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Abstract

Euler’s totient functionφ has the property thatφ(n) is the order of the
groupU(n) of units inZn (the integers modn). In the early years of the
twentieth century, Carmichael defined a similar functionλ, whereλ(n) is the
exponent ofU(n). He called an element ofU(n) with orderλ(n) a primitive
λ-root ofn.

Subsequently, primitiveλ-roots have not received much attention until
recently, when they have been used in the construction of terraces and dif-
ference sets, and in cryptography.

The purpose of these notes is to outline the theory of primitiveλ-roots
and to describe some recent developments motivated by the design-theoretic
applications.

1 Motivation

Consider the following sequence of the elements ofZ35:

START
10 15 5 3 9 27 11 33 29 17 16 13 4 12 1 21 7↘

0
25 20 30 32 26 8 24 2 6 18 19 22 31 23 34 14 28↙
FINISH

The last 17 entries, in reverse order, are the negatives of the first 17, which, with
the zero, can also be written

55 56 57 31 32 33 34 35 36 37 38 39 310 311 312 74 75 0.
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If we write the respective entries here asxi (i = 1,2, . . . ,18), then the successive
differencesxi+1−xi (i = 1,2, . . . ,17) are

5 −10 −2 6 −17 −16 −13 −4 −12 −1 −3 −9 8 −11 −15 −14 −7.

Ignoring minus signs, these differences consist of each of the values 1,2, . . . ,17
exactly once. Thus the initial sequence of 35 elements is a special type ofterrace.
Indeed, it is anarcissistic half-and-half power-sequence terrace– see [2, 3] for the
explanation of these terms. Its construction depends in particular on the sequence
31 32 . . . 311 312 (with 312 = 30 = 1) consisting of the successive powers of 3,
which is aprimitive λ-root of 35.

Consider now the following sequence of the elements ofZ15:

6 3 2 4 8 1 10 0 5 14 7 11 3 12 9.

This too is a terrace, and is of the same special type as before. Its construc-
tion depends in particular on the segment| 2 4 8 1| which is | 21 22 23 24 | (with
24 = 20 = 1); this consists of the successive powers of 2, which is a primitive
λ-root of 15. The second, third, fourth and fifth segments of the terrace make up a
Whiteman difference set[17, Theorem 1, p. 112], with unsigned differences (writ-
ten under the difference set, with the element in theith row being the unsigned
difference of the two elementsi steps apart in the 0th row symmetrically above it)
as follows:

2 4 8 1 10 0 5
2 4 7 6 5 5

6 3 2 1 5
1 6 7 4

7 4 3
2 1

3

Thus primitiveλ-roots are important in the construction of both terraces and
difference sets.

We have written these notes in expository style. Basic results on number the-
ory and on finite abelian groups can be found in any standard text, for example
Hardy and Wright [10] or LeVeque [12], and Hartley and Hawkes [11], respec-
tively. We are grateful to Donald Keedwell, Matt Ollis and David Rees for their
comments.
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2 Finite abelian groups

In these notes,Cn denotes a cyclic group of ordern (which is usually written
multiplicatively), andZn denotes the integers modulon (which is additively a
cyclic group of ordern but has a multiplicative structure as well).

The Fundamental Theorem of Finite Abelian Groupsasserts that every such
group can be written as a direct product of cyclic groups. This statement, however,
needs refining, since the same group may be expressed in several different ways:
for example,C6

∼= C2×C3.
There are two commonly usedcanonical formsfor finite abelian groups. Each

of them has the property that any finite abelian group is isomorphic to exactly one
group in canonical form, so that we can test the isomorphism of two groups by
putting each into canonical form and checking whether the results are the same.
We refer to Chapter 10 of Hartley and Hawkes [11] for further details.

2.1 Smith canonical form

Definition The expression

Cn1×Cn2×·· ·×Cnr

is in Smith canonical formif ni dividesni+1 for i = 1, . . . , r −1. Without loss of
generality, we can assume thatn1 > 1; with this proviso, the form is unique; that
is, if

Cn1×·· ·×Cnr
∼= Cm1×·· ·×Cms

where alsomj dividesmj+1 for j = 1, . . . ,s− 1, thenr = s andni = mi for i =
1, . . . , r.

The numbersn1, . . . ,nr are called theinvariant factors, or torsion invariants,
of the abelian group.

The algorithm for putting an arbitrary direct product of cyclic groups into
Smith canonical form is as follows. Suppose that we are given the groupCl1×
·· ·×Clq, wherel1, . . . , lq are arbitrary integers greater than 1. Define, fori > 0,

i

∏
j=1

n′j = lcm

(
i

∏
j=1

lk j : 1≤ k1 < · · ·< ki ≤ q

)
.
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If r is the least value such thatn′r+1 = 1, then write the numbersn′1, . . . ,n
′
r in

reverse order:
ni = n′r+1−i for i = 1, . . . , r.

Then the Smith canonical form is

Cn1×Cn2×·· ·×Cnr .

For example, suppose that we are givenC2×C4×C6. We have

n′1 = lcm(2,4,6) = 12,

n′1n′2 = lcm(8,12,24) = 24,

n′1n′2n′3 = lcm(48) = 48,

so that the Smith canonical form isC2×C2×C12.
One feature of the Smith canonical form is that we can read off theexponent

of an abelian groupA, the least numberm such thatxm = 1 for all x∈ A; this is
simply the numbernr , the largest invariant factor.

2.2 Primary canonical form

Using the fact that, ifn = pa1
1 pa2

2 · · · par
r , wherep1, . . . , pr are distinct primes, then

Cn = Cp
a1
1
×Cp

a2
2
×·· ·×Cpar

r
,

we see that any finite abelian group can be written as a direct product of cyclic
groups each of prime power order.

If we order the primes in increasing order, and then order the factors first by
the prime involved and then by the exponent, the resulting expression is unique:
this is theprimary canonical form.

For example, the primary canonical form ofC2×C4×C6 is

C2×C2×C4×C3.

The exponent is given by taking the orders of the largest cyclic factors for each
prime dividing the group order and multiplying these.

The orders of the factors in the primary canonical form are called theelemen-
tary divisorsof the abelian group.

4



3 Möbius inversion

We sketch here the definition of the Möbius function and the M̈obius inversion for-
mula. These will be used several times without comment below. See Chapter 16
of Hardy and Wright [10].

Definition TheMöbius functionis the functionµ defined on the positive integers
by the rule

µ(n) =

{1 if n = 1;
(−1)k if n is the product ofk distinct primes;
0 if n has a square factor greater than 1.

The Möbius inversion formula is the following statement.

Theorem 3.1 Let f and g be functions on the natural numbers. Then the follow-
ing conditions are equivalent:

(a) g(n) = ∑
m|n

f (m);

(b) f(n) = ∑
m|n

µ(n/m)g(m).

For example, Euler’s totientφ is the function on the natural numbers given by the
rule thatφ(n) is the number of integersm∈ [0,n−1] for which gcd(m,n) = 1. (In
other words, it is the order of the groupU(n) of units ofZn: see the next section.)
Now, if gcd(m,n) = d, then gcd(m/d,n/d) = 1; there areφ(n/d) such integersm,
for each divisord of n. Thus we have

n = ∑
d|n

φ(n/d) = ∑
m|n

φ(m),

and so by M̈obius inversion,

φ(n) = ∑
m|n

µ(n/m)m= ∑
d|n

µ(d)n/d.

From here it is an exercise to derive the more familiar formula

φ(n) = n ∏
p prime

p|n

(
1− 1

p

)
.
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4 The units modulon

If x is an element ofZn (that is, a residue class modulon), andm is a divisor of
n, then we may regardx also as a residue class modulom. We usually denote
this new residue class by the same symbolx. But really, we have a map fromZn

to Zm. This mapθ is a ring homomorphism: that is,θ(x+ y) = θ(x) + θ(y) and
θ(xy) = θ(x)θ(y). We call this thenatural mapfromZn toZm.

TheChinese remainder theoremis crucial for what follows. It asserts that, if
n = n1 · · ·nr , wheren1, . . . ,nr are pairwise coprime, andθi is the natural map from
Zn toZni for i = 1, . . . , r, then the map

x 7→ (θ1(x), . . . ,θr(x))

from Zn to Zn1×·· ·×Znr is a bijection: indeed, it is an isomorphism fromZn to
the direct sum of the ringsZni .

Let U(n) denote the group (under multiplication modn) of units ofZn (the
integers modn). The units are the non-zero elements ofZn which are coprime
to n. The number of them isφ(n), whereφ is Euler’s totient function, defined in
the preceding section.

The structure of the groupU(n) is given by the following well-known result.
The first part follows immediately from the Chinese remainder theorem.

Theorem 4.1 (a) Let n= pa1
1 pa2

2 · · · par
r , where p1, . . . , pr are distinct primes and

a1, . . . ,ar > 0. Then

U(n)∼= U(pa1
1 )×U(pa2

2 )×·· ·×U(par
r ).

(b) If p is an odd prime and a> 0, then U(pa) is a cyclic group of order pa−1(p−
1).

(c) U(2) is the trivial group and, for a> 1, we have U(2a)∼= C2×C2a−2, where
the generators of the two cyclic factors are−1 and5.

Thus, if n = pa or n = 2pa, wherep is an odd prime, thenU(n) is a cyclic
group. A generator of this group is called aprimitive rootof n.

