian group
are uniquely determined, the actual cyclic factors are not in general. This freedom
is used in the following result, which is useful in the construction of terraces. This
result lies at the opposite extreme from the negating PLRs we have considered; it
shows that there is a unit generating a cyclic factod ofi) of smallest possible
2-power order which has1 as a power.

Theorem 8.4 Let 2™ be the smallest elementary divisor oftt) for the prime2.
Then Un) = Ax B, where A= Com and—1 € A. In particular,

(&) U(n) can be written in Smith canonical form so that the smallest cyclic factor
contains—1;

(b) U(n) can be written in primary canonical form so that the smallest cyclic
factor of2-power order contains-1.

Proof The case whergris divisible by 4 can be dealt with by a simple construc-
tive argument. In this case, we hav@2 2; all units are odd, and those congruent
to 1 mod 4 form the subgroup, while A is generated by-1.

Next, suppose thatis odd. In the decomposition &f (n) into cyclic groups
given by Theoremnd .1, the element-1 has order 2 in every factor. So, if we refine
this decomposition to the primary canonical form, the elemehtas order 2 in
every 2-power factor.

Let Com X --- x Com be the 2-part oJ (n), wherem=m. Let X be the
generator of théh factor. Then

my—1 mr—1
—1=x" e

Now replacex; by

yr=xp3 2 e
Thenys, Xz, - % generate cyclic groups also forming the 2-part of the primary
decomposition ot (n); and we have

_1 _ y%mlfl,

as required.

Finally, if nis odd, therJ (2n) = U (n), and the natural isomorphism map4
to —1. So the case wherseis twice an odd number follows from the case where
is odd.
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8.2 Generators differing by 1

As an example of the preceding result, considet 275= 52-11. The Smith
canonical form ofU (n) is Cig x Cpo. If we take 139 and 138 as generators of
the respective cyclic factors, then £39 —1. Is it just coincidence that the two
generators differ by 1 in this case?

We cannot answer this question completely, but in some cases Whaje
has just two cyclic factors, we can show that generators differing by 1 must exist,
keeping the property thatl lies in the smaller cyclic group.

We consider the case wheme= pg, with p andq distinct odd primes. Then
U(n) = Cg(ny X Cyn), WhereA(n) andg(n) are the least common multiple and
greatest common divisor, respectively, mf 1 andg— 1. We have seen that it
is possible to choose a generaxoof the first factor such that1 is a power of
x (necessarily-1 = x¢(M/2). Under suitable hypotheses, we can assume also that
X+ 1 generates the second factor.

We consider first the case whefgn) = 4. In this case, botp andq must be
congruent to 1 mod 4, and at least one must be congruent to 5 mod 8. Moreover,
we havex? = —1 (mod pq).

Theorem 8.5 Let p and q be primes congruent%o (mod 8), such thagcd(p —
1,g—1) = 4. Suppose tha is a primitive root of both p and q. Then there exists
a number x such that

U(pa) = () x (x+1) = () x (x=1),

where the cyclic factors have orde§$pg) = 4 and A(pg) = (p—1)(q—1)/4,
and the first factor contains-1. There are two such values, one the negative of
the other modulo pq.

Proof We have
S(P-1)(a-1)/8 _ (2<p—1>/2> DA _ L1091 (modp),

and similarly mody; so

2P-D@-D/8 = _1  (modpq).
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Now there are four solutions of = —1 (mod pg), namely+x; and=x,, where

a (modp), x3=b (modg),
x2=a (modp), xx=-b (modqg),
a>=—-1 (modp), b’=-1 (modq).

