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ABSTRACT

The 28,872,973 linear spaces on 12 points are constructed. The parameters of
the geometries play an important role. In order to make generation easy, we
construct possible parameter sets for geometries first (purely algebraically).
Afterwards, the corresponding geometries are tried to construct. We define
line types, point types, point cases and also refined line types. These are the
first three steps of a general decomposition according to the parameters which
we call TDO. The depth of parameter precalculation can be varied, thereby
obtaining a handy tool to react in a flexible way to different grades of difficulty
of the problem. © (Year) John Wiley & Sons, Inc.
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1. INTRODUCTION

A linear space P on v points is a collection, B = {By,..., By}, of subsets of P
called blocks (or lines) such that every block has at least two points and each pair
of points is contained in exactly one block.

If a point p € P is contained in a block B € B we also say that “p lies on B,”
or “B passes through p,” or “p and B are incident.” The number of lines passing
through a fixed point p is called the degree, denoted by [p]. The number of lines of
length j passing through p is called the j-degree, [p]; for short. A system of blocks
which satisfies the modified axioms such that each line has at least two points and
any pair of points is contained in at most one block is called a prelinear space.

Usually, such a set of points together with a distinguished set of subsets is called
wmncidence geometry. A priori, all points are equal and so there is a notion of equiv-
alence (called isomorphism) which comes from exchanging points. To be precise,
two such geometries are isomorphic if and only if one can be obtained from the
other by a bijective map of the points which preserves incidences. The isomor-
phisms of a space with itself form a group, the automorphism group. When we
speak about equal or different linear spaces we mean isomorphic or non-isomorphic
ones, respectively.

Sometimes, we also need the notion of the dual geometry. It can be obtained by
reversing the roles of points and blocks and keeping the relation of incidence. The
dual of the dual is always isomorphic to the original space. The dual of a linear
space is only a prelinear space, in general. Often one is interested in obtaining a
complete set of (different) linear spaces on a given number of points. Let LIN(v)
be the number of elements in such a list. For our purposes, it is important to verify
that such a list of linear spaces on v points is both complete and irredundant, that
18, no space is missing and all spaces in the list are pairwise different.

The linear spaces on very few points are easily listed: on the empty set, there 1s
one space consisting of no blocks. On a single point, there is again one space with
no blocks. On a two-point set there is one linear space formed by a single 2-line
joining both points. On three points there are two different spaces: The first one
has a line of length 3 joining all the points. The other one has three 2-lines forming
a triangle. On four points there are three spaces: one 4-line, a 3-line and three
2-lines, and six 2-lines. So, LIN(v) = 1,1,1,2,3 for 0 < v < 4.

Often one visualizes a linear space by drawing the blocks as lines and the points
as nodes in the plane. Sometimes it is necessary not just to draw straight lines but
to allow also arcs and circles for the blocks. In a lot of cases, various 2-lines are
omitted from the drawing because they are redundant (one can always reconstruct
the two-lines if they are left out). Figure 1 shows all linear spaces on five points.

An incidence matriz of a geometry (linear space) is the 0, I-matrix M = (m;;)
of size v x b with m;; = 1 if and only if point no. ¢ lies on line j, that is, p; and B;
are incident. For aesthetic reasons however, we replace ones by little boxes in the
drawings of this article. An empty square stands for a 0, that is, a nonincidence.
Figure 2 shows incidence matrices of all linear spaces on five points. Incidence
matrices are a handy tool for putting linear spaces on a computer. But one is faced
with the problem that there can exist different incidence matrices for one and the
same space. Namely, permuting rows and columns of a given incidence matrix does
not change the space but often leads to other incidence matrices. It is therefore
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FIG. 1. The Linear Spaces on Five Points

useful to introduce so-called canonical incidence matrices. Such a matrix is defined
to be the lexicographically least representative among all the incidence matrices of
a given space. The canonical form is unique and there exist algorithms to compute
it.
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FIG. 2. Canonical Incidence Matrices for the Linear Spaces on Five Points

The number, LIN(v), of linear spaces on v points is Sloane’s Sequence no. 271 [17]

(encyclopedia number A001200 [18]):

vOT112]3T4[5] 6] 7] 8] 9] 10 i1 12
LIN(v) [1]1]1[2[3]5]10]24]69[3845,250] 232, 92928, 872, 973

1.1 Historical Notes

The systematic enumeration (and construction) of linear spaces has been started
by Doyen [11] in 1967. He constructed linear spaces on up to 9 points. It took more
than 20 years until D. Betten and D. Glynn continued in 1990 and computed the
5250 linear spaces on 10 points (independently). The next step was the computation
of linear spaces on 11 points: D. Betten and M. Braun [5] invented the “TDO”
method which is mainly an algorithm for computing a good invariant useful for
a preclassification of the geometries. Without the use of isomorphism tests, they
were able to give a lower bound for the number of linear spaces on 11 points. As
a matter of fact, there were only six spaces more, namely 232,929, as computed
independently by Ch. Pietsch [16] and D. Betten together with C. Kuhse. The
book of L. Batten and A. Beutelspacher [1] contains a lot of drawings of linear
spaces on small point sets.

Sometimes, linear spaces with certain properties are studied. For example, a
linear space is called proper if it does not contain 2-lines. The proper linear spaces
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on up to 15 points are constructed by Brouwer [7]. The proper linear spaces on
16 points are also known (cf. G. Heathcote [14]). Recently, the current authors
determined the proper linear spaces on 17 points [4].

Camina and Mischke [9] look predominantly at linear spaces where all lines have
the same length and which have an automorphism group transitive on lines (and
imprimitive on points). Gropp [13] studies (r, 1)-designs which are linear spaces
whose points all have degree r.

Another important class of linear spaces is the following: A linear space is called
regular if the j-degree of a point depends only on j (and not on the point). In other
words: the j-degrees are all equal in the space. In this case, restriction to the lines
of length j gives a configuration for each j. In [2], the current authors determine
all regular linear spaces on up to 16 points (with only few exceptional cases).

