
Generalized Multipartitioning of Multi-dimensional Arrays for

Parallelizing Line-Sweep Computations

Alain Darte∗

LIP, ENS-Lyon, 46, Allée d’Italie, 69007 Lyon, France.

Alain.Darte@ens-lyon.fr

Daniel Chavarŕıa-Miranda Robert Fowler John Mellor-Crummey

Dept. of Computer Science MS-132, Rice University

6100 Main, Houston, TX USA

{danich,johnmc,rjf}@cs.rice.edu

July 15, 2002

Abstract

Multipartitioning is a strategy for decomposing multi-dimensional arrays into tiles and map-
ping the resulting tiles onto a collection of processors. This class of partitionings enables efficient
parallelization of “line-sweep” computations that solve one-dimensional recurrences along each
dimension of a multi-dimensional array. Multipartitionings yield balanced parallelism for line
sweeps by assigning each processor the same number of data tiles to compute at each step of a
sweep along any array dimension. Also, they induce only coarse-grain communication.

This paper considers the problem of computing generalized multipartitionings, which de-
compose d-dimensional arrays, d ≥ 2, on an arbitrary number of processors. We describe an
algorithm that computes an optimal multipartitioning onto all of the processors for this general
case. We use a cost model to select the dimensionality of the best partitioning and the number
of cuts to make along each array dimension; then, we show how to construct a mapping that
assigns the resulting data tiles to each of the processors. The assignment of tiles to processors
induced by this class of multipartitionings corresponds to an instance of a latin hyper-rectangle, a
natural extension of latin squares, which have been widely studied in mathematics and statistics.

Finally, we describe how we extended the Rice dHPF compiler for High Performance Fortran
to generate code that employs our strategy for generalized multipartitioning and show that the
compiler’s generated code for the NAS SP computational fluid dynamics benchmark achieves
scalable high performance.

Keywords: Generalized latin squares, partitions of integers, loop parallelization, array map-
ping, High Performance Fortran.

AMS classification: 05A17, 05B15, 11A05, 11P81, 20N15, 68N20.

1 Introduction

Line sweeps are used to solve one-dimensional recurrences along a dimension of a multi-dimensional
hyper-rectangular domain. This solution technique serves as the basis for Alternating Direction

∗This work performed while a visiting scholar at Rice University.

1

Implicit (ADI) integration—a widely-used numerical technique for solving partial differential equa-
tions such as the Navier-Stokes equation [5, 6, 20, 22]. Figure 1 illustrates an ADI integration
computation based on line sweeps over a three-dimensional data volume. In each time step, the
computation alternately sweeps forward and backward over each spatial dimension of the data do-
main to solve a system of one-dimensional recurrences. The callout shows a code fragment that
solves a recurrence using a reverse sweep over the x dimension. Besides ADI integration, line sweeps
are also at the heart of a variety of other numerical methods and solution techniques [22].

for each time step
 (1) sweep forward along x
 (2) sweep backward along x
 (3) sweep forward along y
 (4) sweep backward along y
 (5) sweep forward along z
 (6) sweep backward along z

1
2

3

4

5

6

do m = 1,3; do k = 1,n - 2; do j = 1,n - 2; do i = n - 3,0,-1
 rhs(i,j,k,m) = rhs(i,j,k,m) - lhs(i,j,k,4) * rhs(i+1,j,k,m) - &
 lhs(i,j,k,5) * rhs(i+2,j,k,m)

Figure 1: A skeleton of three-dimensional ADI integration using line sweeps.

Parallelizing computations based on line sweeps is important because such programs address
important classes of problems and they are computationally intensive. However, parallelizing multi-
dimensional line-sweep computations is difficult because recurrences serialize the sweeps along each
dimension. Using standard block partitionings, which assign a single hyper-rectangular volume
of data to each processor, there are two reasonable parallelization strategies. A static block
unipartitioning partitions one of the array dimensions for the entire computation. To achieve
significant parallelism with this type of partitioning, one must exploit wavefront parallelism within
each sweep along the partitioned dimension. In wavefront computations, there is a tension between
using small messages to maximize parallelism by minimizing the length of pipeline fill and drain
phases, and using larger messages to minimize communication overhead in the computation’s steady
state when the pipeline is full. A dynamic block partitioning involves partitioning some subset of
the dimensions, performing line sweeps in all unpartitioned dimensions locally, and then transposing
the data when necessary between sweeps so that each of the sweeps, in turn, can be performed
locally. While a dynamic block partitioning achieves better efficiency during a (local) sweep over a
single dimension compared to a (wavefront) sweep using a static block unipartitioning, the cost of
its data transposes can be substantial.

To support better parallelization of line sweep computations over multi-dimensional arrays, a
third sophisticated strategy for partitioning data and computation known as multipartitioning
was developed [5, 6, 20, 22]. This strategy partitions arrays of d ≥ 2 dimensions among a set of
processors so that all processors are active in every step of a line-sweep computation along any
array dimension, load-balance is nearly perfect and only coarse-grain communication is needed.
A multipartitioning achieves this by (1) assigning each processor a balanced number of tiles in
each hyper-rectangular slab defined by a pair of adjacent cuts along a partitioned data dimension

2

and (2) ensuring that for all tiles mapped to a processor, their immediate tile neighbors in any
one coordinate direction are all mapped to some other single processor. We refer to these two
properties as the balance property, and the neighbor property respectively. The utility of the
balance property is obvious: it enables even load balance. The neighbor property is useful because
it enables a fully-vectorized, directional-shift communication to be accomplished with one message
per processor. A study by van der Wijngaart [25] of strategies for hand-coded parallelizations
of ADI Integration found that three-dimensional multipartitionings yield better performance than
static block or dynamic block partitionings.

All of the multipartitionings described in the literature to date consider only one tile per pro-
cessor per hyper-rectangular slab along a partitioned dimension. The most broadly applicable of
the multipartitioning strategies in the literature is known as diagonal multipartitioning. In
two dimensions, these partitionings can be performed on any number of processors, p; however, in
three dimensions they are only useful if p is a perfect square. We consider the general problem of
computing optimal multipartitionings for d-dimensional data volumes onto an arbitrary number of
processors.

In the next section, we describe prior work in multipartitioning. In the subsequent sections, we
present our strategy for computing generalized multipartitionings. This strategy has two principal
parts: a cost-model-driven algorithm for computing the dimensionality and tile size of an optimal
multipartitioning and an algorithm for computing a mapping of data tiles to processors. We
present a proof and complexity analysis of the partitioning algorithm and a constructive proof
for the tile to processor mapping. Finally, we describe a prototype implementation of generalized
multipartitioning in the Rice dHPF compiler for High Performance Fortran. We report performance
results obtained using it to parallelize a the NAS SP computational fluid dynamics benchmark.

2 Background

Johnsson et al. [20] describe a two-dimensional domain decomposition strategy, now known as a
multipartitioning, for parallel implementation of ADI integration on a multiprocessor ring. They
partition both dimensions of a two-dimensional domain to form a p × p grid of tiles using the tile-
to-processor mapping θ(i, j) = (i − j) mod p, where 0 ≤ i, j < p. Using this mapping for an ADI
computation, each processor exchanges data with only its two neighbors in a linear ordering of the
processors, which maps nicely to a ring.

Bruno and Cappello [5, 6] devised a three-dimensional partitioning for parallelizing three-dim-
ensional ADI integration computations on a hypercube architecture. They describe how to map a
three-dimensional domain cut into 2d × 2d × 2d tiles onto 22d processors using the tile-to-processor
mapping θ(i, j, k) based on Gray codes. A Gray code [17] gs(r) denotes a one-to-one function defined
for all integers r and s where 0 ≤ r < 2s, that has the property that gs(r) and gs((r + 1) mod
2s) differ in exactly one bit position. Bruno and Capello define θ(i, j, k) = gd((j + k) mod 2d) ·
gd((i + k) mod 2d), where 0 ≤ i, j, k < 2d and · denotes bitwise concatenation. This θ maps tiles
adjacent along the i or j dimension to adjacent processors in the hypercube, whereas tiles adjacent
along the k dimension map to processors that are exactly two hops distant. They also show that
no hypercube embedding is possible in which adjacent tiles always map to adjacent processors.

Naik et al. [22] describe diagonal multipartitionings for two- and three-dimensional problems.
Diagonal multipartitionings are a generalization of the Johnsson et al. two-dimensional partitioning
strategy. This class of multipartitionings is also more broadly applicable than the Gray-code-based
mapping described by Bruno and Cappello. The three-dimensional diagonal multipartitionings
described by Naik et al. partition data into p

3
2 tiles, with each processor’s tiles arranged along a

3

wrapped diagonal through each of the partitioned dimensions. Figure 2 shows a three-dimensional
multipartitioning of this style for 16 processors; the number in each tile indicates the processor
that owns the block. In three dimensions, a diagonal multipartitioning is specified by the tile to
processor mapping θ(i, j, k) = ((i−k) mod

√
p)
√

p+((j−k) mod
√

p) for a domain of
√

p×√
p×√

p
tiles where 0 ≤ i, j, k <

√
p.

12

13

14

15

0

1

2

3

4

5

6

7

8

10

11

9

12

13

14

15

0

1

2

3

4

5

6

7

10

11

9

8

0

1

2

3

4

5

6

7

10

9

12

13

14

15

8

11

0

1

2

3

4

5

6

7

10

11

8

9

14

15

13

12

k

i

j

Figure 2: 3D Multipartitioning on 16 processors.

More generally, we observe that diagonal multipartitionings can be applied to partition d-
dimensional data onto an arbitrary number of processors p by cutting the data into p slices in
each dimension, i.e., into an array of pd tiles. For two dimensions, this strategy yields an optimal
multipartitioning (equivalent to the class of partitionings described by Johnsson et al. [20]). But,
for d > 2, cutting data into so many tiles yields inefficient partitionings with excess communication,

except when p
1

d−1 is integral.

3 Generalized Multipartitioning

Bruno and Cappello noted that multipartitionings need not be restricted to having only one tile per
processor per hyper-rectangular slab of a multipartitioning [5], but they did not explore construction
of partitionings of this style. We define a generalized multipartitioning as any partitioning of a
hyper-rectangular domain in which the number of tiles in each hyper-rectangular slab defined
by a pair of adjacent cuts along some partitioned dimension (hereafter, simply called a hyper-
rectangular slab) is divisible by the number of processors and the partitioning also satisfies both the
balance and neighbor constraints that we described informally in Section 1. We define generalized
multipartitionings more precisely after we introduce some notation that we use throughout the rest
of the paper.

• p denotes the number of processors. We write p =
∏s

j=1 α
rj

j , to represent the decomposition
of p into prime factors. Each prime factor αj of p occurs with some multiplicity rj.

4

• P denotes the set of processors {1..p}.

• d is the number of dimensions of the array to be partitioned. The array is of size n1, . . . , nd.
The total number of array elements is n =

∏d
i=1 ni.

• ~γ denotes an array partitioning. Each γi, 1 ≤ i ≤ d, in ~γ represents the number of tiles into
which the array is cut along its i-th dimension. We can consider a d-dimensional array as a
γ1× . . .×γd array of tiles. In our analysis, we assume γi divides ni evenly and do not consider
the effect of load imbalance that arises if this assumption is not valid.

Using this notation, we define a generalized multipartitioning as an ordered pair (~γ, θ), where
~γ is an array partitioning (as defined above) and θ is a tile-to-processor mapping. Each tile in
the array of tiles is represented by its coordinates ~t, a d-dimensional vector with each element ti,
1 ≤ i ≤ d, such that 0 ≤ ti ≤ γi − 1. A hyper-rectangular slab H in dimension i is a subset of the
array of tiles such that ∀~t ∈ H, ∀~u ∈ H, ti = ui.

To ensure that a balanced tile-to-processor mapping is possible for each hyper-rectangular slab
in any dimension i, 1 ≤ i ≤ d, the number of tiles in each such slab must be a multiple of p; namely,
for each p should divide

∏

j 6=i γj . The tile-to-processor mapping θ(~t) maps a tile’s coordinates ~t to
a processor in P . The mapping θ must satisfy two constraints for (~γ, θ) to be a multipartitioning.
First, for any hyper-rectangular slab H in any dimension i, when θ is applied to each of the elements
in the set H, it must map the coordinates of an equal number of tiles to each processor; namely,
∀i ∈ P , ∀j ∈ P , j 6= i, |θ−1(i) ∩ H| = |θ−1(j) ∩ H|. Second, there must exist a neighbor mapping
such that for all tiles θ−1(j) owned by a single processor j, j ∈ P , and any particular dimension i,
1 ≤ i ≤ d, there exists a single processor that owns all tiles “right-adjacent” to any tile in θ−1(j)
along dimension i; similarly, there exists a single processor that owns all tiles “left-adjacent” to any
tile in θ−1(j) along dimension i. More formally, if ~e is a canonical basis vector, then we must have:

θ(~t) = θ(~u) ⇒ θ(~t + ~e) = θ(~u + ~e)

when the tiles with coordinates ~t, ~u, ~t + ~e, and ~u + ~e exist in the array of tiles.
In the following sections, we show how to select an optimal partitioning of a d-dimensional array

into tiles and how to assign the tiles to processors so that the mapping satisfies the balance and
neighbor constraints of a multipartitioning. We show that such a tile assignment is possible if and
only if the number of tiles in each hyper-rectangular slab is a multiple of p (“if” being the difficult
part of the proof). We describe a “regular” tile-to-processor mapping (regular to be defined) that
satisfies the neighbor constraint.