For example,
U(18) = {1,5,7,11,13,17}.

The successive powers 50,51, . . . (mod 18) are

1,5,7,17,13,11,
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with 56 = 50 = 1; so 5 is a primitive root of 18.
Forn> 4, the converse is also true: if there is a primitive root ofn, thenn is an

odd prime power or twice an odd prime power. This is because all the non-trivial
cyclic factors given by Theorem4.1 have even order, so if there are at least two
of them, thenC2×C2 is a subgroup ofU(n); this happens ifn has two odd prime
divisors, or ifn is divisible by 4 and an odd prime, or ifn is divisible by 8.

The elements ofU(n) can be divided into subsets calledpower classes: these
are the equivalence classes of the relation∼, wherex∼ y if y = xd for somed
with gcd(d,φ(n)) = 1. (This relation is symmetric because, if gcd(d,φ(n)) = 1,
then there existsewith de≡ 1 (modφ(n)); thenye = xde = x. It is easily seen to
be reflexive and transitive.) Said otherwise,x∼ y if and only if x andy generate
the same cyclic subgroup ofU(n). If x has orderm (a divisor ofφ(n)), then the
size of the power class containingx is φ(m).

Note that all elements of a power class have the same multiplicative order
modn.

It follows from Theorem5.2 (and is easy to prove directly) that, given any
finite abelian groupA, there are only a finite number of positive integersn such
thatU(n)∼= A.

Problem 1 Is it true that, in general, arbitrarily many values ofn can be found for
which the groupsU(n) are all isomorphic to one another?

For example, the groupsU(n) for n = 35, 39, 45, 52, 70, 78 and 90 are all
isomorphic toC2×C12. There are ten values ofn less than 1000000 for which
U(n) ∼= U(n+ 1), namely 3, 15, 104, 495, 975, 22935, 32864, 57584, 131144
and 491535. This is sequence A003276 in theOn-Line Encyclopedia of Integer
Sequences[15], where further references appear.

Problem 2 (a) Are there infinitely many values ofn for whichU(n)∼=U(n+1)?

(b) All the above examples except forn = 3 satisfyn≡ 4 or 5 mod 10. Does this
hold in general?

5 Carmichael’s lambda-function

Euler’s functionφ has the property thatφ(n) is the order of the groupU(n) of units
of Zn. R. D. Carmichael [6] introduced the functionλ:
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Definition For a positive integern, let λ(n) be the exponent ofU(n) (the leastm
such thatam = 1 for all a∈U(n)).

From the structure theorem forU(n) (Theorem4.1), we obtain the formula for
λ(n):

Proposition 5.1 (a) If n = pa1
1 pa2

2 · · · par
r , where p1, p2, . . . , pr are distinct primes

and a1,a2, . . . ,ar > 0, then

λ(n) = lcm(λ(pa1
1 ),λ(pa2

2 ), . . . ,λ(par
r )).

(b) If p is an odd prime and a> 0, thenλ(pa) = φ(pa) = pa−1(p−1).

(c) λ(2) = 1, λ(4) = 2, and, for a≥ 3, we haveλ(2a) = 2a−2 = φ(2a)/2.

The values ofλ(n) appear as sequence A002322 in theOn-Line Encyclopedia
of Integer Sequences[15]. The computer systemGAP [9] has the functionλ
built-in, with the nameLambda.

Givenm, what can be said about the values ofn for which λ(n) = m? There
may be no such values: this occurs, for example, for any odd numberm> 1. (If
n> 2, then the unit−1∈U(n) has order 2, soλ(n) is even.) Also, there is non
with λ(n) = 14, as we shall see.

To get around this problem, we proceed as follows.

Theorem 5.2 (a) If n1 divides n2, thenλ(n1) dividesλ(n2).

(b) For any positive integer m, there is a largest n such thatλ(n) divides m.
Denoting this value byλ∗(m), we have that

(i) if n | λ∗(m), thenλ(n) |m;

(ii) λ(n) = m if and only if n dividesλ∗(m) but n does not divideλ∗(l) for
any proper divisor l of m.

(c) The number of n such thatλ(n) = m is given by the formula

∑
l |m

µ
(m

l

)
d(λ∗(l)),

where d(n) is the number of divisors of n.
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Proof (a) Suppose thatn1 dividesn2. The natural mapθ fromZn2 toZn1 induces
a group homomorphism fromU(n2) to U(n1). We claim thatθ is onto. It is
enough to prove this in the case wheren2/n1 is a primep.

If p does not dividen1, thenU(n2) ∼= U(n1)×U(p), and the conclusion is
obvious. Suppose thatp | n1. Then if 0< a < n1, we have gcd(a,n1) = 1 if
and only if gcd(a,n2) = 1; so these elements ofU(n2) are inverse images of the
corresponding elements ofU(n1).

Now, if am = 1 for all a∈U(n2), thenbm = 1 for all b∈U(n1) (since every
suchb has the formθ(a) for somea∈U(n2)). So the exponent ofU(n1) divides
that ofU(n2), as required.

(b) Suppose thatm is given. Ifλ(n) dividesm, thenλ(pa) dividesm for each
prime power factorpa of n. In particular, if p is odd, thenp−1 must dividem,
so there are only finitely many possible prime divisors ofn; and for each primep,
the exponenta is also bounded, sincepa−1 or pa−2 must dividem. Hence there
are only finitely many possible values ofn, and so there is a largest valueλ∗(m).

By part (a), ifn | λ∗(m), then

λ(n) | λ(λ∗(m)) |m.

Conversely, the construction ofλ∗(m) shows that it is divisible by everyn for
which λ(n) dividesm.

(c) This follows from (b) by M̈obius inversion.

Remark If m> 2 andm is even, then the summation in part (c) can be restricted
to even values ofl . For, if m is divisible by 4, thenµ(m/l) = 0 for oddl ; and if m
is divisible by 2 but not 4 andm> 2, then each odd value ofl hasd(λ∗(l)) = 2,
and the contributions from such values cancel out.

The calculation ofλ∗(m) is implicit in the proof of the theorem. Explicitly,
the algorithm is as follows. Ifm is odd, thenλ∗(m) = 2. If m is even, thenλ∗(m)
is the product of the following numbers:

(a) 2a+2, where 2a ||m;

(b) pa+1, for each odd primep such thatp−1 |m, wherepa ||m.

(Here the notationpa ||m means thatpa is the exact power ofp dividing m.)
For example, whenm= 12, the odd primesp such thatp−1 | 12 are 3,5,7,13;

and so
λ∗(12) = 24 ·32 ·5·7·13= 65 520.
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For another example, letm = 2q, whereq is a prime congruent to 1 mod 6.
Then 2q+ 1 is not prime, so the only odd primep for which p−1 divides 2q is
p = 3, and we have

λ∗(2q) = 23 ·3 = 24= λ∗(2).

Thus, there is no numbern with λ(n) = 2q.
Other numbers which do not occur as values of the functionλ include:

(a) m= 2q1q2 · · ·qr , whereq1,q2, . . . ,qr are primes congruent to 1 mod 6 (they
may be equal or distinct); for example, 98, 182, 266, . . . ;

(b) m= 2q2, whereq is any prime greater than 3; for example, 50, 98, 242, . . . .

We do not have a complete description of such numbers.
Another observation is that, ifq is a Sophie Germain prime (a prime such that

2q+ 1 is also prime, see [5]), and q is greater than 3, then there are just eight
values ofn for whichλ(n) = 2q, namelyn = (2q+1) f , wheref is a divisor of 24.
We do not know whether other numbersm also occur just eight times as values
of λ.

Sierpínski [14] remarks that the only numbersn< 100 which satisfy the equa-
tion λ(n) = λ(n+ 1) aren = 3, 15 and 90. But this is not a rare property: a short
GAP computation reveals that there are 143 numbersn< 1000000 for which the
equation holds.

The formulae show up a couple of errors on p. 236 of [6], giving values ofn
for prescribedλ(n). The entry 136 forλ(n) = 6 should read 126, and the value
528 is missing forλ(n) = 20.

Note that, for a fixed even exponentm= λ(n), the maximum valueλ∗(m) of
n also maximises the value ofφ(n). For it is easily checked that, ifn1 is a proper
divisor ofn2, thenφ(n1)≤ φ(n2), with equality only ifn1 is odd andn2 = 2n1; but
if m is even, thenλ∗(m) is divisible by 8.

For example, the numbersn with λ(n) = 6, and the corresponding values
of φ(n), are given in the following table. (The functionξ(n) is defined to be
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φ(n)/λ(n).)
n φ(n) ξ(n)

7,9,14,18 6 1
21,28,36,42 12 2

56,72,84 24 4
63,126 36 6

168 48 8
252 72 12
504 144 24

Note that the values ofφ(n) are not monotonic inn for fixed λ(n).

The order of magnitude of Carmichael’s lambda-function was investigated by
Erdős, Pomerance and Schmutz [8]. They showed, among other things, that for
x≥ 16,

1
x ∑

n≤x
λ(n) =

x
logx

exp

(
Blog logx

log log logx
(1+o(1))

)
for some explicit constantB.

A composite positive integerm is called aCarmichael numberif λ(m) divides
m−1. (For such numbers, a converse of the little Fermat theorem holds:xm−1≡ 1
(modm) for all residuesx coprime tom.) The smallest Carmichael number is 561,
with λ(561) = 80.