The sequence, LIN(v), is contained twice in the CRC Handbook of Combinato-
rial Designs [10]. There is a general section about “pairwise balanced designs as
linear spaces” which is due to H.-D. Gronau, R.C. Mullin and Ch. Pietsch [12] and
a section about classical geometries by A. Beutelspacher which contains a short
passage on linear spaces [6].

1.2 The Plan of This Article

The general strategy for this article is the following: In order to compute linear
spaces we start with the parameters of geometries. By parameters we mean for
instance the distribution of lines of different length in the geometry (see Section 2.)
But we will go further and consider also finer parameters. We call them parameters
of higher kind and they can be either point or line parameters. Point types, for
instance, specify the number of lines of any given length passing through a fixed
point. These point types may occur with different multiplicities in the space and
the distribution of point types is called point case (see Section 3.) We will also
introduce refined line cases which describe how the points of different type are
located on the lines of different length. This will be done using a lot of examples
in Section 4.

Precalculating parameters up to a certain step proves to be useful with respect
to some important points: First, the generation of spaces becomes easier if much
about the parameters 1s known. Strictly speaking, generation means the process of
computing certain 0,1-matrices which serve as incidence matrices for spaces of that
type. Generation is done by taking into account several constraints: usually, the
row and column sums for these matrices are prescribed. Sometimes, one has even
more, namely there may be a finer partitioning of rows and columns and the number
of incidences 1s known within the areas of this decomposition. Moreover, one may
always assume that within each part of such a partition of points (or blocks) all the
rows (or columns, respectively) are sorted lexicographically decreasing. Proceeding
in this way, one may reduce the number of possible matrices considerably in a lot
of cases. A second major benefit from using decompositions is that canonical forms
can often be easier computed using them. The classes of a decomposition give a sort
of precoloring of elements and these colors have to be respected during the search
for canonical forms. A coloring is good if it has a lot of different colors and in this
case the search for the canonical form is simplified. Third, it is a priori clear that
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spaces with different parameter sets are not isomorphic. Therefore, approximation
via the parameters will break the problem up into a lot of small pieces which can
be handled independently and more easily.

We should also mention possible drawbacks of this method: Clearly, there is a
certain amount of overhead in computing parameters. The computation may take
a while and not each parameter case is realizable as a linear space. Therefore, we
will develop various tests for realizability in the sequel. These tests are able to
reduce the amount of cases considerably. It is also advisable to allow variation
in the depth of parameter precalculation. Some cases are easier to handle than
others with respect to generation purposes. Thus, only few parameters should be
computed in general. But there exist hard cases and i1t showed to be useful to
apply deeper parameter calculations for them. So, parameter calculation provides
a handy tool for adapting to different grades of difficulty of the problem. One
is able to react in a flexible way by choosing an appropriate depth of parameter
precalculation.

Section b. displays our results. For v = 7-12, the number of linear spaces is
shown according to the line type.

It should be remarked that the method of parameter precalculation really anti-
cipates the so-called TDO process (cf. [5] or [3]) during classification of geometries.
This means that for any geometry belonging to a fixed parameter set of kind one,
two or three, computing TDO reveals exactly these parameters in the first three
steps. Sometimes, these parameters already coincide with the TDO (we will see an
example of this case in Section 4.2). Otherwise, we get at least an approximation
of the TDO which is still useful. This 1s an approximation from the top, so the
TDO is always a refinement of the decompositions obtained from the first few
parameter cases. The parameter precalculation can be extended to arbitrary depths
in principle. For instance, it is possible to compute the complete TDO on a purely
algebraical basis without handling with incidence matrices. The TDO is the final
stage of all parameter precalculations. There is no further refinement possible due
to the fact that 1t is tactical. The TDO-decomposition is characteristic in the sense
that the automorphism group respects the classes. However, it may occur that the
orbits of the automorphism group are indeed strictly finer than the TDO.

Recently, the method of parameter precalculation has been applied in its full
generality going as far as computing TDO-parameters in all cases. This means that
there was no fixed limit in the depth of parameters and that the program was able
to do a quite general step of parameter refinement which generalizes the methods
presented here. However, for the beginning it seems to be of great help to start with
some explicit parameter cases before going further. The current authors determined
the proper linear spaces on 17 points using this more general approach [4].

2. PARAMETERS OF THE FIRST KIND

Let (P, B) be a linear space on v points. Define
a; := F# lines of length éin (P, B). (1)

The vector a := (az, as, . .., a,) is called the line type of the space (P, B). Line types
are also called parameters of the first kind of the geometry. Often, it is convenient
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to denote line types in exponential notation, that is, (2%2,3% ... v®). Exponents
1 may not be explicitly written, terms with exponent 0 are left out. For sake of
brevity, one may even omit the 2-lines. They are redundant and one can compute
their number from the rest as we will see soon.

Example: The linear spaces on five points have the following line cases:

(5), (2%, 4), (2,37, (27,3), (2.

One can visualize the distinction between lines of different length in the incidence
matrix by introducing bold lines as in Figure 3. Thus we get a partitioning of the
block set into classes. We will also partition the point set in a like manner. We
call such partitionings of points and/or blocks decompositions. They can be either
point- or block-tactical or even both. This means that the number of incidences
of one representative of a given point- (block-) class with all elements of a given
block- (point-) class is independent of the choice of that particular representative.
The decompositions which we are working with are not always tactical. As our
partitions come from structural data of the space, the group of automorphisms
will respect them. In other words, there is no automorphism ¢ sending a line
of one type to a line of another type (and no point of one type may be mapped
onto a point of another type). In [3], such a partitioning is called a characteristic
decomposition. Throughout this article, bold lines in incidence matrices indicate
characteristic decompositions.
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FIG. 3. Linear Spaces on Five Points with Different Length Lines Separated

So, the linear spaces on five points can be distinguished by their line type. This
is no longer true for the spaces on six points (cf. Fig. 4). Table I shows the (number
of) linear spaces on 6 points by their line type. There are ten geometries, the line
type (3%) is realized twice (no. 7 and 8 in Fig. 4). Clearly, the two geometries are
nonisomorphic as the first one has a point of intersection of the two 3-lines whereas
the other one does not have such a point.

