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1 Introduction

One of the central tools in enumerative combinatorics is that of generating func-
tions. Generating functions can e.g. be used to find the asymptotic behaviour of
the enumerating sequence (e.g. the Hardy-Ramanujan estimate for the partition
function P(n), see [3]) or even may yield an explicit formula for the solution (e.g.
Rademacher’s famous explicit formula for P(n), see [6]).

Given a combinatorial problem, there are numerous ways to find the corresponding
generating function. One possibility is to start with a recurrence relation, as e.g.
the recurrence for the Fibonacci numbers (ap)nemw, = (0,1,1,2,3,5,8,...), which
we write in the following form:

Ap = Qp_2 + Qp_1 + 51,n Vn € Z, (1)
a, =0 Vn < 0.

(0, denotes the Kronecker symbol.) The z-transformation method requires to
multiply (1) by 2" and to sum over n. This yields an algebraic equation for the
generating function f(z) =Y a,2z", namely

f(z) = 2"f(2) + 2f(2) + 2

which is easily solved, giving f(z) =
yields

5. The Taylor expansion of this function

f(z) = 1—2—22 2OO:( ) L \/5( \/g)n,

i.e. we obtain the explicit Euler-Binet! formula for the Fibonacci numbers
L_ L (1+\/5>n_ (1—\/5>n
NV 2 2 '

! This formula was derived by Jacques P.M. Binet in 1843, although the result was known to
Euler and to Daniel Bernoulli more than a century earlier.




A second way to find a generating function is to use Polya’s index theorem. For
example, let M be the set of all syntactic bracket figures with index n equal to the
number of bracket pairs. For n = 3 we have the set M3 of three bracket pairs:

M = {00 (0 (UL (IEL DT
By
M — M xMxMU M,
[alb- = ([],0,b)
g = J

we have a bijection between the sets M and M, x M x M UM, which is additive, i.e.
ind([a]b) = 1+ ind(a) + ind(b). Then, by Polya’s theorem, the relation between the
sets translates directly into a relation for the generating function for the numbers
¢, = card(M,), namely

Taylor expansion of the solution f(z) = 5-(1 — V1 —4z) = Y07 ¢,2" yields the

2
Catalan numbers ¢, = —nil (,?)

A third way is to use methods from the theory of difference equations, which reach
from continued fractions to Laplace transformation. As an example, we mention
a recent theorem of Oberschelp (see [5]), which allows to transform a difference
equation into a differential equation for the exponential generating function by a
formal procedure. For example, the sequence Sloane-Plouffe M1497 in [7], f,,, which
counts the number of ways to build a sequence without repetition with n variables,
satisfies the recurrence f,11 = (n +1)f, + 1. Oberschelp’s Theorem requires the

exchange
k

z S

(Z)kaFS*k > F (s)
i.e. to replace f,.1 by f', nf, by zf', f, by f and 1 by e*. This procedure yields
the ordinary differential equation (1 — 2)f’ — f = e* with the solution f(z) = ;=
determined by f(0) = 1. Since f(z) is the exponential generating function, we get

in fact f, =nl(1+4+...4+3).

n!

Experience shows that the situation becomes considerably more delicate as soon as
the problem requires to solve partial difference equations. In this article we want to
describe methods which allow to calculate the generating function from a recurrence
relation. The idea is to directly link the Laplace transform to generating functions
by interpreting the Fourier formula for the inverse Laplace transform as a residual
integral. The reader who is not familiar with the Laplace or Fourier transformation
might consult [1] or [8]. The idea is certainly not new, however we would like to show
that it applies also to more complicated (e.g. non-local) partial difference equations.



2 Auxiliary Results

2.1 Laplace transformation

Let (ap)nez, an = 0 for n < 0, be a sequence of real numbers with generating
function f(2) = Y ,cpanz™. We call A(z) := >, GnXmn+1((2) the associated
step-function. Here, x; denotes the characteristic function of the set I. Then there
holds

Theorem 1 If the Laplace transform <[A] of the associated step-function A exists,
it 1s related to the generating function f by

2 1 —s —s

Z1Al(s) = - (L —e*)f(e™).