5.1 Denominators of Bernoulli numbers

The sequence(24,240,504,480,264, . . .) of values ofλ∗(2m) agrees with se-
quence A006863 in theEncyclopedia of Integer Sequences[15]. It is is described
as “denominator ofB2m/(−4m), whereBm are Bernoulli numbers”.

The Bernoulli numbers arise in many parts of mathematics, including modular
forms and topology as well as number theory. We won’t try to give an account
of all the connections here (but see the entry for “Eisenstein series” in Math-
World [16] for some of these); we simply prove that the formula given in the
Encyclopedia agrees with the definition ofλ∗(2m).

The mth term am of the Encyclopediasequence is the gcd ofkL(k2m− 1),
wherek ranges over all natural numbers andL is “as large as necessary”. To see
how this works, consider the casem = 3. Takingk = 2, we see thata3 divides
2L(26− 1), so a3 is a power of 2 times a divisor of 63. Similarly, withk = 3,
we find thata3 is a power of 3 times divisor of 728. We conclude thata3 divides
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504. It is not yet clear, however, that 504 is the final answer, since in principle all
values ofk must be checked.

We show thatam (as defined by this formula) is equal toλ∗(2m). First, let
n = am, and choose anyk with gcd(k,n) = 1. Thenn divideskL(k2m−1). Sincek
is coprime ton, we havek2m≡ 1 (modn). So the exponent ofU(n) divides 2m,
andn dividesλ∗(2m).

In the other direction, letn= λ∗(2m); we must show thatn divideskL(k2m−1)
for all k (with large enoughL). Since

(k1k2)L((k1k2)2m−1) = (k1k2)Lk2m
1 (k2m

2 −1)+(k1k2)L(k2m
1 −1),

it is enough to prove this whenk = p is prime. Writen = pan1, wherep does not
divide n1. Thenn1 | λ∗(2m), soλ(n1) | 2m by Theorem5.2; that is,n1 | p2m−1.
Son | pa(p2m−1), as required.

5.2 p-rank and p-exponent

Definition Let p be a prime. Thep-rankof an abelian groupA is the number of
its elementary divisors which are powers ofp, and thep-exponentis the largest of
these elementary divisors.

The 2-rank and 2-exponent of the group of units modn can be calculated as
follows.

Suppose thatn = 2apa1
1 · · · par

r , wherep1, . . . , pr are odd primes,a1, . . . ,ar > 0,
anda≥ 0. Then the 2-rank ofU(n) is equal to{ r if a≤ 1,

r +1 if a = 2,
r +2 if a≥ 3.

The 2-exponent ofU(n) is the 2-part ofλ(n). It is the maximum of 2b and the
powers of 2 dividingpi−1 for i = 1, . . . , r, where

b =

{0 if a≤ 1,
1 if a = 2,
a−2 if a≥ 3.

In particular, the 2-exponent ofU(n) is 2 if and only if

(a) the power of 2 dividingn is at most 23;

(b) all odd primes dividingn are congruent to 3 mod 4.

We leave as an exercise the description of thep-rank andp-exponent ofU(n)
for odd p.
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6 Primitive lambda-roots

Carmichael [6] defined primitiveλ-roots as a generalisation of primitive roots, to
cover cases where the latter do not exist.

Definition A primitive λ-root ofn is an element of largest possible order (namely,
λ(n)) in U(n).

We also putξ(n) = φ(n)/λ(n), where (as noted)φ(n) is the order ofU(n); thus
there is a primitive root ofn if and only if ξ(n) = 1. (Carmichael calls a primitive
root aprimitive φ-root.)

Since elements of a power class all have the same order, we see:

Proposition 6.1 Every element in the power class of a primitiveλ-root is a prim-
itive λ-root.

Proposition 6.2 For any n, eitherξ(n) = 1 or ξ(n) is even.

Proof Theorem4.1shows thatξ(n) = 1 if and only if n = pa or n = 2pa, where
p is an odd prime. Suppose that this is not the case. Thenn is divisible by
either two odd primes or a multiple of 4. In the first case, letn = paqbm wherep
andq are distinct odd primes not dividingm. Thenφ(n) = φ(pa)φ(qb)φ(m) and
λ(n) = lcm{φ(pa),φ(qb),λ(m)}; sinceφ(pa) andφ(qb) are both even,φ(n)/λ(n)
is even. In the second case, ifa≥ 2 thenφ(2a) = 2λ(2a), and soφ(2am)/λ(2am)
is even for any oddm.

For example, consider the casen = 15. We haveφ(15) = φ(3)φ(5) = 8, while
λ(15) = lcm(φ(3),φ(5)) = 4, andξ(15) = 2. The groupU(15) consists of the
elements 1,2,4,7,8,11,13,14, and their powers are given in the following table:

elementx powers ofx
1 1
2 1,2,4,8
4 1,4
7 1,7,4,13
8 1,8,4,2
11 1,11
13 1,13,4,7
14 1,14
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The primitiveλ-roots are thus 2,7,8,13, falling into two power classes{2,8} and
{7,13}.

Corollary 6.3 If λ(n)> 2, then the number of primitiveλ-roots of n is even.

Proof The number of PLRs in a power class isφ(λ(n)); andφ(m) is even for
m> 2.

Proposition 6.4 The group U(n) of units mod n is generated by primitive lambda-
roots; the least number of PLRs required to generate the group is equal to the
number of invariant factors.

Proof We can writeU(n) = A×B, whereA is a cyclic group of orderλ(n) gener-
ated by a primitive lambda-roota. Clearly every element ofA lies in the subgroup
generated by the primitive lambda-roots. For anyb∈ B, the elementab is a prim-
itive lambda-root; for ifm is a proper divisor ofλ(n), then(ab)m = ambm and
am 6= 1. Sob is the product of the primitive lambda-rootsa−1 andab.

The number of generators ofU(n) is not less than the number of invariant
factors. Suppose thata1, . . . ,ar are generators of the invariant factors ofU(n),
wherea1 is a PLR. Then the elementsa1,a1a2, . . . ,a1ar are all PLRs and clearly
generateU(n).

How many primitiveλ-roots ofn are there? The answer is obtained by putting
m= λ(n) in the following result:

Theorem 6.5 Let A= Cm1×Cm2×·· ·×Cmr be an abelian group. Then, for any
m, the number of elements of order m in A is

∑
l |m

µ
(m

l

) r

∏
i=1

gcd(l ,mi).

Proof Let a = (a1,a2, . . . ,ar) ∈ A. Thenam = 1 if and only if am
i = 1 for i =

1, . . . , r. The number of elementsx∈Cmi satisfyingxm = 1 is gcd(m,mi), so the
number of elementsa ∈ A satisfyingam = 1 is g(m) = ∏r

i=1gcd(m,mi). Now
am = 1 if and only if the order ofa dividesm; so g(m) = ∑l |m f (l), where f (l)
is the number of elements of orderl in A. Now the result follows by M̈obius
inversion.
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For example,U(65)∼= U(5)×U(13)∼= C4×C12, so thatλ(65) = 12; and the
number of primitiveλ-roots is

∑
l |12

µ(12/l)gcd(4, l)gcd(12, l).

The only non-zero terms in the sum occur forl = 12,6,4,2, and the required
number is

4·12−2·6−4·4+2·2 = 24.

Sinceφ(12) = 4, there are 24/4 = 6 power classes of primitiveλ-roots; these are
{2,32,33,63}, {3,22,42,48}, {6,11,41,46}, {7,28,37,58}, {17,23,43,62} and
{19,24,54,59}.

The following table gives the number of primitiveλ-roots, and the smallest
primitive λ-root, for certain values ofn.

n φ(n) λ(n) # PLRs Smallest PLR
15 8 4 4 2
24 8 2 7 5
30 8 4 4 7
35 24 12 8 2
63 36 6 24 2
65 48 12 24 2
91 72 12 32 2
105 48 12 16 2
117 72 12 32 2
143 120 60 32 2
168 48 6 20 5
189 108 18 54 2
275 200 20 96 2

We haveU(15)∼= U(30)∼= C2×C4, andU(91)∼= U(117)∼= C6×C12, explaining
the equal numbers and orders of primitiveλ-roots in these cases. On the other
hand,φ(65) = φ(105), butU(65)∼= C4×C12, whileU(105)∼= C2×C4×C6; these
groups are not isomorphic (the Smith canonical form ofU(105) isC2×C2×C12).
Note that, forn = 143, the proportion of units that are PLRs is less than 1/3. In
this connection, we have the following result and problem:

Proposition 6.6 The proportion of units which are primitiveλ-roots can be arbi-
trarily close to0.

15



Proof If n = p is prime, then the proportion of units which are PLRs is

φ(p−1)/(p−1) = ∏
r prime
r|p−1

(
1− 1

r

)
.

Choosingp to be congruent to 1 modulo the product of the firstk primes (this is
possible, by Dirichlet’s Theorem) ensures that the product on the right is arbitrar-
ily small. In order to obtain proper PLRs, also choosep≡ 1 (mod 4); then the
proportion for 4p is the same as forp.

Problem 3 Can the proportion of units which are primitiveλ-roots be arbitrarily
close to 1? Numbersn which are of the formλ∗(m) seem to be particularly good
for this problem. For example, if

n = λ∗(53130)
= 460765909369981425841156813418098240135472867831112,

then the proportion of PLRs in the group of units differs from 1 by less than one
part in two million.