TABLE 1. Linear Spaces on 6 Points by Line Type

Line Case  #Geo Line Case #Geo
1: (6) 1 6: (27 3%) 1
2: (2° 5) 1 7: (2% 3%) 1
3: (2°34) 1 8: (2° 3%) 2
4: (2° 4) 1 9: (212 3) 1
5: (3%) 0 10: (2%%) 1

Total: 10
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FIG. 4. The Linear Spaces on Six Points, Incidence Matrices by Leaving Out The Two-Lines

In the following, we will be concerned with a purely algebraic task of precom-
puting line types. Afterwards, some geometric plausibility considerations are made
which reduce the amount of cases to consider drastically.

As each i-line joins (;) pairs of points and as each pair of points in P is joined

by exactly one line we get
- ? v
>els) = ) g
1=2

2.1 The de Brujin / Erdés Test

Not all line types which fulfil (2) can be realized. For instance, we saw already
that there is no linear space on six points with five 3-lines. It is a challenge to
precompute putative parameter sets in such a way that the probability that these
sets are realizable as linear spaces is high.

The following important theorem is a first step in that direction.

Theorem 2.1 (De Brujin, Exrdos [8]). Let P = (V,B) be a linear space. If B
15 different from the line of length v then b > v holds.

The theorem of de Brujin and Erdos gives even more but we need only this part.
We deduce that there cannot be a linear space on six points with only five lines.

There are a lot of proofs of the theorem of de Brujin and Erdos some of which
came up recently. Probably the most beautiful one is due to Conway. See Metsch [15]
or van Lint and Wilson [19] for more.
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2.2 The Minimum Breadth Test

Let us consider another nonrealizable line type: for example, on seven points it 1s
impossible to have a linear space with two 4-lines, one 3-line and six 2-lines though
6 - @) + (‘;’) +2- (;) =21 = (;) The two 4-lines must intersect because there are
only seven points. But then, no 3-line is possible. In terms of the incidence matrix:

One can generalize this to an easy test for filtering out possible line types. Starting
with the longest lines, one tries to place them as “close” as possible, that is, with
the smallest number of points involved. Assume one has placed ¢ lines “dense” and
one is going to place another line with only few new points needed. Then, only
¢ incidences can be made with the first s points as it can be seen for instance in
the following example. Here, three 4-lines are placed on nine points which is the
minimal number of points possible. The incidence matrix does not show a linear
space because of its first and fifth row. But for our test it is only important to know
which lines intersect therefore we proceed trying to place a fourth 4-line. This is
impossible with only nine points because there can be at most three intersections
with the three other lines.

1 lines

—~N
0a|00
(]

(]

(]

“dense” on s points < [_OO|O
[m]
a

(o] ]
—0OpLa

More generally, having placed ¢ lines on a minimum of s points (dense packing),
one needs k — ¢ new points when placing an additional k-line. If s + &k — ¢ > v this
i1s impossible. This criterion works best if one starts with placing long lines first.
Here is the algorithm — we specify it in some formal language which is close to
real programming languages.

Algorithm: verification of line types via minimum breadth test.
input: a line case a = (a2, as,...,a,)

for a linear space on v points.

(passes “min-breadth” test), FALSE otherwise
int i, k, £, s, m;

1
2
3
4. output: TRUE if the line case makes sense
5
6
7 1= 0;
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8. s = 0;

9. for k£ := v down to 2
10. for £ :=1 to ay // loop invariant:
11. // we have placed i lines on at least s points
12. m = max(k — i, 0); // we need at least m new points
13. s:=s5 4+ m;
14. if (s > v)
15. return FALSE; // line type cannot be realized
16. ¢ =1+ 1;
17. end;
18. end;
19. return TRUE; // line type seems to be OK

Note that there are line types which pass this test but which cannot be realized.
For example, the line types (33, 45), (23, 32, 45) (25, 3, 4°) or (2%, 4°) on ten points
are not ruled out. Also (3, 47) and (23, 47) are still valid though they cannot be
realized. Some of these cases can be excluded due to the de Brujin / Erdos test but
we will now present another test which 1s able to eliminate all these line cases, too.

2.3 The Maximal Flag Test

Let us determine the maximal number of incidences which fit into a rectangular
matrix of dimension ¢ X j say. Putting the geometrical conditions of a linear space
aside for the moment one starts in the following way: place the incidences “tightly”,
that is, start from the top left position and fill the incidences row by row into the
matrix. Consider the line cases with six 4-lines on ten points, for example. One
gets the situation of Figure 5 after dualizing.

[m] [=] [u]
0|0|a
[u][m]
[n][=][u]
[m]
a|;a
a
[m]
a|;a
[m]]n]

FIG. 5. Tight Packing of Incidences

We find that 4(‘;’) + 6(;) = 124 6 = 18 pairs of rows are joined whereas in the
geometry only (g) = 15 pairs of rows are possible (any placement of the incidences
covers at least as many two-subsets as the packing in the example). So, there is no
6 x 10 incidence matrix with row sum four for a dualized space on ten points. To
be slightly more general, we conclude that there is no geometry which has a 6 x 10
incidence matrix with more than 22 incidences (this is because 22 incidences give
2 columns of weight 3 and 8 columns of weight 2 and 2(‘;’) + 8@) =64+8=14<
15 = (6) whilst for 23 incidences we get 3(‘;’) + 7(;) =947=16>15).

2
More formally, we claim that the following is true:
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Lemma 2.2. For a geometry with n incidences on i points with j blocks to exist,

» < Masftlil) o= min (maxs(m) < (3), maxsm < (3)) @

must be satisfied. Here, f(m,j) = (Lmz/jj) -j+ (mmodj) - [m/j] and amodb for
a,b € 7 1s the unique integer ¢ with 0 < ¢ < b and a = emodb.

Proof. The tight packing of incidences indicated in Figure 5 gives us a lower bound
on the number of pairs of points (corresponding to rows) which must be joined in
an incidence geometry with n points. This can be deduced by noticing that the
tight packing is obtained by repeated application of the following three kinds of
operations:

1. sliding an incidence into a higher box of the same column if that higher field
and all fields in-between are empty,

2. permuting columns,

3. raising a box (incidence) from the end of a long column to the end of a shorter
column (cf. Fig. 6).