Proof. Since we assume A to have at most exponential growth, we may transform
term by term and get

AY(s) =) a0 L [Xinms])
n=0

Writing Xpnni1] = H(-—n)—H(-—(n+1)), where H = X[o o[ denotes the Heaviside
function, and using that “’[H](s) = %, we obtain by applying the basic rules for
the Laplace transformation

A = n—e€ (1l —e"%),
A1) = S 1= )
which is what we claimed. O

The following calculation provides a useful variant of the above theorem.

If %g(e‘z) is the Laplace transform of a piecewise smooth function G, we have by
Fourier’s formula for the inverse Laplace transformation that for every point x € R,
where G is continuous

21 z

1 1
G(z) = —pv/ —g(e™?)e"dz.
r

Here, T" is the curve I' : IR — C,t — s + if, with s € IR large enough, and “pv”
denotes the principal value. If we denote T, : [0, 27[— C,t — 2z := s+ i(t + 2n7),
we have

G(z) = L pv Z / 1g(e‘z)e“alz. (2)

Observe, that by Fourier-series expansion, we have for x ¢ Z

1 o(s+i(t+2nm)) _ elrlls+i)
Zs+i(t+2n7r)e Coestit — 17
nexZ



where [-] denotes the ceiling function, i.e. [z] is the smallest integer larger than or
equal to z. Hence, by substituting u = e™*, we obtain from (2) with n = |z|

Glo) = - / glu) du (3)

2mi J, 1 —u yntl

where v : [0, 27[— C,t — e*¢", and where [-| denotes the floor function, i.e. |z] is
the largest integer smaller than or equal to x. Thus, if g is analytic in a neighborhood
of 0, we may interpret the integral in (3) as the Cauchy residue integral for the nth

Taylor coefficient of the function £ ( ) Thus we have the following corollary:

Corollary 1 Assume f and g, are analytic functions in a neighborhood of 0 and
that a, is given by

1 1
= — = g —z mzd 4
0 QMPV/FZW ez (4)

for some (and hence any) x €]n,n + 1[ and T as above. If lim, g W =0 for

all n € INy, then % is the generating function of the sequence a,.

Let us briefly mention some advantages that the use of the Laplace transformation
provides: Suppose we are given a generating function f(u). Only in simple cases it
is possible to use direct Taylor expansion to obtain a formula for the coefficient a,, of

u". Also the Cauchy residue a,, = Res,— J,Si)l or (in case of a meromorphic function

f) an = = > Resyug gﬁ)l is often difficult to calculate. In such a situation it may
be helpful to split the residues via the Laplace transformation (as in the calculation
preceding Corollary 1) in order to obtain an expansion (or at least an asymptotic
formula) for the a,. To illustrate this, let us consider the example of the generating
function of the Bernoulli numbers

n22nB2n (=1)"2"" By

f(u )—ucotu—l—l—z

According to Theorem 1, the Laplace transform of the associated step-function G is
g(s) = =4=f(e~*) and we may use the Fourier formula to invert g:

7 Mg)(t) =) Resg(s)e’

The singularities of g(s)e* are located at s, = mmi—log(km), k € IN, m € Z. For

t € Z we have
__l—kx
Ressk,m g(s)ets _ { S (k)

— kT if m is odd.
Sk,m(fkﬂ—)

if m is even,

Combining residues for m and —m we can easily sum the residues for fixed £k over

all m and obtain N
| Za 1



(Notice that one obtains a formula for Y | ——— by expanding e** on | — 7, 7|

in a Fourier series.) Since ¢t € Z (G jumps in Z), we finally get the zeta-function
formula for the Bernoulli numbers:

By, = (—1)"! (22(72:;2) > .

] oo
k=

A second benefit of the Laplace transformation are the various rules. For example,
by the rule Z[f'|(s) = s<[f](s) — f(0), we have for f,(t) := t*, that Z[f!](s) =
s 71 f.](s) = 27| f._1](s). Hence, for fixed s, the analytic function

ho(2) = 1.](s) = / Festdt
0
solves the difference equation
shs(z) = zhs(z — 1).