Li [ 13] has considered the analogue for PLRs of Artin’s conjecture for primi-
tive roots, that is, the functionNa(x) whose value is the number of positive integers
n≤ x such thata is a PLR ofn. This function is more erratic than the correspond-
ing function for primitive roots: the lim inf of

(
∑1≤a≤xNa(x)

)
/x2 is zero, while

the lim sup of this expression is positive.

6.1 Another formula

Here is another, completely different, method for calculating the number of primi-
tive lambda-roots ofn. This depends on knowing the elementary divisors ofU(n).

Theorem 6.7 Let n be a positive integer. For any prime p dividingφ(n), let pa(p)

be the largest p-power elementary divisor of U(n), and let m(p) be the number
of elementary divisors of U(n) which are equal to pa(p). Then the number of
primitive lambda-roots of n is

φ(n) ∏
p|φ(n)

(
1− 1

pm(p)

)
.
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Proof Write U(n) = P1× ·· ·×Pr , wherePi is the pi-primary part ofU(n) (the
product of all the cyclic factors ofpi-power order in the primary decomposition of
U(n)). Now an element ofU(n) is a primitive lambda-root if and only if, for each

i with 1≤ i ≤ r, its projection intoPi is of maximum possible orderpa(pi)
i . So we

have to work out the fraction of elements ofP which are of maximum possible
order.

Dropping the subscripts, letP = Cpa×·· ·×Cpa×Q, where there arem factors
pa, andQ is a product of cyclicp-groups of orders smaller thanpa. Then an
element ofP has orderpa if and only if its projection into(Cpa)m has orderpa.
So the fraction of elements of maximal order inP is the same as in(Cpa)m. Now
the elements of the latter group of order less thanpa are precisely those lying in
the subgroup(Cpa−1)m, a fraction 1/pm of the group. So a fraction 1−1/pm have
order equal topa.

This result has a curious corollary. Ifn is such that primitive roots ofn exist
(that is, if n is an odd prime power, or twice an odd prime power, or 4), then the
number of primitive roots ofn is φ(φ(n)). Now for anyn, compare the formula in
the theorem with the formula

φ(φ(n)) = φ(n) ∏
p|φ(n)

(
1− 1

p

)
.

We see that the number of PLRs is at leastφ(φ(n)), with equality if and only if
m(p) = 1 for all p dividing φ(n). In other words:

Corollary 6.8 For any n, the number of primitive lambda-roots of n is at least
φ(φ(n)). Equality holds if and only if, for each prime p which dividesφ(m), the
largest p-power elementary divisor of U(n) is strictly greater than all the other p-
power elementary divisors of n. An equivalent condition is that the second largest
invariant factor of U(n) dividesλ(n)/σ(λ(n)), whereσ(m) is the product of the
distinct prime divisors of m.

Proof The first part follows from the prefatory remarks. The equivalence of the
last condition with the condition involving the elementary divisors is clear.

This raises a curious number-theoretic problem.

Problem 4 What proportion of numbersn have the property that the number of
PLRs ofn is equal toφ(φ(n))?

17



A computer search shows that nearly 60% of all numbers below 100000 have
this property (to be precise, 57996 of them do).

The condition in this proposition comes up in a completely different context,
namely, a relationship between the number of power classes of PLRs and the
functionξ(n) = φ(n)/λ(n).

Proposition 6.9 For any positive integer n, the number of power classes of PLRs
of n is at leastξ(n). Equality holds if and only if, for any prime divisor p ofφ(n),
the largest p-power elementary divisor is strictly greater than any other p-power
elementary divisor.

Proof We can writeU(n) = A×B, whereA is a cyclic group of orderλ(n),
generated bya (which is a PLR). Now, for each elementb∈ B, the productab is a
PLR. We claim that distinct elements ofB give rise to distinct power classes. For
suppose thatab1 andab2 lie in the same power class. Thenab2 = (ab1)m for some
m with gcd(λ(n),m) = 1. This implies thata = am, so thatm≡ 1 (modλ(n)),
from which it follows thatb2 = bm

1 = b1. So there are at least as many power
classes as elements ofB. Since|B|= φ(n)/λ(n) = ξ(n), the inequality is proved.

Equality holds if and only if, whenevera∈A, b∈B, andab is a PLR, it follows
thata is a PLR. Suppose that the condition on elementary divisors holds. For any
p dividing λ(n), thep-elementary divisors ofB divideλ(n)/p, and sobλ(n)/p = 1.
Henceaλ(n)/p = (ab)λ(n)/p 6= 1. Since this holds for allp, the order ofa is λ(n),
and soa is a PLR. Conversely, suppose that the condition on elementary divisors
fails, and suppose that the largestp-elementary divisor ofB is pr and is thep-part
of λ(n). Choose an elementb∈ B of orderpr . Thenapr

b is a PLR, butapr
is not.

For another proof that the cases of equality in the two results coincide, note
thatφ(n) andλ(n) have the same prime divisors, and so

φ(φ(n))
φ(n)

=
φ(λ(n))

λ(n)
,

so thatξ(n) = φ(φ(n))/φ(λ(n)), whereas the number of power classes is the num-
ber of PLRs divided byφ(λ(n)).
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Example For n = 360= 23 ·32 ·5, we have

U(n)∼= C2×C2×C6×C4
∼= C4×C3

2×C3,

so

#PLRs= φ(φ(n)) = 32,

#PCs= ξ(n) = 8.

For n = 720= 24 ·32 ·5, we have

U(n)∼= C2×C4×C6×C4
∼= C2

4×C2
2×C3,

so

#PLRs= 96, φ(φ(n)) = 64,

#PCs= 24 ξ(n) = 16.

6.2 Fraternities

Definition Two PLRsx andy of n are said to befraternal if x2 ≡ y2 (modn).
This is an equivalence relation on the set of PLRs; its equivalence classes are
calledfraternities.

Recall the definition of 2-rank and 2-exponent from Subsection5.2.

Proposition 6.10 Suppose that n≥ 2. Let the2-rank and2-exponent of U(n) be
s and2e respectively. Then the size of a fraternity of PLRs of n is equal to{

2s if e> 1,
2s−1 if e = 1.

Proof Let A = {u∈U(n) : u2≡ 1 (modn)}. Clearly|A|= 2s. Sincex2≡ y2 if
and only ifx = yu for someu∈ A, each fraternity is the intersection of the set of
PLRs with a coset ofA.

Let a cosetC of A contain an element of even order 2m. If m is even, then
every element ofC has order 2m. Suppose thatm is odd. Then, foru∈C, um∈ A,
andu·um has orderm; all other elements ofC have order 2m.

In particular, the number of PLRs in a coset ofA is 2r if e> 1, and is 2r −1 if
e= 1.
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Remark We worked out in Subsection5.2the necesary and sufficient conditions
for e= 1.

Proposition 6.11 Suppose that n> 2, and letλ(n) = 2m. The intersection of the
power class and the fraternity containing a PLR x of n is equal to{x} if m is odd,
and is{x,xm+1} if m is even. The number of fraternities is divisible byφ(λ(n)) if
m is odd, and byφ(λ(n))/2 if m is even.

Proof The elements of the power class ofxhave the formxd, where gcd(d,λ(n)) =
1. Nowx andxd are fraternal if and only ifx2(d−1) ≡ 1, which holds if and only if
d = 1+ λ(n)/2 = m+1. Now gcd(m+1,2m) = 1 if and only ifm is even.

The last part follows from the fact that each power class has cardinalityφ(λ(n)).

Corollary 6.12 The number of fraternities of PLRs is even, unless n divides240,
in which case there are three fraternities if n= 80or n = 240, and1 otherwise.

Proof Suppose first thatλ(n)≡ 2 (mod 4). Then eitherλ(n) = 2, orφ(λ(n)) is
even. In the first case,n divides 24, and every PLR satisfiesx2≡ 1, so there is just
one fraternity. In the second, the number of fraternities meeting each power class
is even.

Now suppose thatλ(n) ≡ 0 (mod 4). Then eitherλ(n) = 4, or φ(λ(n)) is
also divisible by 4. In the first case,n divides 240, and a finite amount of checking
establishes the result. In the second, the number of fraternities meeting every
power class is even.

Examples For n = 40 we haves = 3 ande = 2, so the size of a fraternity is
23 = 8; all PLRs belong to a single fraternity

For n = 56, we haves= 3 ande= 1, so the size of a fraternity is 23−1 = 7;
the 14 PLRs fall into two fraternities. Sinceλ(n) = 6, one fraternity contains the
inverses of the elements of the other.

For n = 75, we haves = 2 ande = 2, so the size of a fraternity is 4; the 16
PLRs fall into four fraternities.
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7 Some special structures for the units

Theorem 7.1 Suppose that the Smith canonical form of U(n) is

U(n)∼= Cλ(n)×·· ·×Cλ(n) (r factors),

with r > 1. Then either

(a) n= 8, 12or 24; or

(b) n= pa(pa− pa−1+1) or 2pa(pa− pa−1+1), where p and pa− pa−1+1 are
odd primes.

In particular, r≤ 3, and r= 3 only in the case n= 24.