O]
(]

FIG. 6. Preparing for the Maxfit Test

The number of pairs which are joined may be expressed in terms of column sums
of the incidence matrices. Assume we have zj; incidences in the k-th column for
k=1,...,j. The function P(z1,...,2;) = > %_, (x;) counts these pairs. Clearly,
operation 1 does not change the xg. Operation 2 simply permutes these values
and therefore P is not changed. The third operation always reduces the value of
this function. Therefore, P decreases weakly during the succession of operations
of type 1-3. This shows that we can obtain a lower bound from the tight packing
which has column sums g, = [n/j| + 1 for k=1,...,nmodj and y, = |[n/j] for
k=nmodj+1,...,j. Therefore,

P(y,...,y;) = f(n,j) < P(x1,...,x;) (4)

where z1,...,z; are the column sums of any incidence geometry with n incidences
in an ¢ X j grid. Clearly,

P(xy,...,x;) < (;) (5)

holds and (4) together with (5) imply f(n,j) < (;) Applying this test to both,
the geometry and its dual, we get the statement of the lemma. g
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The first few Maxfit numbers are shown in Table II. The lower triangle of the
matrix is not shown, it is the transpose of the upper triangular part (the symmetry
in ¢ and j comes from application of this test for both, the geometry and its dual).

1234 56 7 8 910|11 12 13 14 15(16 17 18 19 20| 21 22 23 24 25
11234 5/ 6 7 8 910|11 12 13 14 15(16 17 18 19 20| 21 22 23 24 25
2 345 6/ 7 8 910 11|12 13 14 15 16{17 18 19 20 21| 22 23 24 25 26
3 67 8 91011 12 13|14 15 16 17 18|19 20 21 22 23| 24 25 26 27 28
4 9 10|12 13 14 15 16|17 18 19 20 21|22 23 24 25 26| 27 28 29 30 31
5 2(14 15 17 18 20|21 22 23 24 25|26 27 28 29 30| 31 32 33 34 35
6 16 18 19 21 22|24 25 27 28 30(31 32 33 34 35| 36 37 38 39 40
7 21 22 24 25|27 28 30 31 33(34 36 37 39 40| 42 43 44 45 46
8 25 27 29|30 32 33 35 36(38 39 41 42 44| 45 47 48 50 51
9 30 32|34 36 37 39 40|42 43 45 46 48| 49 51 52 54 55

10 35(37 39 41 43 45|46 48 49 51 52| 54 55 57 58 60
11 40 42 44 46 48|50 52 54 56 57| 59 60 62 63 65
12 46 48 50 52(54 56 58 60 62| 64 66 67 69 70
13 52 54 56|58 60 62 64 66| 68 70 72 74 76
14 57 60(62 64 66 68 70| 72 74 76 78 80
15 63(66 68 71 73 75| 77 79 81 83 85
16 70 7275 77 80| 82 84 86 88 90
17 76 79 81 84| 86 89 91 93 95
18 83 85 88| 90 93 95 98 100
19 90 92| 95 97 100 102 105
20 97{100 102 105 107 110
21 105 107 110 112 115
22 112 115 117 120
23 119 122 125
24 127 130
25 135
TABLE II. Maxfit Numbers for ¢,;7 < 25

Finally, we would like to point out that there are also the true maxfit-numbers,
that is, maxfit[7][j] is the largest n such that there exists a geometry with n in-
cidences in an ¢ x j field. Clearly, maxfit[¢][j] < Maxfit[¢][j] but the deviation of
the upper bound is hard to compute as determining maxfit numbers involves a
severe construction problem. Geometries whose numbers of incidences attain the
true maxfit numbers deserve special interest.

3. PARAMETERS OF THE SECOND KIND

Let us come back to the two linear spaces on six points with line type (2%, 3%) (the
seventh and eighth geometries in Fig. 4). In order to distinguish the two spaces we
were looking at the point degrees. In the first geometry there was one point with
two 3-lines and one 2-line, one point with five 2-lines and there were four points
with one 3-line and three 2-lines. In the other geometry each point had one 3-line
and three 2-lines. Therefore, we are led to the following refinement of parameters.
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3.1 Point Types and Point Type Distributions

Let (P, B) be a linear space on v points with line type a = (292, ..., v%). For fixed
p € P we define

bp = ([p]v’ "'a[p]?n [p]2) (6)

the point type of p. Usually we prefer exponential notation b, = (v[”]“, ce 2[”]2).
The vector by, is called the point type of p. The multiset of vectors of point types
{by|p € P} is the point type distribution or point case of the geometry. The line
case together with the point case form the parameters of the second kind of the
geometry.

For the two (29, 3%), we get the following point types:

1 x (32, 2)
4 x (3,2%) and 6 x (3,2%).
1 x (2%)
Visualized in the incidence matrix we have:
E= ] =l FEE
=] =] 5] O ojojo
=] oo ] O a][s][x]
alo[ o ] oja 5] 5]
ol (o o ] o] [o [] []
olooog| ol [ o [ o [ o

Let us now switch over from the type of a particular point p to the set of all
possible point types in linear spaces with a given line type. Therefore, we remove
the reference to the point p from our notation and write b = (b, ..., bs, b2). The
following important question immediately arises: What are the necessary conditions
for such a vector of non-negative integers to be a valid point type in a linear space
with line type a = (a2, as,...,a,)7 Clearly,

bj S Clj (7)

must be satisfied for each 7 = 2,...,v. As each point in a linear space is joined
to each other point and as each line of length j joins a fixed point to j — 1 other
points we get

dbiG-1) = v—1. (8)
j=2
Let now b; = (biw,...,b;2) run through all solutions to (7) and (8) with i =
1,..., k. Set
¢; = Fpoints of type b;in (P, B) for 1 <i<k. (9)

The vector ¢ = (e1,c¢a,...,cx) is the point type distribution. We are now going to
compute point types and point type distributions for linear spaces of a given line

type.