In particular, for s = 1, we obtain Euler’s integral representation of the Gamma-
function. It is a particular feature of the Laplace-transformation method that it
can be used to determine the analytic continuation of a discrete function. The
Laplace transformation also yields a functional connection between the exponential
generating function e(z) and the ordinary generating function f(z) of a sequence
a,. In fact, we have

Q

Zel(s) = 7 [Y Fa](s) = 3 7 Zla(s) = LA ().

n=0 n=0

sn-;—l

The translation-rule <[f(t—¢)|(s) = e[ f(t)](s) for ¢ > 0 allows to transform a
(linear) difference equation into an algebraic equation for the transformed function
(this feature is similar to the z-transformation). In particular, it is possible to
reduce a linear partial difference equation with n variables to an equation with n—1
variables. For an example see Section 3.4 or 3.5.

Another virtue of the Laplace transformation appears when one looks for an asymp-
totic expansion of a sequence or (which is a similar thing), when one treats difference
equations which show oscillation and damping effects. If one is only interested in the
stationary state, one can already at the level of the transformed function identify
terms which lead to exponentially decaying terms in the solution and drop them for
the rest of the calculation.

2.2 The dual of a linear difference equation

Many combinatorial problems lead to partial difference equations. As a prototype
example we investigate the two dimensional case.



Let X C Z*. For amap p: X — IR we consider the linear equation

pz) = > a.(Op) (+)

{¢eX:(espta.}

where we assume that the cardinality of the support of a, (spta, C X) is finite
for all z € X, i.e. that the sum in (x) is always finite. A set A C X is called
stable if for all maps f : A — IR there exists a unique solution p of (x) such that
pla = f. A triple (X, A, x) is called triangular if X can be written as X = (x;);en
in such a way that for all i € IN, there holds spta,, C AU {xy,...,2; 1} and for
all z € A: spta, = {2} and a,(z) = 1. In particular we have that for a triangular
triple (X, A, %) the set A is stable.

Now, let (X, A,*) be triangular and f : A — IR be given. Then for any fixed
x = z; € X, the solution p of (%) in x is a finite linear combination of the values of
fon A, ie.

p(x) = as(O)f(Q)

(eA

In order to determine the weights «,({) we proceed as follows:

(i) Put a red mark on z.

(ii) Replace each red mark on y € X \ A by a blue one on y and by a,({) many
red marks on ( for all ( € spta,.

(iii) Iterate (ii) until no more red marks on X \ A exist.

If n denotes the maximum of the set {i: there is a red mark on z;}, then in each
iteration step, n decreases at least by one due to the triangular structure. Hence,
the iteration process terminates. If we denote by ¢({) the number of red marks on

¢, the quantity
S GOw()

(eX

is invariant during the iteration. Hence, we obtain the result that after the iteration
is completed the number of (red) marks on ¢ € A, i.e. ¢(¢), equals the weight a,(().

If we denote by ¢(() the final number of marks (blue or red) on ¢ (i.e. after termina-
tion of the iteration), the iteration process described above translates into a partial
difference equation for the function g¢:

az)= D ac=)a(C) ()

{¢€Az:zesptac}

with ¢(z) =1 and with A, := trz \ A, where trz is the equivalence class of z with
respect to the transitive hull of the relation u ~ v : <= u € spta,,v ¢ A. Notice
that (Ag, {x}, **) is triangular and finite. Let us summarize this result in a theorem:



Theorem 2 If (X, A, x) is triangular with prescribed values f on A, then the weights
oy in the solution formula p(x) = 3 ., () f(C) can be determined by the iteration
scheme (i)—(iii) or equivalently by solving the dual linear recursion (xx) with initial
value q(x) = 1.

Many transformation problems (e.g. the boustrophedon transformation in [4]) can be
described as follows: Let (X, A, %) be triangular; then we fix sets A" = {ay, as,...} C
A and X" = {by,b,...} C X and prescribe f(a;) = ¢; and f =0 on A\ A". If
we denote the solution ; = p(b;), the mapping ¥y x/ 4,47+ () — (¢;) is a linear
transformation of sequences, the associated linear mapping ALM. The problem to
find its matrix (or the matrix of the inverse transformation) can often be solved by
using the Laplace transformation technique for the partial difference equation for
the weights (xx) even in cases where it is not possible to use directly the Laplace
transformation in the original partial difference equation (x). We will see some
examples in the following section.