Proof Suppose first thatφ(n) is a power of 2. Thenn = 2ap1 · · · ps, where
p1, . . . , ps are distinct Fermat primes, andU(n) ∼= U(2a)×Cp1−1× ·· · ×Cps−1.
Since all the cyclic factors have the same order, eithers= 0, ors= 1, p1 = 3; the
cases where there are more than one cyclic factor aren = 8, 12 and 24.

Now suppose thatφ(n) is not a power of 2; letn havesodd prime factors. The
number of 2-power cyclic factors ofU(n) is s, plus one or two if the power of 2
dividing n is 4 or at least 8, respectively; the number of cyclic factors of odd prime
power order is at mosts. Son must be odd or twice odd; we may assume thatn is
odd. We haves= r.

Let n = pa1
1 · · · par

r . The decomposition

U(n)∼= U(pa1
1 )×·· ·×U(par

r )

must coincide with the Smith normal form ofU(n), so we must have

pa1−1
1 (p1−1) = · · ·= par−1

r (pr −1).

Clearly ai = 1 can hold for at most one value ofi. But, if ai > 1, thenpi is the
largest prime divisor ofpai−1

i (pi−1). We conclude thatr = 2 and that (assuming
p = p1 < p2 anda = a1) we havep2 = pa−1(p−1)+1 anda2 = 1.

The odd numbersn< 1000000 occurring in case (b) of the theorem are

63 = 9·7,
513 = 27·19,
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2107 = 49·43,

12625 = 125·101,

26533 = 169·157,

39609 = 243·163, and

355023 = 729·487.

There are various possibilities for the structureU(n)∼= Ca×Cλ(n)×Cλ(n) with
a | λ(n); for example, for oddn, we have

n = 3·72 ·43, U(n)∼= C2×C42×C42;

n = 32 ·72 ·43, U(n)∼= C6×C42×C42;

n = 3·53 ·101, U(n)∼= C2×C100×C100;

n = 11·53 ·101, U(n)∼= C10×C100×C100.

For evenn, the valuesn = 4· p j · (p j−1(p−1)+1), wherep andp j−1(p−1)+1
are odd primes, give examples.

Problem 5 Can the multiplicity ofλ(n) as the order of an invariant factor ofU(n)
be arbitrarily large? Again, numbers of the formn= λ∗(m) are particularly fruitful
here: forn = λ∗(157080), a number with 122 digits, the multiplicity ofC157080in
the Smith normal form ofU(n) is 16.

8 Negating and non-negating PLRs

Suppose thatx is a primitiveλ-root. We can ask:

(a) Is−x also a primitiveλ-root?

(b) If so, is−x in the same power class asx?

In an abelian group, the order of the product of two elements divides the lcm
of the orders of the factors. Sincex = (−1)(−x), we see that, ifx is a PLR, then
the order of−x must be eitherλ(n) or λ(n)/2, and the latter holds only ifλ(n)/2
is odd. Thus, we have:

Proposition 8.1 Let x be a primitiveλ-root of n, where n> 2. Then−x is also
a primitiveλ-root if either n has a prime factor congruent to1 (mod 4), or n is
divisible by16.
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Note that, if−x has orderλ(n)/2, then we have

〈x〉= 〈−1〉×〈−x〉,

so that−1 and−x are both powers ofx in this case. Conversely, ifλ(n)/2 is odd
and−1 is a power ofx, then−x is an even power ofx and so has orderλ(n)/2.
Thus, in the cases excluded in the above Proposition, we see that−x is a primitive
λ-root if and only if−1 is not a power ofx. Necessary and sufficient conditions
for this are given in Subsection8.3below.

Definition The PLRx of n is negatingif −1 is a power ofx, andnon-negating
otherwise.

Now clearly−x is a power ofx if and only if x is negating.

Corollary 8.2 Suppose thatλ(n) is twice an odd number (so that n is not divisible
by16or by any prime congruent to1 (mod 4)).

(a) If n = 4 or n = 2pa for some prime p≡ 3 (mod 4), then for every primitive
λ-root x, we have that−x is not a primitiveλ-root.

(b) Otherwise, some primitiveλ-roots x have the property that−x is a primitive
λ-root, and some have the property that it is not.

The PLRx is negating if and only if−1 belongs to the cyclic group generated
by x; so we see:

Proposition 8.3 If a primitive λ-root is negating, then so is every element of its
power class.

In the next two sections, after a technical result, we will determine for whichn
there exist negating PLRs, and count them. We conclude this section with some
open problems.

Problem 6 Is it possible for−1 to be the only unit which is not a power of a
PLR? More generally, which units can fail to be powers of PLRs?

Problem 7 For which values ofn is it true that the product of two PLRs is never
a PLR? (This holds forn = 105, for example.) For other values ofn, can we
characterise (or count) the number of pairs(x1,x2) of PLRs whose product is a
PLR?
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8.1 A refined canonical form

While the invariant factors and the elementary divisors of a finite abelian group
are uniquely determined, the actual cyclic factors are not in general. This freedom
is used in the following result, which is useful in the construction of terraces. This
result lies at the opposite extreme from the negating PLRs we have considered; it
shows that there is a unit generating a cyclic factor ofU(n) of smallest possible
2-power order which has−1 as a power.

Theorem 8.4 Let 2m be the smallest elementary divisor of U(n) for the prime2.
Then U(n) = A×B, where A∼= C2m and−1∈ A. In particular,

(a) U(n) can be written in Smith canonical form so that the smallest cyclic factor
contains−1;

(b) U(n) can be written in primary canonical form so that the smallest cyclic
factor of2-power order contains−1.

Proof The case wheren is divisible by 4 can be dealt with by a simple construc-
tive argument. In this case, we have 2m = 2; all units are odd, and those congruent
to 1 mod 4 form the subgroupB, while A is generated by−1.

Next, suppose thatn is odd. In the decomposition ofU(n) into cyclic groups
given by Theorem4.1, the element−1 has order 2 in every factor. So, if we refine
this decomposition to the primary canonical form, the element−1 has order 2 in
every 2-power factor.

Let C2m1 × ·· · ×C2mr be the 2-part ofU(n), wherem = m1. Let xi be the
generator of theith factor. Then

−1 = x2m1−1

1 · · ·x2mr−1

r .

Now replacex1 by
y1 = x1x2m2−m1

2 · · ·x2mr−m1
r .

Theny1,x2, · · ·xr generate cyclic groups also forming the 2-part of the primary
decomposition ofU(n); and we have

−1 = y2m1−1

1 ,

as required.
Finally, if n is odd, thenU(2n)∼= U(n), and the natural isomorphism maps−1

to−1. So the case wheren is twice an odd number follows from the case wheren
is odd.
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8.2 Generators differing by1

As an example of the preceding result, considern = 275= 52 · 11. The Smith
canonical form ofU(n) is C10×C20. If we take 139 and 138 as generators of
the respective cyclic factors, then 1395 = −1. Is it just coincidence that the two
generators differ by 1 in this case?

We cannot answer this question completely, but in some cases whereU(n)
has just two cyclic factors, we can show that generators differing by 1 must exist,
keeping the property that−1 lies in the smaller cyclic group.

We consider the case wheren = pq, with p andq distinct odd primes. Then
U(n) ∼= Cξ(n)×Cλ(n), whereλ(n) and ξ(n) are the least common multiple and
greatest common divisor, respectively, ofp−1 andq−1. We have seen that it
is possible to choose a generatorx of the first factor such that−1 is a power of
x (necessarily−1 = xξ(n)/2). Under suitable hypotheses, we can assume also that
x+1 generates the second factor.

We consider first the case whereξ(n) = 4. In this case, bothp andq must be
congruent to 1 mod 4, and at least one must be congruent to 5 mod 8. Moreover,
we havex2≡−1 (modpq).

Theorem 8.5 Let p and q be primes congruent to5 (mod 8), such thatgcd(p−
1,q−1) = 4. Suppose that2 is a primitive root of both p and q. Then there exists
a number x such that

U(pq) = 〈x〉×〈x+1〉= 〈x〉×〈x−1〉,

where the cyclic factors have ordersξ(pq) = 4 and λ(pq) = (p− 1)(q− 1)/4,
and the first factor contains−1. There are two such values, one the negative of
the other modulo pq.

Proof We have

2(p−1)(q−1)/8 =
(

2(p−1)/2
)(q−1)/4

≡ (−1)odd =−1 (modp),

and similarly modq; so

2(p−1)(q−1)/8≡−1 (modpq).
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Now there are four solutions ofx2≡−1 (modpq), namely±x1 and±x2, where

x1≡ a (modp), x1≡ b (modq),
x2≡ a (modp), x2≡−b (modq),

a2≡−1 (modp), b2≡−1 (modq).

So we can choosexsuch thatx2≡−1 andx 6≡±y (modpq), wherey= 2(p−1)(q−1)/16.
Certainlyx has order 4. Also we have

(x+1)2 = x2 +2x+1≡ 2x (modpq),

and
(2x)(p−1)(q−1)/16≡ (±y)(±x) (modpq),

whence(2x)(p−1)(q−1)/8 ≡ 1 (modpq). Clearly every odd divisor ofp− 1 or
q−1 divides the order of 2x, so 2x has order(p−1)(q−1)/8, andx+1 has order
(p−1)(q−1)/16. Moreover, the subgroup generated byx+ 1 does not contain
−1 (since its unique element of order 2 is±xy), so it is disjoint from the subgroup
generated byx. Thus, these two subgroups generate their direct product, which
(by considering order) is the whole ofU(pq).