In the next section, we define an objective function that represents the execution time of a paral-
lel line-sweep computation over a multipartitioned array and present an algorithm that computes an
optimal array partitioning with respect to this objective. In Section 5, we present a general theory
of modular mappings for generalized multipartitioning and apply this theory to define a mapping
of tiles to processors that satisfies the balance and neighbor constraints of multipartitionings.

4 Finding an Optimal Partitioning

We now develop a strategy for selecting an optimal partitioning for a multi-dimensional array
onto an arbitrary number of processors. First, we define an objective function that serves as
the basis for evaluating the relative cost of partitionings. Second, we cast partitioning as an
optimization problem. Third, we discuss necessary properties of an optimal partitioning. Fourth, we

5

present an algorithm for selecting an optimal partitioning by exhaustive enumeration of elementary
partitionings that satisfy the criteria for optimality; we also present a proof of our algorithm’s
correctness. Finally, we analyze the complexity of our algorithm.

4.1 Objective Function

Consider the cost of performing a line sweep computation along each dimension of a multiparti-
tioned array. The total computation cost is proportional to n, the number of elements in the array.
A sweep along the i-th dimension consists of a sequence of γi computation phases, one for each
hyper-rectangular slab of tiles along dimension i, separated by γi − 1 communication phases. Since
a multipartitioning assigns a balanced amount of work to each processor in each phase of the com-
putation, the total amount of work per processor will be roughly 1

p of the total computational work.
The communication overhead, including additional computation associated with communication,
is a function of the number of communication phases and the communication volume. In each
communication phase, a boundary layer consisting of one or more hyperplanes of array elements is
transmitted. The total communication volume in a sweep along dimension i is proportional to the
number of array elements in each boundary hyperplane communicated, namely

∏d
j=1,j 6=i nj = n

ni

elements. We assume here that the cost of one communication phase is an affine function of the
total volume of data transmitted. The total execution time for a sweep along dimension i can be
approximated by the following formula:

Ti(p, γi) = K1
n

p
+ (γi − 1)

(

K2 + K3
nbi

ni

)

where bi is the number of boundary hyperplanes communicated between computations on adjacent
slabs1 and K1, K2, and K3 are constants that depend, respectively, on the sequential computation
time, the cost of initiating one communication phase, and the cost of transmitting one array element.
If all processors can perform their communication without network contention, then the third
(volume-dependent) term can be divided by p; while this would change the cost, it would not
qualitatively change the way in which we use the cost function since we are reasoning for a fixed p;
therefore, we don’t consider this issue further. Using this model for each dimension, the cost of a
complete iteration that sweeps across all of the dimensions is thus

T (p,~γ) =

d
∑

i=1

Ti(p, γi) = d

(

K1
n

p
− K2 − K3

d
∑

i=1

nbi

ni

)

+

d
∑

i=1

γi

(

K2 + K3
nbi

ni

)

Assuming that p, n, and the ni’s and bi’s are given, the only term that can be optimized is
∑d

i=1 γiλi, where λi = K2 + K3
nbi
ni

is a constant that depends upon the domain size, the num-
ber of boundary layers communicated along that dimension, and the machine’s communication
parameters.

There are several cases to consider. If the number of phases (through K2) is the critical term,
the objective function can be simplified to

∑

i γi. If the volume of communications is the critical

term, the objective function can be simplified to
∑

i
γibi
ni

.
To illustrate the tradeoffs when partitioning data arrays with more than two dimensions, we

consider the simple case of partitioning a three-dimensional data volume among 4 processors when
only one boundary layer is communicated for a sweep along any dimension (∀i, bi = 1). If the

1To clarify the meaning of bi, we note that for the example shown in Figure 1, b1 = 2 since the subscripts i + 1
and i + 2 cause the right hand side references to access two off-processor planes of data.

6

data domain has one dimension that is much smaller than the others, then it will be less costly to
use a two-dimensional partitioning of the two larger dimensions rather than a three dimensional
partitioning. For instance, if n1 and n2 are at least 4 times larger than n3, then cutting each of the
first two dimensions into 4 pieces (γ1 = γ2 = 4, γ3 = 1) leads to a lower communication volume than
a three-dimensional partitioning in which each dimension is cut into 2 pieces (γ1 = γ2 = γ3 = 2).
In this case, the cost of the extra communication phases for sweeps along the first two dimensions
is offset by the absence of communication in a sweep along the unpartitioned third dimension.

4.2 The Partitioning Problem

To determine an optimal partitioning, we must minimize
∑

i γiλi for general λi’s, with the constraint
that, for any fixed i, p divides

∏

j 6=i γj . From a theoretical point of view, we do not know whether
this minimization problem is NP-hard, even for a fixed number of dimensions d ≥ 3 with all λi

equal to 1, or if a polynomial algorithm in log p exists. The only NP-hard problem we found in the
literature related to product of numbers is the Subset Product Problem (SPP) [16], which is weakly
NP-hard; it can be solved using dynamic programming. We suspect that this problem is strongly
NP-hard. However, if p has only one prime factor, a greedy approach leads to an algorithm that is
polynomial in r1 and d, which we describe in a technical report [12].

Without an algorithm that exploits the structure of the cost function, we are left with no
alternative but to search through the space of potential partitionings and select one for which the
cost is minimal. If we naively consider partitioning each dimension into between 1 and p intervals
(more than p partitions in a dimension would be pointless since our balance property could be
satisfied with p), this gives us a search space of size pd, which is much too large to search quickly
for large p. In the next section, we examine the properties that an optimal partitioning must possess
with the goal of narrowing the scope of our search.

4.3 Elementary Partitionings

We say that ~γ is a candidate partitioning if, for each 1 ≤ i ≤ d, p divides
∏d

j=1,j 6=i γj . If
∑

i γiλi is minimized, we say that ~γ is an optimal partitioning. We show some useful properties
of candidate and optimal partitionings.

Lemma 1 Let ~γ be given. Then, ~γ is a candidate partitioning if and only if, for each factor αj of
p, appearing rj times in the factorization of p, the total number of occurrences of αj in all γi is at
least rj + mj, where mj is the maximum number of occurrences of αj in any γi.

Proof: Suppose that ~γ is a candidate partitioning. Let αj be a factor of p appearing rj times
in the decomposition of p, let mj be the maximum number of occurrences of αj in any γi, and let
k be such that αj appears mj times in γk. Since p divides

∏

i6=k γi, αj appears at least rj times
in this product. The total number of occurrences of αj in all of the γi is thus at least rj + mj .
Conversely, if this property is true for any factor αj, then for any product of (d − 1) different γi’s,
the number of occurrences of αj is at least rj + mj minus the number of occurrences in the γi that
is not part of the product, and thus is at least rj. Therefore, p divides this product and ~γ is a
candidate partitioning.

�

Lemma 1 enables us to view a candidate partitioning ~γ as a distribution of the factors of p into
d bins, each representing a γi, 1 ≤ i ≤ d. If a factor αj appears rj times in p, it should appear
(rj + mj) times in the d bins, where mj is the maximal number of occurrences of αj in a bin.

7

The following lemma shows that, for an optimal partitioning, there should be exactly (rj + mj)
occurrences for each factor αj and that the maximum mj should appear in at least two bins.

Lemma 2 Let ~γ be an optimal partitioning. Then, each factor αj of p, appearing rj times in the
decomposition of p, appears exactly (rj + mj) times in ~γ, where mj is the maximum number of
occurrences of αj in any particular γi. Furthermore, the number of occurrences of αj is mj in at
least two γi’s.

Proof: Let ~γ be an optimal partitioning. By Lemma 1, each factor αj, 0 ≤ j < s, that appears
rj times in p, appears at least (rj + mj) times in ~γ. The following arguments hold independently
for each factor αj .

Suppose mj occurrences of αj appear in some γk and in no other γi, i 6= k. Remove one
αj from γk. Now, the maximum number of occurrences of αj in any γi is mj − 1 and we have
(rj +mj)−1 = rj +(mj −1) occurrences of αj . By Lemma 1, we still have a candidate partitioning,
and with a lower cost. This contradicts the optimality of ~γ. Thus, there are at least two bins with
mj occurrences of αj.

If c, the number of occurrences of αj in ~γ, is such that c > rj + mj , then we can remove one αj

from any nonempty bin. We now have c− 1 ≥ rj + mj occurrences of αj and the maximum is still
mj (since at least two bins had mj occurrences of αj). Therefore, according to Lemma 1, we still
have a candidate partitioning, and with a lower cost, again a contradiction.

�

We call the candidate partitionings that satisfy Lemma 2 elementary partitionings. These
partitionings are the minima of the partial order defined on candidate partitionings with the relation
~γ ≤ ~γ′ if γi divides γ ′

i for all i. Since all λi are positive, only elementary partitionings need to be
considered to find an optimal partitioning. Note, however, that there are elementary partitionings
that can never be optimal. For example, in 3D, for p = 22 × 33 × 52, the elementary partitioning
(22 × 32, 22 × 52, 32 × 52) = (36, 100, 225), and its permutations, can never be optimal since the
partitioning (30, 30, 30) is always better, whatever the positive λi’s. However, if the largest factor
were 7 instead of 5, such a partitioning will be optimal for some λi’s, since 36 is less than 2×3×7 =
42.

We present some upper and lower bounds for the maximal number of occurrences of a given
factor in any bin.

Lemma 3 In any optimal partitioning, for any factor αj appearing rj times in the decomposition
of p, we have d rj

d−1e ≤ mj ≤ rj where mj is the maximal number of occurrences of αj in any bin
and d is the number of bins.

Proof: By Lemma 2, we know that the number of occurrences of αj is exactly rj + mj, and at
least two bins contain mj elements. Thus, rj + mj = 2mj + e, in other words rj = mj + e, where
e is the total number of elements in (d − 2) bins, excluding two bins of maximal size mj . Since
0 ≤ e ≤ (d − 2)mj , then mj ≤ rj ≤ (d − 1)mj which is equivalent to the desired inequality, since
mj is an integer.

�

4.4 Exhaustive Enumeration of Elementary Partitionings

To compute an optimal partitioning ~γ, we need to consider only elementary partitionings. We
compute an optimal partitioning by enumerating all elementary partitionings and selecting one
with minimal cost according to our objective function. To compute all elementary partitionings, we

8

// inputs

// r - the multiplicity of some factor of p

// d - the number of dimensions to consider partitioning, d >= 2

// output

// bin[1..d] - the multiplicity of instances of the factor for each dimension

// global variable

// bin[1..d] whose initial values are ignored

void Partitions(int r, int d) {

int m;

for (m = (r+d-2)/(d-1); m <= r; m++) {

P(r+m,m,2,d);

}

}

void P(int n, int m, int c, int d) {

int i;

if (d==1) {

bin[d] = n; // bin[1..d] represents an elementary partitioning of a single factor

OutputFactorPartitioning(bin,d); // outputs contents of bin[1..d]

}

else {

for (i=max(0,n-m*(d-1)); i<=min(m-1,n-c*m); i++) {

bin[d] = i;

P(n-i,m,c,d-1);

}

if (n>=m) {

bin[d] = m;

P(n-m,m,max(0,c-1),d-1);

}

}

}

Figure 3: Program for Generating All Possible Distributions for One Factor.

first decompose p into prime factors using a standard algorithm. Then, we essentially enumerate all
elementary partitionings for each factor alone and then consider all possible combinations that arise
when the independent factors are considered together. For each resulting elementary partitioning
containing all of the factors, we evaluate our cost function and select a partitioning with minimal
cost.

The code shown in Figure 3 enumerates all elementary partitionings for a single factor of p
with multiplicity r as distributions of factor instances into d bins. This program is inspired by
a program [23] for generating all partitions of a number—a partitioning problem that has been
well-studied (see [3, 24]) since the mathematical work of Euler and Ramanujam. The procedure
Partitions first selects the maximal number m of factor instances that will appear in a bin, and
uses the recursive procedure P(n,m,c,d) to generate all distributions of n elements in d bins, from
index 1 to index d, where each bin can have at most m elements and at least c bins should have m
elements. The initial call is P(r+m,m,2,d).

We now prove that this program enumerates the desired elementary partitionings. Let us first
consider the loop in function Partitions. From Lemma 3, we know that the maximal number of
elements in a bin is between d r

d−1e = r+d−2
d−1 and r. For each such m, there is at least one elementary

9

partitioning with (r + m) elements and two maxima equal to m. The partitioning in which the
last two bins have m elements and the (d− 2) other bins contain a total of (r −m) elements is one
such partitioning. In this partitioning, a legal distribution of the (r−m) elements into the leftmost
(d − 2) bins is to let q = b r−m

m c bins contain m elements and another one contains (r − m − mq)
elements. Therefore, if the function P is correct, the function Partitions is also correct.