Before we discuss the examples, we close this section by stating a simple path-
counting lemma:

Lemma 1 Suppose the coefficient functions a in (x) satisfy the following invariance
property for all z = (n, k) and 2’ = (n, k') in X = Z*:

a,(n+i,k+j)=ay(n+i k' +7j), VijeZ. (5)

Suppose furthermore that the column {(0,k): k € Z} is stable and that p denotes the
solution of (x) with prescribed values oy, on (0, k). Then the column {(N,k): k € Z}
1s stable for the equation

p(z) = Y a.(Q)p(C) (1)

{¢ex}

where Gy 1y (u) = ay(u+0) and (i,7) = (i, —j). Finally, if we prescribe the values
ai on (N, k) for the equation (), then p(0,k) = p(N, k).

Proof of Lemma 1: We may interpret (x) as a directed graph G' with a,({) many
edges from ¢ to z. If we set ay := g ,, then p(V, k) is the number of paths in G
from (0, ko) to (N, k). If we flip the graph horizontally by z +— Z and invert the
orientation of the edges, we obtain a graph G’. Now, (}) describes G’ and p(0, k) is
the number of paths in G’ from (N, kq) to (0, k) which equals, by construction, the
number of paths in G from (0, ky) to (N, k).

For general () the claim follows by linearity. O



3 Examples and applications

3.1 The Fibonacci numbers and a variant of Faulhaber’s
formula

Let X ={(k,n):n >k >0} and A= {(k,n) € X:n € {k,k+1}}. Further let

“ ('L ]) _ 5k,i5n_1,j + 5k+1,i5n_1,j for (k’, n) g A,
(ko5 Ok,i0n,j otherwise,

in the equation (x). This is easily seen to be triangular. For the sets A’ = {(k, k+1) €
A} and X' = {(0,n) € X: n > 0} we have that the ALM Wx x/ 4 . applied to
the sequence (1,1,...) yields the Fibonacci sequence (f(n))n Let us calculate the
weights via (s#:):

q(k,n) =q(k,n+1)+q(k—1,n+1)

with ¢(0,7{) = 1. This is (up to renumbering) just the recursion for the binomial
numbers, i.e. we get the “shallow diagonal” sum formula connecting Pascal’s triangle
to the Fibonacci numbers:

Lk
f(n+1) = (n—2k)'
0

k=

The binomial weights always occur for this type of equation: For another example,
let p(k,n) := Y7 i*. Obviously, for fixed k, p is a polynomial in n of degree k + 1.
Faulhaber’s famous formula expresses this polynomial in the basis {1,n,n? n3 ...}
and the coefficients in this basis involve the Bernoulli numbers. Here, we want
to express the polynomial in the basis {(g), (’f), (;”), (g”), ... }. Consider again the
“binomial” difference equation f(k,n) = f(k,n — 1)+ f(k+ 1,n — 1), this time on
X = IN2, with initial data f(0,n) = p(k,n — 1), for fixed k. The weights for the
dual equation clearly are, as above, the binomial coefficients, hence p(k,n — 1) =
S, (") f(4,0) and it remains to find f(¢,0). Since f(1,n) = n*, we use that

f: (’;)a&(k,i) =¥, (6)

1=0

where Sy denotes the Stirling number of the second kind (see next section). Indeed,
each term in the sum may be interpreted as the number of sequences in {1,... ,n}*
with exactly ¢ different numbers. Thus, f(i + 1,0) = i!Sy(k, ) and we recover the
well known formula

p(k,n) = z;: (?:;)i!SQ(lﬂ, i),

which one also gets by summing (6).



3.2 The Stirling numbers

The Stirling numbers of the first kind S;(n, k) count the permutations of n distinct
objects, that can be written with exactly &k disjoint cycles (cf. [2]). They can be
computed recursively as follows:

Si(n+1,k) :== n-Si(n, k) + Si(n, k —1),

where S1(1,k) 1= 01 4.

Let S, (k) := Si(n, k); then S, (k) satisfies the recurrence S, (k) = nS, (k) —1—5}1(16—
1). Let L,(s) denote the Laplace transform of the associated step-function of S, (k).