The argument forx−1 is the same. Alternatively, note that we can replacex
by−x in the argument, giving

U(pq) = 〈−x〉×〈−x+1〉= 〈x〉×〈x−1〉.

The final statement in the theorem holds because if we chosex = ±y, then
(2x)(p−1)(q−1)/16 ≡ ±1, so that either the order ofx+ 1 is too small, or−1 ∈
〈x〉∩ 〈x+1〉.

For example, 2 is a primitive root modulo 5, 13, 29, 37 and 53, so we can
use any two of these primes in the Theorem. The table gives all instances with
pq< 300.

n x
65= 5·13 ±18
145= 5·29 ±12
185= 5·37 ±68
265= 5·53 ±83

A similar argument works in other cases, with some modification. Ifq≡ 1
(mod 8), then 2 is a quadratic residue modq, and cannot be a primitive root: its
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order is at most(q−1)/2. Forq = 17,41, . . ., it happens that the order of 2 modq
is (q−1)/2.

Consider, for example, the casep = 5, q = 17. Now 2 has order 4 mod 5 and
8 mod 17, so 28 ≡ 1 (mod 85) but 24 ≡ 16 (mod 85). So 2x has order 8, and
(x+1) has order 16, ifx is any solution ofx2≡−1 (mod 85). Thus all four such
solutionsx =±13,±38 have the required property.

On the other hand, 2 has order 20 mod 41, and so 210≡−1 (mod 205). Thus
(2x)10≡ 1 (mod 205), so in this casex+ 1 has order 20, rather than 40, and the
construction fails.

In general, we have the following result, whose proof follows the same lines
as the casepq= 85.

Theorem 8.6 Let p and q be primes with p≡ 5 (mod 8) and q≡ 1 (mod 16),
such thatgcd(p−1,q−1) = 4. Suppose that2 is a primitive root of p and has
order (q−1)/2 modulo q. Then there exists a number x such that

U(pq) = 〈x〉×〈x+1〉= 〈x〉×〈x−1〉,

where the cyclic factors have orders4 andλ(pq) = (p−1)(q−1)/4, and the first
factor contains−1. There are four such values of x modulo pq, falling into two
pairs±x.

Examples withpq< 300 are given in the next table.

n x
85= 5·17 ±13,±38

221= 13·17 ±21,±47

Similar results hold in the case whereξ(pq) = 6. In this case our condition
is x3≡−1. This condition permits the possibility thatx≡−1 modulo one of the
primes; we exclude this, since thenx+ 1 would not be a unit. Sincex3 + 1 =
(x+ 1)(x2−x+ 1), this means that we requirex2−x+ 1≡ 0 modulo bothp and
q, so that this congruence holds modulopq, Conversely, ifx2≡ x−1 (modpq),
thenx has order 6 and−1∈ 〈x〉.

Theorem 8.7 Let p and q be primes congruent to7 (mod 12), such thatgcd(p−
1,q−1) = 6. Suppose that3 is a primitive root modulo both p and q. Then there
exists a number x such that

U(pq) = 〈x〉×〈x+1〉

where the cyclic factors have ordersξ(pq) = 6 andλ(pq) = (p−1)(q−1)/6, and
the first factor contains−1.
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Proof The proof is almost identical to that of the previous theorem. Ifx3≡−1,
thenx2−x+1≡ 0, and so(x+1)2≡ 3x.

Since 3 is a primitive root of 7, 19 and 31, the theorem gives the following
values:

n x
133= 7·19 17,75
217= 7·31 68,150

Problem 8 Find an analogous result in the case whereq≡ 1 (mod 12). We note
that the conclusions of the theorem hold in several further cases, as in the next
table.

n x
91= 7·13 17,75

247= 13·19 69,88,160,179

There are also cases where the second factor is generated byx− 1 rather than
x+1:

n x
91= 7·13 12,38
259= 7·37 73,110

Problem 9 (a) What happens for larger values ofξ(pq)?

(b) What happens for larger numbers of prime factors ofn?

8.3 Existence of negating PLRs

The existence and number of negating PLRs ofn depend on the structure of the
Sylow2-subgroup Sof U(n), the group of all units of 2-power order.

Definition An abelian group ishomocyclicif it is the direct product of cyclic
groups of the same order. Therank of a homocyclic abelian group is the number
of cyclic factors in such a decomposition.

Theorem 8.8 Let n> 1. There exists a negating PLR of n if and only if the Sylow
2-subgroup S of U(n) is homocyclic. In this case, the proportion of PLRs which
are negating is1/(2s−1), where s is the rank of S.
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Proof Suppose first thatS is not homocyclic. By Theorem8.4, U(n) = A×B,
whereA is cyclic and−1∈ A; andλ(n)/|A| is even, soaλ(n)/2 = 1 for all a∈ A.
Thus no element ofU(n) has the property that itsλ(n)/2 power is−1.

In the other direction, suppose thatSis homocyclic. ThenU(n) = S×T, where
T consists of the elements of odd order inU(n); and a PLR ofn is a product of
elements of maximal order inSandT. In this case, the automorphism group ofS
acts transitively on the set of 2s−1 elements of order 2 inS, so that each of them
(and in particular,−1) occurs equally often as a power of an element of maximal
order.

As a result, we see that every PLR is negating if and only ifS is cyclic; this
occurs if and only ifn = pa, 2pa (for some odd primep) or 4.

The next result, which follows immediately from the structure theorem for
U(n) (Theorem4.1), thus describes when negating PLRs exist.

Theorem 8.9 Let n= 2am where m is odd, and let r be the number of distinct
prime divisors of m. Then the Sylow2-subgroup S of U(n) is homocyclic if and
only if one of the following holds:

(a) a≤ 1 and, for any two primes p and q dividing m, the powers of2 dividing
p−1 and q−1 are equal. In this case the rank of S is r.

(b) a= 2 or a = 3, and every prime divisor of m is congruent to3 (mod 4). In
this case the rank of S is r+a−1.

9 Inward and outward PLRs

Definition The PLRx of n is inward if x−1 is a unit, andoutwardotherwise.

Like the previous property, this one is a property of power classes. This fol-
lows from a more general observation.

Proposition 9.1 Let x,y ∈ U(n), and suppose that x and y belong to the same
power class. Then x−1∈U(n) if and only if y−1∈U(n).

Proof Let y = xd. Since gcd(d,φ(n)) = 1, there existsesuch thatx = ye. Now

y−1 = xd−1 = (x−1)(xd−1 + · · ·+1) = (x−1)a
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for somea∈Zn. Similarly,x−1= (y−1)b for someb∈Zn. Thus(x−1)ab= x−
1. If x−1 is a unit, this implies thatab= 1, so thata is a unit andy−1 = (x−1)a
is a unit; and conversely.

Corollary 9.2 If a primitiveλ-root is inward, then so is every element of its power
class.

Proposition 9.3 (a) Every primitiveλ-root of n is outward if and only if n is
even.

(b) If a primitive λ-root x is outward and negating, then n is even, and if n is
divisible by4 then x≡ 3 (mod 4).

Proof (a) If n is even, then every unit is odd, and sox ∈U(n) implies x−1 /∈
U(n).

Conversely, suppose thatn is odd. Suppose first thatn is a prime power, say
n = pa. If x≡ 1 (modp), then the order ofx modn is a power ofp, andx is not
a PLR. Thus, every PLR is inward in this case.

In general, choosex congruent to a primitive root modulo every prime power
divisor of n. Thenx is a PLR, and by the preceding argument,x−1 is coprime
to n. Thus,x−1∈U(n), andx is inward.

(b) If x is outward and negating, thenxd = −1 for somed, andx−1 divides
xd−1 =−2. If n is odd, then−2 is a unit, and hencex is inward; son is even. If
n is divisible by 4, thenx cannot be congruent to 1(mod 4), since then 4 divides
x−1 but 4 does not dividexd−1.

We remark that whether a PLR is inward or outward does not depend only on
the group-theoretic structure ofU(n). For example,

U(21)∼= U(28)∼= U(42)∼= C2×C6;

each of these groups has six PLRs, falling into three power classes of size 2, as in
the following table.
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n Power class Type
21 2, 11 inward non-negating

19, 10 outward non-negating
5, 17 inward negating

28 11, 23 outward non-negating
5, 17 outward non-negating
3, 19 outward negating

42 11, 23 outward non-negating
19, 31 outward non-negating
5, 17 outward negating

A PLR x of n is outward if and only ifx is congruent to 1 modulo some
prime divisor ofn. In principle, the number of inward PLRs can be calculated
by inclusion-exclusion over the prime divisors ofn. However, we do not have a
concise formula.

For example, consider the casen = 275= 52 ·11. We haveλ(n) = 20 and the
number of PLRs ofn is 96. A unit congruent to 1 mod 5 has order dividing 5
mod 52 and dividing 10 mod 11, and so cannot be a PLR. A unit congruent to 1
mod 11 is a PLR if and only if it is a primitive root of 25: there are 8 such elements.
So there are 96−8 = 88 inward PLRs of 275.

For a more complicated example, letn = 189= 33 · 7, with λ(n) = 18. An
element congruent to 1 mod 3 has order dividing 9 mod 27; to be a PLR, its order
must be 9 mod 27 and 2 or 6 mod 7. An element congruent to 1 mod 7 is a PLR
mod 189 if and only if it is a PLR mod 27. So the number of inward PLRs is

54−6·3−6 = 30.