To prove the correctness of the function P, we prove by induction on d (the number of bins) that
there is at least one elementary partitioning if and only if 0 ≤ c ≤ d and cm ≤ n ≤ dm and that P
generates all of them, enumerating each one only once. These conditions are simple to understand:
we need at least cm elements (so that at least c bins have m elements) and at most dm elements,
otherwise at least one bin will contain more than m elements.

The terminal case is clear: if we have only one bin and n elements to distribute, the bin should
contain n elements. Furthermore, if there is a partitioning, we should have c ≤ 1 and n = m if
c = 1, i.e., c ≤ d and cm ≤ n ≤ dm.

The general case is trickier. We first select the number of elements i in the bin number d and
recursively call P for the first (d − 1) remaining bins. If we select fewer than m elements, we will
still have to select c bins with m elements for the remaining (d − 1) bins, with (n − i) elements.
Therefore, the number i that we select should be neither too small nor too large, and we should
have cm ≤ n−i ≤ m(d−1) (by induction hypothesis), i.e., n−(d−1)m ≤ i ≤ n−cm. Furthermore,
i should be strictly less than m, nonnegative, and less than n. Since c is always nonnegative, the
constraint i ≤ n − cm ensures i ≤ n. If the parameters are correct for the bin number d, we also
have c ≤ d and if c = d, then the loop has no iteration, thus for any i selected in the loop, we have
c ≤ d − 1. Therefore, the recursive call P(n-i,m,c,d-1) has correct parameters. Finally, selecting
m elements for the bin d is possible only if m is less than n, and then the remaining (n − m)
elements have to be distributed into (d− 1) bins, with a maximum of m, and at least max(0, c− 1)
maxima. Again, the recursive call has correct parameters, since we decreased both c and d and
removed m elements.

In the next two sections, we evaluate the complexity of our algorithm. The principal challenge
is to determine the bounds on the number of possible elementary partitionings. Our algorithm for
exhaustively enumerating the elementary partitionings of a single factor αj is exponential in rj ,
the multiplicity factor. Using this building block to compute elementary partitionings of all factors
yields an algorithm that is also exponential in s, the number of unique prime factors of p, but
whose complexity in p grows slowly. In practice, the algorithm is much faster than the exponential
worst case may suggest, both because the average complexity is much lower and because p is not
huge in practice.

4.4.1 Complexity Issues: First Hints

Here we consider some simple upper bounds on the number of elementary partitionings S(p) for
an integer p. We are not interested in an exact formula, but in the order of magnitude. In cases of
practical interest, we expect that the number of bins d will be small, i.e., 3, 4, or 5, but p may be
large, up to several thousand nodes.

Let us first try a rough estimation. For each factor αj of p, we need to put (rj + mj) instances
of αj into d bins; by Lemma 3, mj is at most rj . This implies that we need to distribute at most
2rj instances of αj into the bins. Each factor instance can be put in d different bins; thus, there

are at most d2rj possibilities for each factor αj , and d(2 � j rj) for all factors. This is at most d2 log2 p

in the worst case, when p is a power of 2, which is equal to p2 log2 d.
We can compute a tighter bound if we consider the structure of the distribution of the factors

10

dictated by Lemma 2. For each each factor αj, we must select two bins that will contain mj

elements, for which we have d(d−1)
2 choices. The other (rj − mj) elements must be distributed

among the remaining bins, which can be done in at most (d− 2)rj−mj ways. When d = 3, mj must
satisfy d rj

2 e ≤ mj ≤ rj ; thus, the number of different multiplicities of αj that we must consider
distributing is thus 3(b rj

2 c + 1) ≤ 3rj ; therefore, the total number of possible partitionings when
considering the combination of all possible distributions of each of the factors must be less than
3s
∏s

i=1 rj. We come back to such an expression later when discussing our final upper bound. When
d > 3, the number of possibilities for each factor αj is less than:

rj
∑

m=d
rj

d−1
e

d(d − 1)

2
(d − 2)rj−mj ≤ d(d − 1)

2

rj
∑

mj=1

(d − 2)rj−mj =
d(d − 1)

2

rj−1
∑

i=0

(d − 2)i

≤ d(d − 1)

2

(d − 2)rj − 1

d − 3
≤ d(d − 1)(d − 2)rj

2(d − 3)

When p has only a single factor, such as 2, the number of partitionings can be of order (d−2) log2 p,
i.e., plog2(d−2) which is roughly the square root of what we had previously. This is better, but still
a polynomial in p. We would like a tighter bound.

In the previous approach, we evaluated the number of possible positions for each element to
be put in the d bins. A dual view is to count, for each bin, how many factor instances it can
contain. This view leads to a sharper upper bound when d is small and rj can be large. We can
select for each bin a number between 0 and rj , thus (rj + 1) possibilities. The total number of
partitionings is less than (rj + 1)d for each factor, thus less than (log2 p + 1)d if p is a power of 2,
and S(p) ≤ (

∏

j(rj + 1))d in the general case. When rj is larger than d ≥ 3, (rj + 1)d is less than
(d + 1)rj , which is roughly our previous upper bound. With this scheme, we are more likely to
obtain a better evaluation of the total number of partitionings.

In Section 4.4.2 we show that S(p) = O

(

(

d(d−1)
2

)
(1+o(1)) log p

log log p

)

, which is a better upper bound

when d small and p can be large, and that this bound is tight in order of magnitude. It is no surprise
that this expression is similar to the number of dividers of an integer (see [19]), since

∏

j(rj + 1) is
indeed the number of dividers of p.

4.4.2 Complexity for Computing an Optimal Partitioning

Here we consider the cost of each of the steps for computing an optimal partitioning. Decomposing
p into prime factors using a standard algorithm has a complexity of O(

√
p). We use the Partitions

function to generate, for each factor, all elementary partitionings: those that satisfy Lemma 2. We
combine them while keeping track of the best overall partitioning. For evaluating each partitioning,
we need to build the corresponding γi’s and add them. Each γi is at most p and is obtained by at
most

∑

j rj ≤ log2 p multiplications of numbers less than p. Therefore, building each γi costs at most

(log2 p)3. The overall complexity, excluding the cost of the decomposition of p into prime factors,
is thus the product of (log2 p)3 and the complexity of the function Partitions, which corresponds
to the number of partitionings generated by the algorithm since each partitioning is generated only
once and the amount of work performed by the function is linearly proportional to the number
of partitionings it enumerates. Therefore, it remains to evaluate the number of partitionings S(p)
generated by the function Partitions, i.e., the number of elementary partitionings.

11

Consider first the case of a number p, product of unique prime factors, in particular the product
of the first s prime numbers: p =

∏s
i=1 πi where πi is the i-th prime number. For each factor, there

are d(d−1)
2 possible distributions, in which two bins each have one element; therefore, the total

number of partitionings is
(

d(d−1)
2

)s
. Now, the i-th prime number is equivalent to i log i (see for

example [19]). Therefore, when p grows, we have

log p =

s
∑

i=1

log πi ∼
s
∑

i=1

log(i log i) ∼
s
∑

i=1

log i ∼
∫ s

1
log xdx ∼ s log s

since divergent series with nonnegative equivalent terms are equivalent. Therefore, log p ∼ s log s

and log p
log log p ∼ s. The total number of partitionings for p is thus

(

d(d−1
2

)
log p

log log p
(1+o(1))

. We will

prove later that this situation (p is the product of unique prime factors) is actually representative
of the worst case, in order of magnitude.

Before that, we can give several simpler upper bounds, exploiting well-known results concerning
d(p) the number of dividers of p (see again the book of Hardy and Wright [19, Chap. XVIII]). The
number of dividers of p =

∏s
i=1 αri

i is d(p) =
∏s

i=1(ri + 1). For all ε > 0, for p sufficiently
large, d(p) ≤ 2(1+ε) log p/ log log p. Furthermore, the average order of d(p), which is (

∑p
i=1 d(i))/p,

is equivalent to log p, while the average order of d(p)d is of order (log p)2
d−1. As seen before, the

number of elementary partitionings S(p) satisfies S(p) ≤ d(p)d. We can deduce immediately the
following upper bounds:

• For all ε > 0, for p large enough, S(p) ≤ 2d(1+ε) log p/ log log p. Thus log S(p) = O(log p/ log log p).

• Combined with the previous lower bound, when p is the product of first primes, log(d(d −
1)/2) ≤ lim sup {log S(p) log log p/ log p} ≤ d log 2.

• The average order of S(p) is less than (log p)2d−1.

In other words, the worst-case complexity of the exhaustive search is not polynomial in log p, but
is smaller than any function pr for any real number r > 0. Furthermore, on average, the behavior
of the search is that of a polynomial (in log p) algorithm. We did not try to get an equivalent of
the average order of S(p), i.e., an exact order of magnitude. However, it remains to compute the
exact order of magnitude of the worst case, i.e., to show that lim sup {log S(p) log log p/ log p} =
log(d(d − 1)/2). Actually, we only need to find an upper bound better than the one obtained
using d(p).

Theorem 1 For ε > 0, when d is fixed and large p, log S(p) ≤ (1+ε) log(d(d−1)/2) log p/ log log p.

Proof: Let C(r) be the number of partitionings generated by a factor appearing r times in the
decomposition of p. The total number of partitionings S(p) is

∏s
i=1 C(ri). To find an upper bound

for S(p), we use a similar technique as in [19, page 261-262], which consists of finding an upper
bound for:

S(p)

pδ
=

s
∏

i=1

(

C(ri)

αδri
i

)

for any particular δ > 0, and δ will then be chosen as a function of p.
We first find an upper bound individually for each C(r)/αδr. When it is important to be

accurate for a small r, we will use upper bounds in dr (this also makes the computation simpler),

12

and we will use upper bounds in rd when r can be large (remember that rd ≤ dr when r ≥ d ≥ 3).
First note that, roughly, C(r) is less than (r + 1)d. Furthermore, since 1/e ≤ log 2 and x ≤ ex/e,
we have x ≤ ex log 2 = 2x. Thus, for any δ > 0:

C(r)/αrδ ≤ (r + 1)d/2rδ = ((r + 1)/2rδ/d)d ≤ (1 + r/2rδ/d)d ≤ (1 + d/δ)d (1)

This is true whatever r and α.
When α is large, we can bound the number of partitionings in a more accurate way. When

r = 1, the number of generated partitionings is d(d − 1)/2. When r ≥ 2 and d ≥ 4, we saw

(Section 4.4.1) that C(r) ≤ d(d−1)(d−2)r

2(d−3) , and for d = 3, the number of partitionings is less than

rd(d − 1)/2 = 3r. When d ≥ 4 and r ≥ 2, it is easy to see that the function log(d(d−1)(d−2)r

2(d−3))/r is
maximal for r = 2. Furthermore, for r = 2, we have:

d(d − 1)(d − 2)2

2(d − 3)
≤
(

d(d − 1)

2

)2

⇔ (d − 2)2

d − 3
≤ d(d − 1)

2
⇔ 2(d − 2)2 ≤ d(d − 1)(d − 3)

But when d ≥ 5, 2 ≤ d − 3 and (d − 2)2 ≤ d(d − 1) and when d = 4, 2(d − 2)2 = 8 and
d(d − 1)(d − 3) = 12. Thus, for all r ≥ 2, we have log(C(r))/r ≤ log(d(d − 1)/2) = log C(1). And

α ≥ C(1)1/δ ⇒ αrδ ≥ C(1)r ⇒ C(r)

αrδ
≤ C(r)

C(1)r
≤ 1 (2)

We use Inequality (1) when α ≤ C(1)1/δ and Inequality (2) otherwise. Since there are at most

C(1)1/δ different α’s in the first case, we get S(p)
pδ ≤ (1 + d/δ)d C(1)1/δ

, thus:

log S(p) ≤ dC(1)1/δ log(1 + d/δ) + δ log p ≤ C(1)1/δd2/δ + δ log p

With δ = (1 + ε/2) log C(1)/ log log p, we get:

log S(p) ≤ d2

(1 + ε/2) log C(1)
(log p)1/(1+ε/2) log log p + (1 + ε/2) log C(1) log p/ log log p

For large p, the first term is o(log p/ log log p), therefore for p large enough, we get:

log S(p) ≤ (1 + ε) log C(1) log p/ log log p

which is the desired inequality.
�

5 Finding a Tile-to-processor Mapping

In Section 4, we described how, given a number of processors and the dimensions of an array, we
compute an array partitioning that minimizes an objective function 2. A partitioning specifies an
array (of tiles) whose size is ~γ for which the objective is minimized. So far, we have assumed that
a multipartitioning tile-to-processor assignment can be computed. Such an assignment maps tiles
to processors in a way that satisfies the key multipartitioning properties; namely, each processor
will have the same number of tiles assigned to it in each slab of the array, and a multipartitioning

2We use an objective function that measures the (d− 1) dimensional ‘surface’ area of the cuts—an approximation
of communication cost for a line sweep computation using the partitioning.