Then we get
Lni1(s) =nL,(s) + e °Ly(s) = Ly(s)(n+ e %),

with Ly (s) = +(1 — e *). Hence,

n—1
1 L
Lu(s) = (=) [JG+e)
j=1
Thus, by Theorem 1 we find that
n—1
flu) = ]G +u)

is the generating function for (S (n, k))k

The Stirling numbers of the second kind Sy(n, k) count the number of groupings
of n distinct objects into & disjoint (nonempty) groups. They can be computed
recursively as follows:

SQ(TL + 1, /C) = k- SQ(TL, k) + Sg(n, k — 1),

where Sy(1,k) 1= 01 4.

Let Si(n) = Sy(n,k); then Si(n) satisfies the recurrence Si(n) = kSp(n — 1) +
Sk-1(n—1). Let Li(s) denote the Laplace transform of the associated step-function
of Sg(n). Then we get

Li(s) = ke *Ly(s) + e *Lg_y(s),

and therefore
6—8 —S

e
I -
1—kes I(S)Hl—je*

J=2

Lk(S) = Lk,1 (8)

with L;(s) = . Thus, by Theorem 1 we get that

s

k
fiw) = H 1 —uju

J

9



is the generating function for (Sy(n, k))

.
It is well known that the matrix of the Stirling numbers of the first and second kind
are inverse in the sense that

Fn) =3 Si(m, e

if and only if

n

e(n) =) (=1)""Sy(n, i) f(i)-

i=1
Instead of proving this rather special formula, we now investigate more general
conditions which still imply an inversion formula of the above type.

3.3 An inversion formula

We consider the following situation: Given a linear equation (x) with X = INy x Z,
which satisfies the invariance property (5), we suppose that with A := {(0,k) :
k € Z}, the triple (X, A, %) is triangular. We set A" := {(0,k) : k¥ € INy} and
X" :={(n,0) : n € INg} and consider the mapping ¥x x4 4 .: (¢;) — (¢;). Notice
that the equation (%) for the weights inherits the invariance property (5) and hence
we can apply Lemma 1 to (%) and obtain

i) = 3 @ (Q(c), ()

{¢ex}

with p(n,0) = d,0, where ay4,(u) := ay5(u). Then we have

Now, we invert the previous equation: Let Y := INy x INg and Y’ := {(0,k) : k €
INy}. For any fixed z € X, we can replace (x) equivalently by the equation

po) = - Y Y= T e )

a:(Go) esramin 00 {¢esptaz, }

for arbitrary (y € spt a,. Assume that for any z € X we can—Dby choosing a suitable
Co—replace (x) by (%) in such a way that

e the coefficients a/, respect the invariance relation (5),

e the triple (Y,Y”, «) is triangular.

The equation for the weights for (') is

q(z) = > a¢(2)q(C) (')

{C€A(0,0):2€8pt ar }

10



with initial condition ¢(0,0) = 1 (because (xx') satisfies (5)). Then we have

o0

1=0

Hence, in view of (8) and (7), ¢ and p are inverse matrices, where ¢ and p satisfy
certain difference equations which are related in the described manner. Notice also,
that by choosing (o (see above), there is a certain freedom in the coefficients o’ which
can be useful sometimes.

As an example of the previous result we investigate a generalization of the Stirling
numbers.

Let us define a(,1)(4,7) := ¢(i)d;n-10x + d(i)6;n—10;k+1, where ¢ and d are non-
vanishing functions. Then the procedure described above yields the following

Proposition 1 The numbers si(n, k), sa(n, k) for (n, k) € Z x Z, defined by
si(n, k) =c(n—1)s1(n—1,k)+dn—1)s1(n—1,k—1)

and

so(n, k) = —ZEZ)) sa(n,k —1) + ﬁ

with $1(0,m) = s2(m,0) = 6,0 are inverse in the sense that

so(n—1,k—1)

= 231(7% i)p; = ¢ = Zsz(ia”)@/)i-
i=0 1=0

For special choices of the functions ¢ and d one easily gets e.g. the inversion formulas
for the Stirling numbers (¢(n) = n, d(n) = 1), the binomial numbers (¢(n) = 1,
d(n) = 1) or the numbers @;(n) := (})I! counting the number of ways to build
sequences of length [ with n objects without repetitions (¢(l) = —7, d(l) = }) (guess
what the inverse numbers are!).