So we can choosesuch thak? = —1 andx # +y (mod pq), wherey = 2(P~1D(@-1)/16
Certainlyx has order 4. Also we have

(X+ 1)2 — X2+ 2x+1=2x (modpq),

and
(20 (P~ DAaD/18 = (1y)(£x) (mod pa),

whence(2x)(P-D(@-1/8 = 1 (modpq). Clearly every odd divisor op—1 or
g— 1 divides the order of}2 so X has orde(p—1)(g—1)/8, andx+ 1 has order
(p—1)(q—1)/16. Moreover, the subgroup generatedxdy 1 does not contain
—1 (since its unique element of order 24xy), so it is disjoint from the subgroup
generated by. Thus, these two subgroups generate their direct product, which
(by considering order) is the whole Of( pq).

The argument fok — 1 is the same. Alternatively, note that we can repbace
by —x in the argument, giving

U(pa) = (=) x (=x+1) = () x (x=1).

The final statement in the theorem holds because if we chesety, then
(2x)(P-1(a-1)/16 = 41, so that either the order of+ 1 is too small, or—1 €
(xy N (x+1).

For example, 2 is a primitive root modulo 5, 13, 29, 37 and 53, so we can
use any two of these primes in the Theorem. The table gives all instances with
pg < 300.

n X
65=5-13 418
145=5.29 +12
185=5-37 +68
265=5-53 +83

A similar argument works in other cases, with some modificationq 3 1
(mod 8), then 2 is a quadratic residue mgdand cannot be a primitive root: its
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order is at mostq— 1) /2. Forq=17,41,..., it happens that the order of 2 mqd
is(qg—1)/2.

Consider, for example, the cape=5,q= 17. Now 2 has order 4 mod 5 and
8 mod 17, s02=1 (mod 85 but 2* = 16 (mod 85. So X has order 8, and
(x+1) has order 16, ikis any solution ok’ = —1 (mod 85. Thus all four such
solutionsx = +13 +38 have the required property.

On the other hand, 2 has order 20 mod 41, and'8e2-1 (mod 205. Thus
(2x)19=1 (mod 205, so in this cas&+ 1 has order 20, rather than 40, and the
construction fails.

In general, we have the following result, whose proof follows the same lines
as the casepqg= 85.

Theorem 8.6 Let p and q be primes withg5 (mod8 and g=1 (mod 16,
such thatgcdp—1,q— 1) = 4. Suppose tha? is a primitive root of p and has
order (q— 1)/2 modulo g. Then there exists a number x such that

U(pa) = () x (x+1) = (x) x (x=1),

where the cyclic factors have ordetandA(pg) = (p—1)(g—1)/4, and the first
factor contains—1. There are four such values of x modulo pq, falling into two
pairs +X.

Examples withpg < 300 are given in the next table.

n X
85=5-17 £13,+38
221=13-17 +£21,+47

Similar results hold in the case whefépg) = 6. In this case our condition
is x3 = —1. This condition permits the possibility that= —1 modulo one of the
primes; we exclude this, since ther- 1 would not be a unit. Since®+1 =
(x+ 1)(x? — x4+ 1), this means that we requir — x+ 1 = 0 modulo bothp and
0, so that this congruence holds modpig Conversely, i? =x—1 (modpg),
thenx has order 6 and-1 € (x).

Theorem 8.7 Let p and g be primes congruent®o (mod 12, such thagcd p—
1,g—1) = 6. Suppose tha is a primitive root modulo both p and g. Then there
exists a number x such that

U(pg) = (x) x (x+1)

where the cyclic factors have order§pg) = 6 andA(pg) = (p—1)(g—1)/6, and
the first factor contains-1.

27



Proof The proof is almost identical to that of the previous theorenx® = —1,
thenx? —x-+1=0, and sgx+ 1)? = 3x.

Since 3 is a primitive root of 7, 19 and 31, the theorem gives the following

values:
n X

133=7-19 1775
217=7-31 68150

Problem 8 Find an analogous result in the case whggrel (mod 12. We note
that the conclusions of the theorem hold in several further cases, as in the next

table.
n X

91—7.13 17,75
247=13.19 6988,160,179

There are also cases where the second factor is generated hyrather than
X+ 1:

n X
91=7-13 1238
259=7.37 73110

Problem 9 (a) What happens for larger valueségpq)?