3.2 Counting Incidences

Fix a line case a = (az, a3, ..., a,) and assume that by, ..., by are all possible point
types according to (7) and (8). One forms a k x v — 1 matrix B = (b; ;) with the
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point types written in its rows. To compute possible point type distributions (or
point cases) one considers a blocking scheme of the incidence matrix of possible
geometries (cf. Fig.7).

a, X v-lines as X 3-lines as X 2-lines
—N— —N— —N—
¢1 X by { — bLU — — b173 — — bl,Z —
¢y X by { — bzyv — — b273 — — b2,2 —
cr X by { — bk,v — — bk,B — — bk,z —
ST = wvay > = 3as ST = 2as

FIG. 7. choosing points of different types

The blocking of the matrix is induced by the line-type (vertical stripes) and the
point cases (horizontal stripes). In order to determine possible point distributions
(c1,c2,...,ci) we proceed in the following way: Counting the incidences in the strip
of j-lines in two ways leads to the following system of Diophantine equations:

k
Zcibiyj = ja; for2<j<w. (10)
i=1

Clearly, the sum of all ¢; 1s fixed:

Zci = . (11)

i=1

The solutions to (10) and (11) give all possible point cases for geometries (P, B)
with line type a. Note that there might exist “algebraically possible” point cases
which are not realizable. In order to get more necessary conditions we apply the
tests of Sections 2.2 and 2.3.

1. (the minimum-breadth test of Section 2.2) Consider the dualized geometry
of the set of j-lines of (P, B) — assume a; > 0. These geometries are prelinear
spaces on a; points and have ¢; lines of length b; ; for 1 < ¢ < k. The
minimum breadth test must be satisfied for all such geometries. Again, this
test 1s best applied after reordering the lines to obtain decreasing line lengths.

2. (the maximal flag test of Section 2.3) The intersection of points of type b;
with lines of length j form a ¢; X a; submatrix of the incidence matrix. Assume
that ¢; > 0 and a; > 0 to avoid trivial cases. We apply the maximal flag
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test of Section 2.3 to each such submatrix. The point case is valid only if the
condition is fulfilled in all cases.

3. (the maximal flag test for combinations of squares) It is also possible to
apply the previous test to combinations of those submatrices. For example,
one could stack two such matrices of the same column upon each other and
apply the maxflag-test with ¢;b; ; + c;by ; incidences in a ¢; + ¢ by a; grid.

See Section 3.5 for a worked-out example where all these tests are applied.

3.3 Counting Intersections

In order to reduce the number of putative parameter sets further we may apply
another test. Let us choose two different columns belonging to ji-lines and js-lines,
say, in Figure 7 and assume that a;, > 0 and a;, > 0. We count the number of
intersections between lines of these different sorts. As each two lines intersect in at
most one point, there can be no more than a;, - ¢;, intersections between these two
sorts of lines. FEach point of type b; lies in the intersection of b; ;, - b; ;, such pairs
of lines and thus the following inequality must be satisfied

ci-big, - big, < aj, -aj, forji,js € {2,.. v}, j1 # jo. (12)
=1

3.4 The j-Degree Test

For the next test, let j be fixed and consider lines of length j (2 < j < v). Fix a
point p with maximal j-degree. Consider the set of points ¢ # p covered by the
pencil of j-lines through p. More formally, we set

X ={¢eV\{p}|IB€B: |B|=j,pe B, ge B} (13)
Clearly,
XUu{pt ClgeV|lgl;>0=Y (14)
holds. Counting yields (cf. Fig. 8)
X[ =li-(G—1) and [Y] = Y« (15)
i:b,)j>0
(14) and (15) together imply
Wh-G-1< > e (16)
i:b,)j>0
and this gives another necessary condition for second kind parameter sets.
3.5 A Worked-Out Example
We finish this section on second kind parameters with an example on 8 points

showing how to combine parameter calculation, application of various kinds of
tests and construction seen so far.
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[pl; lines of length j

l o 0 © o

FIG. 8. The j-Degree Test

Assume we want to construct all linear spaces on eight points with line type
(216 31). We start with the point types. According to (8), we solve

2b3+b2 == 7

and find the solutions b = (b3,b2) = (3,1), (2,3), (1,5) and (0,7). In order to
compute point type distributions, we solve (10) together with (11):

3 C1 —|— 2 C2 —|— C3 = 12
¢ + 3 co + 5 c3 + 7 Cq4 = 32
c1 + ¢+ c3+ ¢ = 8

Starting with the solution ¢ = (¢, ¢2,¢3,¢4) = (4,0,0,4) we get the following pa-
rameters of our linear spaces:

4 16
413 1
410 7

which should serve as a short way to describe the incidence matrix with the following
indicated row-sums:

® 0 0 0 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.

. 3 1

[} — —

.

.

. 0 7

[} — —

.

(each bullet stands for a row or a column of the incidence matrix). But what
about realizability of this parameter set? Looking at the topmost box in the first
column we find a geometry with 4 -3 = 12 incidences in a 4 X 4 rectangle. But
Maxfit[4][4] = 9 so this is impossible. We conclude that ¢; < 4. Note that the
minimum-breadth test is able to rule out this case, too.
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The cases ¢; = 3 and ¢; = 2 also lead to a violation of the maxfit condition, so
c1 < 1. We continue with ¢ = (1,4, 1,2). Thus we get the following parameters:

The top left rectangle is now fine but still we cannot realize this parameter set. The
problem lies in the two topmost rectangles in the first column: combining them,
we get an incidence-matrix with 1-3 44 -2 = 11 incidences in a 5 x 4 field. But
Maxfit[4][5] = 10 so this is impossible.

We try ¢ = (1,3,3,1) with

This leads to our first realization (cf. Fig. 9).

o 7
T X

FIG. 9. The 6 Example Spaces

The next case is ¢ = (1,2, 5,0) which also possesses a realization.

4 16

1
2
5

— N W

1
3
5
From now on, ¢; = 0. The next case is ¢ = (0,6,0,2). In

|4 16
62 3
210 7

we find the dual of the complete graph K4 in the top left square. The corresponding
geometry exists.
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The distribution ¢ = (0,5, 2, 1) gives another uniquely realizable parameter case
(geometry no. 4).