Again, we end the section with an open problem.

Problem 10 What are necessary and sufficient conditions forn to have only in-
ward PLRs? (Ifn is odd and squarefree, then a necessary and sufficient condition
is thatλ(n/p)< λ(n) for every prime divisorp of n. There are many examples of
this: n = 35, 55, 77, 95, . . . )

10 Perfect, imperfect and aberrant PLRs

For convenience, in this section the term “primitive lambda-root” includes “prim-
itive root”.
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Definition If n = pa1
1 pa2

2 · · · par
r , then the PLRx of n is said to be

• perfectif x is a PLR ofpai
i for all i = 1, . . . , r;

• imperfectif x is a PLR ofpai
i for at least one but not alli = 1, . . . , r;

• aberrantif x is not a PLR ofpai
i for any of the valuesi = 1, . . . , r.

Trivially, if r = 1, then any PLR ofn is perfect. From now on we assume that
r ≥ 2. Also, of course, ifpi is odd then a PLR ofpai

i is simply a primitive root of
pai

i .
If n is odd, every unit mod 2n is congruent to 1 mod 2 and to a unit modn, so

there is a bijection between the units modulon and 2n. This bijection clearly pre-
serves the properties of being a PLR and of being perfect, imperfect or aberrant.
So the numbers of PLRs in each of these three categories are the same for 2n as
for n.

The property of being a perfect PLR is equivalent to the apparently stronger
property (b) in the following result.

Theorem 10.1 Let x be a unit modulo n. Then the following are equivalent:

(a) x is a perfect PLR of n;

(b) x is a PLR of m, for every divisor m of n;

(c) x is a perfect PLR of m, for every divisor m of n.

Proof Clearly (c) implies (b) and (b) implies (a). So suppose that (a) holds, with
n = pa1

1 · · · par
r . Thenx is a PLR ofpai

i , for eachi.
We claim thatx is a PLR ofpb

i , for all i and allb with 0< b≤ ai . This is
because the natural homomorphism fromU(pc) to U(pc−1) has kernel of orderp
if c> 1, so the order ofx mod pc−1 is at least a fraction 1/p of its order modpc.
(Compare the proof of Theorem5.2(a).) Now “downward induction” establishes
the claim.

But now, by definition,x is a perfect PLR ofm for every divisorm of n, and
we are done.

Perfect PLRs always exist: ifxi is a PLR ofpai
i for i = 1, . . . , r, then the Chinese

Remainder Theorem guarantees us a solution of the simultaneous congruences
x≡ xi (modpai

i ), and clearlyx is a PLR ofn. This argument allows us to count
the number of perfect PLRs ofn: this number is simply the product of the numbers
of PLRs ofpai

i for i = 1, . . . , r.
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Theorem 10.2 Let n be odd. Then any perfect PLR of n is an inward PLR.

Proof A number congruent to 1 modpi cannot be a PLR ofpai
i for odd pi , since

its order is a power ofpi . Hence, ifx is a PLR ofnwith nodd, thenx 6≡1 (modpi)
for i = 1, . . . , r. This shows thatx−1 is not divisible by any ofp1, . . . , pr , so that
x−1 is a unit modn. (This is the same as the proof of Proposition9.3(a).)

Theorem 10.3 If a PLR x of n is perfect, then so is every member of its power
class. The same holds with “imperfect” or “aberrant” replacing “perfect”.

Proof Suppose thatx is a perfect PLR ofn, and lety belong to the power class of
x. Then each ofx andy is congruent to a power of the other modn. It follows that
each is a power of the other modpa1

i , so thatx andy have the same order modpai
i ;

thus, if one is a PLR ofpai
i , then so is the other.

Let n = pa1
1 pa2

2 · · · par
r . We say that the prime powerpai

i is essentialin n if the
following holds: for every prime powerqb such thatqb exactly dividesλ(pai

i ), and
for all j 6= i, it holds thatqb does not divideλ(p

a j
j ). If n is twice an odd number,

then 2 is (vacuously) essential inn. Apart from this, there can be at most one
essential prime power, since, ifpai

i > 2 is essential, then the power of 2 dividing
λ(pai

i ) is higher than that dividingλ(p
a j
j ) for j 6= i.

If pai
i is essential inn, then any PLR ofn is obviously a PLR ofpai

i , and
conversely. Thus, we have the following result:

Theorem 10.4 Every PLR of n is perfect if and only if n is a prime power or twice
a prime power.

In the following table, PLRs from different power classes are separated by
semi-colons, and negating PLRs are asterisked.

n perfect PLRs imperfect PLRs aberrant PLRs
15 2, 8 7, 13
21 5∗, 17∗ 2, 11; 10, 19
35 3, 12, 17, 33 2, 18, 23, 32
63 5∗, 38∗; 47∗, 59∗ 2, 32; 10, 19; 11, 23; 13, 34; 44, 53

17∗, 26∗; 20∗, 41∗;
29, 50; 31, 61; 40, 52
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We turn now to the existence question for aberrant PLRs. The answer is some-
what elaborate and depends on the structure of an auxiliary coloured hypergraph,
which we now construct.

Let n = pa1
1 pa2

2 · · · par
r . The vertices of the hypergraphH(n) are indexed by the

primesp1, . . . , pn. The edges (to be defined in a moment) are indexed by the prime
divisors ofλ(n).

We say that a prime divisorq of λ(n) occurs maximallyin λ(pai
i ) if the largest

power ofq dividing λ(pai
i ) is the same as the largest power ofq dividing λ(n).

Now we colour the verticespi with three colours as follows:

• pi is red if every prime divisor ofλ(pai
i ) occurs maximally there;

• pi is green if some but not all prime divisors ofλ(pai
i ) occurs maximally

there;

• pi is blue if no prime divisor ofλ(pai
i ) occurs maximally there.

The edge indexed by the primeq is incident with all verticespi for which q
occurs maximally inλ(pai

i ). Thus, the blue vertices are isolated. Note that an edge
of the hypergraph may be incident with just one vertex.

For example, letn = 63= 9 ·7. We haveλ(63) = λ(9) = λ(7) = 6; the graph
H(63) has two vertices labelled 3 and 7, both red, and two edges labelled 2 and
3, each incident with both the vertices. Since this graph is a cycle, the following
theorem guarantees that aberrant PLRs exist forn = 63.

Theorem 10.5 Let n be a positive integer. Then an aberrant PLR of n exists if
and only if every connected component of the hypergraph H(n) contains either a
non-red vertex or a cycle.

Proof Let x be a PLR ofn. Then, for every primeq dividing λ(n), there exists
somepi such thatq occurs maximally inλ(pai

i ) and the order ofx modulopai
i is

divisible by this maximal power ofq. Thus, each edgeq of the hypergraph must
contain at least one representative vertexpi for which this holds.

Suppose that the vertexpi is blue. Choosingx to be congruent to a PLR mod
n/pai

i and to 1 modpai
i , we see thatx is aberrant modn if and only if it is aberrant

modn/pai
i . So we can ignore the blue primes.

Now suppose that a connected component contains either a green primep j ,
or a cycle(pi1,q1, pi2, . . . , pim,qm, pi1). In the case of the cycle, letpik be the
representative ofqk for i = 1, . . . ,m. Then choose a representative for all other
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cycles which is at least distance to the green prime or the cycle in the hypergraph.
Now choosex so that its order modpai

i is the product of the appropriate powers of
q for all edgesq represented bypi . Then the order ofx is divisible by the correct
power of each primeq indexing an edge of the component, butx is not a PLR of
pai

i for any primepi in the component.
Now suppose that a component is acyclic and has only red vertices. We claim

that, if a representative vertex is chosen for each edge, then some vertex must rep-
resent every edge containing it. For suppose we have a minimal counterexample.
Choose a vertex lying on a single edge, and remove this vertex (by assumption, it
is not the representative of its edge). By minimality, the hypergraph obtained by
deleting this edge has a vertex which is the representative of every edge containing
it, contrary to assumption.

Thus, if there is a component with this property, then every PLR ofn must be
a PLR ofpai

i for some vertexpi in this component, andx is not aberrant.
This completes the proof.

Corollary 10.6 If n = p j(p j−1(p−1)+1), where j> 1 and p and pj−1(p−1)+
1 are odd primes, then n has aberrant PLRs.

For another example, letn = 741= 3 ·13·19. In the graphG(n), the prime
3 is blue while 13 and 19 are green; and the edges labelled 2 and 3 are incident
with single vertices 13 and 19 respectively. Choosingx congruent to 1 mod 3, to
an element of order 4 mod 13, and to an element of order 13 mod 19, we obtain
an aberrant PLR ofn.

Problem 11 Find families of integersn for which aberrant PLRs exist.

Problem 12 Count the aberrant PLRs ofn. (This problem will not have a simple
answer unless our characterisation of the values ofn for which aberrant PLRs
exist can be substantially improved!)

10.1 Deeply aberrant and nearly perfect PLRs

We can strengthen the concept of an aberrant PLR as follows.

Definition If n = pa1
1 pa2

2 · · · par
r , then the PLRx of n is said to bedeeply aberrant

if x is not a PLR ofpi for any of the valuesi = 1, . . . , r.
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Thus, a deeply aberrant PLR is aberrant. Note that deeply aberrant PLRs
cannot exist for evenn.