13

“neighbor mapping” function exists for each processor. This assumption has not yet been proven
valid. An assignment with the first property is a F-hyper-rectangle, a generalization of the
notion of latin square that is described in the second reference book on latin squares by Dénes
and Keedwell [13, page 392]. Despite this reference, we have not found any paper that gives a
method for constructing such an assignment, or even an existence proof, for our general case.
Furthermore, even if such a proof exists, which we are not aware of, the constructive proof we give
below is of interest to us because:

• it has the neighbor property,

• the tile-to-processor mapping is given by a simple formula, and conversely, for each processor,
the list of tiles assigned to it can be easily formulated, which is very desirable for code
generation,

• it gives a new insight to the properties of “modular” mappings (defined below).

By our partitioning algorithm, ~γ is an elementary partitioning. All elementary partitionings
possess the property that for each 1 ≤ i ≤ d, p divides

∏

j 6=i γj . This property is obviously a
necessary condition. We prove in this section that this is also a sufficient condition. For any
candidate partitioning ~γ, optimal or not (with or without the additional property of Lemma 2),
we can compute a valid multipartitioning tile-to-processor assignment for the tiles defined by the
partitioning. To accomplish this, we use modular mappings, which we define in the following section
(Section 5.1). In Section 5.2, we review some results on the validity of modular mappings that were
shown previously by Darte, Dion, and Robert [11], along with some additional properties that are
more important to our problem at hand. Finally, in Section 5.3, we give a constructive proof of
the existence of a multipartitioning tile-to-processor assignment using modular mappings. The
solution we build is one particular assignment. It is not unique and experiments might show that
other assignments may yield faster execution times because of a difference in communication costs
associated with their neighbor mappings. However, our current objective function (Section 4.1)
does not account for network topology when constructing tile-to-processor mappings, so all valid
mappings are considered equally good.

5.1 Modular Mappings

Consider the assignment in Figure 2. We have to find a formula that describes it. Let us try an
assignment in the form of a linear 3 mapping modulo p (the number of processor), ax+by+cz mod p
(a, b, and c can be chosen between 0 and p − 1, i.e., modulo p), and processors can be arranged
differently, as long as the load-balancing property is satisfied.

To simplify the discussion, let us first consider a “smaller” example, with p = 4 and γ1 = γ2 =
γ3 = 2. Consider the first horizontal slab (for z = 0): the four numbers, 0, 1, 2, and 3 should
appear exactly once, and the 0 is in position (0, 0). First, a and b are nonzero, otherwise 0 appears
twice, either in the first row, or in the first column. Furthermore, if 1 appears in position (0, 1),
then 3 cannot appear in position (1, 0), otherwise 1+3 = 0 mod 4 appears in position (1, 1), which
again is not acceptable. Therefore, either a = 1 and b = 2 (and the symmetric case), or a = 2 and
b = 3 (and the symmetric case). The possible values for c have to be found. Obviously c is not 0
otherwise 0 appears twice in the slab y = 0 for example. Consider the first case a = 1 and b = 2. If
c = 1, then 1 appears twice in the slab y = 0 (for (1, 0, 0) and for (0, 0, 1)). If c = 2, then 2 appears

3Adding a constant, i.e., considering an affine mapping is not more powerful. Numbers are just all shifted by the
same amount.

14

twice in the slab x = 0 (for (0, 1, 0) and for (0, 0, 1). And if c = 3, then 0 appears twice in the slab
y = 0 (for (0, 0, 0) and for (1, 0, 1)). Now, in the second case, if a = 2 and b = 3, the possible values
for c have to be determined. A similar study shows that c = 1 is not possible (conflict for the slab
x = 0), c = 2 is not possible (conflict for the slab y = 0), and c = 3 is not possible (conflict for the
slab x = 0).

The small example we just studied (for an array of size 2 × 2 × 2 and four processors) is an
example for which the class of one-dimensional modular mappings (a linear map modulo the number
of processors) is not large enough to contain a valid solution. We will therefore study a larger class
of mappings, the class of multi-dimensional modular mappings M ~m : � d −→ � d′ defined by
M~m(~i) = (M~i) mod ~m (the modulo is component-wise) where ~i is the vector of coordinates in the
array of tiles (an integral d-dimensional vector), M is an integral d′×d matrix, and ~m is an integral
positive vector of dimension d′. Each tile is assigned to a “processor number” in the form of a vector.
The product of the components of ~m is equal to the number of processors. It then remains to define
a one-to-one mapping from the hyper-rectangle {~j ∈ � d′ | ~0 ≤ ~j < ~m} (inequalities component-
wise) onto the processor numbers. This can be done by viewing the processors as a virtual grid
of dimension d′ of size ~m. The mapping M~m is then an assignment of each tile (described by its
coordinates in the d-dimensional array of tiles) to a processor (described by its coordinates in the
d′-dimensional virtual grid).

Note: in Section 5.3, we will consider only the case d′ = d − 1. Modular mappings into a space
of dimension lower than (d − 1) are captured by this representation when some components of ~m
are equal to 1. Modular mappings into a space of larger dimension could also be studied in a similar
way, but they are not needed for our purpose.

Consider again Figure 2. There are 16 processors that can be represented as a 2-dimensional
grid of size 4 × 4. For example, the processor number 7 = 4 + 3 can be represented as the vector
(3, 1). In general, they can be expressed as (r, q) where r and q are the rest and the quotient,
respectively, of the Euclidian division by 16. The assignment in the figure corresponds to the
modular mapping (i − k mod 4, j − k mod 4).

The following definitions summarize the notions of modular mappings that satisfy the load-
balancing property.

Definition 1 (Modular mapping)
A modular mapping M~m : � d −→ � d′ is defined as M~m(~i) = (M~i) mod ~m where M is an

integral d′ × d matrix and ~m is an integral positive vector of dimension d′.

Definition 2 (Rectangular index set)
Given a positive integral vector ~b, the rectangular index set defined by ~b is the set I~b = {~i ∈

� n | 0 ≤~i < ~b} (component-wise) where n is the dimension of ~b.

Definition 3 (Slab)
Given a rectangular index set I~b

, a slab I~b
(i, ki) of I~b

is defined as the set of all elements of I
whose i-th component is equal to ki (an integer between 0 and bi − 1).

Definition 4 (One-to-one modular mapping)
Given a hyper-rectangle (or any more general set) I~b

, a modular mapping M~m is a one-to-one

mapping from I~b
onto I~m if and only if for each ~j ∈ I~m there is one and only one ~i ∈ I~b

such that

M~m(~i) = ~j.

15

Definition 5 (Equally-many-to-one modular mapping) Given a hyper-rectangle (or any more
general set) I~b

, a modular mapping M~m is a equally-many-to-one modular mapping from I~b
onto

I~m if and only if the number of ~i ∈ I~b
such that M~m(~i) = ~j does not depend on ~j.

Definition 6 (Load-balancing property)
Given a rectangular index set I~b, a modular mapping M~m has the load-balancing property for

I~b if and only if for any slab I~b(i, ki), the restriction of M~m to I~b(i, ki) is a equally-many-to-one
mapping onto I~m.

Note that the images of the slab I~b
(i, ki) are obtained from the images of the slab I~b

(i, 0) by
adding (modulo ~m) ki times the i-th column of M . Therefore, all values in I ~m are images of the
same number of elements in the slab I~b

(i, ki) if and only if the same is true for the slab I~b
(i, 0).

In other words, for modular mappings (as opposed to arbitrary mappings), the load-balancing
property can be checked only for the slabs that contain 0 (the slabs I~b(i, 0)). Furthermore, if ~b[i]

denotes the vector obtained from ~b by removing the i-th component and M [i] denotes the matrix
obtained from M by removing the i-th column, then the images of I~b(i, 0) under M~m are the images
of I~b[i] under the modular mapping M [i]~m. We therefore have the following property.

Lemma 4 Given a hyper-rectangle I~b
, a modular mapping M~m has the load-balancing property for

I~b
if and only if each mapping M [i]~m is a equally-many-to-one modular mapping from I~b[i]

to I~m.

We now address the following issues. First, we need to check that a given modular mapping
has the load-balancing property. This is the topic of Section 5.2. Second, given an array of tiles
I~b

defined by a candidate partitioning ~b, we need to find a modular mapping that has the load-
balancing property. This is the topic of Section 5.3. We will have to define an adequate matrix M
and also to choose an adequate shape ~m for the virtual grid of processors.

5.2 Validity of Modular Mappings

Let us first recall some of the theory of one-to-one modular mappings developed by Lee and
Fortes [21] and by Darte, Dion, and Robert [11]. We will then extend some of these results to
equally-many-to-one modular mappings. We will make use of Hermite and Smith forms. We recall
here the definitions for square matrices.

Definition 7 (Smith normal form)
Given a square matrix A of with integral components, there exist integral matrices Q1, Q2, and

S such that:

• Q1 and Q2 are unimodular (i.e., with determinant 1 or −1),

• S is nonnegative, S = diag(s1, . . . , sr, 0, . . . , 0) where r is the rank of A, and si divides si+1

for 1 ≤ i < r,

• A = Q1SQ2.

Definition 8 (Left Hermite normal form)
Given a square matrix A with integral components, there exist integral matrices Q and H such

that:

• Q is unimodular (i.e., with determinant 1 or −1),

16

• H is lower triangular and nonnegative,

• each nondiagonal element is smaller than the diagonal element of the same row,

• A = HQ.

We can also apply the Hermite decomposition by first permuting the rows of A, i.e., considering
the rows of A in a different order when “triangularizing” the matrix A into H. We will consider
these d! Hermite forms in the rest of our study (where d is the size of A). We will also use the
following notations: a � denotes the set of integers that are multiple of a, and ~m � denotes the
product m1 � × . . . × md′ � for a vector ~m of size d′. A modular mapping M~m is a linear mapping
from the group � d into the quotient group � d′/~m � .

5.2.1 The Lattice G = Ker(M~m)

We denote by G the set Ker(M~m) = {~i | M~i = ~0 mod ~m}, i.e., the set of pre-images of the zero of
� d′/~m � . The set G is essential for our study.

Lemma 5 G is a subgroup of � d. G is also a sub-lattice of � d, whose determinant divides the
cardinality of � d′/~m � , i.e.,

∏d′

i=1 mi.

Proof: G is the pre-image of the subgroup of � d′/~m � whose single element is the zero of � d′/~m � .
Therefore G is a subgroup of � d. Now, consider the equivalence relation ~i ≡ ~i′ ⇔ ~i −~i′ ∈ G. Let
π be the canonical surjective map from � d onto the quotient group � d/G such that π(~i) is the
class of ~i with respect to the equivalence relation ≡. There is a unique map M ~m from � d/G into

� d′/~m � such that M ~m ◦ π = M~m, and M ~m is one-to-one (this is the classical factorization of a
linear map between groups). The image of � d/G under M ~m is a subgroup of � d′/~m � , thus its
cardinality divides the cardinality of � d′/~m � (Lagrange’s theorem). Since M ~m is one-to-one, this
holds also for � d/G. Finally, since � d is a lattice and G is a subgroup of � d, G is also a lattice,
and its determinant is the cardinality of � d/G.

�

The map M ~m is a one-to-one linear map from the equivalence classes of ≡ onto the image of
� d under M~m. Now, given a set S ∈ Zd of representatives of the equivalence relation ≡ (i.e., a set
for which the restriction of the surjective map π is one-to-one), the restriction of M ~m to S is also
a one-to-one mapping, but we lose the linear properties of M ~m or M ~m, since S has no particular
algebraic structure. This will typically be our case when considering the rectangular index set I~b

.
We have the following result.

Lemma 6 If a basis of G is given by a triangular (up to a permutation of the rows) matrix H,
then the rectangular index set I~b

where ~b is the vector of diagonal components of H is a set of
representatives of the equivalence relation ≡.

Proof: First, if ~b is defined as the diagonal components of H, then I~b
and � d/G have the same

number of elements. It remains to check that all elements of I~b
have different images under π, i.e.,

belong to different equivalence classes. Let ~i and ~i′ in I~b
such that ~i ≡ ~i′, i.e., ~i −~i′ ∈ G. Let

~i −~i′ = ~j. By definition, |~j| < ~b (component-wise), and ~j = H~k for some integral vector ~k. Such a
triangular system has only one integral solution, ~j = ~0.

�

The previous lemma provides the means of computing a rectangular index for which the map
M~m is one-to-one. Now, we need to compute a basis for the lattice G. This can be done as follows.