(b) What happens for larger numbers of prime factors™f

8.3 Existence of negating PLRs

The existence and number of negating PLR& depend on the structure of the
Sylow2-subgroup $fU (n), the group of all units of 2-power order.

Definition An abelian group ihvomocyclicif it is the direct product of cyclic
groups of the same order. Thank of a homocyclic abelian group is the number
of cyclic factors in such a decomposition.

Theorem 8.8 Let n> 1. There exists a negating PLR of n if and only if the Sylow
2-subgroup S of Wn) is homocyclic. In this case, the proportion of PLRs which
are negating isl/(2°— 1), where s is the rank of S.
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Proof Suppose first thab is not homocyclic. By Theorerfi.4, U(n) = Ax B,
whereA is cyclic and—1 € A; andA(n)/|A| is even, s@("/2 = 1 for all a € A.
Thus no element df (n) has the property that ifs(n) /2 power is—1.

In the other direction, suppose tt&its homocyclic. ThetJ (n) = Sx T, where
T consists of the elements of odd ordeiUitn); and a PLR ofn is a product of
elements of maximal order i@andT. In this case, the automorphism groupSof
acts transitively on the set of 2 1 elements of order 2 i, so that each of them
(and in particulari—1) occurs equally often as a power of an element of maximal
order.

As a result, we see that every PLR is negating if and onfyig cyclic; this
occurs if and only ifh = p?, 2p? (for some odd primep) or 4.

The next result, which follows immediately from the structure theorem for
U (n) (Theoreny.1), thus describes when negating PLRs exist.

Theorem 8.9 Let n= 22m where m is odd, and let r be the number of distinct
prime divisors of m. Then the Syl@subgroup S of Un) is homocyclic if and
only if one of the following holds:

(a) a< 1 and, for any two primes p and g dividing m, the powerg dividing
p—1and g— 1 are equal. In this case the rank of Siisr.

(b) a=2ora= 3, and every prime divisor of m is congruent3o(mod 4. In
this case the rank of S istra— 1.
9 Inward and outward PLRs
Definition The PLRxof nisinwardif x— 1 is a unit, andutwardotherwise.

Like the previous property, this one is a property of power classes. This fol-
lows from a more general observation.

Proposition 9.1 Let xy € U(n), and suppose that x and y belong to the same
power class. Thenx1 e U(n)if and only if y—1 € U(n).

Proof Lety=xd. Since gecdd, @(n)) = 1, there existe such thax = y©. Now
y—1=xd-1=(x-1)d 1+ ...41) = (x—1a

29



for somea € Zy. Similarly,x—1= (y—1)bfor someb € Z,. Thus(x—1)ab=x—
1. If x—1is a unit, this implies thaab= 1, so thatisa unitand/— 1= (x—1)a
is a unit; and conversely.

Corollary 9.2 If a primitive A-root is inward, then so is every element of its power
class.

Proposition 9.3 (a) Every primitiveA-root of n is outward if and only if n is
even.

(b) If a primitive A-root x is outward and negating, then n is even, and if n is
divisible by4 then x=3 (mod 4.

Proof (a) If nis even, then every unit is odd, and se U (n) impliesx— 1 ¢
u(n).

Conversely, suppose thatis odd. Suppose first thatis a prime power, say
n=p2 If x=1 (modp), then the order ok modn is a power ofp, andx is not
a PLR. Thus, every PLR is inward in this case.

In general, choose congruent to a primitive root modulo every prime power
divisor of n. Thenxis a PLR, and by the preceding argument; 1 is coprime
ton. Thus,x— 1€ U(n), andxis inward.

(b) If x is outward and negating, thefl = —1 for somed, andx — 1 divides
xd —1=—2. If nis odd, then-2 is a unit, and henceis inward; son is even. If
nis divisible by 4, therx cannot be congruent to Imod 4), since then 4 divides
x— 1 but 4 does not divided — 1.