With ¢ = (0,4,4,0) we get a scheme which is realizable by two different linear
spaces (no 5 and 6). The first one has a 3-line whose points all have [p]s = 2. In
the other one, each 3-line has two points with [p]s = 2 and one with [p]s = 1. So,
even though the second kind parameters of these two spaces coincide, a closer look
at the lines shows a difference (cf. Fig. 10). This is the motivation for introducing
parameters of even higher kind, see the following section.

=[S =] EE =]
a o] [0 =] B[] ol |0
a a o[ (O [u] 0 ol |0
EEEN olo NEEN oo
[m] a a [m]
o o o o
a [u] 0 o
u] o  become [ o
FIG. 10. Linear Spaces on FEight Points with Same Second

Kind Parameters, Refinement of the Line Type

4. PARAMETERS OF THE THIRD KIND

Let B be a line of length j in a linear space P = (V,B) on v points. Let by, ... by
be the point types in P. Define

dP = # of points of type b; on B (17)
for 1 < i< k. The vector
dp = (7', d7, ..., df) (18)

is called the refined line type of B in P.

Each line B of P has a refined line type dg. The multiset of refined line types
{dg|B € B} is called refined line type distribution. We will also call them parame-
ters of the third kind of the geometry.

Following the general scheme of this article, we are now going to precompute
third kind parameters of possible geometries. Therefore, we forget about the par-
ticular space P and consider all possible line types in spaces with given first and
second kind parameters. Assume that a = (as,...,ay) is a fixed line type and
by, ..., by are the point types each occuring with multiplicity ¢;. Define

d;; = # of points of type b; on a line of length j. (19)
The vector

is a refined line type of j-lines. It 1s our task to compute all refined line types and
to choose them with appropriate multiplicities. These selections will form our third
kind parameters of the geometries.
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4.1 Refined Line Types

Assume that a line case a and a point case (c1, ..., ¢;) corresponding to point types
b1,..., by are given. In order to compute possible types of j-lines (with a; > 0 in
the line type) we have to solve the equation

k
D dii = j (21)
i=1
under the additional restrictions
dii < ¢ foralli=1,... k. (22)
Assume that there are {; solutions
dj,l’ dj,?a ey d]y[]
and write
djyu = (dj,u,la . ~,dj,u,k) for u S Ej.
Let €; ;, be the number of (j-)lines of type d; 5 in the space. The vector
e = (61/71, 61/72, ceey 61/7[”, ceey 6371, 6372, ey 63753, 6271, 6272, ey 62752 ) (23)

is the refined line type distribution or refined line case of the geometry. To be a
little bit more precise, the line type, the point types, the point type distribution,
the refined line types and the refined line type distribution altogether form the
third kind parameters of the geometry. Clearly, realizability is still an important
topic and nonrealizable parameter sets should again be recognized and eliminated
as soon as possible.

Note that the computation of refined line types gives nothing new if there is only
one point type in the point type distribution. Namely, in this case the refined line
types are unique and coincide with the original line types given by the length of lines.
This is what we call a TDO-case: the second kind parameters already describe a
tactical decomposition which is the same as it would show up when TDO-classifying
geometries of that type. It has been mentioned in the introduction that a TDO
cannot be refined any further. Note that the TDO-cases appearing at level two are
exactly the parameter cases of regular linear spaces (in the sense of [2]).

Clearly,

4
Zej,h:aj forj=2,3,... v (24)
h=1

must be satisfied. Balancing incidences within the rows belonging to a fixed point

type b; and the columns belonging to j-lines leads to the following equations. We
call them type-1 equations (cf. Fig. 11).

£
> djuiciu = cibij (type-l) (25)
u=1
for 1 <@ <k with ¢; > 0, and for 2 < j < v with a; > 0. Next, we have to ensure
that each pair of points is joined exactly once. Fix an index ¢ with 1 <z < k and
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a; x j-lines

€1 €;,2 €t
~ = ~ = —~N
djn | dj» | - dje;
T T
¢; points of type b; e dj1; dj 2, s dje;i
| | |

FIG. 11. choosing refined line types

¢; > 0. All the pairs of points of type b; are joined if and only if the following
equation of type 2 holds:

Zi (dj’;’i)ej,u = (CQ) (type-2). (26)

j=2u=1

Finally we consider points of different type. Fix i3 # iz such that ¢;; > 0 and
¢i, > 0 We get equations of type 3:

v Ay
DD iy s - € = ciy iy (type-3) (27)

j=2u=1

for 1 <y, 49 < k and 41 # i. This type of equations is dual to (12). Here we have
in fact equality since the points and blocks form a linear space.

4.2 The Example on Eight Points Again

Let us come back to the example of linear spaces on 8 points with line type (216 34).
Assume we are in the last point case:

4 16
1023 (28)
411 5
Solving (21), we get the following refined line types of 3-lines and 2-lines:

d3,1 == (3a0)a d3,2 == (2a 1)a d3,3 == (1a2)a d3,4 == (0a3)a
d2,1 = (2a0)a d2,2 = (1a 1)a d2,3 = (0a2)

We are looking for solutions

e = (63,1, €3,2,€3,3,€3,4,€2,1,€2 2, 62,3)



20 A. BETTEN, D. BETTEN

of the following systems of equations. The type-1 equations and (24) give for the
3-lines
es1 + €32 + e33 + e34 = 4
Jez 1 + 2Zez2 +  e33
ez2 + 2ez3 + 3ezq = 4

I
oo

(29)

and for 2-lines

ea1 + ez + ea3 = 16
26271 + €22 = 12 (30)
ea2 + 2es3 = 20

The equations of type 2 and 3 are:

Jez 1 + ez + ea - 6
€33 + 3es3.4 + e23 = 6 (31)
2e39 + 2eszs + €29 = 16

We solve these equations with the two vectors
er = (1,2,1,0,1,10,5) and ey = (0,4,0,0,2,8,6).

They form the two different refined line type distributions of the two spaces of Fig-
ure 10 — the 2-lines were left out in the figure. This means that we can refine (28)
in exactly two different ways. We obtain the following schemes (here, the numbers
inside the scheme stand for column sums)

1211105
43212 10 and
40120 1 2

(32)

Figure 12 shows the TDO decompositions of the two example spaces. The first
scheme in (32) is already very close to its TDO whereas the second one in fact
coincides with its TDO decomposition. The automorphism group of the first space
has order 4 and is generated by (12)(56) and (78) (labeling points or rows from
the top downwards in the incidence matrix). The second space has a group of order
8 generated by (12)(34)(67) and (1342)(5687). These two spaces correspond to

the last two spaces of Figure 9.