Problem 13 Count the deeply aberrant PLRs ofn.

We can also refine the notion of an imperfect PLR as follows.

Definition Let n = pa1
1 · · · par

r , and letx be a PLR ofn which is not perfect. We
say thatx is nearly perfectif it is a PLR of pi for all i = 1, . . . , r.

Problem 14 Count the nearly perfect PLRs ofn.

We note that, ifn is even, then any unit is congruent to 1 mod 2, so the condi-
tion for the prime 2 is vacuous. Moreover, ifn is squarefree, there are no nearly
perfect PLRs ofn. The proportion of units modn which are congruent to primi-
tive roots modulo each prime divisor ofn is the product, over all prime divisorsp
of n, of the proportion of units modp which are primitive roots. However, these
elements may not all be PLRs.

For example, the number of perfect or nearly perfect PLRs of 63 is

φ(63)× 1
2
× 2

6
= 6;

as we have seen, there are four perfect PLRs, and hence two nearly perfect PLRs.
(In this case all such elements are PLRs, sinceλ(63) = λ(7) = 6.)

Proposition 10.7 A nearly perfect PLR of n cannot be aberrant.

Proof Suppose thatn is a nearly perfect but aberrant PLR ofn. Then each prime
divisor of n must occur to a power higher than the first, since the requirements
“not a PLR of pai

i ” and “a primitive root ofpi” conflict if ai = 1. Let p be the
largest prime divisor ofn, and suppose thatpa exactly dividesn. Suppose first
thatp is odd. Thenpa−1 exactly dividesλ(n), so a PLR ofn has order divisible by
pa−1 mod pa. But, if it is nearly perfect, then its order modpa is also divisible by
p−1, and hence it is a primitive root modpa, and so is not aberrant. On the other
hand, ifp = 2, thenn is a power of 2, and any PLR ofn is perfect by definition.

36



Note also that, ifn is odd, then any nearly perfect PLR ofn is inward; in other
words, Theorem10.2extends to nearly perfect PLRs, with the same proof.

The following table gives the nearly perfect PLRs ofn = 9p wherep is prime
andξ(n) = 6 (that is,p≡ 1 (mod 6)). They are negating ifp≡ 3 (mod 4) and
non-negating ifp≡ 1 (mod 4).

n nearly perfect PLRs
63= 32 ·7 {17,26}

117= 32 ·13 {80,71,89,98}
171= 32 ·19 {53,116,89,98,143,71}
279= 32 ·31 {17,260,53,251,269,179,88,197}

11 Further properties of PLRs

If x is an inward PLR ofn, then the 2λ(n) differences

±(xi−xi−1), (i = 1,2, . . . ,λ(n)),

are all units, and consist of 2λ(n) different elements ifx is non-negating, orλ(n)
elements each repeated twice ifx is negating.

This property shows the importance (for constructions such as the motivating
terrace in Section 1) of PLRs that are both inward and non-negating.

Definition The PLRx of n is strong if it is inward and non-negating. (Clearly
this requiresn to be odd, and not a prime power.)

It follows from Proposition8.3and Corollary9.2that, if a PLR is strong, then
so is every PLR in the same power class.

Problem 15 Is it true that strong PLRs exist for all oddn with ξ(n)> 1, in other
words, all odd numbers which are not prime powers?

This question has an affirmative answer forn≤ 20000.

Problem 16 Count the strong PLRs ofn.

Problem 17 For which oddn such thatU(n)∼= Cλ(n)×Cλ(n), canU(n) be gener-
ated by two strong PLRs?
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Note that the values ofn for which U(n) ∼= Cλ(n)×Cλ(n) are those given by
Theorem7.1(b), namelyn = pa(pa− pa−1 + 1), wherep and pa− pa−1 + 1 are
odd primes anda> 1.

We give some examples. Forn = 63 = 9 · 7, Un
∼= C6×C6, and this group

can be generated by the two PLRs 2 (which is strong) and 13 (which is outward
and non-negating). However, it is not possible to choose two strong PLRs which
generate the group.

For the next value ofn, namelyn = 513= 27·19, it is also not possible to find
two strong PLRs generatingU(n), However, forn = 2107= 49·43, both 2 and 6
are strong PLRs, and they do generateU(n).

Definition Let x be a strong PLR ofn. Thenx is calledself-seekingif x−1=±xd

for some integerd. Note thatx is self-seeking if and only if the setX = {xi : i =
0,1, . . . ,λ(n)−1} of powers ofx is equal to one of the two setsA = {xi − xi−1 :
i = 1,2, . . . ,λ(n)} or its negativeB = {xi−1−xi : i = 1,2, . . . ,λ(n)}. We say that
x is self-avoidingotherwise.

Proposition 11.1 If a self-avoiding strong PLR exists thenξ(n)> 2.

Proof If x is strong then each of the setsX,A,B consists of units;X is the sub-
group generated byx, andA andB are cosets ofX. Clearly, if ξ(n) = 1, there
are onlyλ(n) units, so all three sets must be equal. Sincex is strong,−1 is not
a power ofx, so the setsA andB are disjoint (forxi − xi−1 = x j−1− x j implies
xi− j =−1); so one of them must be equal toX if ξ(n) = 2.

Unlike what we have seen for other properties of PLRs, it is possible for all,
some, or none of the elements of a power class of PLRs to be self-seeking. For
n = 65, the powers of the PLRs±3 are:

3 1 3 9 27 16 48 14 42 61 53 29 22
−3 1 62 9 38 16 17 14 23 61 12 29 43

Thus the power class{3,48,42,22} consists of self-avoiding elements, while the
power class{62,17,23,43} consists of self-seeking elements. (For example, 61=
628.)
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For n = 91, the strong PLRs 2 and 32 come from the same power-class; suc-
cessive powers are:

2 1 2 4 8 16 32 64 37 74 57 23 46
32 1 32 23 8 74 2 64 46 16 57 4 37

The power class is{2,32,37,46}; 2 and 46 are self-seeking but the other two are
self-avoiding.

Problem 18 What conditions must hold for the product of two strong PLRs ofn
to be a PLR ofn? If ξ(n) > 2, is it possible for both, one or neither of the PLRs
to be self-seeking?

Problem 19 Under what circumstances can the product of two strong PLRs ofn
be itself a strong PLR ofn? Is it possible for both, one or neither of the PLRs to
be self-seeking?

The smallest value ofn for which this can occur isn = 455, where 18, 19 and
18·19= 342 are all strong PLRs. None of these three is self-seeking.

For the valuen = 1771, the numbers 39, 1768 and 39· 1768= 1654 are all
self-seeking PLRs. This is the smallest value ofn for which this can occur.

12 Tables of PLRs

We conclude with tables giving information about the smallest PLRs.
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12.1 PLRs for composite odd multiples of 3

n φ(n) λ(n) 2 = PLR? −2 = PLR? minPLR> 3
15 8 4

√ √
7

21 12 6
√ √

5
33 20 10

√
5

39 24 12
√ √

7
45 24 12

√ √
7

51 32 16 5
57 36 18

√
5

63 36 6
√ √

5
69 44 22

√ √
5

75 40 20
√ √

8
87 56 28

√ √
8

93 60 30 11
99 60 30

√
5

105 48 12
√ √

17
111 72 36

√ √
5

117 72 12
√ √

5
123 80 40 7
129 84 42 5
135 72 36

√ √
7

141 92 46
√ √

5
147 84 42

√ √
5

153 96 48 5
159 104 52

√ √
5

165 80 20
√ √

7
171 108 18

√
5

177 116 58
√

5
183 120 60

√ √
7

189 108 18
√ √

5
195 96 12

√ √
7

201 132 66
√

7
207 132 66

√ √
5

213 140 70
√ √

7
219 144 72 5
225 120 60

√ √
13

231 120 30
√ √

5
237 156 78

√ √
5

249 164 82
√

5
255 128 16 7
261 168 84

√ √
11

267 176 88 7
273 144 12

√ √
5

279 180 30
√ √

11
285 144 36

√ √
13

291 192 96 5
297 180 90

√
5



12.2 PLRs for composite odd non-multiples of 3

n φ(n) λ(n) PLR? minPLR
2 −2 3 −3 > 3

35 24 12
√ √ √ √

12
55 40 22

√ √ √ √
7

65 48 12
√ √ √ √

6
77 60 30

√ √ √ √
5

85 64 16
√ √

6
91 72 12

√ √
5

95 72 36
√ √ √ √

13
115 88 44

√ √ √ √
7

119 96 48
√ √

5
133 108 18

√ √ √
5

143 120 60
√ √

6
145 112 28

√ √ √ √
7

155 120 60
√ √

7
161 132 66

√ √ √
5

175 120 60
√ √ √ √

12
185 144 36

√ √ √ √
7

187 160 80
√ √

5
203 168 84

√ √ √ √
10

205 160 40 6
209 180 90

√ √ √
6

215 168 84
√ √

12
217 180 30

√ √
10

221 192 48
√ √

6
235 184 92

√ √ √ √
7

245 168 84
√ √ √ √

12
247 216 36

√ √
5

253 220 110
√ √ √

5
259 216 36

√ √
5

265 208 52
√ √ √ √

7
275 200 20

√ √ √ √
7

287 240 120 11
295 232 116

√ √ √ √
7

299 264 132
√ √

6
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