We remark that whether a PLR is inward or outward does not depend only on
the group-theoretic structure of(n). For example,

U(21) 2 U(28) 2 U (42) = C, x Cg;

each of these groups has six PLRs, falling into three power classes of size 2, as in
the following table.
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n Powerclass Type

21 2,11 inward non-negating
19,10 outward non-negating
5, 17 inward negating

28 11,23 outward non-negating
5,17 outward non-negating
3,19 outward negating

42 11,23 outward non-negating
19,31 outward non-negating
5,17 outward negating

A PLR x of nis outward if and only ifx is congruent to 1 modulo some
prime divisor ofn. In principle, the number of inward PLRs can be calculated
by inclusion-exclusion over the prime divisorsmf However, we do not have a
concise formula.

For example, consider the case- 275= 52-11. We have\(n) = 20 and the
number of PLRs oh is 96. A unit congruent to 1 mod 5 has order dividing 5
mod % and dividing 10 mod 11, and so cannot be a PLR. A unit congruent to 1
mod 11isaPLR ifand only ifitis a primitive root of 25: there are 8 such elements.
So there are 96 8 = 88 inward PLRs of 275.

For a more complicated example, let= 189= 32.7, with A(n) = 18. An
element congruent to 1 mod 3 has order dividing 9 mod 27; to be a PLR, its order
must be 9 mod 27 and 2 or 6 mod 7. An element congruentto 1 mod 7 is a PLR
mod 189 if and only if itis a PLR mod 27. So the number of inward PLRs is

54—6-3—6=30.
Again, we end the section with an open problem.

Problem 10 What are necessary and sufficient conditionsrféo have only in-
ward PLRs? (Iinis odd and squarefree, then a necessary and sufficient condition
is thatA(n/p) < A(n) for every prime divisomp of n. There are many examples of
this:n= 35, 55, 77, 95, ...)

10 Perfect, imperfect and aberrant PLRs

For convenience, in this section the term “primitive lambda-root” includes “prim-
itive root”.
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Definition If n= p$'p3?--- p&, then the PLRx of nis said to be

e perfectif xisa PLR ofp;”‘i foralli=1,...,r;
e imperfectif xis a PLR ofp® for at least one but not all=1,...,r;
e aberrantif xis nota PLR ofp?‘ for any of the values=1,...,r.

Trivially, if r = 1, then any PLR ohf is perfect. From now on we assume that
r > 2. Also, of course, ifi is odd then a PLR opf* is simply a primitive root of
p.

If nis odd, every unit mod2is congruent to 1 mod 2 and to a unit maedso
there is a bijection between the units modaland 2. This bijection clearly pre-
serves the properties of being a PLR and of being perfect, imperfect or aberrant.
So the numbers of PLRs in each of these three categories are the samea$or 2
for n.

The property of being a perfect PLR is equivalent to the apparently stronger
property (b) in the following result.

Theorem 10.1 Let x be a unit modulo n. Then the following are equivalent:

(a) x is a perfect PLR of n;
(b) xis a PLR of m, for every divisor m of n;

(c) x is a perfect PLR of m, for every divisor m of n.

Proof Clearly (c) implies (b) and (b) implies (a). So suppose that (a) holds, with
n= pg---p¥. Thenxis a PLR ofp®, for eachi.

We claim thatx is a PLR ofpib, for all i and allb with 0 < b < a;. This is
because the natural homomorphism fraifp®) to U (p°~1) has kernel of ordep
if ¢ > 1, so the order ok mod p®~1 is at least a fraction /p of its order modp®.
(Compare the proof of Theoret2(a).) Now “downward induction” establishes
the claim.

But now, by definitionx is a perfect PLR ofn for every divisorm of n, and
we are done.