17

Consider ~i ∈ G: M~i = ~0 mod ~m ⇔ ∃~k ∈ � d′ such that M~i = θ~m
~k where θ~m is the diagonal matrix

diag(~m). Let θ ~m be the comatrix of θ~m, i.e., the matrix such that θ ~mθ~m = det(θ~m)I~d′
. We get:

M~i = θ~m
~k ⇔ (θ ~mM)~i = det(θ~m)~k ⇔ Q1SQ2

~i = det(θ~m)~k ⇔ SQ2
~i = det(θ~m)Q−1

1
~k

where Q1SQ2 is the Smith form of θ~mM . Now, there exists ~k ∈ � d′ such that M~i = θ~m
~k if and only

if there exists ~k′ ∈ � d′ such that S~j = det(θ~m)~k′ and ~i = Q−1
2

~j. It remains to solve the diagonal

system S~j = det(θ~m)~k′. With p = det(θ~m) =
∏d′

i=1 mi, there exists an integer k′
i such that siji = pk′

i

if and only if p divides siji iff p
gcd(si,p) divides si

gcd(si,p)ji iff ji is a multiple of p
gcd(si,p) (this is true

even if si = 0 with the convention that gcd(0, p) = p). Thus, with S ′ = diag(p
gcd(s1,p) , . . . ,

p
gcd(sd,p)),

we just proved that ~i ∈ G if and only if there exists ~k′′ ∈ � d such that ~i = Q−1
2 S′~k′′. In other

words, Q−1
2 S′ is a basis for G.

Note that if M is unimodular, the above construction can be simplified. Indeed, in this case,
M~i = θ~m

~k ⇔ ~i = M−1θ~m
~k, thus M−1θ~m is a basis for G. We will use this later, focusing only on

unimodular matrices (even triangular). Note also that given a lattice described by a nonsingular
square matrix B, we can always build back a matrix M and a vector ~m such that the corresponding
lattice G for M~m has basis B. This can be done as follows. Write the Smith normal form of B,
B = Q1SQ2. Let M = Q−1

1 and let ~m be the vector whose components are the diagonal components
of S. As seen before, a basis for G is then Q1S, which is also a basis of the lattice described by B
since B and Q1S differ by multiplication on the right by a unimodular matrix.

5.2.2 One-To-One Modular Mappings

We are now ready to discuss necessary and sufficient conditions for a modular mapping M ~m to be
one-to-one from a rectangular index set I~b

onto the rectangular set I~m (here we identify Zd′/~m �
with the set I~m forgetting about the group structure).

First, of course, the cardinality of I~b
and I~m have to be the same, i.e.,

∏d
i=1 bi =

∏d′

i=1 mi. Also,
the determinant of the lattice G has to be equal to the cardinality of I ~m. Otherwise, according
to Lemma 5, the cardinality of the range of M ~m divides (strictly) the cardinality of I ~m, therefore
some elements of I~m have no pre-image, and the mapping cannot be one-to-one onto I ~m.

Lemma 6 gives a sufficient condition for a mapping M ~m to be one-to-one from a rectangular
index set I~b

onto the rectangular index set I~m. If the lattice G has a basis expressed by a triangular

(up to a permutation of the rows) matrix whose diagonal components are the components of ~b, and
if the determinant of G is equal to the cardinality of I ~m (equivalently if I~b

and I~m have the same
cardinality), then the mapping is a one-to-one mapping from I~b

onto I~m. It turns out that the
converse is also true (see details in [11]) thanks to a famous (in covering/packing theory) theorem
due to Hajós [18].

Theorem 2 A modular mapping M~m is one-to-one from I~b
onto I~m if and only if the lattice G has

a basis given by a triangular (up to a permutation of the rows) matrix whose diagonal components
are the components of I~b

, and I~b
and I~m have the same cardinality.

To find the diagonal components of this triangular basis, we just have to compute the d! left

Hermite forms of a given basis. For example, if the basis of G is given by the matrix B =

(

2 4
3 12

)

,

then:
(

2 4
3 12

)

=

(

2 0
3 6

)(

1 2
0 1

)

and

(

2 4
3 12

)

=

(

2 4
3 0

)(

1 4
0 −1

)

18

Therefore, among the 6 possibilities – ~b ∈ {(1, 12), (12, 1), (2, 6), (6, 2), (3, 4), (4, 3)} – the mapping
is one-to-one from I~b

onto I~m only for ~b = (2, 6) and ~b = (4, 3). We need to build a mapping with
such property. To begin, we compute the Smith normal form of B:

(

2 4
3 12

)

=

(

2 −1
3 −1

)(

1 0
0 12

)(

1 8
0 1

)

and

(

2 −1
3 −1

)−1

=

(

−1 1
−3 2

)

Therefore the mapping (i, j) −→ (−i + j mod 1,−3i + 2j mod 12) is such a mapping. We can even
remove the first component of the mapping (since x mod 1 is always 0), and simply consider the
mapping (i, j) −→ −3i + 2j mod 12. The table below depicts the values −3i + 2j mod 12 in the
plane (i, j) (i increases from left to right, j from bottom to top). The reader can check that only
the “boxes” (2, 6) and (4, 3) are suitable.

. .

. . . 0 9 6 3 0 9 6 . . .

. . . 10 7 4 1 10 7 4 . . .

. . . 8 5 2 11 8 5 2 . . .

. . . 6 3 0 9 6 3 0 . . .

. . . 4 1 10 7 4 1 10 . . .

. . . 2 11 8 5 2 11 8 . . .

. . . 0 9 6 3 0 9 6 . . .

. .

We point out that the techniques developed here (with the help of Hajós’ theorem) are also useful
in systolic array-like design (see [10] and [9]) for generating “juggling schedules” corresponding to
“locally sequential, globally parallel” partitionings.

5.2.3 Equally-Many-To-One Modular Mappings

We now generalize the previous results (when possible) to the case of equally-many-to-one modular
mappings. The situation turns out to be much more difficult. We will say that a rectangular index
set I~b

is a multiple of a rectangular index set I~b′
if ~b and ~b′ have same size and each component of

~b is a multiple of the corresponding component of ~b′. In other words, I~b
can be paved (partitioned)

by disjoint copies of I~b′
.

The results of the previous section provide immediately a necessary and sufficient condition for
a modular mapping M~m to be equally-many-to-one from I~b onto I~m.

Lemma 7 If M~m is a equally-many-to-one modular mapping from I~b
onto I~m, then the cardinality

of I~b
is a multiple of the cardinality of I ~m, and the determinant of the lattice G is equal to the

cardinality of I~m.

Proof: The first part is obvious. If M ~m is equally-many-to-one from I~b
onto I~m, by Definition 5,

there exists an integer k such that each element of I ~m has exactly k pre-images. Therefore, the
cardinality of I~b

is exactly k times the cardinality of I ~m.

The second part comes from Lemma 5: the image of � d is a set whose cardinality is the
cardinality of the determinant of G. If the determinant of G is not equal to the cardinality of I ~m,
then some element in I~m has no pre-image at all. Since ~0 has at least one pre-image (~0 always
belongs to a rectangular index set since we assumed ~b to be positive), not all elements of I ~m have
the same number of pre-images.

�

19

Lemma 8 If M~m is a one-to-one modular mapping from I~b′
onto I~m, then M~m is a equally-many-

to-one modular mapping from any multiple I~b
of I~b′

onto I~m.

Proof: This is clear. Each element in I~b′
gives rise to a different value in I ~m. Furthermore, this

property is true for any translated copy of I~b′
since a translation of the index set I~b′

corresponds to
a translation (modulo ~m) of their images. We already made this remark in Lemma 4. Therefore, if
M~m is one-to-one from I~b′

onto I~m, M~m is also one-to-one from any translated copy of I~b′
onto I~m.

Since I~b
is the union of disjoint copies of I~b

, M~m is a equally-many-to-one mapping from I~b
onto

M~m, since each element of M~m has as many pre-images as there are copies of I~b′
in the partitioning

of I~b
.

�

We need to generalize Theorem 2 to the case of equally-many-to-one modular mappings. The
theorem of Hajós used to prove Theorem 2 is a theorem of group theory, for a group that is the
direct sum of particular subsets (“beginning” of cyclic groups). The direct sum (that Hajós denoted
by ⊕) means that each element of the group can be decomposed, in a unique way, as the sum of
elements, each one in a different subset. In our case, the number of subsets is the dimension of
the index set we work with (d). It turns out that Hajós proved an extension of his result to more

general “direct sums” (denoted by
k
⊕), where each element can be decomposed in exactly k ways

into the sum of elements, each one in a different subset. He proved a less-known result of the same
kind up to dimension 3, but gives a counter-example for 4 such subsets. For more details, see the
original paper by Hajós (in German) [18] or Fuchs’ book [15].

We can easily use Hajós’ extended result to adapt the proof of Theorem 2, up to dimension 3:
a modular mapping is equally-many-to-one from I~b

onto I~m if and only if the lattice G has a
determinant equal to the cardinality of I ~m, and one of the d! left Hermite forms of a basis of G is
such that each diagonal component divides the corresponding component of ~b. Thanks to Lemma 4,
this will give a necessary and sufficient condition for mappings with the load-balancing property
up to dimension 4 (one more than for equally-many-to-one mappings). However, because of Hajós’
counter-example with 4 subsets, these results are more likely to be wrong for higher dimensions,
even if we did not try to build a counter-example neither for equally-many-to-one mappings, nor
for mappings with the load-balancing property. It is possible that the very constrained conditions
needed for the load-balancing property (the mapping has to be equally-many-to-one for each “face”
of the index set) forces us to look for a counter-example in even higher dimensions, but nevertheless,
we think that such a counter-example is more likely to exist.

The extension of Theorem 2 to equally-many-to-one modular mappings has a very interesting
consequence. When this extension is true (with the previous discussion, at least up to dimension 3),
it implies that each index set I~b

for which the equally-many-to-one property is true is a multiple
of a smaller index set for which the one-to-one property holds. But in higher dimensions, it is very
possible that I~b

can be partitioned using several smaller rectangular index sets, for each of which
the one-to-one property is true, but that I~b cannot be partitioned using only one of them. This
seems to be related to results (much simpler compared to Hajós’ theorem) due to N. G. de Bruijn
who characterized the rectangular index sets, partitioned into given smaller rectangular index sets,
that can be partitioned using only one of them. In higher dimensions, this situation is more likely
to happen. Therefore, in higher dimensions, we do not know if a simple necessary and sufficient
condition for a modular mapping to be equally-many-to-one can be given. Nevertheless, for our
practical concern, we are mainly interested in building one such mapping, and for this, using the
sufficient conditions from the if-part of Theorem 2 and from Lemma 8 will be enough.

20

5.2.4 Modular Mappings With the Load-Balancing Property

Lemma 4 makes the link between modular mappings with the load-balancing property and equally-
many-to-one modular mappings. Using the various necessary conditions and sufficient conditions of
the two previous sections, for one-to-one mappings and equally-many-to-one mappings respectively,
we can now give conditions for the load-balancing property.

Theorem 3 If M~m is a modular mapping with the load-balancing property for I~b
, then the following

holds:

• for each dimension j,
∏

i6=j bi is a multiple of the cardinality of I ~m,

• the determinant of the lattice G is equal to the cardinality of I ~m,

• for any basis B of G, each row of B has coprime components.

Proof: The first property is clear. This is the same as our validity condition for ~γ in Section 4.3
and a consequence of the first condition of Lemma 7.

The second property is a consequence of Lemma 5 again. The determinant of the lattice G
for M~m divides the cardinality of I~m. If the determinant is not equal to I ~m, it is strictly smaller,
and some values in I~m have no pre-image at all in the whole set � n, therefore no pre-image in I~m.
In this case, the mapping cannot have the load-balancing property (in terms of Section 4.3, some
processors have no tiles at all to compute).

The third property comes from Lemma 4. The link between the lattice G for M ~m and the
lattice G[i] for M [i]~m (M [i] is the matrix obtained by removing the i-th column of M , M [i] ~m is the
corresponding mapping modulo ~m). The mapping M ~m has the load-balancing property if and only
if, for each dimension i, M [i]~m is equally-many-to-one when restricted to the i-th “face” of I~b

, i.e.,
I~b

(i, 0). Following Lemma 7, the determinant of the lattice G[i] has to be equal to the cardinality

of I~m. The lattice G[i] is the set of vectors in � d−1 whose image under M [i]~m is ~0. Embedding the
set � d−1 into � d (according to i), � d−1 is the set of vectors in � d such that the i-th component is
0, and G[i] can be viewed as the projection of the intersection of G with the set {~j ∈ � d | ji = 0}.
This is the reverse operation we did to obtain Lemma 4. To say it differently, with ~j[i] the vector
obtained from ~j by removing the i-th component, we have:

(~j ∈ G and ji = 0) ⇔ (M~j = ~0 mod ~m and ji = 0) ⇔ (M [i]~j[i] = ~0 mod ~m and ji = 0)

⇔ (~j[i] ∈ G[i] and ji = 0)

In other words, instead of computing G[i] following the steps given in Section 5.2.1 starting from
the matrix M [i], we can build G[i] directly from G (which is computed starting from the matrix
M). Starting from a basis B of G, we can multiply B (on the right) by any unimodular matrix
Q, and BQ is still a basis of G. Furthermore, as we do for computing Hermite normal forms, we
can choose Q such that the i-th row of B has only one nonzero component (which is the gcd –
greater common divisor – of the elements of this row). We then remove the i-th row of B and the
column that contains the nonzero component of the i-th row, and we obtain a basis B[i] for G[i].
By construction, the determinant of B is equal (up to sign) to the determinant of B[i] times the
nonzero element of the i-th row. Therefore, since the determinant of G divides the cardinality of
I~m, this is true also for the determinant of B[i], and there is equality if and only if the nonzero
element was equal to 1 (or −1), i.e., if and only if the elements of the i-th row are coprime.