3.4 The partition numbers

As a further example we consider the number p(n, k) of partitions of an integer n
into parts larger than or equal to k. This leads to the (non-local) partial difference
equation

p(n, k) =pn —k,k)+p(n,k+1) (9)

with p(n,k) = 0 for k > n > 0 and p(n,n) = 1. In the above setting the problem
reads as follows: X = IN>, A = {(n,k) : k > n}, A" = {(n,n) : n € IN} and
X'"={(n,1) : n € IN} and for (n,k) € X \ A we have

p(n, k) = Z (Oin—k0j s + 0in0jkr1)p(7, 5) - (10)

i,j€IN

11



The ALM Uy x/ 4 4,00 maps the sequence (1,1,...) into the sequence
p(n,1) = P(n) of the partition numbers. The equation for the weights is given
by

q(n, k) =q(n,k—1)+q(n+ k, k)
with initial conditions ¢(n,1) =1 for n < N and ¢(n,k) = 0 for n > N. Then we
have P(N) = ZZ]\; q(i,7). By renumbering, this is equivalent to say

G(n, k) =qn,k—1) 4+ Gn — k, k) (11)

with G(n, 1) = 1 for all n, §(n, k) = 0 for n < 0, and P(N) = 3N (i, N — i + 1).
Note that G(n, k) no longer depends on N. Laplace transformation of (11) with
respect to the first variable with % fixed yields

1

re(s) = mrk,l(s)

with initial value r(s) = % (since §(1,k) = 1 for k € IN). Thus, we have ry(s) =
I H?:Z =+ and by Theorem 1 the generating function g (u) of (fk(n))n is given by

gr(u) = H§:1 ljuj . From this it is easy to derive Euler’s classical generating function
E(u) of the partition numbers P(N). However, by interpreting ¢(n, k) as the number
of partitions of n—1 into k or less parts (and hence P(n—1) = ¢(n,n—1) = ¢(n,n)),

we immediately get from the above calculation together with Corollary 1 that

E(u) = H - _1uj. (12)

Also, if f(s) denotes the Laplace transform of E, it follows from (12) that +(1 —
e ) [I2.(1 —e9°) = f(s) X2, (~1)Ble4, where t; = 0,1,2,5,7, ..., are the
pentagonal numbers. Laplace inversion of the last equation yields Euler’s formula
Y ()P — ) = dug.

What about counting weighted partitions? Let f: IN — IR be a weight function
with the meaning that we count partitions into i parts f(i) many times, or—what is

the same thing by considering Ferrers diagram—count partitions which largest part
of size i, f(i) many times. Then the calculation above gives the generating function

for this problem:
$5 st
[T, 1—w

So, choosing e.g. f as the characteristic function of the even numbers, we compute
(e(n)), =1(0,1,1,3,3,6,7,12,14,...).

To conclude this section let us compute the inverse of the ALM W x 4 4, 10). Let
us put a red mark on (L, L). In view of (10) we can replace a red mark on (n, k) (for
n >k > 1) by a red mark on (n,k — 1), a negative red mark on (n —k + 1,k — 1)
and a blue mark on (n, k). This game terminates when all red marks are in A\ A’
(these marks are multiplied by 0) or in X' (where a mark on (7,1) is multiplied by

12



;). Hence, ¢, = 25:1 tpw(L,n), where w(L, n) denotes the number of red marks
on (n,1).

To compute w(L,n) we consider the directed, finite graph G, with vertices {(n, k) :
L >n >k > 1} and an edge from (n,k) to (n', k") if ¥ = k — 1 and n’ = n (this
edges are called v-edges) or if &' = k and n’ = n — k (this edges are called h-edges of
length k). Now let Wy (n) be the number of paths through the graph G, from the
vertex (L, L) to (n, 1), such that all h-edges have different length and each path is
weighted by +1 if the number of h-edges contained in the path is even, otherwise it
is weighted by —1. It is easy to see that Wy (n) = w(L,n). To compute Wy (n), let
us first define the function w(m, [, s), which is the number of weighted paths from
(m,m) to (m —[,1), such that the maximum of the lengths of h-edges contained in
the path equals s (where s = 0 means, that the path contains no h-edge). For the
function w(m,(, s) we have

1 if | =5=0,
w(m,l,s) =40 if s>1lors>|%],
- 2;21 w(m —s,l —s,s —j) otherwise.
Now, by construction, we obtain