Perfect PLRs always exist:xfis a PLR ofp;"‘i fori=1,...,r,thenthe Chinese
Remainder Theorem guarantees us a solution of the simultaneous congruences
x=x (modp®), and clearlyx is a PLR ofn. This argument allows us to count
the number of perfect PLRs of this number is simply the product of the numbers
of PLRs ofp® fori=1,....r.

32



Theorem 10.2 Let n be odd. Then any perfect PLR of n is an inward PLR.

Proof A number congruent to 1 mogl cannot be a PLR of* for odd p;, since
its order is a power of. Hence, ifxis a PLR ofnwith nodd, therx# 1 (modp;)
fori=1,...,r. This shows thax— 1 is not divisible by any ops, ..., pr, so that
x—1is a unit modh. (This is the same as the proof of PropositibAa).)

Theorem 10.3If a PLR x of n is perfect, then so is every member of its power
class. The same holds with “imperfect” or “aberrant” replacing “perfect”.

Proof Suppose thatis a perfect PLR of, and lety belong to the power class of
X. Then each ok andy is congruent to a power of the other madit follows that
each is a power of the other m, so thatx andy have the same order mqf’;
thus, if one is a PLR opf, then so is the other.

Letn= pftpd?... p¥. We say that the prime powgf' is essentiain n if the
following holds: for every prime powe® such that® exactly divides?\(p?*’), and
for all j #1i, it holds thatg® does not dividé\(p?j). If nis twice an odd number,
then 2 is (vacuously) essential m Apart from this, there can be at most one
essential prime power, since,pf' > 2 is essential, then the power of 2 dividing
)\(pia*') is higher than that dividing(p?j) for j #£1.

If p¥ is essential im, then any PLR ofn is obviously a PLR ofpf, and
conversely. Thus, we have the following result:

Theorem 10.4 Every PLR of n is perfect if and only if n is a prime power or twice
a prime power.

In the following table, PLRs from different power classes are separated by
semi-colons, and negating PLRs are asterisked.

n perfect PLRs imperfect PLRs aberrant PLRs
15 2,8 7,13 —
21 5,17 2,11, 10, 19 —

35 3,12,17,33 2,18, 23, 32 —

63 5,38:47,59 2,632;10,19;11,23; 13,34,;44,53
17, 26%; 20, 417,
29, 50; 31, 61, 40, 52
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We turn now to the existence question for aberrant PLRs. The answer is some-
what elaborate and depends on the structure of an auxiliary coloured hypergraph,
which we now construct.

Letn= pfp32... p&. The vertices of the hypergraph(n) are indexed by the
primesps,..., pn. The edges (to be defined in a moment) are indexed by the prime
divisors ofA(n).

We say that a prime divisayof A(n) occurs maximallyn A(pf) if the largest
power ofq dividing A(p%) is the same as the largest powergodividing A(n).

Now we colour the verticep; with three colours as follows:

e pi is red if every prime divisor ok(p®) occurs maximally there;

e pi is green if some but not all prime divisors dfp®) occurs maximally
there;

e i is blue if no prime divisor ok(p?*') occurs maximally there.

The edge indexed by the pringgis incident with all verticeg; for which q
occurs maximally in}\(pf“). Thus, the blue vertices are isolated. Note that an edge
of the hypergraph may be incident with just one vertex.

For example, leh = 63=9-7. We have\(63) = A(9) = A(7) = 6; the graph
H(63) has two vertices labelled 3 and 7, both red, and two edges labelled 2 and
3, each incident with both the vertices. Since this graph is a cycle, the following
theorem guarantees that aberrant PLRs exist fe163.

Theorem 10.5 Let n be a positive integer. Then an aberrant PLR of n exists if
and only if every connected component of the hypergra@h Eontains either a
non-red vertex or a cycle.