�

21

Theorem 3 will give us some hints on how to build a desired mapping with the load-balancing
property. Let us give a sufficient condition now, which is a direct consequence of the if-part of
Theorem 2 and of Lemma 8, and of the link between G[i] and G revealed in the previous lemma.

Theorem 4 A modular mapping M~m has the load-balancing property for I~b
if the following con-

ditions are satisfied:

• the determinant of the lattice G for M ~m is equal to the cardinality of I~m,

• if B is a basis of the lattice G, for each dimension i, there is permutation of the rows of B
such that the i-th row of B is now the first and such that the (unique for this permutation)
left Hermite form of B is HQ where the first diagonal component of B is 1 and each diagonal
component of H divides the corresponding (taking the permutation into account) component
of ~b.

Proof: Consider a dimension i. To make the explanations simpler, let us get rid of the permuta-
tion mentioned in the conditions of the lemma by permuting the axes accordingly. Now, the matrix
H is still a basis for G since this is B multiplied on the right by a unimodular matrix. H ′ the
lower-right submatrix of H, obtained by removing the first row and first column, is a basis of G[i],
as we showed in the proof of Theorem 3. This matrix H ′ satisfies the condition of Theorem 2: its
determinant is equal to the determinant of B (since the first component of H is 1), which is equal
to the cardinality of I~m, therefore M [i]~m is a one-to-one mapping from I~h

onto I~m, where ~h is the
diagonal of H ′. Now, thanks to Lemma 8, we know that M [i] ~m is a equally-many-to-one modular
mapping from the slab I~b

(i, 0) onto I~m since I~b[i]
is a multiple of I~h

. Finally, since this is true for

any dimension i, Lemma 4 shows that M ~m is a modular mapping with the load-balancing property
for the index set I~b

.
�

Note that in many practical cases, the previous conditions are also necessary. For example,
when for a dimension i, the cardinality of I~b

(i, 0) is equal to I~m (and not simply a multiple), the
conditions are necessary (Theorem 2) since equally-many-to-one is in this case one-to-one. Also,
when d ≤ 4, then each modular mapping M [i] ~m is a mapping in dimension less or equal to 3 and
the conditions of Lemma 8 are also necessary. Furthermore, as pointed out previously, the fact that
the extension of Hajós’ theorem does not hold for a dimension d does not mean that the conditions
of Theorem 4 are not necessary for dimension (d + 1). The load-balancing property makes the
problem much more constrained. We would need a counter-example to give a complete answer to
such a question.

5.3 Generating A Valid Modular Mapping

We are now ready, thanks to the previous observations, to build a modular mapping M ~m with the
load-balancing property for an index set I~b (which is given, ~b is the vector whose components are the
γi’s of Section 4.3). We can choose the matrix M and the modulo vector ~m, but with the constraint
that the cardinality of I~m (the product of the components of ~m) is given, equal to the number of
processors p. The only property of ~b we exploit is that ~b is a candidate partitioning (with the
meaning of Section 4.3), which means that the product of any (d−1) components of ~b is a multiple
of p. We will choose the matrix M to be unimodular so that the lattice G is easy to compute (as we
noticed in Section 5.2.1). A basis of G is simply given by M−1θ~m, where θ~m = diag(m1, . . . ,md).
Note also that, when M is unimodular, the first condition of Theorem 4 is automatically fulfilled

22

since the determinant of G is the determinant of M−1θ~m, thus the determinant of θ~m, i.e., the
cardinality of I~m.

We will choose the matrix M with the following form:

M =

(

N 0
∗ 1

)

where N will be computed by induction on the dimension. Therefore, finally, M will be even
triangular, with 1’s on the diagonal. We have the following preliminary result.

Lemma 9 Suppose that md divides bd, and that the modular mapping N ~m′
– in dimension (d−1) –

defined by N and ~m′ has the load-balancing property for I~b′, where ~b′ and ~m′ are the vectors defined

by the (d − 1) first components of ~b and ~m. Then, the modular mapping M ~m defined by M and ~m
has the load-balancing property for I~b

if it is equally-many-to-one from the last slab I~b
(d, 0) onto

I~m.

Proof: In order to check that the mapping defined by M and ~m has the load-balancing property
for the rectangular index set I~b

, we have to make sure that it is equally-many-to-one for all slabs
I~b

(i, 0), 1 ≤ i ≤ d (Lemma 4). To prove this lemma, we only have to prove that this is true for the
slabs I~b

(i, 0), i < d, if N has the properties stated, since this is supposed to be true for I~b
(d, 0).

Without loss of generality, let us consider the first dimension, i.e., the first slab I~b
(1, 0). Given

~j ∈ � d/~m � , let us count the number of vectors ~i ∈ I~b
, such that M~i = ~j mod ~m and i1 = 0.

M~i = ~j mod ~m ⇔ N~i′ = ~j′ mod ~m′ and ~λ.~i′ + id = jd mod md

where ~i′ and ~j′ are defined the same way as ~b′ and ~m′, and ~λ is the row vector formed by the first
(d−1) component of the last row of M . Now, because of the load-balancing property of N ~m′

, there

are exactly n vectors ~i′ ∈ I~b′
such that i1 = 0 and N~i′ = ~j′ mod ~m′, where n is a positive integer

that does not depend on ~j′. It remains to count the number of values id, between 0 and bd−1, such
that id = jd −~λ.~i′ mod md. Since md divides bd, there are exactly bd/md such values, whatever the
value x = (jd −~λ.~i′ mod md). These are the values x + kmd, with 0 ≤ k < bd/md. Therefore, ~j has
nbd/md pre-images in I~b

and this number does not depend on ~j.
�

We define the vector ~m according to the following formula:

∀i, 1 ≤ i ≤ d, mi =
gcd

(

p,
∏d

j=i bj

)

gcd
(

p,
∏d

j=i+1 bj

) (3)

(By convention, a product of no terms is equal to 1). The vector ~m defined this way has several
properties that will make a recursive construction of M possible. In the rest of the proofs, we will

make an extensive use of the relation gcd(a, bc) = gcd(a, b) gcd
(

a
gcd(a,b) , c

)

.

Lemma 10 The vector ~m defined by Equation 3 has the following properties: (1) the components
of ~m are positive integers, (2) m1 = 1, (3) the product of the components of ~m is equal to p, (4)
each component mi divides bi, (5) the definition of the mi’s for i < d is the same if we only consider
the (d−1) first components of ~b and the processor number p

gcd(p,bd) . Furthermore, if ~b is a candidate

partitioning for p, then (b1, . . . , bd−1) is a candidate partitioning for p
gcd(p,bd) , (6) If ~b is a candidate

partitioning for p, then for all k, 2 ≤ k ≤ d,
∏k−1

i=1 bi is a multiple of
∏k

i=2 mi.

23

Proof: The first property is obvious. The second property (m1 = 1) comes from the fact that
∏d

i=2 bi is a multiple of p, therefore m1 = p/p = 1. The third property is also elementary. When
computing the product of the mi, the denominator of mi cancels with the numerator of mi+1, only
the first numerator remains, which is p.

Let us consider the fourth property. By definition we have:

mi gcd

p,

d
∏

j=i+1

bj

 = gcd

p,

d
∏

j=i

bj

 = gcd(p, bi) gcd

p

gcd(p, bi)
,

d
∏

j=i+1

bj

Since gcd
(

p,
∏d

j=i+1 bj

)

is a multiple of gcd
(

p
gcd(p,bi)

,
∏d

j=i+1 bj

)

, gcd(p, bi) is a multiple of mi.

Therefore, mi divides both p and bi.
For the fifth property, we have:

mi =
gcd

(

p,
∏d

j=i bj

)

gcd
(

p,
∏d

j=i+1 bj

) =
gcd(p, bd) gcd

(

p
gcd(p,bd) ,

∏d−1
j=i bj

)

gcd(p, bd) gcd
(

p
gcd(p,bd) ,

∏d−1
j=i+1 bj

) =
gcd

(

p
gcd(p,bd) ,

∏d−1
j=i bj

)

gcd
(

p
gcd(p,bd) ,

∏d−1
j=i+1 bj

)

Furthermore, if ~b is a candidate partitioning for p, then for all i < d, p divides
∏d

j=1,j 6=i bj, therefore
p

gcd(p,bd) divides
∏d−1

j=1,j 6=i bj . Thus, the first (d − 1) components of ~b form a candidate partitioning

for p
gcd(p,bd) .
For the last property, we have:

k
∏

i=2

mi =
k
∏

i=2

gcd
(

p,
∏d

j=i bj

)

gcd
(

p,
∏d

j=i+1 bj

) =
gcd(p,

∏d
j=2 bj)

gcd(p,
∏d

j=k+1 bj)
= gcd

p

gcd(p,
∏d

j=k+1 bj)
,

k
∏

j=2

bj

Thus,
∏k

i=2 mi divides p

gcd(p, � d
j=k+1 bj)

. But, if ~b is a candidate partitioning for p, p divides
∏

i6=k bi.

Thus, p

gcd(p, � d
j=k+1 bj)

divides
∏k−1

i=1 bi and this is a fortiori true for
∏k

i=2 mi.
�

Because m1 = 1, we will be able to drop, at the end of the construction, the first component of
the mapping, and we will end up with a mapping from � d into a subgroup of � d−1 (or of smaller
dimension if some other components of m are equal to 1). Also, the fact that m1 = 1 will make our
life easier when computing a basis of a lattice G[i] (i.e., the pre-images of zero under the restricted
mapping M [i]~m). Indeed, the two following constructions are possible:

• Compute a basis B for G with B = M−1θ~m, where θ~m = diag(~m). Manipulate the columns
of B so that the i-th row has only one nonzero component. The square submatrix defined by
removing the i-th row and the column that contains the nonzero component of the i-th row
is a basis for G[i] (see Section 5.2.1).

• Consider M [i]~m directly, i.e., remove the i-th column of M . M [i] ~m is not square, but we may
also remove the first row since m1 = 1. Now, we get a square submatrix. If this submatrix is
unimodular, then we can easily compute the corresponding G[i].

We now assume that N is triangular with 1’s on the diagonal. It remains to specify how we
choose the last row of M so that, given N , the modular mapping M ~m is equally-many-to-one from

24

the slab I~b
(d, 0) onto I~m. For that, since m1 = 1 and the previous remark, we only need to consider

the matrix M̃ obtained from M by removing the last column and first row.

M̃ =

(

~u T
ρ ~z

)

where ~u is a column vector and ~z is a row vector, both with (d−1) components, and ρ is an integer.
The matrix (~u, T) is the matrix obtained by removing the first row of N , thus T is a triangular
matrix with 1’s on the diagonal. With I the identity matrix of size (d − 2), we write:

(

I 0
~t 1

)

M̃ =

(

I 0
~t 1

)(

~u T
ρ ~z

)

=

(

~u T
~t.~u + ρ ~t T + ~z

)

and we define ρ and ~z such that, for the last row of the previous matrix product, only the first
component is nonzero, equal to 1. In other words, ~z = −~tT and ρ = 1 − ~t.~u. The row vector ~t has
(d − 2) components and is to be defined. We can now compute the inverse of M̃ starting from the
previous equality (and we first multiply both sides of the equality by the adequate matrix so that
the last row of matrices is now the first):

M̃−1 =

(

1 0
~u T

)−1(~t 1
I 0

)

=

(

1 0
∗ T−1

)(

~t 1
I 0

)

We denote by Ft the matrix

(

~t 1
I 0

)

and by θ̃~m the matrix diag(m2, . . . ,md). The matrix

M̃−1θ̃~m is a basis of the lattice G[d]. Furthermore, to find the diagonal components of its left
Hermite form, it is sufficient to compute the left Hermite form of Ftθ̃~m, since the left Hermite form
of M̃−1θ̃~m is obtained by multiplying the left by a triangular matrix with 1’s on the diagonal (T −1

is triangular with diagonal components equal to 1). This will not change the diagonal components
of a decomposition HQ. It turns out that the left Hermite form of Ft (and similarly of Ft multiplied
by a diagonal matrix) is easy to compute in a symbolic way.

Lemma 11 Given a matrix A =

(

~v
S 0

)

of size n, where ~v is a row vector of size n and S is

a diagonal matrix diag(s) of size (n − 1), the diagonal ~h of H, where A = HQ is the left Hermite
form of A is defined by the following formulas:

• rn = vn and ri = gcd(vi, ri+1) for 1 ≤ i < n,

• hi+1 =
ri+1si

ri
for 1 ≤ i < n and h1 = r1.

Proof: Let us compute the left Hermite form of A, first manipulating (i.e., multiplying by a
unimodular matrix on the right of A) the last two columns of A so that the last component of
the first row is 0. Then, we calculate the two columns (n − 2) and (n − 1) so that the (n − 1)-th
component of the first row is 0, etc. until we reach the first two columns. We let rn = vn and we
let ri be the component that appears on the first row of A and i-th column just after we zeroed
the (i + 1)-th component of this row. Just before this change, the (i + 1)-th component of the
first row was equal to ri+1 and the i-th component was vi. Therefore, by an adequate unimodular
transformation (changing only the columns i and (i + 1)), when the (i + 1)-th component becomes

25

zero, the gcd of vi and ri+1 appears on the i-th column, thus ri = gcd(vi, ri+1). The following
matrices illustrate this mechanism:

v1 . . . vi ri+1 0 . . . 0
s1 0 0

0
. . .