L3]
Wr(n)=>» w(L,L—n,s).

s=0

ol

For example for L = 12 we get (Wis(n)) = (1,-1,-2,0,2,0,1,0,0, —
and in fact, P(12) — P(11) — P(10) + P( )+ 2P(5) — 2P(3) — P(2) + (
T7T—56—42+15+2-7—2-3—-2+1=

v\.
(=

3.5 A path counting problem

We consider paths in a three-dimensional lattice: Starting point of the paths is a
point (x,0,0), x € INy, on the z-axis. If (z,y, z) is a point on the path, then a unit
step in positive y or z direction is allowed or a step of length y 4+ z + 1 in negative x
direction. We want to count the number H)(x) of allowed paths starting in (z, 0, 0)
which end in a given set M C Z>.

The dual of this problem is given by the non-local linear difference equation
q,z,y(l') = qz—lyy(l‘) + q,z,y—l(x) + qZ,y(x - y — &= ]') (13)

with ¢, ,(x) := 0 if one of the numbers z,y, z is negative and gp0(0) := 1. We
already used an index notation since we want to Laplace-transform equation (13)
with respect to the variable z. First, we have Qoo(s) = %, since goo(x) = 1 for
x > 0. Laplace transformation of (13) yields

Q:y(8) = Qa1g(8) + Quya(8) + € " VFVQ,  (5).
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Considering s as a parameter, the solution of this difference equation in y and z is

given by
124y 1
szy(s) - S ( > ) Hj;rngl(l - e—js) ’

+ fy+l 1
Zzy) Hj:?lJ 1—ud *

the notation of Section 3.4, ¢, ,(x) = Foyyr1(x)(*7Y). Finally, the solution to our
path counting problem is given by the formula

Hi@= Y fenl (7).

(e—cgr)EM *

Thus, the generating function of ¢, ,(z) is f.,(u) = ( Hence, with

For example, let us count the paths starting in (§,0,0) with at most A unit steps in z
direction and such that the total number of unit steps in negative x and in positive y
direction equals &. This corresponds to the set M = {(z,y,2) €Z* : v =y, 2 < h}
and the solution formula yields

Hu(©@= 3 Fercen(o)

z2<h,x<g

z—l—{f—x)

z

3.6 Local linear difference equations

For X = {(k,]) : 0 <k <} and A= {(k,]):l € {k,k+ 1,k +2}}, we consider the
model equation

z(k, 1) =az(k,l — 1) +asz(k+ 1,1 — 1) +azz(k + 2,1 — 1). (14)
(X, A, (14)) is triangular and, for X' = {(0,1) : { > 3}, the equation for the weights

1S

q(k, ) = arq(k, 1+ 1) + asq(k — 1,1+ 1) + azq(k — 2,1+ 1) (15)
with initial condition ¢(k, L) = dj for a fixed L > 0. Laplace transformation of (15)
with respect to the variable k with [ fixed yields Q;(s) = Q;11(s)(a; +aze™* +aze™>*)
with initial condition Q(s) = £(1 — e~*). The solution is Q;(s) = *(1 — e~*)(a; +
aze™* + aze=2*)E~! and Theorem 1 gives for the generating function of the sequence
(q(k,1)), the function (a; + ayu + azu®)E~!. Multinomial expansion yields q(k, 1) =
D kp+ 2k (Lflfkf:,is’k%ks)affl*krk?’agzag:‘. Since (15) does not stop the iteration
when a mark lies on A, we have to compensate by setting ¢(k, k +2) = q(k, k + 2),
Lj(ka k+ 1) = Q(ka k+ 1) - alQ(kJ k+2) and Lj(ka k) = Q(ka k) - (Zﬂ](k, k+ 1) - G’Qq(k -

1,k +1). Then, if o, is given on z € A as initial data for (14), we get the solution

l 2

z(0,1) = Z Za(ifj,i)Q(i — J»1). (16)

i=2 j=0

In particular, if ogyj k) = 2; (for 7 = 0,1,2), 2(0,1) is the solution of z,, = a12p_; +
A9%y_o + a3,k with initial values xg,x1, 22 and (16) is a root-free representation
of the solution.
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