Proof Letx be a PLR ofn. Then, for every primej dividing A(n), there exists
somep; such thag occurs maximally il\(p®) and the order ok modulo p¥ is
divisible by this maximal power afl. Thus, each edgg of the hypergraph must
contain at least one representative veesor which this holds.

Suppose that the vertgx is blue. Choosing to be congruent to a PLR mod
n/pd and to 1 modp®™, we see thak is aberrant mod if and only if it is aberrant
modn/p®. So we can ignore the blue primes.

Now suppose that a connected component contains either a greenggtime
or a cycle(pi,,d1, Piy, - - -, Pim,dm, Piy)- In the case of the cycle, lg, be the
representative oflx fori = 1,...,m. Then choose a representative for all other
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cycles which is at least distance to the green prime or the cycle in the hypergraph.
Now choosex so that its order mopf“ is the product of the appropriate powers of

g for all edgesy represented by;. Then the order ok is divisible by the correct
power of each prime indexing an edge of the component, s not a PLR of

pf“ for any primep; in the component.

Now suppose that a component is acyclic and has only red vertices. We claim
that, if a representative vertex is chosen for each edge, then some vertex must rep-
resent every edge containing it. For suppose we have a minimal counterexample.
Choose a vertex lying on a single edge, and remove this vertex (by assumption, it
is not the representative of its edge). By minimality, the hypergraph obtained by
deleting this edge has a vertex which is the representative of every edge containing
it, contrary to assumption.

Thus, if there is a component with this property, then every PLRmlist be
a PLR of p& for some vertexp; in this component, andis not aberrant.

This completes the proof.

Corollary 10.6 Ifn=pl(p~1(p—1)+1), where j>1and pand p1(p—1)+
1 are odd primes, then n has aberrant PLRs.

For another example, let= 741= 3-13-19. In the graplG(n), the prime
3 is blue while 13 and 19 are green; and the edges labelled 2 and 3 are incident
with single vertices 13 and 19 respectively. Choosirapngruent to 1 mod 3, to
an element of order 4 mod 13, and to an element of order 13 mod 19, we obtain
an aberrant PLR af.

Problem 11 Find families of integers for which aberrant PLRs exist.
Problem 12 Count the aberrant PLRs af (This problem will not have a simple

answer unless our characterisation of the valuen fufr which aberrant PLRs
exist can be substantially improved!)

10.1 Deeply aberrant and nearly perfect PLRs

We can strengthen the concept of an aberrant PLR as follows.

Definition If n= p3*p5?--- p&, then the PLR of niis said to bedeeply aberrant
if xis not a PLR ofp; for any of the values=1,...,r.
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Thus, a deeply aberrant PLR is aberrant. Note that deeply aberrant PLRs
cannot exist for even.

Problem 13 Count the deeply aberrant PLRsrof
We can also refine the notion of an imperfect PLR as follows.

Definition Letn= pzlil--- p&, and letx be a PLR ofn which is not perfect. We
say thaix is nearly perfecifitisa PLR of p; foralli=1,...,r.

Problem 14 Count the nearly perfect PLRs of

We note that, i is even, then any unit is congruent to 1 mod 2, so the condi-
tion for the prime 2 is vacuous. Moreover niis squarefree, there are no nearly
perfect PLRs oh. The proportion of units mod which are congruent to primi-
tive roots modulo each prime divisor ofis the product, over all prime divisors
of n, of the proportion of units mog which are primitive roots. However, these
elements may not all be PLRs.

For example, the number of perfect or nearly perfect PLRs of 63 is

1 2
(p(63)><§><6:6,
as we have seen, there are four perfect PLRs, and hence two nearly perfect PLRs.
(In this case all such elements are PLRs, sk@&3) = A(7) =6.)

Proposition 10.7 A nearly perfect PLR of n cannot be aberrant.