...
... si 0 0
0 . . . 0 ∗ hi+2 . . . 0
...

... ∗ ∗ . . .
...

0 . . . 0 ∗ ∗ . . . hn

=⇒

v1 . . . ri 0 0 . . . 0
s1 0 0

0
. . .

...
... ∗ hi+1 0
0 . . . 0 ∗ hi+2 . . . 0
...

... ∗ ∗ . . .
...

0 . . . 0 ∗ ∗ . . . hn

Furthermore, the determinant of the 2 × 2 submatrix, as defined by the columns i and (i + 1) and
the rows 1 and i (a triangular matrix), does not change. It was equal to siri+1, and it is now equal
to rihi+1. Therefore, hi+1 = siri+1

ri
. After these transformations, the matrix is triangular and h1,

the first component of the diagonal, is equal to the remaining nonzero element r1.
�

Applying Lemma 11 to the matrix Ftθ̃~m of size (d − 1), we get:

• rd−1 = md and ri = gcd(timi+1, ri+1) for 1 ≤ i < d − 1,

• hi+1 = ri+1mi+1

ri
for 1 ≤ i < d − 1 and h1 = r1.

To prove that M~m is equally-many-to-one from the slab I~b
(d, 0) onto I~m, it is now sufficient to

define ~t so that hi divides bi for all i < d (Lemma 8 and Theorem 2) since the fact that I~h
and I~m

have same cardinality was already guaranteed because M̃ is unimodular. We define the vector ~t by
the following formula:

ti =
ri+1

gcd(bi+1, ri+1)
for 1 ≤ i ≤ d − 2 (4)

We then have the following relation:

ri = gcd(timi+1, ri+1) = gcd

(

ri+1mi+1

gcd(bi+1, ri+1)
, ri+1

)

= gcd(mi+1, ri+1) gcd

(

ri+1

gcd(bi+1, ri+1)
,

ri+1

gcd(mi+1, ri+1)

)

=
ri+1 gcd(mi+1, ri+1)

gcd(bi+1, ri+1)
since bi+1 is a multiple of mi+1 (Lemma 10, fourth property)

We therefore have the following relation for the components of ~h:

hi+1 =
ri+1mi+1

ri
=

mi+1 gcd(bi+1, ri+1)

gcd(mi+1, ri+1)

We can then check that hi+1 divides bi+1. Indeed:

hi+1 divides bi+1 ⇔ mi+1 gcd(bi+1, ri+1) divides bi+1 gcd(mi+1, ri+1)

⇔ gcd(mi+1bi+1,mi+1ri+1) divides gcd(mi+1bi+1, bi+1ri+1)

But mi+1 divides bi+1, thus mi+1ri+1 divides bi+1ri+1 and, finally, gcd(mi+1bi+1,mi+1ri+1) divides
gcd(mi+1bi+1, bi+1ri+1).

Now, we need to prove the tricky case of h1 = r1. We prove the following result by (decreasing)
induction on k, from k = d − 1 to k = 1 (the case we are interested in):

26

Lemma 12 If ~b is a candidate partitioning for p then, for 1 ≤ k ≤ d − 1,
(

rk

∏k
i=2 mi

)

divides
(

∏k
i=1 bi

)

.

Proof: Since rd−1 = md, the case k = d − 1 comes from the second and third properties of
Lemma 10: rd−1

∏d−1
i=2 mi = p which divides

∏d−1
i=1 bi since ~b is a candidate partitioning for p.

Now, assume that the result is true for k: rk
∏k

i=2 mi divides
∏k

i=1 bi = bk
∏k−1

i=1 bi. We also

know that
∏k

i=2 mi divides
∏k−1

i=1 bi (sixth property of Lemma 10), i.e.,
∏k−1

i=1 bi = λ
∏k

i=2 mi for

some integer λ. Thus, rk divides λbk, and thus rk
gcd(bk ,rk) divides λ. Multiplying by

∏k
i=2 mi, we

obtain that rkmk
gcd(bk,rk)

∏k−1
i=2 mi divides

∏k−1
i=1 bi, and a fortiori rk gcd(mk ,rk)

gcd(bk,rk)

∏k−1
i=2 mi divides

∏k−1
i=1 bi.

Going back to the link between rk−1 and rk, this proves that rk−1
∏k−1

i=2 mi divides
∏k−1

i=1 bi, which
is the property for (k − 1).

�

We have just proved the following result.

Lemma 13 With the vector ~t given by Equation 4, the mapping M ~m is equally-many-to-one from
the slab I~b

(d, 0) onto I~m, when ~b is a candidate partitioning for p.

We are now ready to put all pieces together, using an induction argument.

Lemma 14 Let ~b be a candidate partitioning for p. If N is built recursively in dimension (d − 1),
just as M is built in dimension d, but for a number of processors equal to p

gcd(p,bd) , and if the

vector ~b′ defined by the first (d − 1) components of ~b, then M~m is a modular mapping with the
load-balancing property for I~b

.

Proof: We induce on the dimension, assuming that the construction is correct for the dimension
(d − 1) (and this is obviously true for d = 1).

First, thanks to the fifth property of Lemma 10, ~b′ is indeed a candidate partitioning for p′ =
p

gcd(p,bd) , and the vector ~n defined from ~b′ and p′ by Equation 3 is equal to ~m′. Therefore, by

induction hypothesis, the modular mapping defined by N and ~m′ has the load-balancing for I~b′
.

Now, thanks to Lemma 9, and the fact that md divides bd, we just have to show that M~m is
equally-many-to-one from the slab I~b

(d, 0) onto I~m. This is the result of Lemma 13.
�

Figure 4 presents an implementation of the schema just presented (where the matrix M has
rows and columns from 1 to d as in the presentation of this paper).

In our current implementation, we of course take the final matrix modulo the corresponding
values of ~m (or at least in absolute value less than the corresponding value of ~m) and, as mentioned
before, we drop the first row of M and component of ~m (which is equal to 1). We also play some
tricks, variants of the previous program (alternating signs of t for example, or pre-permuting the
components of ~b) to make coefficients smaller. We also use Theorem 3 in [11] (injectivity of Mλ~m

for I
λ~b

) to reduce the components of M , dividing the components of ~b by their gcd. But the
basic kernel is the one presented above. For example, for p = 30 = 2 × 3 × 5 and the candidate
partitioning ~b = (10, 15, 6) in dimension 3, the basic kernel leads to ~m = (1, 5, 6) and the mapping
(i, j, k) → (i + j mod 5, k − i − 2j mod 6), which corresponds for example to the “linearization”
(i, j, k) → 6(i + j mod 5) + (k − i − 2j) mod 6. The appendix contains 6 tables that give the
corresponding values for (i, j), when k goes from 0 to 5.

27

// Precondition: d >= 2

// input:

// m - an integral positive modulo vector of length d

// b - an integral positive d-vector: the number of partitionings in each dimension

// output:

// M - an integral d x d matrix

void ModularMapping(int d, int m[d], int b[d], int M[d][d]) {

int i, j, k;

for (i=1; i<=d; i++) {

for (j=1; j<=d; j++) {

if ((j==1) || (i==j)) M[i][j] = 1; else M[i][j] = 0;

}

}

for (i=2; i<=d; i++) {

r = m[i];

for (j=i-1; j>=2; j--) {

t = r/gcd(r, b[j]);

for (k=1; k<=i-1; k++) {

M[i][k] = M[i][k] - t*M[j][k];

}

r = gcd(t*m[j],r);

}

}

}

Figure 4: Code for computing a modular mapping matrix M .

6 Experiments

We have incorporated support for generalized multipartitionings in the Rice dHPF compiler for
High Performance Fortran.

Multipartitioning within the dHPF compiler is implemented as a generalization of BLOCK-style
HPF partitionings [7, 8]. The dHPF compiler analyzes communication and reduces loop bounds
as if a multipartitioned template were a standard BLOCK partitioned template mapped onto an
array of processors of symbolic extent. The main difference comes in the interpretation that the
compiler gives to the PROCESSORS directive. When using multipartitioning, a template cannot
specify the number of processors on a per dimension basis because each hyperplane defined by a
partitioning along a multipartitioned template dimension is distributed among all processors. A
multipartitioned template is therefore partitioned into tiles according to the rank and extent of the
virtual processor array. These tiles are then assigned to the processors as described in previous
sections.

There are several important issues for generating correct and efficient code for multipartitioned
distributions. First, the order in which a processor’s tiles are enumerated has to satisfy any loop-
carried dependences present in the original loop from which the multipartitioned loop has been
generated. Second, communication that has been fully vectorized out of a loop nest should not be
performed on a tile-by-tile basis; instead it should be performed for all of a processor’s tiles at once.
Communication aggregation is more tricky than for diagonal multipartitionings since generalized
multipartitionings have multiple tiles per hyper-rectangular slab, but it is possible because gener-
alized multipartitionings also possess the neighbor property described earlier in Section 1. Third,

28

communication caused by loop-carried dependences should not be performed on a tile-by-tile basis
either. Instead, communication should be vectorized for all tiles within a hyper-rectangular slab
along the partitioned dimension.

By using a multipartitioned data distribution in conjunction with sophisticated data-parallel
compiler optimizations, we are closing the performance gap between compiler-generated and hand-
coded implementations of line-sweep computations. Earlier results and details about dHPF’s com-
pilation techniques can be found elsewhere [8, 7, 1, 2]. Here we present the result of applying
generalized multipartitioning in a compiler-based parallelization of the NAS SP application bench-
mark [4, 8], a computational fluid dynamics code on the “class B” problem size of 1023.

The most important analysis and code generation techniques used to obtain high-performance
multipartitioned applications by the dHPF compiler are:

• partial replication of computation to reduce communication

frequency and volume,

• communication vectorization,

• aggressive communication placement, and

• intra-variable and inter-variable communication aggregation.

In addition, we use an extended on-home directive (inspired by the HPF/JA EXT HOME directive[14])
to partially replicate computation into a processor’s shadow regions, and the HPF/JA LOCAL direc-
tive to eliminate unnecessary communication for values that were previously explicitly computed
in a processor’s shadow region.

We performed these experiments on a SGI Origin 2000 with 128 250MHz R10000 CPUs. Each
CPU has 32KB of L1 instruction cache, 32KB of L1 data cache and an unified, two-way set
associative L2 cache of 4MB.

Table 1 compares the performance of a hand-coded MPI version of the SP benchmark developed
at NASA Ames Research Center with an MPI version generated by the dHPF compiler.4 The hand-
coded version uses 3D diagonal multipartitioning and, thus, can only be run on a perfect square
number of processors. The dHPF-generated code MPI uses generalized multipartitioning which
enables the code to be run on arbitrary numbers of processors. As Table 1 shows, the performance
of the dHPF-generated code is quite close to (and sometimes exceeds) the performance of the hand-
coded MPI for numbers of processors that are perfect squares. When the number of processors is
a perfect square, the generalized multipartitionings used by the dHPF-generated code are exactly
diagonal multipartitionings. These measurements show that our implementation of generalized
multipartitionings is efficient in the case of diagonal multipartitionings, in which each processor
has one tile per hyperplane of the partitioning. Both the hand-coded and dHPF-generated versions
of SP deliver roughly linear speedup on numbers of processors that are perfect squares.

In the measurements taken of the dHPF-generated code for numbers of processors that are not
perfect squares, we see that generalized multipartitionings deliver near linear speedup in these cases
as well. The cases we have measured exploiting generalized multipartitioning are ones in which the
factors of the number of processors are small primes. Performance would be lower for numbers of
processors that are prime or have large prime factors because computation would be divided into a
large number of phases and communication volume grows in proportion to the number of phases.
Currently, the code generated by dHPF cannot exploit generalized multipartitionings when the

4All speedups presented are relative to the original sequential version of the code.

29

CPUs hand-coded dHPF % diff.

1 1.01 0.93 7.88

2 1.47

4 2.95 3.02 -2.52

6 5.33

8 7.79

9 7.98 7.91 0.87

12 12.54

16 12.04 16.80 -39.56

18 19.49

20 19.49

24 22.57

25 25.97 26.78 -3.13

32 33.25

36 38.84 40.96 -5.45

45 41.87

49 42.06 54.25 -29.00

50 49.23

64 66.34 67.36 -1.54

72 70.83

81 88.32 73.50 16.78

Table 1: Comparison of hand-coded and dHPF speedups for NAS SP (class B).

block size on any processor falls below the shift width associated with communication operations,
which happens when a dimension is partitioned many times (as occurs with large primes and prime
factors). This limitation prevents experiments with generalized multipartitionings using the 1023

problem size of the SP benchmark on numbers of processors that are large primes or have large
prime factors.5

Currently, one limitation on the efficiency of the dHPF-generated code for generalized multi-
partitionings when the number of tiles per hyperplane of a multipartitioning is greater than one
(e.g., when the number of processors in a 3D partitioning is not a perfect square) is that the dHPF-
generated code does not yet exploit reuse of data tiles across multiple loop nests. For a sequence of
loop nests, dHPF-generated code executes one loop nest for each of the data tiles in a hyperplane
of the data and then advances to the next loop nest. For a sequence of loop nests with compatible
tile enumeration order, the tile enumeration loops should be fused so that all of the compatible
loop nests in the sequence are performed on one tile before advancing to the next tile. When data
tiles are small enough to fit into one or more caches, this strategy would improve cache utilization
by facilitating reuse of tile data among multiple loop nests.