5. RESULTS

5.1 Linear Spaces by Line Types

Tables IV to X display the numbers of linear spaces on 7-12 points. We list only
realizable line cases and show the number of geometries within each case. Addition-
ally, we indicate the computing time. In order to save space, only running times of
2 or more minutes are shown.

All computations were made on a DEC AlphaStation 600 with 400 MHz CPU
clocks. At the end of the tables, the total number of geometries and the the overall
running time are given.

All linear spaces on < 11 points were computed using only second kind param-
eters. The LIN(12)-computation uses different parameter depths. Table IIT shows
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FIG. 12. The TDO Decompositions and TDO-Schemes of the Two Example Spaces

the parameter depth which has been chosen for each line type. The numbers 2
and 3 stand for second and third kind parameters, respectively, whereas a star (*)
indicates that a special program was used (namely, the program written for [2]).

Note that we do not show the 2-lines in the line type. This is for reasons of space
and it is possible to recompute their number using (2). Empty parentheses stand
for K, the complete graph on v points.

The results displayed in this section can also be obtained via Internet. We
maintain two copies of this page, one at the Journal’s home page and one at the
author’s. The addresses are

http://www.emba.uvm.edu/" jcd/reports/335/pub_lini2.html
http://www.mathe2.uni-bayreuth.de/betten/PUB/pub_lini2.html

In addition to this article, the latter of these pages also contains incidence matrices
for the linear spaces. One file for each line case of a linear space on v points
is provided. The coding of the files is explained on the above mentioned page.
Moreover, the files are compressed using the program gzip. The total amount of
storage needed for the linear spaces on 11 points is only 1.1 MB whereas the linear
spaces on 12 points need 117 MB of disk space. This means that on the average,
each linear space is coded with between 4 and 5 bytes, which 1s amazingly short.
(The credit goes to the authors of the program gzip!)

Finally, we would like to mention the generation rate. The linear spaces on 10,
11 and 12 points were constructed at a rate of 350, 228 and 312 objects per second,
respectively. However, the actual rate of generation within the individual line cases
may differ from these values considerably. Moreover, in the case that parameters of
depth 2 or 3 were used, the generation rate inside the line case is just the average
over all the subcases resulting from refinement of parameters.
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TABLE III.

Different Parameter Depths for the LIN(12) Computation

Line Cases

Parameter Depth

(12) - (4%)
(42) _ (313742)
(312742) _ (42)

(4) - (3,9

RO ¥R WD W N

3

2

3, * for configurations 124163

TABLE IV. The Linear Spaces on 7—-9 Points

v=7, v =28, v=2_8 v=29 v=29
line case # line case # line case # line case # line case #
(7) 1 (8) 1 (39 6 (3°5) 3 (3%4) 31
(6) 1 (7 1 (39 4 (3°5) 3 (3°4) 32
(35) 1 (36) 1 (3% 2 (3*5) 6 (3*4) 26
(5) 1 (6) 1 (3) 1 (3°5) 5 (324) 12
(4%) 1 (45) 1 (0 1 (3*5) 4 (3% 4) 6
(3% 4) 1 (3*5) 1 total: 69 (35) 2 (34 2
(3% 4) 1 (3*5) 1 time: 0sec (5) 1 (4 1
(34) 2 (35) 2 (3* 4° 1 (3% 1
(4) 1 (5) 1 v=09, (3% 4° 1 (3'Y 1
(37 1 (3% 4% 1 line case (32 47) 2 (3'9 4
(3%) 1 (3247 1 (9) 1 (34%) 1 (3% 12
(3%) 2 (34%) 1 (8) 1 (4% 1 (3 31
(3%) 3 (4% 2 (37 1 (37 4%) 1 (3 41
(3%) 3 (3%4) 2 (7 1 (3% 4?%) 3 (3% 34
(3%) 2 (3%4) 2 (46) 1 (3°4?) 9 (3% 19
(3) 1 (3*4) 6 (3°6) 1 (3*4%) 12 (39 11
() 1 (3%4) 5 (326) 1 (324 12 (39 5
total 24 (3% 4) 4 (36) 2 (3247 6 (3% 2
time Osec (34) 2 (6) 1 (34%) 4 (3) 1
(4) 1 (5) 1 (#) 2 () 1
(3%) 1 (3%45) 1 (3%4) 3 total 384
(37 4 (3%45) 1 (374) 13 time: 0 sec
(3%) 6 (345) 1
(3%) 7 (45) 2
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TABLE V. The Linear Spaces on 10 Points

v =10
line case

#

(3°5%)

— o
PO RO O 00 00 MO RO O o W oo MR = = = | TR

16
33
48

38
26
12

o]

—_ o D W o W = = =D

s
J o wo | Ik

158
272
235
130
50
16

10
54
242
515
599
399
180
68

The Linear Spaces on 11 Points (Part I)

v =11,
line case

#

#

#

v =10

line case #
(10) 1
(9) 1
(38) 1
(8) 1
(47) 1
(3°7) 1
(3°7) 1
(37) 2
(7) 1
(56) 1
(3% 46) 1
(3% 46) 1
(346) 1
(4 6) 2
(3% 6) 4
(3% 6) 3
(3% 6) 6
(3% 6) 5
(3% 6) 4
(36) 2
(6) 1
(3* 5%) 1
TABLE VI.
v =11,

line case #
(11) 1
(10) 1
(39) 1
(9) 1
(4 8) 1
(3% 8) 1
(3% 8) 1
(38) 2
(8) 1
(57) 1

(3°47)
3247

1
1
1
2
4
3
6
5
4
2

WK WK H

a4 = = |3k

3
10
31
45
54
38
26
12

6

2
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The Linear Spaces on 11 Points (Part IT)

TABLE VII.

time

#

v =11,
line case

#

v=11,
line case

#

v =11,
line case

#

v =11,
line case
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v =12,
line case