Proof Suppose that is a nearly perfect but aberrant PLRrofThen each prime
divisor of n must occur to a power higher than the first, since the requirements
“not a PLR of pi*” and “a primitive root of p;” conflict if & = 1. Let p be the
largest prime divisor of, and suppose thai® exactly dividesn. Suppose first
thatpis odd. Therp?! exactly divides\(n), so a PLR of has order divisible by
p®>~1 mod p?. But, if it is nearly perfect, then its order mqad is also divisible by

p— 1, and hence it is a primitive root magaf, and so is not aberrant. On the other
hand, ifp= 2, thennis a power of 2, and any PLR aofis perfect by definition.
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Note also that, ifvis odd, then any nearly perfect PLRmfs inward; in other
words, Theoreni0.2extends to nearly perfect PLRs, with the same proof.

The following table gives the nearly perfect PLRswaE 9p wherep is prime
and§(n) =6 (thatis,p=1 (mod 6). They are negating ip=3 (mod 4 and
non-negating ifp=1 (mod 4.

n nearly perfect PLRs
63=3°.7 {17,26}
117=3%-13 {80,71,89,98}
171=13%2-19 {5311689 9814371}
279=32.31 {17,260,53,251,269 179 88,197}

11 Further properties of PLRs
If xis an inward PLR of, then the 2(n) differences
(X =X, (i=12...,Mn),

are all units, and consist oi2n) different elements ik is non-negating, ok(n)
elements each repeated twice i negating.

This property shows the importance (for constructions such as the motivating
terrace in Section 1) of PLRs that are both inward and non-negating.

Definition The PLRx of n is strongif it is inward and non-negating. (Clearly
this requires to be odd, and not a prime power.)

It follows from Propositior8.3and Corollary9.2that, if a PLR is strong, then
so is every PLR in the same power class.

Problem 15 Is it true that strong PLRs exist for all oadwith &(n) > 1, in other
words, all odd numbers which are not prime powers?

This question has an affirmative answerio£ 20000.

Problem 16 Count the strong PLRs ai.

Problem 17 For which oddn such that) (n) = Cy ) x Cy(n), canU(n) be gener-
ated by two strong PLRs?
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Note that the values af for which U (n) = C ) x Cy(n) are those given by
Theorem?7.1(b), namelyn = p?(p? — p*~1 4 1), wherep and p? — p*~1 41 are
odd primes ané > 1.

We give some examples. Far=63=9-7, U, = Cgs x Cg, and this group
can be generated by the two PLRs 2 (which is strong) and 13 (which is outward
and non-negating). However, it is not possible to choose two strong PLRs which
generate the group.

For the next value af, namelyn =513= 27-19, itis also not possible to find
two strong PLRs generatinigj(n), However, fom = 2107= 49-43, both 2 and 6
are strong PLRs, and they do genetata).

Definition Letxbe a strong PLR af. Thenxis calledself-seekingf x—1 = +xd
for some integed. Note thatx is self-seeking if and only if the sét = {x' : i =
0,1,...,A(n) — 1} of powers ofx is equal to one of the two sefs= {x —x~1:
i=1,2,...,A(n)} orits negativeB = {x~1 —x :i=1,2,...,A(n)}. We say that
X is self-avoidingotherwise.

Proposition 11.1 If a self-avoiding strong PLR exists thém) > 2.

Proof If x is strong then each of the sefsA, B consists of unitsX is the sub-
group generated by, andA andB are cosets oK. Clearly, if (n) = 1, there
are onlyA(n) units, so all three sets must be equal. Sirée strong,—1 is not
a power ofx, so the seté\ andB are disjoint (fork —x—1 = xI=1 —xI implies
X1 = —1); so one of them must be equalXdf &(n) = 2.