Overall, these preliminary experiments show that generalized multipartitionings are of prac-
tical as well as theoretical interest and can be used to parallelize applications efficiently using
multipartitioning on a wider class of numbers of processors than possible using only diagonal mul-
tipartitionings.

5This limitation applies only to code generated by the dHPF compiler; the technique of generalized multiparti-
tioning itself is completely general.

30

7 Conclusions

This paper describes an algorithm for computing an optimal multipartitioning of d-dimensional
arrays, d > 2, onto an arbitrary number of processors, p. Our algorithm minimizes cost according to
an objective function that measures communication in line sweep computations. Previously, optimal

multipartitionings could be computed only when p
1

d−1 is integral. We show that a partitioning in
which the number of tiles in each hyper-rectangular slab is a multiple of the number of processors
— an obvious necessary condition — is also a sufficient condition for a multipartitioned mapping of
tiles to processors. We present a constructive method for building the mapping of tiles to processors
using new techniques based on modular mappings and demonstrate experimentally that code using
generalized multipartitionings is both scalable and efficient.

Currently, when we multipartition a d-dimensional array onto p processors, we force all proces-
sors to participate in the computation; however, this may lead to suboptimal performance. If the
partitioning is not compact, i.e., the number of tiles per processor is large relative to a diagonal

multipartitioning (more precisely, when
∏d

i=1 γi is large compared to p
d

d−1), and the cost of commu-
nicating at tile boundaries is not small compared to the cost of the computation on tile data (the
relative cost of communication to computation is proportional to the surface to volume ratio in the
partitioning:

∑

i=1,d
γi

ηi
), it will be faster to drop back to a nearby lower number of processors for

which a compact partitioning exists. For example, table 1 shows that for the 1023 problem size, a
5×10×10 decomposition on 50 processors is slower than a 7×7×7 decomposition on 49 processors
for NAS SP. Given a cost function (see Section 4.1) that models the cost of computation as well
as communication, our algorithm could be used to search for the most efficient partitioning, which

will occur on some number of processors between bp
1

d−1 c
d−1

(for which a diagonal multipartitioning
is possible) and p as long as the communication term is not dominant.

References

[1] Vikram Adve, Guohua Jin, John Mellor-Crummey, and Qing Yi. High Performance Fortran
Compilation Techniques for Parallelizing Scientific Codes. In Proceedings of SC98: High Per-
formance Computing and Networking, Orlando, FL, Nov 1998.

[2] Vikram Adve and John Mellor-Crummey. Using Integer Sets for Data-Parallel Program Anal-
ysis and Optimization. In Proceedings of the SIGPLAN ’98 Conference on Programming
Language Design and Implementation, Montreal, Canada, June 1998.

[3] George E. Andrews. Theory of Partitions, volume 2 of Encyclopedia of Mathematics and its
applications. Addison-Wesley, 1976.

[4] D. Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and Maurice
Yarrow. The NAS parallel benchmarks 2.0. Technical Report NAS-95-020, NASA Ames
Research Center, December 1995.

[5] J. Bruno and P. Cappello. Implementing the beam and warming method on the hypercube. In
Proceedings of 3rd Conference on Hypercube Concurrent Computers and Applications, pages
1073–1087, Pasadena, CA, January 1988.

[6] John Bruno and Peter Cappello. Implementing the 3D alternating direction method on the
hypercube. Journal of Parallel and Distributed Computing, 23(3):411–417, December 1994.

31

[7] Daniel Chavarŕıa-Miranda and John Mellor-Crummey. Towards compiler support for scalable
parallelism. In Proceedings of the Fifth Workshop on Languages, Compilers, and Runtime
Systems for Scalable Computers, Lecture Notes in Computer Science 1915, pages 272–284,
Rochester, NY, May 2000. Springer-Verlag.

[8] Daniel Chavarŕıa-Miranda, John Mellor-Crummey, and Trushar Sarang. Data-parallel compiler
support for multipartitioning. In European Conference on Parallel Computing (Euro-Par),
Manchester, United Kingdom, August 2001.

[9] A. Darte, R. Schreiber, B. R. Rau, and F. Vivien. A constructive solution to the juggling
problem in systolic array synthesis. In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS’00), pages 815–821, Cancun, Mexico, May 2000.

[10] Alain Darte. Regular partitioning for synthesizing fixed-size systolic arrays. INTEGRATION,
The VLSI Journal, pages 293–304, 1991.

[11] Alain Darte, Michèle Dion, and Yves Robert. A characterization of one-to-one modular map-
pings. Parallel Processing Letters, 5(1):145–157, 1996.

[12] Alain Darte, John Mellor-Crummey, Robert Fowler, and Daniel Chavarŕıa. On efficient par-
allelization of line-sweep computations. Technical Report CS-TR01-377, Dept. of Computer
Science, Rice University, April 2001.

[13] J. Dénes and A. D. Keedwell. Latin Squares: New Developments in the Theory and Applica-
tions. North Holland, 1991.

[14] Japanese Association for High Performance Fortran. HPF/JA language specification (version
1.0). Available at URL http://www.tokyo.rist.or.jp/jahpf/spec/index-e.html, January
1999.

[15] Lazslo Fuchs. Abelian Groups. Pergamon Press, Los Angeles, CA, 1960.

[16] M. Garey and D. Johnson. Computers and Intractability, A Guide to the Theory of NP-
Completeness. W. H. Freeman and Co., New York, NY, 1979.

[17] Frank Gray. Pulse code communication. United States Patent Number 2,632,058. March 17,
1953. Available online at http://patft.uspto.gov/netahtml/srchnum.htm.

[18] G. Hajós. Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einen
Würfelgitter. Math. Zschrift, 47:427–467, 1942.

[19] G. H. Hardy and E. M. Wright. Introduction to the Theory of Numbers. Oxford University
Press, 1979.

[20] S. Lennart Johnsson, Youcef Saad, and Martin H. Schultz. Alternating direction methods on
multiprocessors. SIAM Journal of Scientific and Statistical Computing, 8(5):686–700, 1987.

[21] Hyuk J. Lee and José A.B. Fortes. On the injectivity of modular mappings. In Peter Cappello,
Robert M. Owens, Jr Earl E. Swartzlander, and Benjamin W. Wah, editors, Application Spe-
cific Array Processors, pages 237–247, San Francisco, California, August 1994. IEEE Computer
Society Press.

32

[22] N.H. Naik, V. Naik, and M. Nicoules. Parallelization of a class of implicit finite-difference
schemes in computational fluid dynamics. International Journal of High Speed Computing,
5(1):1–50, 1993.

[23] Joe Sawada. C program for computing all numerical partitions of n whose largest part is
k. Information on Numerical Partitions, Combinatorial Object Server, University of Victoria,
http://www.theory.csc.uvic.ca/~cos/inf/nump/NumPartition.html, 1997.

[24] N. J. A. Sloane. The on-line encyclopedia of integer sequences. http://www.research.att.

com/~njas/sequences, 2001.

[25] R. F. Van der Wijngaart. Efficient implementation of a 3-dimensional ADI method on the
iPSC/860. In Proceedings of Supercomputing 1993, pages 102–111. IEEE Computer Society
Press, 1993.

A A Generalized Multipartitioning Example

Here we show an example generalized multipartitioning for 30 processors (p = 2×3×5). Assuming
that we are partitioning a cube (namely, λ1 = λ2 = λ3), our partitioning algorithm selects a three-
dimensional elementary partitioning ~γ = (10, 15, 6). The basic kernel leads to ~m = (1, 5, 6) and the
modular mapping (i, j, k) → (i+j mod 5, k− i−2j mod 6). Linearization of this mapping gives the
tile-to-processor mapping θ(i, j, k) → 6(i + j mod 5) + (k − i − 2j) mod 6. The following 6 tables
show the corresponding values for each (i, j) plane, for 0 ≤ k ≤ 5.

The brave reader can check that this is indeed a correct three-dimensional multipartitioning
that obeys the balance and neighbor properties.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 11 16 21 26 1 6 17 22 27
10 15 20 25 0 11 16 21 26 1
14 19 24 5 10 15 20 25 0 11
18 29 4 9 14 19 24 5 10 15
28 3 8 13 18 29 4 9 14 19
2 7 12 23 28 3 8 13 18 29
6 17 22 27 2 7 12 23 28 3
16 21 26 1 6 17 22 27 2 7
20 25 0 11 16 21 26 1 6 17
24 5 10 15 20 25 0 11 16 21
4 9 14 19 24 5 10 15 20 25
8 13 18 29 4 9 14 19 24 5
12 23 28 3 8 13 18 29 4 9
22 27 2 7 12 23 28 3 8 13
26 1 6 17 22 27 2 7 12 23

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 6 17 22 27 2 7 12 23 28
11 16 21 26 1 6 17 22 27 2
15 20 25 0 11 16 21 26 1 6
19 24 5 10 15 20 25 0 11 16
29 4 9 14 19 24 5 10 15 20
3 8 13 18 29 4 9 14 19 24
7 12 23 28 3 8 13 18 29 4
17 22 27 2 7 12 23 28 3 8
21 26 1 6 17 22 27 2 7 12
25 0 11 16 21 26 1 6 17 22
5 10 15 20 25 0 11 16 21 26
9 14 19 24 5 10 15 20 25 0
13 18 29 4 9 14 19 24 5 10
23 28 3 8 13 18 29 4 9 14
27 2 7 12 23 28 3 8 13 18

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k = 0 k = 1

33

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 7 12 23 28 3 8 13 18 29
6 17 22 27 2 7 12 23 28 3
16 21 26 1 6 17 22 27 2 7
20 25 0 11 16 21 26 1 6 17
24 5 10 15 20 25 0 11 16 21
4 9 14 19 24 5 10 15 20 25
8 13 18 29 4 9 14 19 24 5
12 23 28 3 8 13 18 29 4 9
22 27 2 7 12 23 28 3 8 13
26 1 6 17 22 27 2 7 12 23
0 11 16 21 26 1 6 17 22 27
10 15 20 25 0 11 16 21 26 1
14 19 24 5 10 15 20 25 0 11
18 29 4 9 14 19 24 5 10 15
28 3 8 13 18 29 4 9 14 19

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

3 8 13 18 29 4 9 14 19 24
7 12 23 28 3 8 13 18 29 4
17 22 27 2 7 12 23 28 3 8
21 26 1 6 17 22 27 2 7 12
25 0 11 16 21 26 1 6 17 22
5 10 15 20 25 0 11 16 21 26
9 14 19 24 5 10 15 20 25 0
13 18 29 4 9 14 19 24 5 10
23 28 3 8 13 18 29 4 9 14
27 2 7 12 23 28 3 8 13 18
1 6 17 22 27 2 7 12 23 28
11 16 21 26 1 6 17 22 27 2
15 20 25 0 11 16 21 26 1 6
19 24 5 10 15 20 25 0 11 16
29 4 9 14 19 24 5 10 15 20

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k = 2 k = 3
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4 9 14 19 24 5 10 15 20 25
8 13 18 29 4 9 14 19 24 5
12 23 28 3 8 13 18 29 4 9
22 27 2 7 12 23 28 3 8 13
26 1 6 17 22 27 2 7 12 23
0 11 16 21 26 1 6 17 22 27
10 15 20 25 0 11 16 21 26 1
14 19 24 5 10 15 20 25 0 11
18 29 4 9 14 19 24 5 10 15
28 3 8 13 18 29 4 9 14 19
2 7 12 23 28 3 8 13 18 29
6 17 22 27 2 7 12 23 28 3
16 21 26 1 6 17 22 27 2 7
20 25 0 11 16 21 26 1 6 17
24 5 10 15 20 25 0 11 16 21

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

5 10 15 20 25 0 11 16 21 26
9 14 19 24 5 10 15 20 25 0
13 18 29 4 9 14 19 24 5 10
23 28 3 8 13 18 29 4 9 14
27 2 7 12 23 28 3 8 13 18
1 6 17 22 27 2 7 12 23 28
11 16 21 26 1 6 17 22 27 2
15 20 25 0 11 16 21 26 1 6
19 24 5 10 15 20 25 0 11 16
29 4 9 14 19 24 5 10 15 20
3 8 13 18 29 4 9 14 19 24
7 12 23 28 3 8 13 18 29 4
17 22 27 2 7 12 23 28 3 8
21 26 1 6 17 22 27 2 7 12
25 0 11 16 21 26 1 6 17 22

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k = 4 k = 5

34