#
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The Linear Spaces on 12 Points (Part I)

TABLE VIII.

v =12,
line case

v =12,
line case

v =12,
line case

#

#
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TABLE IX. The Linear Spaces on 12 Points (Part II)

v =12, v =12, v =12,

line case # time line case # time line case # time
(3* 4° 5) 31 (3'245) 22709  9:53 (3% 47) 28

(3% 4° 5) 30 (3" 45) 79359 13:48 (347) 9

(3% 4° 5) 21 (3945) 155771  10:49  (47) 2

(34° 5) 6 (3°45) 181006  5:11  (3° 4%) 1

(4° 5) 3 (3% 45) 131002  2:38 (3% 4%) 11

(3% 4* 5) 2 (37 45) 61555 (37 49) 150

(3% 4% 5) 27 (3% 45) 20194 (3% 4%) 618

(37 4* 5) 211 (3% 45) 5025 (3% 4%) 1165

(3% 4% 5) 645 (3* 45) 1079 (3% 4%) 1195

(3% 4% 5) 1067 (3% 45) 215 (3% 4%) 653

(3* 4% 5) 933 (3% 45) 44 (3% 4%) 209

(3% 4% 5) 493 (345) 9 (3 4%) 36

(3% 4% 5) 138 (45) 2 (4%) 8

(3 4% 5) 29 (3% 5) 50 (3 4%) 1

(4* 5) 5 (3'° 5) 1288 5:26 (30 4%) 32

(3'2 4% 5) 1 (3 5) 10698 13:20 (37 4%) 547 2:35
(31 4% 5 4 (3'% 5) 44625  29:29 (3% 4%) 4107 3:17
(319 4% 5) 132 (3'2 5) 103037  11:58 (37 4°) 12913 2:30
(3% 4% 5) 1159 (3 5) 142742 6:24 (3% 4%) 20458

(3% 4% 5) 5218 (319 5) 124400  4:01  (3° 4°) 17722

(37 4% 5) 11649 (3% 5) 71443 (3* 4%) 8804

(3% 4% 5) 14495 (3% 5) 28469 (3% 4%) 2562

(3° 4% 5) 10308 (37 5) 8549 (3% 4%) 452

(3* 4% 5) 4427 (3% 5) 2128 (34%) 58

(3% 4% 5) 1168 (3% 5) 487 (4%) 8

(3% 4% 5) 218 (3* 5) 112 (3'° 4%) 2

(3 4° 5) 30 (3% 5) 28 (3'2 4%) 59

4% 5 5 3?5 7 34 1610 4:01
5313 412 5) 12 E:& 5)) 2 5310 443 16007 10:28
(3'2 42 5) 245 (5) 1 (3% 4%) 70072 13:00
(311 42 5) 2946 448 (3' 4%) 1 (3% 4%) 152955 10:46
(31942 5) 16450 10:25 (3° 4%) 1 (37 4%) 183527 5:33
(3° 42 5) 47845 839 (3 4%) 1 (3% 4%) 128392 2:23
(3° 4> 5) 76609  5:38 (34°) 1 (3% 4%) 54284

(3747 5) 72004  2:42  (4°) 1 (3% 4%) 14340

(3% 4% 5) 41330 (3% 4%) 1 (3% 4%) 2482

(3° 4% 5) 15266 (3* 4%) 3 (3% 4%) 330

(3* 4% 5) 3896 (3% 4%) 3 (3 4%) 37

(3% 4% 5) 784 (3% 4%) 3 (4%) 6

(3% 4% 5) 135 (3 4%) 2 (3'9 4%) 2

(347 5) 24 (4%) 1 (3'° 4%) 4

(47 5) 6 (3% 47) 10 (3 4%) 129 2:39
(3'° 4 5) 3 (3% 47) 32 (3'° 4%) 3205 28:57
(3% 4°5) 228 4:12 (3* 47) 52 (3'2 4%) 38516  1:15:59
(3'% 45) 3299  4:33 (3% 47) 51 (311 4%y 207467  1:49:17
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TABLE X. The Linear Spaces on 12 Points (Part III)

v =12, v =12, v =12,

l.c. # time l.c # time l.c #  time
(319°4%) 569190 1:32:28 (3% 4%) 1298 (3%%) 5

(3% 4° 868161 42:03 (3% 42 203 (3') 511 4:02
(3% 4%) 785607 17:53 (3% 4%) 37 (3'%) 9805  8:53
(37 47) 440069 6:34 (3 47) 7 (3'7) 80304  9:58
(3% 4%) 157932 2:00 (4%) 2 (3'%) 339704  20:50
(3% 4%) 37936 (3'% 4) 65 (3'%) 828552  26:35
(3% 4%) 6629 (317 1) 2408 2:17 (3" 1244997  23:20
(3% 4%) 956 (3' 4) 37112 15:41  (3'%) 1208959  18:28
(3% 4%) 133 (3% 4y 263167  22:45 (3'%) 786898  11:17
(3 4%) 22 (3'*4) 984173 4514 (3'1) 354149  6:25
(4%) 5 (3% 4y 2107730  2:03:00 (3'%) 113973 2:15
(317 4%) 3 (312 4y 2752767  1:25:13  (37) 27611

(3'9 47) 115 (31 4y 2205917  1:14:35 (3%) 5519

(3'° 47) 3844 4:30  (3'°4) 1268667  26:59 (37) 1039

(3 47) 52198 19:37  (3° 4) 479434 714 (3%) 213

(3% 4%y 320825 55:18 (3% 4) 129353 2:01  (3°) 51

(312 4%) 1075978  1:42:01 (37 4) 26675 (3%) 16

(3 4%) 1981420 1:21:08 (3% 4) 4690 (3%) 5
(31942 2193743  45:00 (3% 4) 790 (3%) 2

(3% 4%) 1530287  23:12 (3% 4) 148 (3) 1

(3% 4%) 696583  33:41 (3% 4) 30 () 1

(37 4%) 214717 9:46 (3% 4) 7 total: 28872973

(3% 4%) 47489 2:17 (3 4) 2 time: 25:42:56

(3% 4%) 8259 (4) 1
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