Unlike what we have seen for other properties of PLRs, it is possible for all,
some, or none of the elements of a power class of PLRs to be self-seeking. For
n = 65, the powers of the PLR&3 are:

3|1 3 9 27 16 48 14 42 61 53 29 22
-3|1 62 9 38 16 17 14 23 61 12 29 43

Thus the power clas§3,48,42,22} consists of self-avoiding elements, while the
power clasq62 17,23, 43} consists of self-seeking elements. (For examples61

628))
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Forn =91, the strong PLRs 2 and 32 come from the same power-class; suc-
cessive powers are:

2/1 2 4 8 16 32 64 37 74 57 23 46
32|1 32 23 8 74 2 64 46 16 57 4 37

The power class i$2,32,37,46}; 2 and 46 are self-seeking but the other two are
self-avoiding.

Problem 18 What conditions must hold for the product of two strong PLRa of
to be a PLR oh? If &(n) > 2, is it possible for both, one or neither of the PLRs
to be self-seeking?

Problem 19 Under what circumstances can the product of two strong PLRs of
be itself a strong PLR af? Is it possible for both, one or neither of the PLRs to
be self-seeking?

The smallest value af for which this can occur ia = 455, where 18, 19 and
18-19= 342 are all strong PLRs. None of these three is self-seeking.

For the valuen = 1771, the numbers 39, 1768 and-3968= 1654 are all
self-seeking PLRs. This is the smallest value&r which this can occur.

12 Tables of PLRs

We conclude with tables giving information about the smallest PLRs.
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12.1 PLRs for composite odd multiples of 3

n @n) A(n) 2=PLR? —-2=PLR? minPLR> 3
15 8 4 v Vv 7
21 12 6 v % 5
33 20 10 v — 5
39 24 12 v v 7
45 24 12 v v 7
51 32 16 — — 5
57 36 18 v — 5
63 36 6 v v 5
69 44 22 v % 5
75 40 20 v v 8
87 56 28 v v 8
93 60 30 — — 11
99 60 30 v — 5

105 48 12 v v 17
111 72 36 v v 5
117 72 12 v v 5
123 80 40 — — 7
129 84 42 — — 5
135 72 36 v v 7
141 92 46 v v 5
147 84 42 v v 5
153 96 48 — — 5
159 104 52 v % 5
165 80 20 v v 7
171 108 18 v — 5
177 116 58 v — 5
183 120 60 v v 7
189 108 18 v v 5
195 96 12 v v 7
201 132 66 v — 7
207 132 66 v v 5
213 140 70 v v 7
219 144 72 — — 5
225 120 60 v v 13
231 120 30 v v 5
237 156 78 v v 5
249 164 82 v — 5
255 128 16 — — 7
261 168 84 v v 11
267 176 88 — — 7
273 144 12 v v 5
279 180 30 v v 11
285 144 36 v v 13
291 192 96 — — 5
297 180 90 v — 5



12.2 PLRs for composite odd non-multiples of 3

n @n) A(n) PLR? minPLR
2 -2 3 -3 >3

35 24 12 v v V v 12
55 40 22 v vV v 7
65 48 12 v VooV v 6
77 60 30 v VooV v 5
85 64 16 - - Y v 6
91 72 12 v vooo—- = 5
95 72 36 v VooV Vv 13
115 88 44 v VAR Vv 7
119 96 48 - - v 5
133 108 18 v VooV - 5
143 120 60 v VAR — 6
145 112 28 v v oY v 7
155 120 60 — — V v 7
161 132 66  — v Y Vv 5
175 120 60 v VAR v 12
185 144 36 v vV v 7
187 160 80 - — V v 5
203 168 84 v VARV, Vv 10
206 160 40 — — — @ — 6
209 180 90 Voo Y v 6
215 168 84 — — v v 12
217 180 30 — VooV - 10
221 192 48 — — VY v 6
235 184 92 v VooV v 7
245 168 84 Vv v Y Vv 12
247 216 36 v VA — 5
253 220 110 v VAR v 5
259 216 36 v Va— — 5
265 208 52 v VAR Vv 7
275 200 20 v VooV v 7
287 240 120 — — — @ — 11
295 232 116 v v Y Vv 7
299 264 132 v voo—- = 6
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